INSTITUTE OF CHEMICAL TECHNOLOGY Degree of Bachelor of Chemical Engineering (B. Chem. Engg.) Syllabus

The Institute revamped the syllabi of various courses in 2009. All the courses are credit based and the evaluation are grade based. The credit system is a systematic way of describing an educational programme by attaching credits to its components. The definition of credits is based on student workload, learning outcomes and contact hours. It is a student-centric system based on the **student workload** required to achieve the objectives of a programme. Each theory course consists of Lectures and tutorials. During tutorial session it is expected that the problem solving / case studies / relevant real life applications / student presentations / home assignments / individual or group projects are discussed in presence of the teacher. Teacher can have the freedom to interchange lectures / tutorials depending upon the need. Each laboratory course consists of practical hours and/or extra lecture hours depending upon the need. The Institute gives emphasis on continuous evaluation with considerable freedom to the teacher in deciding the mode of evaluation of the students. It is desirable to revise the syllabi of various courses every 5 - 6 years. Accordingly, the B. Chem. Engg. syllabus is being revised. The revised syllabus comes into effect for first year Chemical Engineering students from the academic year, July 2015.

There were several motivations for the syllabus revision:

- AICTE / NBA accreditation guidelines require
 - syllabus to be benchmarked with respect to other Institutions
 - program objectives to be defined for the course
 - course objectives to be defined for each subject
 - map showing how the course objectives meet the program objectives
 - map showing the linkage between different courses
- So far, the intake of B. Chem. Engg. students was based on two different qualifying examinations: AIEEE and MHCET. From the academic year 2014, all the incoming students will be coming through a qualifying criterion based on combination of JEE-Main and state board examination. The B. Chem. Engg. syllabus, especially, the first and second year Chemical Engineering syllabus contents need to be revised taking into account the syllabus for the JEE main examination.
- Syllabi of Bachelor of Chemical Engineering course of various Universities and Institutions around the world, MIT, UCB, UCSB, UMN, UWM, RMIT, IITB, IITKGP, IITG, etc. was analyzed to identify the weightages given to different components in the syllabus. A summary of this analysis is as follows:

Subject	% of the total credits in different Universities
Physics	2.0-7.5
Chemistry	2.8 - 15.9
Mathematics	8.1 - 17.4
Biology	1.5 - 4.5
Communication skills	1.5 - 3.8
Humanities & Management	2.1 - 12.6
General engineering	1.5 - 10.8
Core Chemical engineering	36.1 - 57.6
Electives	4.6 - 16.5

- Feedback about the course contents as well as overall structure was taken from various experts (alumni as well as others), who are working in the areas of Chemical Engineering and technology, from industry and academic Institutions. These experts were from diverse backgrounds (R&D, production, design, consultancy, engineering, technology, etc. Some of the salient points of the feedback are:
 - ICT students have excellent background in chemistry, industrial aptitude, core chemical engineering subjects.
 - Analytical abilities and mathematical aptitude needs to be further strengthened
 - Students need to be exposed to newer and emerging areas in Chemical Engineering and Technology, such as, nanotechnology, biotechnology, product design, sustainability, energy engineering, etc.
 - Industry relevant applications, such as, Chemical process Safety, Scale-up, Engineering standards and codes, P&ID, etc. need to be covered
 - Students need to be exposed to standard commonly used softwares, such as, MATLAB, ASPEN, etc.
 - Syllabus needs to have more electives and flexibility for student to choose courses as per liking, electives can be grouped to form one area of expertise
 - Communication skills, Interpersonal skills, team work need to be strengthened
 - Knowledge in management related subjects need to be enhanced; e.g. finance, human resource, IP, etc.

The weightages of different modes of assessments shall be as under.

	In-Semester evaluation			
	Continuous Assessment	One Mid Semester	End-Semester	Possible components of continuous assessment
	(C. A.)	Examination	Examination	
		(M. S.)	(E. S.)	
Theory Subject	20%	30%	50%	Quizzes, online tests, class tests (open or closed
				book), home assignments, group assignments,
				viva-voce, group projects and assignments, etc.
Practicals	50%	-	50%	Attendance, viva-voce, journal, assignments,
				project, experiments, tests, etc.

Students' Evaluation:

(a) It is expected that the teacher would conduct at least two assessments as a part of continuous assessment in a Semester

(b)The teacher will announce at the beginning of the respective course the method of conducting the tests under the continuous assessment mode and the assignment of marks for various components of continuous assessment

(c) In-semester performance of all students should be displayed and sent to the academic office by the teacher at least 15 days before the end-semester examination.

(d) For the theory courses, two mid-semester tests for each course will be held as per the schedule fixed in the Academic Calendar.

(e)A mid-semester examination of 30 marks will be conducted for 2 hour duration. A mid semester examination of 15 marks will be conducted for 1 hours duration.

(f) The end semester examination will cover the full syllabus of the course and will be conducted as per the Institutional time table at the end of each semester.

(g) An end semester examination of 50 marks will be conducted for 3 hours duration. An end semester examination of 25 marks will be conducted for 2 hours duration.

Detailed discussions were conducted by the syllabus revision committee of the Department and the following Programme Education Objectives (PEO), Programme Outcomes (PO) and Graduate Attributes (GA) were decided. The syllabus revision was carried out in view of the following PEO, PO and GA:

Programme Education Objectives

- 1. Create awareness amongst students about the social/industrial demands and role of chemical engineer in the society
- 2. Incorporate a culture of research and Innovation by providing students with latest facilities
- 3. Provide a platform to the students to interact with leading teachers, scientists and industry practitioners
- 4. Multi-faceted development of students through co-curricular and extra-curricular activities, participation in various events
- 5. Build technical and managerial capabilities amongst students to meet the needs of society and industry

Programme Outcome:

- 1. Chemical Engineers having sound knowledge of mathematics, sciences, engineering fundamentals
- 2. Chemical Engineers with knowledge of fundamentals and innovation to solve the problems related to energy, food, environment, healthcare, etc.
- 3. Chemical Engineers with ability to keep abreast with the scientific literature, new technologies and new developments
- 4. Chemical Engineers who can work on complex problems in team and multidisciplinary situations
- 5. Chemical Engineers who can help government, society and industry in managerial activities related to chemical and allied industries
- 6. Chemical Engineers who can help government, society and industry to do technology development related activities for chemical and allied industries
- 7. Chemical Engineers who can cater to the needs of chemical industry, research organizations and academic institutes
- 8. Chemical Engineers who can set-up their own ventures and generate employment
- 9. Chemical Engineers who can promote awareness in society about Chemical Engineering profession

Graduate Attributes:

- 1. Problem analysis and solving skills
- 2. Familiar with usage of modern tools, techniques
- 3. Communication Skills
- 4. Capacity to analyze new concepts
- 5. Capacity to analyze and interpret experimental data

- 6. Capacity to analyze business trends
- 7. Capacity to design, optimize and operate equipment and plants safely, economically and effectively
- 8. Design and Development of solutions to industrial and societal needs
- 9. Skills related to Project Management and Economics
- 10. Skills to analyze scientific literature including patents
- 11. Ethics

	Semester – I									
No	Subjects	Credits	Hr	s/We	Marks for various Exams					
			L	Т	Р	C. A.	M.S.	.S. E.S. 7		
CHT 1131	Organic Chemistry-I	4	3	1	0	20	30	50	100	
CHT 1211	Analytical Chemistry	3	2	1	0	10	15	25	50	
MAT 1101	Applied Mathematics-I	4	3	1	0	20	30	50	100	
PYT 1101	Applied Physics – I	4	3	1	0	20	30	50	100	
GEP 1101	Engineering Graphics-I	4	2	0	6	50		50	100	
PYP 1102	Physics Laboratory	2	0	0	4	25		25	50	
CHP 1132	Organic Chemistry Laboratory	2	0	0	4	25		25	50	
	TOTAL:	23	13	4	14				550	
	S	EMESTE	ER – II	[
No.	Subjects	Credits	Hrs/week Marks for various E							
			L	Т	Р	C.A.	M. S.	E. S.	Total	
CHT 1231	Organic Chemistry-II	4	3	1	0	20	30	50	100	
CHT 1341	Physical Chemistry	3	2	1	0	10	15	25	50	
CET 1501	Material & Energy Balance Calculations	4	3	1	0	20	30	50	100	
MAT 1102	Applied Mathematics-II	4	3	1	0	20	30	50	100	
PYT 1103	Applied Physics – II	3	2	1	0	10	15	25	50	
CHP 1342	Physical & Analytical Chemistry Lab.	2	0	0	4	25		25	50	
HUP 1101	Communication Skills	2	0	0	4	50			50	
	Total	22	13	5	8				500	
	SI	EMESTE	R – II	I	Ũ			I	000	
No.	Subjects	Credits	Hr	- s /we	ek	Ma	rks for vario	us Exams		
			L	Т	Р	C. A.	M. S.	E. S.	Total	
CET 1301	Chem. Eng. Thermodynamics-I	4	3	1	0	20	30	50	100	
CET 1101	Momentum and Mass Transfer	4	3	1	0	20	30	50	100	
GET 1102	Structural Mechanics	3	2	1	0	10	15	25	50	
GET 1109	Electrical Engineering and Electronics	3	2	1	0	10	15	25	50	
CET 1502	Industrial & Engineering Chemistry	4	3	1	0	20	30	50	100	
GEP 1103	Structural Mechanics Lab.	2	0	0	4	25		25	50	
GEP 1110	Electrical Engg and Electronics Laboratory	2	0	0	4	25		25	50	
CEP 1715	Engineering Applications of Computers	2	0	0	4	25		25	50	
	Total	24	13	5	12	-		_	550	
	SI	EMESTE	R _ IV	7				I		
No.	Subjects	Credits	H	' rs/wee	k	Ma	rks for vario	us Exams		
		0104105	L	Т	Р	C.A.	M. S.	E.S.	Total	
GET 1107	Energy Engineering	4	3	1	0	20	30	50	100	
BST 1102	Introduction to Biological Sci. & Bioengg	4	3	1	0	20	30	50	100	
CET 1401	Chemical Engineering Operations	4	2	2	0	20	30	50	100	
CET 1302	Chem Eng Thermodynamics-II		3	1	0	20	30	50	100	
GET/CHT/	Elective I (Outside Chem. Engg. Dent.)	3	2	1	0	10	15	25	50	
PYT/MAT	(_		-		-			
GEP 1108	Engineering Graphics -II	2	0	0	4	25		25	50	
CEP 1701	Chemical Engineering Laboratory-I	3	0	0	6	50		50	100	
	Total	24	13	6	10	-		-	600	

Proposed Syllabus Structure for B. Chemical Engineering Course

	S	EMESTI	ER – V	r					
No.	Subjects	Credits	Hr	s /we	ek	Ma	rks for vario	us Exams	
			L	Т	Р	С. А.	M. S.	E. S.	Total
CET 1716	Mathematical Methods in Chem. Engg.	4	3	1	0	20	30	50	100
CET 1102	Heat Transfer	4	2	2	0	20	30	50	100
CET 1201	Chemical Reaction Engineering	4	2	2	0	20	30	50	100
CET 1402	Separation Processes	4	2	2	0	20	30	50	100
CET 1202	Biochemical Engineering	3	2	1	0	10	15	25	50
CEP 1704	Chemical Engineering Laboratory-II	3	0	0	6	50		50	100
CEP 1702	Process Simulation Lab – I	2	0	0	4	25		25	50
	Total	24	11	8	10				600
	SI	EMESTE	$\mathbf{R} - \mathbf{V}$	I					
No.	Subjects	Credits	Hı	s/wee	ek	Ma	rks for vario	us Exams	
			L	Т	Р	С. А.	M. S.	E. S.	Total
CET 1601	Material Science and Engineering	3	2	1	0	10	15	25	50
CET 1203	Multiphase Reaction Engineering	3	2	1	0	10	15	25	50
CET 1503	Environmental Engg & Process Safety	4	2	2	0	20	30	50	100
CET 1703	Chemical Process Control	4	3	1	0	20	30	50	100
CET	Chem. Engg. Elective – I	3	2	1	0	10	15	25	50
CEP 1706	Chem. Eng. Laboratory-III	3	0	0	6	50		50	100
CEP 1705	Process Simulation Lab – II	2	0	0	4	25		25	50
GEP 1111	Equipment Design and Drawing-I	2	2	0	4	25		25	50
	Total	24	13	6	14				550
	CE	D 1710 In	townak	in					

CEP 1710 Internship

• After the end of the sixth semester examination and before the start of the seventh semester, every student will have to undergo an internship. The Internship would be of 6 credits.

• The internship (preferably Industrial Internship) would be assigned to the student by the Departmental Internship Coordinator, with the approval of Head, Chemical Engineering Department.

The total duration of the internship would be for a period equivalent to 12 Calendar weeks. This period typically start from 1st May and end before 30th July every year. This means the end semester examination of T. Y. B. Chem. Engg. (Semester VI) should be completed by 25th April every year. The Semester VII (4th Year B. Chem. Engg.) should commence w.e.f. 1st Aug every year. The internship may be completed in one or more organizations as described below.

• The internship could be of the following forms:

(i) industrial internship in a company (within India or Abroad) involved in R&D / design / manufacturing (QA/QC/Plant Engineering/Stores and Purchase) / marketing / finance / consultancy / Technical services / Engineering / Projects, etc.

(ii) research internship in reputed Institutes (within India or Abroad) like, ICT, IITs, NITs, IISC, NCL, IICT etc.

• At the end of the internship, each student will submit a written report based on the work carried out during the Internship. The report will be countersigned by the Supervisor from Industry / Institute as the case may be.

• Performance of the student will be assessed based on the written report and a presentation to a committee consisting of two faculty members from the Chemical Engineering Department.

• Students will be assigned a grade based on the written report and a presentation; evaluated by a committee of faculty members.

SEMESTER – VII (will be of 10 weeks duration)										
No.	Subjects	Credits	Hr	·s/wee	ek	Ma	rks for vario	us Exams		
			L	Т	Р	С. А.	M. S.	E. S.	Total	
CET 1504	Chemical Project Engg. & Economics	3	3	1	0	10	15	25	50	
CET 1505	Process Development and Engineering	4	4	2	0	20	30	50	100	
HUT 1102	Perspectives of Society, Sci. & Tech.	3	3	1	0	10	15	25	50	
CET	Chem Engg Elective – II	3	3	2	0	10	15	25	50	
CEP 1717	Optimization of Chem. Engg. Systems	2	2	0	4	25		25	50	
CEP 1708	Project 1: Seminar	2	0	0	4	50	5			
CEP 1709	Project 2: Home Paper – I	2	0	0	4	50			50	
	Total	19	15	6	12				400	
	SEMESTER – VIII									
No.	Subjects	Credits	Hr	s /wee	ek	Ma	rks for vario	us Exams		
			L	Т	Р	C. A.	M. S.	E. S.	Total	
HUT 1103	Ind. Psychology & H. R. Management	3	2	1	0	10	15	25	50	
HUT 1104	Industrial Management – I	3	2	1	0	10	15	25	50	
HUT 1105	Industrial Management – II	3	2	1	0	10	15	25	50	
MAT 1106	Design & Analysis of Experiments	3	2	1	0	10	15	25	50	
CET	Chem Engg. Elective – III	3	2	1	0	10	15	25	50	
GEP 1112	Equipment Design and Drawing -II	2	2	0	4	25		25	50	
CEP 1711	Project 3: Home Paper – II	3	0	0	6	50		100	150	
	Total	20	12	5	10				450	

Distribution of credits (and hours) amongst various subjects - revised versus existing

	Revised Syllabus								
	Chemistry	Physics	Biology	Maths	Gen.	Chem.	Humanities	Total (hrs $L\&T + P$)	Remarks
	-				Engg.	Engg.			
Ι	9	6		4	3			22 (15+14=29)	
Π	9	3		4		4	2	22 (18+8=26)	
III					10	14		24 (18+12=30)	Engg App. of Computers in CE treated as
									Maths course
IV	3		4		6	11		24 (19+10=29)	
V						24		24 (19+10=29)	
VI					5	19		24 (19+14=33)	Mat. Sci. and Engg. treated as G. E. Subject
				Internship)			6 (12 calender weeks)	Not categorized because all subject
		-							knowledge is required
VII						13	6	19 (21+12=33)	Chem Proj Engg & Eco treated as
									humanities
VIII				3	2	6	9	20 (17+10=27)	Design & Anal of Expts treated as Maths
Total	21	9	4	11	26	91	17	185 (146+83=229)	
%	11.7	5.1	2.2	6.2	14.5	50.8	9.5		
						Exis	sting Syllabus		
	Chemistry	Physics	Biology	Maths	Gen.	Chem.	Humanities	Total (hrs L&T + P)	Remarks
					Engg.	Engg.			
Ι	11	6		4	4			25 (15+15=30)	
Π	11	3		6		4	2	26 (18+12=30)	E.A.D.C. treated as Maths course
III	9		3	4	5	7		28 (24+6=30)	
IV				4	14	7		25 (19+9=28)	
V						23		23 (17+9=26)	
VI					5	19		24 (16+12=28)	Mat. Tech. Treated as G. E. Subject
VII						20	6	26 (12+17=29)	Chem Proj Engg treated as humanities
VIII				3	4	12	7	26 (13+15=28)	Design & Anal of Expts treated as Maths
Total	31	9	3	21	32	92	15	203 (134+95=229)	
%	15.3	4.4	1.5	10.3	15.8	45.3	7.4		

Detailed Contents of Syllabus

	Semester – I								
No	Subjects	Credits	Hrs/Week			Marks for various Exams			
			L	Т	Р	С. А.	M.S.	E. S.	Total
CHT 1131	Organic Chemistry-I	4	3	1	0	20	30	50	100
CHT 1211	Analytical Chemistry	3	2	1	0	10	15	25	50
MAT 1101	Applied Mathematics-I	4	3	1	0	20	30	50	100
PYT 1101	Applied Physics – I	4	3	1	0	20	30	50	100
GEP 1101	Engineering Graphics-I	4	2	0	6	50		50	100
PYP 1102	Physics Laboratory	2	0	0	4	25		25	50
CHP 1132	Organic Chemistry Laboratory	2	0	0	4	25		25	50
	TOTAL:	23	13	4	14				550

L T P Semester: I Total contact hours: 60 3 1 0 List of Prerequisite Courses HSC Chemistry						
Semester: I Total contact hours: 60 3 1 0 List of Prerequisite Courses HSC Chemistry						
List of Prerequisite Courses HSC Chemistry List of Courses where this course will be prerequisite Organic Chemistry – II, Organic Chemistry Laboratory, Other Chemistry Courses, Material and Energy Balance Calculations, Ind. Eng. Chem., Description of relevance of this course in the B. Chem. Engg. Program To train the students with respect to basics of mechanism of organic reactions, stereochemistry, and aliphatic chemistry Reqd. hours 1 IUPAC Nomenclature of organic compounds – Polyfunctional aliphatic compounds, acyclic,mono- and bi-cyclic, and aromatic. 06 2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, carbon radicals, carbenes; their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 10 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 04 3 Stereochemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 06 04 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. Cl sources, natural aissues, carbon foltprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 06 5 Chemis						
HSC Chemistry List of Courses where this course will be prerequisite Organic Chemistry – II, Organic Chemistry Laboratory, Other Chemistry Courses, Material and Energy Balance Calculations, Ind. Eng. Chem., Description of relevance of this course in the B. Chem. Engg. Program To train the students with respect to basics of mechanism of organic reactions, stereochemistry, and aliphatic chemistry To train the students with respect to basics of mechanism of organic reactions, stereochemistry, and aliphatic chemistry To train the students with respect to basics of mechanism of organic reactions, stereochemistry, and aliphatic chemistry Course Contents (Topics and subtopics) Reqd. hours 1 IUPAC Nomenclature of organic compounds – Polyfunctional aliphatic compounds, acyclic,mono- and bi-cyclic, and aromatic. 06 2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, lacarbon radicals, carbenes; their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 10 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastercomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 04 4 Sources of organic compounds: Coal, petrole						
List of Courses where this course will be prerequisite Organic Chemistry – II, Organic Chemistry Laboratory, Other Chemistry Courses, Material and Energy Balance Calculations, Ind. Eng. Chem., Description of relevance of this course in the B. Chem. Engg. Program To train the students with respect to basics of mechanism of organic reactions, stereochemistry, and aliphatic chemistry Reqd. hours I IUPAC Nomenclature of organic compounds – Polyfunctional aliphatic compounds, acyclic,mono- and bi-cyclic, and aromatic. Reqd. hours 2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, icarbon radicals, carbenes; their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 10 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 04 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural gas hydrates. 04 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 06 06 Functionalization of alkanes – alkanes to alkenes and haloalkanes. Alkanes as fuels – environmental issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 06 5 Chemistry of alkanes. General reactions. Mechanisms of nucleophilic s						
List of Courses where this course will be prerequisite Organic Chemistry – II, Organic Chemistry Laboratory, Other Chemistry Courses, Material and Energy Balance Calculations, Ind. Eng. Chem.,						
Organic Chemistry – II, Organic Chemistry Laboratory, Other Chemistry Courses, Material and Energy Balance Calculations, Ind. Eng. Chem., Image: Calculations, Ind. Eng. Chem., Description of relevance of this course in the B. Chem. Engg. Program To train the students with respect to basics of mechanism of organic reactions, stereochemistry, and aliphatic chemistry To train the students with respect to basics of mechanism of organic reactions, stereochemistry, and aliphatic chemistry Reqd. hours 1 IUPAC Nomenclature of organic compounds – Polyfunctional aliphatic compounds, acyclic,mono- and bi-cyclic, and aromatic. 06 2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, acrobenes; their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 10 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 04 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural assues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 06 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. Fluoroalkanes. 06 6 Haloalkanes: General reactions. Mechanis						
Description of relevance of this course in the B. Chem. Engg. Program To train the students with respect to basics of mechanism of organic reactions, stereochemistry, and aliphatic chemistry Course Contents (Topics and subtopics) Reqd. hours IUPAC Nomenclature of organic compounds – Polyfunctional aliphatic compounds, acyclic,mono- and bi-cyclic, and aromatic. 06 2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, carbon radicals, carbenes; their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 12 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereochemistr compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural gas hydrates. 04 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. Idea of a spunctriation of alkanes – alkanes to alkenes and haloalkanes. Alkanes as fuels – environmental issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 06 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 03						
Description of relevance of this course in the B. Chem. Engg. Program To train the students with respect to basics of mechanism of organic reactions, stereochemistry, and aliphatic chemistry Course Contents (Topics and subtopics) Reqd. hours IIPAC Nomenclature of organic compounds – Polyfunctional aliphatic compounds, acyclic,mono- and bi-cyclic, and aromatic. 06 2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, carbon radicals, carbenes; their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 10 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 10 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural gas hydrates. 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 6 Functionalization of alkanes – alkanes to alkenes and haloalkanes. Alkanes as fuels – environmental issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal						
To train the students with respect to basics of mechanism of organic reactions, stereochemistry, and aliphatic chemistry Course Contents (Topics and subtopics) Reqd. hours IUPAC Nomenclature of organic compounds – Polyfunctional aliphatic compounds, acyclic,mono- and bi-cyclic, and aromatic. Reqd. hours 2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, carbanions, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 10 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 04 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural 04 gas hydrates. 06 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 06 06 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination 06 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
Course Contents (Topics and subtopics) Reqd. hours 1 IUPAC Nomenclature of organic compounds – Polyfunctional aliphatic compounds, acyclic,mono- and 0 06 2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, carbanions, intermediates, carbenes; their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 12 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 10 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural 04 gas hydrates. 06 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 06 06 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination of olefins. Acidity of terminal alkynes. 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic on of aliphatic and aromatic on of aliphatic and aromatic substitutions of aliphatic and aromatic substitutions of aliphatic and aromatic substitingeneral reactions of aliphatic and aromatic substitutio						
Course Contents (Topics and subtopics) Reqd. nours 1 IUPAC Nomenclature of organic compounds – Polyfunctional aliphatic compounds, acyclic,mono- and bi-cyclic, and aromatic. 06 2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, carbon radicals, carbenes; their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 12 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 10 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural gas hydrates. 04 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. Functionalization of alkanes – alkanes to alkenes and haloalkanes. Alkanes as fuels – environmental issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 06 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
1 IOPAC Nomenclature of organic compounds – Polyrunctional aliphanic compounds, acyclic, mono- and bi-cyclic, and aromatic. 06 2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, carbon radicals, carbenes; their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 12 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 10 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural gas hydrates. 04 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 06 06 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
2 Principles of mechanisms of organic reactions: Reactive intermediates – carbocations, carbanions, carbon radicals, carbenes; their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. 12 3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 10 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural gas hydrates. 04 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. Issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 06 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
 Principles of internations of organic reactions: Reactive intermediates – carboccations, carbanions, 12 carbon radicals, carbon radicals, carbons, their generation, structure, stability and general reactions. Idea of aromaticity. Kinetic and thermodynamic controls. Effect of solvent, temperature. Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural gas hydrates. Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 06 Functionalization of alkanes – alkanes to alkenes and haloalkanes. Alkanes as fuels – environmental issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. Alcohols: General reactions. Acidity, H-bonding and properties. Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08 						
Kinetic and thermodynamic controls. Effect of solvent, temperature. Image: Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. Image: Imag						
3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 10 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural gas hydrates. 04 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. Functionalization of alkanes – alkanes to alkenes and haloalkanes. Alkanes as fuels – environmental issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 06 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
3 Stereochemistry: Elements of symmetry, stereochemistry of compounds containing one and two carbon 10 atoms. Stereodescriptors – R, S, E, Z. Enantiomers and Diastereomers. Racemates and their resolution. Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural gas hydrates. 04 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 06 06 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
atoms: Stereodecomptors (N, S, E, E, E) Diaminometric und Diastereometric Nation (N, S, E) Conformations of cyclic and acyclic systems. Idea of asymmetric synthesis. 4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural 04 gas hydrates. 04 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 06 06 Functionalization of alkanes – alkanes to alkenes and haloalkanes. Alkanes as fuels – environmental issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 06 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
4 Sources of organic compounds: Coal, petroleum, biomass. Petrochemical processes. C1 sources, natural gas hydrates. 04 5 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 06 06 Functionalization of alkanes – alkanes to alkenes and haloalkanes. Alkanes as fuels – environmental issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 06 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
gas hydrates. 7 Alcohols: General reactions. Acidity, H-bonding and properties. 06 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08 08						
 Chemistry of alkanes, alkenes and alkynes: Acyclic and cyclic compounds. General reactions. 06 Functionalization of alkanes – alkanes to alkenes and haloalkanes. Alkanes as fuels – environmental issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. Alcohols: General reactions. Acidity, H-bonding and properties. Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08 						
Functionalization of alkanes – alkanes to alkenes and haloalkanes. Alkanes as fuels – environmental issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
issues, carbon footprint. Oligomerization and polymerization of olefins. Acidity of terminal alkynes. 6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
6 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions and elimination reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 06 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
reactions. Organometallic compounds – Mg and Li derivatives and their general reactions. Fluoroalkanes. 7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
7 Alcohols: General reactions. Acidity, H-bonding and properties. 03 8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
8 Aldehydes and ketones: Reactivity of carbonyl group. General reactions of aliphatic and aromatic 08						
aldehydes and ketones. alpha substitution in ketones. Aldol and related reactions. Cannizzaro reaction,						
benzoin reaction.						
9 Carbon acids. Alkylation of carbon acids. 02						
10 Carboxylic acids and derivatives: Acidity of carboxylic acids. Methods of preparation and general 03						
reactions of aliphatic and aromatic carboxylic acids						
List of Text Books/ Reference Books						
Organic Chemistry, J. McMurry, Diooks/Cole Organic Chemistry, T.W.G. Solomons, C.B. Eruble, John Wiley and Sons Inc.						
2 Organic Chemistry, I. W.O. Solomons, C.D. Frynic, John Whey and Solis Inc.						
4 StereoChemistry of Carbon compounds E L Eliel Mcgraw-Hill						
5 Organic Chemistry Paula V Bruice Pearson Education						
Course Outcomes (students will be able to)						
1 Know organic nomenclature						

2	Write simple mechanism	
3	Appreciate aliphatic chemistry	
4	Appreciate stereochemistry	

		Course Code: CHT 1211	Course Title: Analytical chemistry	Crea	lits =	= 3	
				L	Т	Р	
		Semester: I	Total contact hours:45	2	1	0	
			List of Prerequisite Courses			<u> </u>	
	HSC	Chemistry					
		Lis	t of Courses where this course will be prerequisite				
	Other	r Chemistry Courses, Physica	l and Analytical Chemistry Laboratory				
		· · · ·					
		Description	of relevance of this course in the B. Chem. Engg. Program				
To in	ntrodu	ce the principles and applicati	ons of analytical chemistry				
		Co	ourse Contents (Topics and subtopics)	Req	d. ho	urs	
1	Introduction – Analytical procedures- hazards and handling, treatment of waste, good laboratory practices						
2	Aspe	ects of analysis- errors – syst	ematic and random errors, statistical treatment of experimental results,	05			
	least	square method, correlation co	efficients				
	Samp	bling – basics and procedures,	preparation of laboratory samples				
3	Applied analysis – analytical procedures in environmental monitoring, water, soil and air quality, BOD and COD determinations,						
4	Instr	rumental methods – Criteria	for selecting instrumental methods - precision, sensitivity, selectivity,	04			
	and detection limit, transducers, sensors and detectors, signals and noise						
5	5 Molecular spectral methods – Uv-visible, molecular fluorescence, IR and FT-IR						
(Mass	spectroscopy		02			
0	Aton	nic spectral methods – atomic	t emission and absorption methods	03			
/	Chue	mai methods – IGA, DIA a	10 DSC	04			
8	chror	matographic and other so	devertion methods – GC, HPLC, ion exchange and size exclusion	12			
	cinoi	natography, super entitear nul	List of Text Books/ Reference Books				
			List of Text Dooks/ Reference Dooks				
1	D.A.	Skoog, D.M. West, F.J. Holle	r, S.R. Crouch, Fundamentals of Analytical				
	Chen	nistry					
2	J.G. 1	Dick, Analytical Chemistry, R	.E. Krieger Pub				
3	Envi	ronmental Chemistry, A. K. D	e, Wiley				
4	Chro	matography					
5	Ther	mal Methods					
			Course Outcomes (students will be able to)				
1	List c	lifferent analytical techniques					
2	Desc	ribe the basic principles of dif	ferent analytical techniques				
3	Com	pute the mean from a set of me	easurements				
4	Sugg	est possible analytical techniq	ues for identification and quantification of chemicals				

Course Code: MAT 1101	Course Title: Applied Mathematics I	Credits = 4		ŗ			
		L	Т	P			
Semester: I	Total contact hours: 60	3	1	0			
List of Prerequisite Courses							
HSC Standard Mathematics							
List of Courses where this course will be prerequisite							
This is a basic Mathematics cou	rse. This knowledge will be required in almost all subjects later on						
Description of relevance of this course in the B. Chem. Engg. Program							

This is a basic Mathematics course. This knowledge will be required in almost all subjects later on. This knowledge is also required for solving various mathematical equations that need to be solved in several chemical engineering courses such as MEBC, momentum transfer, reaction engineering, separation processes, thermodynamics, etc. **Course Contents (Topics and subtopics) Regd. Hours** Solutions of system of linear equations (Gauss-elimination, LU-decomposition etc.) 1 10 Numerical methods for solving non-linear algebraic / transcendental etc. Newton's method, Secant, Regula Falsi, Jacobi Numerical solution set of linear algebraic equations: Jacobi, Gauss Siedel, and under / over relaxation methods 2 Interpolation and extrapolation for equal and non-equal spaced data (Newtons Forward, Newtons 10 backward and Lagrange) Numerical integration (trapezoidal rule, Simpson's Rule) 3 Probability of Statistics: Functions of random variables, probability distribution functions, expectation, 10 moments Statistical hypothesis tests, t-tests for one and two samples, F-test, χ^2 -test Statistical Methods for Data Fitting: Linear, multi-linear, non-linear regression Differential Calculus: Higher order differentiation and Leibnitz Rule for the derivative, Taylor's and 10 4 Maclaurin's theorems, Maxima/Minima, convexity of functions, Radius of curvature; 5 Functions of two or more variables, Limit and continuity, Partial differentiation, Total derivatives, 10 Taylor's theorem for multivariable functions and its application to error calculations, Maxima/Minima, Jacobian. Integral Calculus: Beta and Gamma functions, Differentiation under the integral sign, surface integrals, 10 6 volume integrals List of Text Books/ Reference Books Advanced Engineering Mathematics, Erwin Kreyszig, John-Wiely. Advanced Engineering Mathematics S. R. K. Iyengar, R. K. Jain, Narosa Introductory Methods Of Numerical Analysis, S. S. Sastry, PHI. A First Course in Probability, Sheldon Ross, Pearson Prentice Hall Probability and Statistics in Engineering, W.W. Hines, D. C. Montgomery, D.M. Goldsman, John-Wiely **Course Outcomes (students will be able to....)** Students should be able to solve system of linear algebraic equations 1 2 Students should be able to do numerical integrations of functions. 3 Students should be able to fit relationship between two data sets using linear, non-linear regression. 4 Students should be able to calculate maxima/minima and functions.

	Course Code: PYT 1101	Course Title: Applied Physics I	Cred	its = 4	1			
			L	Т	Р			
	Semester: I	Total contact hours: 60	3	1	0			
	List of Prerequisite Courses							
	XIIth Standard Physics							
		List of Courses where this course will be prerequisite						
	Applied Physics - II, Physic	es Laboratory, Chemical Engineering Thermodynamics, Momentum and						
	Mass Transfer, Heat Transfer,	Material Science and Engineering, Structural Mechanics, etc.						
Description of relevance of this course in the B. Chem. Engg. Program								
This is a basic physics course. This knowledge will be required in almost all subjects later on. This knowledge								
for u	inderstanding various chemical	engineering concepts that will be introduced in courses such as momentum	transf	èr, rea	action			
engi	neering, separation processes, t	hermodynamics, heat transfer, etc.						
		Course Contents (Topics and subtopics)	Reqd	l. Hou	irs			
1	Solid State Physics		15					
	Crystal structure of solids: u	nit cell, space lattices and Bravais lattice, Miller indices, directions and						
	crystallographic planes, Cub	ic crystals: SSC, BCC, FCC, Hexagonal crystals: HCP, atomic radius,						
	packing fraction, Bragg's la	w of x-ray diffraction, determination of crystal structure using Bragg						
	spectrometer							
	Semiconductor Physics: Forn	nation of energy bands in solids, concept of Fermi level, classification of						
	solids conductor semiconduc	tor and insulator intrinsic and extrinsic semiconductors effect of doping						

	mobility of charge carriers, conductivity, Hall effect.	
2	Fluid Mechanics	15
	Basic concepts of density and pressure in a fluid, ideal and real fluids, Pascal's law, absolute pressure	
	and pressure gauges, basic concepts of surface tension and buoyancy, fluid flow, equation of continuity,	
	Bernoulli's equation, streamlined and turbulent flow, concept of viscosity, Newton's law of viscosity,	
	brief introduction to non-Newtonian behaviour.	
3	Optics and Fibre Optics	10
	Diffraction: Introduction to interference and example; concept of diffraction, Fraunhofer and Fresnel	
	diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits; diffraction grating,	
	characteristics of diffraction grating and its applications.	
	Polarisation: Introduction, polarisation by reflection, polarisation by double refraction, scattering of	
	light, circular and elliptical polarisation, optical activity.	
	Flore Optics: Introduction, optical flore as a dielectric wave guide: total internal reflection, numerical	
	apellule and various fible parameters, losses associated with optical fibres, step and graded fibres,	
4	application of optical notes.	10
4	Lasers Introduction to interaction of radiation with matter principles and working of laser: population	10
	inversion numping various modes threshold nonulation inversion types of laser solid state	
	semiconductor gas: application of lasers	
5	Ultrasound	10
5	Generation of ultrasound: mechanical, electromechanical transducers; propagation of ultrasound.	10
	attenuation, velocity of ultrasound and parameters affecting it, measurement of velocity, cavitation,	
	applications of ultrasound.	
	List of Text Books/ Reference Books	
	Physics: Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern.	
	Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa.	
	Concepts of Modern Physics – A. Beiser, McGraw-Hill.	
	Introduction to Modern Optics – G. R. Fowles, Dover Publications.	
	A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern.	
	Optical Fibre Communication – G. Keiser, McGraw-Hill.	
	Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India.	
	Ultrasonics: Methods and Applications – J. Blitz, Butterworth.	
	Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH.	
	Course Outcomes (students will be able to)	
1	Students will be able to state Bragg's Law	
2	Student will be able to apply Bernoulli equation in simple pipe flows	
3	Students will be introduced to the principles of lasers, types of lasers and applications.	
4	Students should be able to calculate resolving power of instruments.	
5	Students should be able to describe principles of optical fibre communication.	
6	Application of acaustic cavitation of Chemical Engineering Processes.	

	Course Code: GEP 1101	Course Title: Engineering Graphics-I	Credits = 4		4
			L	Т	Р
	Semester: I	Total contact hours: 90	2	0	6
List of Prerequisite Courses					
	Basic Geometry				
	L	ist of Courses where this course will be prerequisite			
Engineering Graphics – II, Equipment Design and Drawing-I, Equipment Design and Drawing-II, Home Paper – II, Structural Mechanics,					
	D				

Description of relevance of this course in the B. Chem. Engg. Program

A student of Chemical Engineering is required to know the various processes and also the equipment used to carry out the processes. Some of the elementary processes like filtration, size reduction, evaporation, condensation, crystallization etc., are very common to all the branches of technology. These and many other processes require machines and equipments. One should be familiar with the design, manufacturing, working, maintenance of such machines and equipments. The subject of "drawing" is a medium through which, one can learn all such matter, because the "drawings" are used to represent objects and processes on the paper. Through the drawings, a lot of accurate information is conveyed which will not be practicable through a spoken word

or a written text. Drawing is a language used by engineers and technologists. This course is required in many subjects as well as later on in the professional career.

	Course Contents (Topics and subtopics)	Reqd. hours			
1	Orthographic projections				
2	Sectional views				
3	Isometric projections				
4	Missing views (or interpretation of views.)				
5	Projection of solids				
6	Sections of solids				
7	Development of surface				
8	Interpenetration of solids				
	List of Text Books/ Reference Books				
	1.Engineering Drawing by N.D.Bhat				
	2. Engineering Drawing by N.H.Dubey				
	Course Outcomes (students will be able to)				
1	Read Drawing				
2	Can understand different views.				

	Course Code: PYP 1102	Course Title: Physics Laboratory	Credits = 2		2
			L	Т	Р
	Semester: I	Total contact hours: 60	0	0	4
	•	List of Prerequisite Courses			
	Applied Physics - I	▲			
	L	ist of Courses where this course will be prerequisite			
	This is a basic physics Laborate	ory course. This knowledge will be required in almost all subjects later			
	on.				
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program			
This	is a basic physics course. Stude	ents will be able to learn various concepts by doing experiments on diffe	rent t	opics.	This
knov	wledge will be required in almost	all subjects later on. This knowledge is also required for understanding	vario	us che	mical
engi	neering concepts that will be intr	oduced in courses such as momentum transfer, reaction engineering, sepa	aratioi	n proc	esses,
thermodynamics, heat transfer, etc.					
1	Viceosity	Course Contents (Topics and subtopics)	Requ	<u>а. но</u>	irs
1	Thermister				
2	Thermistor				
3	I hermal conductivity				
4	Ditrasonic interferometer				
5					
0	Hall effect				
/	Newton's rings				
8	Dispersive power of prism				
9	Resolving power of grating				
10	Resolving power of grating	List of Taxt Books/ Pafaranca Books			
	Physics: Vols Land II - D Halli	day and R Resnick Wiley Eastern			
	Lectures on Physics: Vols I II	and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa			
	Concepts of Modern Physics – A	A Beiser McGraw-Hill			
	Introduction to Modern Optics -	- G. R. Fowles . Dover Publications.			
	A Course of Experiments with I	ASERs – R. S. Sirohi, Wiley Eastern.			
	Optical Fibre Communication –	G. Keiser, McGraw-Hill.			
	Optoelectronics – J. Wilson and	J. F. B. Hawkes, 2nd ed, Prentice-Hall India.			
	Ultrasonics: Methods and Appli	cations – J. Blitz, Butterworth.			
	Applied Sonochemistry – T. J. N	Mason and J. P. Lorimer, Wiley VCH.			
		Course Outcomes (students will be able to)			
1	Students will be able to state van	rious laws which they have studied through experiments			
2	Student will be able to measure	transport properties like viscosity, conductivity, etc.			

3	Students will be able to state application of acoustic cavitation	

	Course Code: CHP 1132	Course Title: Organic Chemistry Laboratory	Cre	Credits = 2		
			L	Т	Р	
	Semester: I	Total contact hours: 60	0	0	4	
		List of Prerequisite Courses	1			
	XIIth Standard Chemistry, Org	anic Chemistry - I				
		List of Courses where this course will be prerequisite				
	Organic Chemistry - II					
	Descript	ion of relevance of this course in the B. Chem. Engg. Program				
Stud	ents should be familiar with	common organic compounds, should identify them and should know s	simple	e sepa	ration	
meth	nods.					
		Course Contents (Topics and subtopics)	Req	d. hou	irs	
1	Identification of an anomia of	mound through elemental analysis, group detection, physical constants				
	Identification of an organic co	mpound infough chemental analysis, group detection, physical constants				
	(m.p and b.p) and derivatisation	n.				
2	(m.p and b.p) and derivatisation Separation and purification of	n. S binary mixtures of the type: water soluble-water insoluble, both water				
2	(m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distilla	<i>n.</i> <i>c</i> binary mixtures of the type: water soluble-water insoluble, both water ation, dissociation –extraction ,crystallization, etc				
2	(m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distilla	The second secon				
2	(m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distilla	Constants analysis, group detection, physical constants n. Solution mixtures of the type: water soluble-water insoluble, both water ation, dissociation –extraction ,crystallization, etc List of Text Books/ Reference Books				
2	(m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distilla Practical Organic Chemistry, b	S binary mixtures of the type: water soluble-water insoluble, both water ation, dissociation –extraction ,crystallization, etc List of Text Books/ Reference Books y I.L. Finar				
2	(m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distilla Practical Organic Chemistry, b	Solution of the type: water soluble-water insoluble, both water ation, dissociation –extraction ,crystallization, etc List of Text Books/ Reference Books y I.L. Finar Course Outcomes (students will be able to)				
2	Identification of an organic cc (m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distilla Practical Organic Chemistry, b Students will be able to list step	Solution of the type: water soluble-water insoluble, both water ation, dissociation –extraction ,crystallization, etc List of Text Books/ Reference Books y I.L. Finar Course Outcomes (students will be able to) ps for identifying simple organic compounds				
2	Practical Organic Chemistry, b Students will be able to list ster	Solution of the type: water soluble-water insoluble, both water ation, dissociation –extraction ,crystallization, etc List of Text Books/ Reference Books y I.L. Finar Course Outcomes (students will be able to) ps for identifying simple organic compounds ne methods of separation of organic compounds				

SEMESTER – II									
No.	Subjects	Credits	Hrs/week		Marks for various Exams				
			L	Т	Р	C. A.	M. S.	E. S.	Total
CHT 1231	Organic Chemistry-II	4	3	1	0	20	30	50	100
CHT 1341	Physical Chemistry	3	2	1	0	10	15	25	50
CET 1501	Material & Energy Balance Calculations	4	3	1	0	20	30	50	100
MAT 1102	Applied Mathematics-II	4	3	1	0	20	30	50	100
PYT 1103	Applied Physics – II	3	2	1	0	10	15	25	50
CHP 1342	Physical & Analytical Chemistry Lab.	2	0	0	4	25		25	50
HUP 1101	Communication Skills	2	0	0	4	50			50
	Total	22	13	5	8				500

	Course Code: CHT 1231	Course Title: Organic Chemistry-II	Credits =		4
			L	Т	Р
	Semester: II	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	XIIth Standard Chemistry, Orga	nic Chemistry – I, Organic Chemistry Laboratory			
	L	ist of Courses where this course will be prerequisite			
	Other Chemistry Courses, Mater	rial and Energy Balance Calculations, Ind. Eng. Chem.,			
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program			
Stud	lents will get introduced to aroma	tic compounds, heterocyclic chemistry and natural products			
		Course Contents (Topics and subtopics)	Req	d. hou	irs
1	Aromaticity: Huckel's rule – m	ono cyclic benzenoid and nonbenzenoid hydrocarbons.	06		
2	Aromatic compounds: Source	es. Positional isomerism in substituted arenes. Mechanisms of aromatic	16		
	electrophilic and nucleophilic su	ubstitution reactions. Orienting influence of substitutents, Mechanisms of			
	Friedel-Crafts alkylation ar	nd acylation reactions, nitration, halogenations, sulphonation,			
	chlorosulphonation, Addition r	eactions of Aromatic compounds, Side Chain Reactions of Aromatic			
	Compounds				
3	Alkylarenes: Oxidation, haloge	nation	03		
4	Haloarenes: Metallation reaction	on and reactions of metallo derivatives. Substitution reactions	04		
5	Phenols: Acidity of phenols. Ge	eneral reactions.	04		
6	Nitro and amino arenes: Gene	ral reactions. Basicity of aminoarenes. Diazotization and important reacts	06		
	of arene diazonium salts. Dyes	 Chromophore and auxochrome concent. Azo dyes 			
7	Sulphonic acids: Aliphatic	and aromatic. Methods of preparation. Acidity. Applications.	02		
	Chlorosulphonation, sulphonam	ides			
8	Ethers, epoxides and sulphur	acids: Methods of preparation, General reaction, ethylene and propylene	02		
	oxides – their reactions and appl	lications			
9	Heterocyclic chemistry: Com	parison with carbocyclic compounds. Aromaticity, simple methods of	10		
1.0	preparation, electrophilic orient	ation, and simple reactions of - Pyrrole, Furan, Thiophene, Pyridine.	~-		
10	Natural products: Terpenes, a	Ikaloids, plant pigments, their applications	07		
1		List of Text Books/ Reference Books	1		
1	Organic Chemistry, J. McMurry	y, Brooks/Cole			
2	Organic Chemistry, T.W.G. Sol	omons, C.B. Fryhle, John Wiley and Sons Inc.			
3	Organic Chemistry, L.G. Wade	Jr, Pearson Education			
4	Organic Chemistry, Paula Y. Br	uice, Pearson Education			
	1	Course Outcomes (students will be able to)			
1	Understand aromaticity and list	properties of aromatic compounds			
2	Write simple mechanisms of arc	omatic reactions			
3	List some of the heterocyclic ch	emistry and chemistry of natural products			
4	List some properties of heterocy	clic compounds and natural products			
L		T , man a mu a kanan	.		
	Course Code: CHT 1341	Physical chemistry	Cree	dits =	45

			L	Т	Р
	Semester: II	Total contact hours: 45	2	1	0
		List of Prerequisite Courses	L		
	Xiith Standard Chemistry				
	L	ist of Courses where this course will be prerequisite			
	Chemical Reaction Engineering,	Chemical Engg Thermodynamics – I, Chemical Engg Thermodynamics			
	- II, Multiphase Reactor Engg.,	Env. Engg. and Proc. Safety,			
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program			
Rele syste	vance of reaction rates and param	eters affecting the same, concept of interfaces and surfaces and the impo in many situations which are faced by Chemical Engineers I their profess	rtance	of dis career	perse
2 9 2 1 2	F a month of the second s	Course Contents (Tenies and subtenies)	Door	hou	rc
1	Chemical kinetics – Introduction	on concept of reaction rates and order experimental methods in kinetic	03	1. IIVU	15
1	studies differential and integral	methods to formulate rate equations of zero first and second order	05		
2	Complex reactions - parallel co	nsecutive and reversible reactions order and molecularity	03		
3	Kinetics and reaction mechani	sm- steady state and rate determining step	04		
2	Mechanism of thermal photoche	emical chain reactions, polymerization reactions	Ů.		
4	Surface reactions - Adsorption	, kinetics of surface reactions- Hishelwood and Rideal models of surface	02		
	reactions				
	Theories of reaction rates and	temperature effects- collision theory and TST	04		
	Theory of unimolecular reactions				
5	Kinetics of reactions in solution	ns- solvent effects	02		
6	Fast reactions – experimental te	chniques	02		
7	Surface and interfacial Chemis	stry – introduction, surface tension and surface	02		
0	free energy, methods of determine	ning surface and interfacial tensions	0.5		
8	Thermodynamics of surfaces –	surface excess, Gibbs adsorption equation,	05		
	curved surfaces- bubbles, dro	plets and foams, Kelvin, Young Laplace and Thomson equations,			
0	I jourd liquid and solid liqu	id interfaces contact angle watting and arreading adhesion and	04		
9	cohesion contact angle measure	ments and hysterisis	04		
10	Surfactants: Types adsorption	on at surfaces and interfaces surfactant aggregates factors affecting	07		
10	aggregation phenomena, applica	tions of surfactants and mixed surfactant systems	0,		
11	Disperse systems - Emulsions	microemulsions and foams Thermodynamics and stability, HLB	07		
	values, colloids - preparation	stability, characterization, surface charges and electrical double layer			
		List of Text Books/ Reference Books			
1	Introduction to colloid and surfa	ce chemistry – D.J.shaw, Butterworth publications			
2	Surfaces interfaces and colloids-	Drew Myers- Wiley VCH			
3	Surfactants and interfacial pheno	mena- Milton J Rosen – Wiley Interscience			
4	Industrial utilization of surfacta AOCS Press	nts principles and applications – M.J. Rosen and M Dahanayake,			
5	Foundations of Colloid science -	- Robert J Hunter – Oxford university Press			
		Course Outcomes (students will be able to)			
1	Understand the importance of in	terfacial phenomena			
2	Importance and application of s	urface active agents			
3	Understand the stability and imp	ortance of disperse systems			

	Course Code: CET 1501	Course Title: Material and Energy Balance Calculations	Credits =		ł		
			L	Т	Р		
	Semester: II	Total contact hours: 60	3	1	0		
List of Prerequisite Courses							
XIIth Standard Mathematics, Chemistry, Physics, Applied Mathematics – I, Organic Chemistry – I, Applied Physics – I, Analytical Chemistry,							
	List of Courses where this course will be prerequisite						
	This is a basic Chemical Engine	ering Course. This knowledge will be required in ALL subjects later on.					

	Description of relevance of this course in the B. Chem. Engg. Program					
This is a basic Chemical Engineering course. This knowledge will be required in almost all subjects later on. This						
introduces the various concepts used in Chemical Engineering to the students. The knowledge of this subject i						
ALL	chemical engineering courses such as momentum transfer, reaction engineering, separation processes,	thermodynamics,				
etc.	It can be applied in various situations such as process selection, economics, sustainability, environmental i	impacts				
	Course Contents (Topics and subtopics)	Reqd. Hours				
1	Introduction to Chemical Engineering: Chemical Process Industries, Chemistry to Chemical Engineering,	4				
	Revision of Units and Dimensions					
2	Mole concept, composition relationship and Stoichiometry, Behaviour of gases and vapors	6				
3	Material balances for reacting and non-reacting chemical and biochemical systems including recycle,	20				
	bypass and purge					
4	Introduction to psychrometry humidity and air-conditioning calculations.	10				
5	Introduction to Energy Balances, Energy Balances in systems with and without reactions	10				
6	Unsteady State Material and Energy Balances	6				
7	Material and Energy Balances for multistage processes and complete plants	4				
	List of Text Books/ Reference Books					
	Chemical Process Principles, Hougen O.A., Watson K. M.					
	Basic Principles and Calculations in Chemical Engineering, Himmelblau,					
	Stoichiometry, Bhatt B.I. and Vora S.M.					
	Course Outcomes (students will be able to)	•				
1	Students will be able to convert units of simple quantities from one set of units to another set of units					
2	Students will be able to calculate quantities and /or compositions, energy usages, etc. in various					
	processes and process equipment such as reactors, filters, dryers, etc.					

	Course Code: MAT 1102	Course Title: Applied Mathematics II	Cree	dits =	4
			L	Т	Р
	Semester: II	Total contact hours: 60	3	1	0
-		List of Prerequisite Courses			_
	XIIth Standard Mathematics, Aj	oplied Mathematics - I			
	L	ist of Courses where this course will be prerequisite			
	This is a basic Mathematics cou	rse. This knowledge will be required in almost all subjects later on			
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program			
This	is a basic Mathematics course.	This knowledge will be required in almost all subjects later on. This k	nowl	edge i	s also
requ	ired for solving various mathem	natical equations that need to be solved in several chemical engineering	g cour	ses su	ich as
ME	BC, momentum transfer, reaction	engineering, separation processes, thermodynamics, etc.	_		
		Course Contents (Topics and subtopics)	Req	d. Ho	ars
1	Differential Equations: Solution	n of Higher order ODE with constant and variable coefficients and its	20		
	applications to boundary and i	nitial value problems, Series solution of differential equations, Bessel			
	functions, Legendre Polynomial	s, Error function.			
	Partial Differential Equations, C	Classification of higher order PDEs, Solution of parabolic equation using			
_	separation of variables		•		
2	Numerical methods for solution	on of first and higher order ODEs (initial values and boundary value	20		
	problems) using single step me	thods (RK, Euler's explicit and implicit methods). Multi-Step methods			
2	(predictor – corrector methods e	tc), Solution of Stiff ODEs, Adaptive step size, Shooting method	•		
3	Finite difference methods: For	ward difference, backward difference, central differences, application of	20		
	finite difference methods to OD	E Boundary value problem, and PDE (parabolic, elliptic and hyperbolic)			
	A Looper J Franking Mathematic	List of Text Books/ Reference Books	1		
	Advanced Engineering Mathem	atics, Erwin Kreyszig, John-Wiely			
	Advanced Engineering Mathem	atics S. K. K. Iyengar, K. K. Jain, Narosa.			
	Elements of Applied Mathemati	<i>cs.</i> volume 1, P.N. <i>Wartikar</i> and J.N. <i>Wartikar</i> , Pune vidyartni Grana			
	Introductory Methods Of Nume	rical Analysis, S. S. Sastry, PHI.			
	Numerical Solution of differenti	ai Equations, M. K. Jain, Wiley Eastern.			
1		Course Outcomes (students will be able to)			
1	Students should be able to solve	simple first and second order ODE by Analytical methods			

2	Students will be able to solve sin	nple first and second order differential equations numerically				
3	Students will be able to solve simple parabolic partial differential equations numerically					
	Course Code: PYT 1103	Course Title: Applied Physics II	Cred	lits = :	3	
			L	Т	Р	
	Semester: II	Total contact hours: 45	2	1	0	
	I	List of Prerequisite Courses		1	<u> </u>	
	XIIth Standard Physics Applied	Physics – I. Physics Laboratory				
	L	ist of Courses where this course will be prerequisite				
	This is a basic physics course.	This knowledge will be required in almost all subjects later on				
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program				
This	is a basic physics course. This k	knowledge will be required in almost all subjects later on. This knowledge	e is a	so rec	uired	
for u	inderstanding various chemical en	ngineering concepts that will be introduced in courses such as momentum	transt	er, rea	action	
engi	neering, separation processes, the	prmodynamics, heat transfer, etc.				
		Course Contents (Topics and subtopics)	Requ	l. Hot	ırs	
1	Quantum Mechanics		25			
	Introduction to quantum phys	sics, black body radiation, explanation using the photon concept,				
	photoelectric effect, Compton e	ffect, de Broglie hypothesis, wave-particle duality, Born's interpretation				
	of the wave function, verificati	on of matter waves, uncertainty principle, Schrodinger wave equation,				
	particle in box, quantum harmor	nic oscillator, hydrogen atom (no detailed derivation)				
2	Dielectric and Magnetic Prope	erties of Materials	20			
	Introduction to the 'del' opera	tor and vector calculus, revision of the laws of electrostatics, electric				
	current and the continuity equation	ion, revision of the laws of magnetism.				
	Polarisation, permeability and	dielectric constant, polar and non-polar dielectrics, internal fields in a				
	solid, Clausius-Mossotti equatio	n, applications of dielectrics.				
	Magnetisation, permeability an	a susceptibility, classification of magnetic materials, terromagnetism,				
	magnetic domains and hysteresis	s, applications.				
	Physics: Vols Land II D Halli	day and D. Dasnick, Wiley Eastern				
	I hysics: vols. 1 and $II - D$. Hand Lectures on Physics: Vols. 1 II.	and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa				
	Concepts of Modern Physics – 4	A Beiser McGraw-Hill				
	Solid State Physics – A I Dekk	rer 1957 MacMillan India				
	Perspectives of Modern Physics	– A Beiser 1969 McGraw-Hill				
	r erspectives of wodern r nystes	Course Outcomes (students will be able to)				
1	Students will be able to do simp	le quantum mechanics calculations				
2	Students will be able to define	various terms related to properties of materials such as permeability				
-	polarization, etc.					
3	Students will be able to state so	ome of the basic laws related to quantum mechanics as well as magnetic				
	and dielectric properties of mate	rials				
	• • •					
	Course Code: CHP 1342	Course Title: Physical and Analytical Laboratory	Cred	lits =	2	
			L	Т	Р	
	Semester: II	Total contact hours: 60	0	0	4	
	1	List of Prerequisite Courses	I	I	1	
	XIIth Standard Chemistry Cours	es Physical Chemistry Analytical Chemistry				
	List of Courses where this courses will be prorequisite					
	This is a basic physical and analytical chemistry laboratory course. The knowledge gained here will be					
	required in many subsequent courses					
-						
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program	1			
Stud	lents will become familiar with l	aboratory experimental skills. plan and interpretation of experimental task	cs, und	lerstar	id the	
relev	vance of principles of physical and	d analytical chemistry in chemical processes	.,			
_		Course Contents (Topics and subtopics)	Read	l. bon	rs	
1	Experiments based on chemical	l reaction kinetics, phase equlibria and electrolyte systems, surface and				

	interfacial phenomena such as surface tension and CMC				
2	Application of analytical techniques to determine physic chemical parameters using simple laboratory				
	analytical equipments				
List of Text Books/ Reference Books					
	Practical physical Chemistry – B.Viswanthan and P.S. Raghavan				
	Practical physical Chemistry- Alexander Findlay				
	Course Outcomes (students will be able to)				
1	Identify reaction rate parameters				
2	List simple methods of chemical analysis				
3	Determination of physic chemical parameters using simple laboratory tools				

	Course Code: HUP 1101	Course Title: Communication Skills	Cred	Credits = 2		
			L	Т	Р	
	Semester: II	Total contact hours: 60	0	0	4	
		List of Prerequisite Courses				
	XIIth Standard English					
	I	List of Courses where this course will be prerequisite				
	All					
	Description of relevance of this course in the B. Chem. Engg. Program					
This	is an important course for the ef	fective functioning of an Engineer. Communication skills are required in a	ll cou	rses		
	Course Contents (Topics and subtopics)				rs	
1	Development of communication skills in oral as well as writing.					
2	The writing skills should empha	asize technical report writing, scientific paper writing, letter drafting, etc.				
3	The oral communication skills	should emphasize presentation skills.				
4	Use of audio-visual facilities like	te powerpoint, LCD. for making effective oral presentation.				
5	Group Discussions					
		List of Text Books/ Reference Books				
	Elements of style – Strunk and white					
	Course Outcomes (students will be able to)					
1	Students should be able to w	rite grammar error free technical reports in MS Words or equivalent				
	software.					
2	Students should be able to make	e power point slides in MS PowerPoint or equivalent software.				

SEMESTER – III									
No. Subjects			Hrs /week			Marks for various Exams			
			L	Т	Р	C. A.	M. S.	E. S.	Total
CET 1301	Chem. Eng. Thermodynamics-I	4	3	1	0	20	30	50	100
CET 1101	Momentum and Mass Transfer	4	3	1	0	20	30	50	100
GET 1102	Structural Mechanics	3	2	1	0	10	15	25	50
GET 1109	Electrical Engineering and Electronics	3	2	1	0	10	15	25	50
CET 1502	Industrial & Engineering Chemistry	4	3	1	0	20	30	50	100
GEP 1103	Structural Mechanics Lab.	2	0	0	4	25		25	50
GEP 1110	Electrical Engg and Electronics Laboratory	2	0	0	4	25		25	50
CEP 1715	Engineering Applications of Computers	2	0	0	4	25		25	50
	Total	24	13	5	12				550

	Course Code:CET 1301	Course Title: Chemical Engineering Thermodynamics-I	Credits = 4		4		
			L	Т	Р		
	Semester: III	Total contact hours: 60	3	1	0		
	L	List of Prerequisite Courses					
	XIIth Standard Physics and Ch	nemistry, Applied Mathematics - I, Applied Mathematics - II, Physical					
	Chemistry,						
	I	List of Courses where this course will be prerequisite					
	This is a basic Chemical Engin	neering course. It is required in all the Chemical Engineering Courses,					
	such as, Chemical Engineering	g Thermodynamics - II, Chemical Engineering Operations, Separation					
Processes, Home Paper – I and II, Seminar, etc.							
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program					
The	rmodynamics sets hard limits on	performance of processes and equipment. This course gives students t	he fo	rmalis	m and		
insi	ghts necessary to do a preliminar	y thermodynamic analysis of a process for the purpose of establishing fe	asibil	ity ass	uming		
Idea	il mixing.						
		Course Contents (Topics and subtopics)	Req	ld. hoi	ars		
1	Concept of Equilibrium: Entrop	y and Gibbs-Free Energy	4				
2	First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG)	4				
3	Residual Properties. Concept o	f fugacity and fugacity coefficient.	4				
4	P-V-T Correlations, Virial Equa	ation of State, Two and Three Parameter Cubic Equations of State	6				
5	First Order Phase Transition (C	lausius Clapeyron Equation)	2				
6	Maxwell's Relations		2				
7	Properties of Real Fluids	Properties of Real Fluids					
8	Introduction to Thermal Exergy	and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic)	6				
9	Thermodynamics of Ideal Mixt	ures and concept of Activity	2				
10	Concept of Partial Molar Proper	rties	2				
11	Equilibrium in Mixtures (and th	e Raoult's Law Simplification)	2				
12	Calculation of Bubble and Dew	Points and T-x-y and P-x-y diagrams for ideal mixtures	4				
13	Isothermal and Adiabatic Flash	Calculations	4				
14	Gibbs Duhem Equation and The	ermodynamic Consistency	6				
15	Non-Ideal Mixtures and Concep	ot of Excess Properties	4				
16	Equilibrium Measurement and	Consistency of Experimental Data	4				
	List of Text Books/ Reference Books						
	Introduction to Chemical Engin	eering Thermodynamics: Smith, van Ness, Abbott					
	Chemical, Biochemical and Eng	gineering Thermodynamics: S. I. Sandler					
	Phase Equilibria in Chemical En	ngineering: Walas					
	Molecular Thermodynamics of	Fluid Phase Equilibria: Prausnitz					
	Reference Books:						
	Properties of Gases and Liquids	:: Reid, Prausnitz, Pauling					
	1	Course Outcomes (students will be able to)	_				
1	Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured						

	quantities	
2	Calculate saturation pressure and latent heats of vapourization from cubic equations of state.	
3	Calculate bubble and dew points of ideal mixtures and construct T-x-y and P-x-y diagrams	
4	Be able to correlate experimental VLE data of pure component and ideal mixtures with suitable equations.	
5.	Do an adiabatic and isothermal flash calculation	
6.	Do a preliminary exergy analysis of non-reacting systems of ideal mixtures.	

	Course Code: CET 1101	Course Title: Momentum Transfer and Mass Transfer	Credits = 4		4
			L	Т	Р
	Semester: III	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			_ I
	XIIth Standard Physics and Mat	hematics, Applied Physics – I and II, Applied Mathematics – I and II			
	<u>L</u>	ist of Courses where this course will be prerequisite			
	This is a basic course require	ed in many subjects such as: Heat Transfer, Chemical Engineering			
	Operations, Separation Process	ses, Chemical Reaction Engineering, Multiphase Reactor Engineering,			
	Env. Eng. And Process Safety, S	Seminar, Home Paper I and II, Energy Engineering, etc.	 		
-			<u> </u>		
Description of relevance of this course in the B. Chem. Engg. Program					
I his	basic course introduces concep	ts of momentum transfer to students. Various concepts such as press	sure,	mome	ntum,
ener	gy are introduced. Laws related	to conservation of momentum, energy are taught. Applications of these	e law	s to va	arious
engi	Dog	IFC			
1	Fluid Statics and applications to	engineering importance	Л	u. 110t	115
2	Equations of Continuity and M	otion (Cartesian, cylindrical, and spherical coordinates) in laminar flows	4		
2	and its applications for the c	alculation of velocity profiles shear stresses power etc in various	0		
	engineering applications	are during of versery promes, shear suesses, power, etc. in various			
3	3 Basics of Turbulent flows equations of continuity and motion for turbulent flows: Revnolds averaging				
-	Bossinesque hypothesis, Prand	It mixing length theory. Introduction to various types of turbulence	-		
	models. Turbulent pipe flow, basis of Universal velocity profile and its use. Introduction to turbulent				
	heat and mass transfer.				
4	Bernoulli's Equation and engine	ering applications, Pressure drop in pipes and Fittings, Piping systems	8		
5	Fluid moving machinery such as	s pumps, blowers, compressors, vacuum systems, etc.	10		
6	Boundary Layer Flows: Blasius	s equations and solution, Von-Karman integral equations and solutions,	4		
	Boundary layer separation: skin	and form drag.			
7	Particle Dynamics, Flow through	h Fixed and Fluidised Beds,	6		
8	Gas – liquid Two phase flow:	types of flow regimes, Regime maps, estimation of pressure drop and	6		
-	hold-up		10		
9	Introduction to heat and mass	transfer: Concepts of Convective and diffusive transport, Boundary	10		
	Layers for Heat and Mass Ira	nster, Heat and Mass transfer coefficients, Theories and Analogies of			
	Momentum, Heat and Mass Trai	ISICI List of Toxt Books/ Deference Books	<u> </u>		
	Transport Phanomana Bird P B	Stewart W.E. Lightfoot F.N.			
	Fluid Mechanics Kundu Pijush	K			
	Fluid Mechanics, F. W. White	K.			
	Unit Operations of Chemical Er	gineering McCabe Smith			
	Chit Operations of Chemiear En	Course Outcomes (students will be able to)	<u> </u>		
1	Students should be able to calcu	late velocity profiles by simplification of equations of motion in simple			
-	1-D flows				
2	Students should be able to calcu	late boundary layer thicknesses, friction factor,			
3	Students will be able to calculate	e pressure drop, power requirements for single phase flow in pipes			
4	Students should be able to calcu	late two phase gas/liquid pressure drop			
5	Students should be able to calcu	late power requirements, NPSH requirements of pumps			
6	Students should be able to calcu	late drag force and terminal settling velocity for single particles		·	·
7	Students will be able to calculate	e pressure drop in fixed and fluidized beds	[

	Course Code: GET 1102	urse Code: GET 1102 Course Title: Structural Mechanics 0		Credits =		
			L	Т	P	
	Semester: III	Total contact hours: 45	2	1	0	
		List of Prerequisite Courses				
	XIIth Standard Physics and Mat	hematics, Applied Mathemaics-I and II, Applied Physics-I				
	L	ist of Courses where this course will be prerequisite				
	Equipment Design and Drawing	I and II, Home Paper, Chemical Project Engineering and Economics				
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program				
This	subject will help students to un	derstand use of basics of Applied Mechanics and Strength of Materials	. In	engin	eering	
equip	pments which different types of	forces are to be considered and how to quantify them. What are differ	ent c	onditio	ons of	
equil	librium and how to apply them ar	alyse the problems. Importance of centre of gravity and moment of Inert	ia in	Engin	eering	
Desi	gn. Study of different types of	stresses and strains occurring in various components of the structure.	Adv	antage	s and	
disac	lvantages of various geometric s	ections available for engineering design. This is the foundation course f	or a g	good L	Jesign	
Engi	neer.	Course Contents (Tenies and subtanies)	Dag	d hav		
1	Concents of forces their type	Desolution of forces Composition of forces Stong in Engineering	Req	a. nou	ITS	
1	Design Different types supports	and free body diagram	4			
2	Fauilibrium of rigid bodies -	Conditions of equilibrium Determinant and indeterminate structures	6			
2	Equilibrium of beams trusses ar	d frames problems on analysis of beams and truss	0			
3	Concept of moment of Inertia	(Second moment of area) its use. Parallel axis theorem. Problems of	5			
	finding centroid and moment of	Inertia of single figures, composite figures. Perpendicular axis theorem,	-			
	Polar M.I., Radius of gyration.					
4	Shear Force and Bending Mor	nent - Basic concept, S.F. and B.M. diagram for cantilever, simply	7			
	supported beams (with or without	it overhang). Problems with concentrated and U.D. loads.				
5	5 Stresses and Strains - Tensile and compressive stresses, strains, modulus of elasticity, modulus of					
	rigidity, bulk modulus. Relation	n between elastic constants. Lateral strain, Poisson's ratio, volumetric				
	strain. Thermal stresses and s	trains. Problems based on stresses and strains. Stresses and Strains				
	Relationship and Strain Deforma	ation relationship.				
6	Theory of Bending - Assumption	ons in derivation of basic equation, Basic equation, section modulus,	4			
_	bending stress distribution. Adva	antages of various geometric sections from bending consideration.	-			
7	Problems on shear stress - Cond	cept, Derivation of basic formula. Shear stress distribution for standard	5			
	shapes. Problems of Shear stre	ss distribution. Conditions under which shear stress is the governing				
0	Slope and Deflection of hearry	Pagia concept. Slope and Deflection of contilever and simply supported	5			
0	beams under standard loading	Macaulay's method Simple problems of finding slopes and deflections	5			
9	Introduction to computer aided	analysis and design Representation of stresses and strains on a cubical	Δ			
	element 1-D 2-D and 3-D and	lysis and its importance Basics of formulation of any computer aided	-			
	analysis program. Preprocessing	g and post processing of computer aided analysis data and information.				
		List of Text Books/ Reference Books				
	Engineering Mechanics Vol I S	tatics by B. N. Thadani, Publisher Wenall Book Corporation				
	Introduction to Mechanics of So	lids by Egor Popov, Prentice Hall of India Pvt. Ltd				
	Mechanics of Materials by Ferd	nand Beer and E. Russel Johnston, Tata McGraw Hill				
	Fundamentals of applied Mecha	nics by Dadhe, Jamdar and Walavalkar, Sarita Prakashan Pune				
	Engineering Mechanics by S. Ti	moshenko and D. H. Young, McGraw Hill Publications				
	Strength of Materials by Ferdina	nd Singer and Andrew Pytel, Harper Colins Publishers				
		Course Outcomes (students will be able to)				
1	Understand the use of basic cone	cepts of Resolution and composition of forces.				
2	Analysis of the beams, truss or a	ny engineering component by applying conditions of equilibrium.				
3	List advantages and disadvantag	es of various geometric sections used in engineering design.				
4	Understand the different stresses	and strains occurring in components of structure				
5	Calculate the deformations such	as axial, normal deflections under different loading conditions				

	Course Code:GET 1109	Course Title: Electrical Engineering and Electronics	Credits = 3			
			L	Т	Р	
	Semester: III	Total contact hours: 45	2	1	0	
List of Prerequisite Courses						

	XIIth Standard Physics and Mathematics courses. Applied Physics - II					
	List of Courses where this course will be prerequisite					
	Chemical Process Control, Energy Engineering,					
	Description of relevance of this course in the B. Chem. Engg. Program					
Stud	ents will get an insight to the importance of Electrical Energy in Chemical Plants . The students will under	erstand the basics				
of el	ectricity, selection of different types of drives for a given application process. They will get basic knowle	dge as regards to				
Pow	er supplies, instrumentation amplifiers and thyristor application in industries.					
	Course Contents (Topics and subtopics)	Reqd. hours				
1	Basic Laws, Network theorems: super position, Thevenin's theorems.	4				
2	A.C. Fundamentals: A.C. through resistance, inductance and capacitance, simple RL, RC and RLC	4				
	circuits. Power, power factor, series and parallel circuits					
3	Three phase system of emfs and currents, Star and Delta connections, Three phase power measurement.	4				
4	Single phase transformers, Principle of working, regulation.	6				
5	Electrical drives in Industries, their characteristics and starting methods and speed control. and their	5				
	suitability for various applications.					
6	Power factor improvement methods, concept of most economical power factor.	4				
7	Regulated power supplies	3				
8	transistors and their applications as amplifiers in switching circuits	6				
9	Introduction to thyristors. and their applications	5				
10	Introduction to instrumentation amplifiers and their applications	4				
	List of Text Books/ Reference Books					
1	Electrical Engineering Fundamentals by Vincent Deltoro					
2	Electronic devices and circuits by Boylstead, Nashelsky					
3	Electrical Machines by Nagrath, Kothari					
4	Electrical Machines by P.S. Bhimbra					
5	Electrical Technology by B.L.Theraja, A.K.Theraja vol I,II,IV					
6	Thyristors and their applications by M.Ramamurthy					
7	Power Electronics by P.S. Bhimbra					
	Course Outcomes (students will be able to)					
1	Understand the basic concepts of D.C., single phase and three phase AC supply and circuits Solve basic					
_	electrical circuit problems					
2	Understand the basic concepts of transformers and motors used as various industrial drives.					
3	Understand the concept of powerfactor improvement for industrial installations and concept of most					
	economical power-factor.					
5	Understand the basic concepts of electronic devices and their applications in power supplies,					
	amplification, instrumentation and speed control of drives.					

	Course Code: CET 1502	Course Title: Industrial & Engineering Chemistry	Credits =		4
			L	Т	Р
	Semester: III	Contact hours: 60	3	1	0
	L	ist of Prerequisite Courses			
1	XIIth Standard Chemistry and Physics, Organic Chemistry I & II, Material & Energy Balance				
	Calculations, Physical Chemistry				
	List of Course	s where this course will be prerequisite			
	Chemical Reaction Engineering, Multip	hase Reactor Engineering, Process Development and			
	Engineering, Env. Engg. and Proc. Safety, H	ome Paper I and II, Seminar, etc.			
	Description of relevand	ce of this course in the B. Chem. Engg. Program			
Stud	ents will be able to understand sources an	d processes of manufacture of various chemicals such as	s petro	oleum	and
petro	bleum products, petrochemicals, biochemicals	, industrial chemicals, clean utilization of coal and advances	in fue	els.	
	Course Cont	ents (Topics and subtopics)	Req	d. hou	rs
1	Overview of Indian chemical industry, raw r	naterial and energy sources, role of catalysis, inorganic		5	
	products, organic intermediates and final pro	oducts			
2	Petroleum refining and cracking operations				
3	Industrial processes for ammonia, syngas and hydrogen, methanol, chemicals from oxo-synthesis				
4	Organic chemicals based on methanol and et	hanol (e.g., formaldehyde, acetaldehyde, acetic acid)		4	
5	Petrochemicals: e.g., ethylene oxide, α-olefi	ns, vinyl acetate, phenol, aniline, LAB, phthalic anhydride,		10	

	PTA	
6	Polymers (e.g., polyethylene / polypropylene)	2
7	Manufacturing of inorganic acids (sulfuric and nitric acid)	4
8	Chlor-alkali industry (chlorine, caustic soda, soda ash)	6
9	Fertilizers (urea and phosphates)	2
10	Industrial processes using bio-catalysts	2
11	Production of industrial gases	2
12	Classification, sampling, analysis, and selection of coal	3
13	Carbonization	2
14	Hydrogenation	2
15	Complete gasification of coal	3
16	Fuel oil specifications	1
17	Combustion of solid, liquid, and gaseous fuels	3
	List of Text Books/ Reference Books	
1	Encyclopedia of Chemical Technology, Kirk-Othmer	
2	Ulmann's Encyclopedia of Industrial Chemistry	
3	Industrial Organic Chemistry, Weissermel & Arpe	
4	Chemical Process Industries, Shreve B. Austin	
5	Chemical Process Technology, Moulijn, M. and van Dippen	
6	Dryden's Outlines of Chemical Technology	
7	Elements of Fuels, Furnaces and Refractories, O.P. Gupta	
8	Fuels handbook, Johnson	
	Course Outcomes (students will be able to)	
1	Draw process flow diagrams/process block diagrams for the manufacture of various chemicals from	
	process description	
2	List out various alternatives for carrying out a particular process and provide recommendations for the	
	best choice	
3	List coal utilization technologies and advantages of clean coal technology	
4	List Principles of combustion systems for solid, liquid and gaseous fuel	

	Course Code: GEP 1103	Course Title: Structural Mechanics Laboratory	Credits = 2		2	
			L	Т	Р	
	Semester: III	Total contact hours:60	0	0	4	
		List of Prerequisite Courses				
	XIIth Standard Physics, Mathe	matics, Applied Mathematics I and II, Structural Mechanics				
		List of Courses where this course will be prerequisite				
	Equipment design and Drawing	g I and II, Home Paper I and II				
	Descripti	on of relevance of this course in the B. Chem. Engg. Program				
This	subject will help students to u	nderstand use of basics of Applied Mechanics and Strength of Material	s. In	engine	ering	
equi	uipments which different types of forces are to be considered and how to quantify them. What are different conditions of					
				-		

equipments which different types of forces are to be considered and how to quantify them. What are different conditions of equilibrium and how to apply them analyse the problems. Importance of centre of gravity and moment of Inertia in Engineering Design. Study of different types of stresses and strains occurring in various components of the structure. Advantages and disadvantages of various geometric sections available for engineering design. This is the foundation course for a good Design Engineer.

$\overline{\boldsymbol{U}}$		
	Course Contents (Topics and subtopics)	Reqd. hours
	Suitable number of experiments from the above list will be performed	
	To determine Law of Machine for (Screw Jack / Single Purchase Crab, Double Purchase Crab,	
	Differential wheel and axle).	
	To verify forces in single roof truss element.	
	To verify bending moment at various sections for Cantilever beam, Simply supported beam.	
	To verify reactions at the supports for simply supported and beam with overhang.	
	To verify basic Laws of concurrent co-planer forces.	
	To study the deflected shape of link and B.M. in equivalent simply supported beam.	
	To study graphical methods of analysis of forces.	
	To study the Universal testing machine and tests.	

To study the torsion test and impact test.				
Non-destructive testing: Smith Hammer test, Ultrasonic pulse velocity test				
To study the carbonation of concrete				
To study corrosion of re-inforcement.				
To study properties of cement composites using various admixtures and additives				
To study water and chloride penetration in cement composites				
List of Text Books/ Reference Books				
Engineering Mechanics Vol I Statics by B. N. Thadani, Publisher Wenall Book Corporation				
Introduction to Mechanics of Solids by Egor Popov, Prentice Hall of India Pvt. Ltd				
Mechanics of Materials by Ferdinand Beer and E. Russel Johnston, Tata McGraw Hill				
Fundamentals of applied Mechanics by Dadhe, Jamdar and Walavalkar, Sarita Prakashan Pune				
Engineering Mechanics by S. Timoshenko and D. H. Young, McGraw Hill Publications				
Strength of Materials by Ferdinand Singer and Andrew Pytel, Harper Colins Publishers				
Course Outcomes (students will be able to)				
Further understanding of the concepts in the Theory course of Structural Mechanics				

	Course Code: GEP 1110	Course Title: Electrical Engg and Electronics Laboratory	Credits =		: 2
			L	Т	Р
	Semester: III	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	XIIth Standard Mathematics an	d Physics courses, Applied Physics I, Electrical Engg and Electronics			
	I	ist of Courses where this course will be prerequisite			
	Chemical Process Control				
	Description	on of relevance of this course in the B. Chem. Engg. Program			
Stuc	lents will get an insight to the im	portance of Electrical Energy in Chemical Plants . The students will	understa	nd the	basics
of e	lectricity, selection of different t	pes of drives for a given application process. They will get basic know	owledge	as reg	ards to
Pow	er supplies, instrumentation amp	lifiers and thyristor application in industries.			
		Course Contents (Topics and subtopics)	Rec	ld. ho	urs
	Suitable no. of experiments out	of the following will be conducted :			
	Electrical Engineering:				
Study of RLC circuits					
	Load test on transformer				
	Load test on induction motor				
	Study of 3 phase circuits with (a) Star connected load (b) Delta			
	connected load				
	Electronics :				
	Study of C.R.O. and its applica	tions.			
	Study of half wave, full wave a	nd bridge rectifier circuits			
	and study of their input and out	put wave on C.R.O.			
	Study of input and output chara	cteristics of a transistor.			
	Study of Various logic gates and	n nen application in logic circuits.			
	Study of OJT and OJT relaxation	on oscillator.			
	Study of operational amplifier of	List of Toxt Rooks/ Deforence Rooks			
	Electrical Engineering Fundam	entals by Vincent Deltoro			
	Electronic devices and circuits	by Boylstead Nashelsky			
	Electrical Machines by Nagrath	Kothari			
	Electrical Machines by P.S. Bh	imbra			
	Electrical Technology by BL	Theraja A K Theraja vol I II IV			
	Thyristors and their application	s by M Ramamurthy			
	Power Electronics by P.S. Bhin	hra			
	i ower Electromes by 1.5. Dim	1014			
	1	Course Outcomes (students will be able to)	I		
	Further Understanding of the co	procepts taught in the theory course of Electrical Engg and Electronics			
L	i under Studerstundning of the ex	shoop is mught in the theory course of Electrical Engg and Electonics	l		

Course Code: CEP 1715	Course Title: Engineering Applications of Computers	Credits = 2

	MAT		L	Т	Р
	Semester: III	Total contact hours: 60			4
		List of Prerequisite Courses	1		1
1	XIIth Standard Mathematics and	d Physics Courses, Applied Mathematics - I and II, Material & Energy			
	Balance Calculations				
List of Courses where this course will be prerequisite					
1	Process Simulation Lab – I and	II, Home Paper I and II			
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program	1	0	4 1
As a	n engineer, students have to prep	are technical reports and give presentations in their professional career a	ind so	ftware	tools
such	as word processing, spreadsnee	t calculations, powerpoint presentations and programming languages si	uch as	5 C/C+	+ etc
Desi	an and optimization various cher	nical engineering operations require tedious calculations and writing a c	omnu	ter nro	Joram
to so	lye these problems help to under	stand the concents learned in theory class better. Such calculations are of	lone c	n rene	etitive
basis	s in industry and generalized con	puter programs are useful.		ni i ept	
Course Contents (Topics and subtopics)					
1	Introduction to Computer Hardy	/are, Architecture, Networking, Operating systems	4		
2	Word processing: Fonts, colors,	header, footers, page numbers, alignment, page layouts, tables, creating	4		
	technical reports, references, tra	ck changes			
3	Spreadsheet calculations: Use	of cells, formulas, table calculations, graphs, matrix operations, goal	12		
	seek, solver, curve fitting, regres	sion			
4	Power-point presentations: slide	design. layout, animations, presentation project	6		
5	C/C++ programming: basics, and	ays, loops, if-else, switch case, functions, pointers, classes	14		
6	solving single non-linear equat	ion (Equation of state such as Van der Waal, Peng Robinson, RKS,	12		
_	friction factor equation, Ergun e	quation, Estimation of Drag Coefficient etc)	0		
7	Solving set of linear equations (naterial balance of distillation column, multiple extraction unit etc)	8		
1		List of Text Books/ Reference Books	1		
1	Kanetkar Y. "Let us C", Fifth Ed	lition			
Course Outcomes (students will be able to)					
1 Operate various operating systems such as (windows linux)					
2	Prepare a technical report	ns such as (whitebws, mitx)			
3	Prepare a technical / professiona	1 presentation			
4	Spreadsheet calculations for che	mical engineering problems			
5	5 Develop programming logic and code it in software				

SEMESTER – IV									
No.	Subjects	Credits	Hrs/week			Marks for various Exams			
			L	Т	Р	C. A.	M. S.	E. S.	Total
GET 1107	Energy Engineering	4	3	1	0	20	30	50	100
BST 1102	Introduction to Biological Sci. & Bioengg	4	3	1	0	20	30	50	100
CET 1401	Chemical Engineering Operations	4	2	2	0	20	30	50	100
CET 1302	Chem. Eng. Thermodynamics-II	4	3	1	0	20	30	50	100
GET/CHT/	Elective I (Outside Chem. Engg. Dept.)	3	2	1	0	10	15	25	50
PYT/MAT									
GEP 1108	Engineering Graphics -II	2	0	0	4	25		25	50
CEP 1701	Chemical Engineering Laboratory-I	3	0	0	6	50		50	100
	Total	24	13	6	10				600

	Course Code: GET 1107	Course Title: Energy Engineering	Credits = 4			
			L	Т	Р	
	Semester: IV	Total contact hours: 60	3	1	0	
		List of Prerequisite Courses				
	Chemical Engineering Thermod	ynamics-I, Material and Energy Balance Calculations, Applied Physics				
	I and II, Applied Mathematics –	I and II				
	L	st of Courses where this course will be prerequisite				
Process Dev. and Engg., Home Paper I and II, Env. Eng. And Proc. Safety, Chem. Proj. Engg and Eco.,						
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program				
Stud	ents will be able to understand	various equipments like steam turbine, gas turbine, pumps, compre	ssors	and 1	ower	
trans	mission system.					
		Course Contents (Topics and subtopics)	Req	d. hou	rs	
1	Properties of Steam Boilers		6			
2	Steam turbine		6			
3	condenser		6			
4	steam power plant cycles		6			
5	pumps		6			
6	compressors and blowers		6			
7	steam nozzles		6			
8	Belt, chain and gear drive		6			
9	Bearings		6			
10	Refrigeration		6			
		List of Text Books/ Reference Books				
1	Thermodynamics by P.K.Nag					
2	Power plant by Morse					
3	Heat Engines by P.L.Balani					
	Course Outcomes (students will be able to)					
1	List the features and functions o	f steam power plant				
2	List the features and functions o	f various power transmission system				
3	List the features of refrigeration	systems				

Course Code: BST 1102	Course Title: Introduction of Biological Sciences and	Credits = 4		4
	Bioengineering	L	Т	P
Semester: IV	Total contact hours: 60	3	1	0
	List of Prerequisite Courses			
Xth Standard Biology course, 1	Physical Chemistry			
]	List of Courses where this course will be prerequisite			
Biochemical Engineering, En	v. Eng and Proc Safety, Home Paper I and II			
Descripti	on of relevance of this course in the B. Chem. Engg. Program			

The course offers fundamental principles of biochemistry, genetics, molecular biology, and cell biology. Biological function at the molecular level is particularly emphasized and covers the structure and regulation of genes, as well as, the structure and synthesis of proteins, how these molecules are integrated into cells, and how these cells are integrated into multicellular systems and organisms.

The course also offers important contribution to understand chemical reactions present in living organisms. A cell is the smallest self-preserving and self-reproducing unit. Many complex chemical reactions and complex transport processes occur. A cell looks like a chemical plant.

	Course Contents (Topics and subtopics)	
1	Introduction to cells, Eukaryotes and prokaryotes, Microscopy and cell architecture	4
2	Chemical Components of the cell	6
	Chemical bonds and groups, The chemical properties of water, An outline of some of the types of sugar,	
	Fatty acids and other lipids, The 20 amino acids found in proteins, A survey of the nucleotides, The	
	principal types of weak noncovalent bonds	
3	Energy, Catalysis, and Biosynthesis, Free energy and biological reactions	4
4	Protein Structure and Function, A few examples of some general proteins	6
	Four different ways of depicting a small protein, Making and using antibodies	
	Cell breakage and initial fractionation of cell extracts, Protein separation by chromatography	
	Protein separation by electrophoresis	
5	DNA and Charomosomes, DNA replication, repair and recombinations, From DNA to Protein: How	6
	Cells Read the Genome, Control of Gene Expression	
6	How Genes and genome evolve, analyzing genes and genomes	4
7	Membrane Structure, Membrane Transport	4
8	How Cell Obtain energy from food, Glycolysis, the complete citric acid cycle	6
9	Energy Generation in Mitochondria and Chloroplasts, Redox potentials	4
10	Intracellular compartment and transport, cell communication, cytoskeleton, cell division	6
11	Sex and Genetics	4
12	Bioengineering, tissues, stem cells and cancer	6
	List of Text Books/ Reference Books	
1.	Essential cell biology, Bruce Alberts et al, 3rd Edition, ISBN 978-0-8153-4129-1	
	Garland Science, Taylor & Francis Group	
2.	Lehninger Principles of Biochemistry,	
	David L. Nelson, Albert L. Lehninger, Michael M. Cox	
	ISBN 071677108X, 9780716771081	
	Course Outcomes (students will be able to)	
1	Identify the general structure and function of carbohydrates, phospholipds, proteins, enzymes and	
	nucleic acids.	
2	Outline the general processes used by the cell to generate cellular energy from sugar and to generate the	
	energy and reducing agent needed for the citric acid cycle.	
3	Describe how DNA was shown to be the genetic material and how DNA is copied.	
4	Describe the structure and regulation of genes, and the structure and synthesis of proteins.	
5	Predict the results of genetic crosses involving two or more traits when the genes involved are linked or	
	unlinked	
6	Describe how cell divides and mutation takes place	
7	Describe different microorganism and their reproduction cycles	

	Course Code: CET 1401	Course Title: Chemical Engineering Operations	Credits = 4			
			L	Т	Р	
	Semester: IV	Total contact hours:60	2	2	0	
List of Prerequisite Courses						
	Material & Energy Balance Calculations, Physical Cheiistry, Organic Chemistry-I and II, Chem.					
	Eng. Thermodynamics-I, Momentum and Mass Transfer					
		List of Courses where this course will be prerequisite				
	This is a basic Chem Engg. course. It is required in almost all the courses, such as, Separation					
	Processes, Chemical Engineering Laboratory I, II and III, Process Simulation Lab – I and II,					
	Home Paper I and II, etc.					
Description of relevance of this course in the B. Chem. Engg. Program						

This is a basic Chem Engg. course. The principles learnt in this course are required in almost all the courses and three professional career of Chemical Engineer				
	Course Contents (Topics and subtopics)	Reqd. hours		
1	Introduction to Unit Operations and Chemical Engineering Processes	1		
2	Single Equilibrium Stage, Flash Calculations and Cascade systems: Binary vapor-liquid systems,	3		
	bubble-point, and dew-point calculations, Cascade configurations, co-current, counter-current, cross-			
	current, and other configurations			
3	Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves,	12		
	Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage			
	efficiency and column performance, Trayed and packed columns, Rate based methods for packed			
	columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column			
	diameter			
4	Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating	12		
	column and multistage column, design and analysis factors, degrees of freedom, specifications, reflux,			
	reflux ratio, need for reflux, McCabe-Thiele, Lewis-Sorel methods of estimation of number of plates,			
	Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed			
	column distillation: rate based methods: HETP, HTU, Ponchon Savarit method, Batch, azeotropic, and			
	extractive distillation, Distillation equipment and sizing			
5	Methods for multicomponent separations: Fenske-Underwood-Gilliland Method, selection of two key	3		
	components, minimum number of stages, minimum reflux and distribution of non key components,			
	Kremser group method			
6	Particulate solids: Particle characterization Shape, size, particle size measurement, Particle size analysis	3		
	in process equipment			
7	Particle Size Reduction: Necessity for size reduction of solids, Mechanism for size reduction, Energy	5		
	requirements for size reduction and scale-up considerations, Operational considerations, Crushing and			
	grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of			
	equipment			
8	Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate	10		
	filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration			
	equipment, Selection, Sizing and Scale-up			
9	Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance	4		
	evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of			
	sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up			
10	Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying	7		
	Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying			
	of bioproducts			
1	List of Text Books/ Reference Books			
1	Kichardson, J.F., Coulson, J.M., Harker, J.H., Backnurst, J.K., 2002. Chemical engineering: Particle			
2	Seeder LD. Harley E. L. 2005. Segregation Process Dringingles 2 of Wiley Helphan N.L.			
2	Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. wiley, Hoboken, N.J.			
3	Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, woburn, MA.			
4	McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, / ed. McGraw-			
5	Hill Science/Engineering/Math, Boston.			
3	Green, D., Perry, K., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill			
(Protessional, Edinburgh.			
6	Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India PVI. Ltd.			
	New Deini.			
	$C_{\text{answer}} = C_{\text{answer}} \left(-\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} + $			
1	Vourse Outcomes (students will be able to)			
1	show the significance and usage of unificient particulate characterization parameters, and equipment to			
2	esuillate titelii			
2	Describe Size reduction energy requirements, estimate performance of equipment, selection and sizing			
2	Or equipment			
3	Analyze initiation data and select systems based on requirements, estimate filtration area for given			
4	Drow Ty y diagrams and y y diagrams anothing lines feed line bulble using the			
4	Draw 1-y-x diagrams, and y-x diagrams, operating lines, red line, bubble point, dew point			
1	l carculations, ternary phase diagrams, partition coefficient			

5	Describe two common modes of drying, industrial drying equipment	
6	Calculate mass transfer coefficient in various equipment, Calculate height and diameter required,	
	required in distillation	

	Course Code: CET 1302	Course Title: Chemical Engineering Thermodynamics II	Cre	dits =	4	
		evalue interchement Englicering Internica Juantes in	L	T	P	
	Semester: IV	Total contact hours:60	3	1	0	
		List of Prerequisite Courses				
	Applied Mathematics- I and II, I	Physical Chemistry, Chemical Engineering Thermodynamics-I				
	Li	st of Courses where this course will be prerequisite				
	Separation Processes, Chemica	Reaction Engineering, Multiphase Reactor Engineering, Env. Engg.				
	and Proc Safety, Proc. Developm	nent and Engineering, Home Paper I and II				
	Description	n of relevance of this course in the B. Chem. Engg. Program				
This	course builds on the preceding	course by developing the concept of non-ideal mixing and provides	stude	nts wi	th the	
form	alism and insights necessary to t	ackle real industrial problems like liquid-liquid phase splitting, azeotrop	y, no	n-zero) heats	
of n	nixing, sparingly soluble gases a	and solids, electrolytes etc. Student who have taken this course may	y be	expec	ted to	
intel	ligently analyze practically the fu	Il spectrum of industrial chemical processes.	Dee	d has		
1	Concrol Equations of Equilib	ourse Contents (Topics and subtopics)	Req	<u>a. not</u>	irs	
1	Coefficients	num: Equality of Chemical Potentials and Fugacity and Activity	2			
2	Models of the Liquid Phase: Ac NRTL)	tivity Coefficient Models (Redlich-Kister, Wilson et al, UNIQUAC and	8			
3	Calculation of Excess Properties		4			
4	Raoult's Law and Modified Ra	oult's Law. Calculation of Bubble Point, Dew Point, T-x-y and P-x-y	8			
	diagrams					
5	Azeotropy		4			
6	Phase Stability and Liquid-Liqu	id Phase Splitting	8			
7	Solubility of Gases in Liquids (Unsymmetric Reference states, Henry's Law and the concept of infinite	t of infinite 2			
	dilution activity coefficient).					
8	Solubility of Solids in Liquids		2			
9	Debye Huckel Theory and Saltin	ng out of Non-Electrolytes	6			
10	Chemical Equilibrium in Ideal N	Aixtures	4			
11	Chemical Equilibrium in Non-IC	leal Reacting Mixtures	2			
12	Chemical Equilibrium in Hetero	genous Reacting Mixtures	2			
13	Entimation of Antivity Coofficia	Reaction Systems	4			
11	Estimation of Activity Coefficie	his by Group Contribution Methods . ONIFAC Model	4			
		List of Text Books/ Reference Books				
	Introduction to Chemical Engine	pering Thermodynamics: Smith van Ness Abbott				
	Chemical, Biochemical and Eng	ineering Thermodynamics: S. I. Sandler				
	Phase Equilibria in Chemical Er	gineering: Walas				
	Molecular Thermodynamics of I	Fluid Phase Equilibria: Prausnitz				
		*				
		Course Outcomes (students will be able to)	-			
1	Use activity coefficient models t	o calculate excess properties of liquids			·	
2	Use modified Raoult's law to ca	lculate VLE of non-ideal mixtures				
3	Calculate chemical equilibrium	in non-ideal mixtures				
4	Calcuate solubility of gases in li	quids including aqueous solutions with electrolyes.				
5	Quantitatively describe salting o	ut effect				
6	Estimate mixture properties from	n group contribution methods	ļ			

Course Code: GEP 1108	Course Title: Engineering Graphics II	Cred	its = 2	2	
		L	Т	Р	
Semester: IV	Total contact hours: 60	0	0	4	

		List of Prerequisite Courses			
	Engineering Graphics – I				
	L	ist of Courses where this course will be prerequisite	-		
	Equipment Design and Drawing	g I and II			
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program			
A st	tudent of Chemical Engineering	is required to know the various processes and also the equipment use	d to c	arry o	ut the
proc	esses. Some of the elementary p	processes like filtration, size reduction, evaporation, condensation, cryst	allizat	ion et	:., are
very	common to all the branches of	f technology. These and many other processes require machines and	equip	ments.	One
shou	ald be familiar with the design,	manufacturing, working, maintenance of such machines and equipment	ts. Th	e subj	ect of
"dra	wing" is a medium through which	ch, one can learn all such matter, because the "drawings" are used to rep	resent	objec	is and
proc	esses on the paper. Through the	drawings, a lot of accurate information is conveyed which will not be p	ractica	able th	rough
a sp	oken word or a written text. Dra	wing is a language used by engineers and technologists.			
		Course Contents (Topics and subtopics)	Req	d. hou	rs
	Bearings, Stuffing box, Shaft c	coupling, Pipe Joints, Valves, Introduction to solid works or Auto –cad.	3hrs	/ week	
		List of Text Books/ Reference Books	_		
	1.Machine Drawing by N.D.Bl	hat			
	2. Machine Drawing by Gill				
		Course Outcomes (students will be able to)	-		
1	Show assembly drawing and De	etail Drawing of simple equipment			
2	Show with a diagram the worki	ng of Bearings, Stuffing box, Shaft coupling, Pipe Joints, Valves,			
3	Prepare computer aided drawin	g.			
r			1		
1	Course Code: CEP 1701	Course Title: Chemical Engineering Laboratory-I	Cre	dits =	3
1			L	Т	Р
	Semester: IV	Total contact hours: 90	0	0	6

	Semester: 1v	Total contact hours: 90	U	U	0		
List of Prerequisite Courses							
1	Momentum and Transfer, Chem	ical Engineering Operations, Chemical Engineering Operations - I and					
	II						
	Li	st of Courses where this course will be prerequisite					
	Chemical Engineering Laborator	ry II and III, and other Chemical Engineering Courses,					
	Description	n of relevance of this course in the B. Chem. Engg. Program					
Cher	mical Engineering lab provides st	udents the first hand experience of verifying various theoretical concept	ts lear	nt in tl	heory		
cour	ses. It also exposes them to pract	ical versions of typical chemical engineering equipments and servers as	a brid	lge bet	ween		
theor	ry and practice. This particular la	p focuses on fluid dynamics, distillation, filtration, drying and sedimenta	tion.				
	C	ourse Contents (Topics and subtopics)	Req	<mark>l. hou</mark> r	rs		
1	9-13 Experiments on fluid dynam	nics	24				
2	2 5-7 Experiments on distillation						
3	1-2 Experiments on sedimentation	on	4				
4	2-3 Experiments on filtration		6				
5	1-2 Experiments on drying		4				
6	2-3 Experiments on Thermodyna	amics	6				
		List of Text Books/ Reference Books					
1	McCabe W.L., Smith J.C., and H	Iarriott P. Unit Operations in Chemical Engineering, 2014					
2	Bird R.B., Stewart W.E., and Lig	ghtfoot, E.N. Transport Phenomena, 2007					
3	Coulson J.M., Richardson J.F.	and Sinnott, R.K. Coulson & Richardson's Chemical Engineering:					
	Chemical engineering design, 19	96.					
4	Green D. and Perry R. Perry's C	nemical Engineers' Handbook, Eighth Edition, 2007.					
		Course Outcomes (students will be able to)					
1	Learn how to experimentally ver	ify various theoretical principles					
2	Visualize practical implementati	on of chemical engineering equipments					
3	Develop experimental skills						

SEMESTER – V										
No.	Subjects	Credits	Hrs /week			Marks for various Exams				
			L	Т	Р	C. A.	M. S.	E. S.	Total	
CET 1716	Mathematical Methods in Chem. Engg.	4	3	1	0	20	30	50	100	
CET 1102	Heat Transfer	4	2	2	0	20	30	50	100	
CET 1201	Chemical Reaction Engineering	4	2	2	0	20	30	50	100	
CET 1402	Separation Processes	4	2	2	0	20	30	50	100	
CET 1202	Biochemical Engineering	3	2	1	0	10	15	25	50	
CEP 1704	Chemical Engineering Laboratory-II	3	0	0	6	50		50	100	
CEP 1702	Process Simulation Lab – I	2	0	0	4	25		25	50	
	Total	24	11	8	10				600	

	Course Code: CEP 1716	Course Title: Mathematical Methods in Chem. Engg.	Credits =		4
			L	Т	Р
	Semester: V	Total contact hours: 60	3	1	0
		List of Prerequisite Courses	<u> </u>		
1	Applied Mathematics – I and I	, Momentum and Mass Transfer, Chem. Eng. Operations, Chem Engg			
	Thermodynamics I and II				
			<u> </u>		
	Li	st of Courses where this course will be prerequisite			
1	Transport Phenomena (CET 110	1)	<u> </u>		
2	Heat transfer, Chemical Reaction	n Engineering, Chemical Process Control, Optimization of Chemical			
	Engineering Systems, Home Pa	per I and II, Seminar, etc.			
	Description	of relevance of this course in the B. Chem. Engg. Program			
In th	is course advanced mathematica	al tools are covered which will help students to solve complex probl	ems ir	1 Che	mical
Engi	neering. This course will serve a	as a bridge between the applied mathematics courses and their applica	tion to	o Che	mical
Engi	neering problems. Specifically,	the techniques learnt in this course will help problem formulation	and	soluti	on in
Cher	nical Reaction Engineering, Cher	nical Process Control, Heat Transfer and Transport Phenomena.			
	Course Contents (Topics and subtopics)				rs
1	Vector algebra: scalar & vector	product (application to fluid flow problems)	12		
2	PDEs: Types, solution (penetra	tion theory, 2D conduction, counter-current heat exchanger, reaction-	8		
	diffusion, dispersion model, etc.		<u> </u>		
3	Fourier series, transforms (diffu	sion equations)	8		
4	Laplace, z transform (process co	ntrol applications)	8		
5	Linear algebra (matrix theory) (stability analysis, scaling of equations)	8		
6	Bifurcation analysis (sensitivity	analysis)	8		
7	Perturbation analysis (for bound	ary flow problems, solution of equations, model reduction etc.)	8		
		List of Text Books/ Reference Books			
1	Kreyszig, E. Advanced Enginee	ring Mathematics.			
2	Pushpavanam, S. Mathematical	Methods in Chemical Engineering			
3	Kundu, P. and Cohen, I.M. Fluid	1 Mechanics.			
4	Jenson, V.G. and Jeffreys, G.V.	Mathematical Methods in Chemical Engineering			
		Course Outcomes (students will be able to)			
1	Formulate a Chemical Engineer	ing problem into a mathematical problem			
2	Solve (analytically or numerica	Illy) ODE and PDE equations encountered in Chemical Engineering			
	Applications				
3	Assess stability of Chemical En	gineering systems			

	Course Code: CET 1102 Course Title: Heat Transfer		Credits = 4				
			L	Т	Р		
	Semester: V	Total contact hours: 60	2	2	0		
List of Prerequisite Courses							
	Momentum and Mass transfe	r, Applied Mathematics I and II, Material and Energy Balance					

	Calculations	
	List of Courses where this course will be prerequisite	
	Chemical Reaction engineering, Multiphase Reactor Engineering, Process Development and	
	Engineering, Home Paper I and II, Env. Engg. and Process Safety, etc.	
	Description of relevance of this course in the B. Chem. Engg. Program	
This	is a basic course that deals with heat transfer, heat exchangers and their design. Heat transfer forms	one of the basic
pilla	rs of Chemical Engineering Education and is required in all future activities.	
_	Course Contents (Topics and subtopics)	Reqd. hours
1	Revision of Basics of Heat transfer: Steady state and unsteady state conduction, Fourier's law,	4
	Concepts of resistance to heat transfer and the heat transfer coefficient. Heat transfer in Cartesian,	
	cylindrical and spherical coordinate systems, Insulation, critical radius.	
2	Convective heat transfer in laminar and turbulent boundary layers. Theories of heat transfer and	4
	analogy between momentum and heat transfer.	
3	Heat transfer by natural convection.	2
4	Heat transfer in laminar and turbulent flow in circular pipes: Double pipe heat exchangers: Concurrent,	6
	counter-current and cross flows, mean temperature difference, NTU - epsilon method for exchanger	
	evaluation. Heat transfer outside various geometries in forced convection, such as, single spheres,	
	banks of tubes or cylinders, packed beds and fluidised beds	
5	Shell and tube heat exchangers: Basic construction and features, TEMA exchanger types, their	12
	nomenclature, choice of exchanger type, correction to mean temperature difference due to cross flow,	
	multipass exchangers. Design methods for shell and tube heat exchangers such as Kern Method, Bell	
	– Delaware method	
6	Finned tube exchangers, air-cooled cross flow exchangers and their process design aspects	3
7	Compact Exchangers: Plate, Plate fin, Spiral, etc.: Construction, features, advantages, limitations and	3
	their process design aspects	1.0
8	Condensation of vapours: theoretical prediction of heat transfer coefficients, practical aspects,	10
	horizontal versus vertical condensation outside tubes, condensation inside tubes, Process Design	
	aspects of total condensers, condensers with de-superheating and subcooling, condensers of	
0	Inditicomponent mixture, condensation of vapours in presence of non-condensaties.	10
9	Heat transfer to boiling liquids: Process design aspects of evaporators, natural and forced circulation	10
10	reporters	4
10	heat transfer in agriated vessels: colls, jackets, impet colls, calculation of near transfer coefficients,	4
11	Basics of Padiative heat transfer and application to Eurnage Design	2
11	List of Toxt Design	2
	Process Heat Transfer, Kern D.O.	
	Heat Exchangers Kakac S. Bergles A.F. Mayinger F.	
	Process Heat Transfer G. Hewitt	
	Course Outcomes (students will be able to)	
1	Calculate temperature profiles in a slab at steady state	
2	Calculate heat transfer coefficients in various equinment like double nine heat exchangers, shell and	
2	tube heat exchangers plate heat exchangers condensation evaporation agitated tanks	
3	Calculate heat duty/outlet temperatures/pressure drons/area required for various equipment like double	
	nine heat exchangers shell and tube heat exchangers plate heat exchangers condensation	
	evanoration agitated tanks	
4	Identify and select type of shell and tube exchanger based on TEMA classification	
<u> </u>	Tranking and below gpo of short and table exchanger bused on TERMY etablication.	
r		

	Course Code: CET 1201 Course Title: Chemical Reaction Engineering		Credits = 4		
			L	Т	Р
	Semester: V	Total contact hours: 60	2	2	0
List of Prerequisite Courses					
	Physical Chemistry, Material &	Energy Balance Calculations, Applied Mathematics I and II,			
	Momentum and Mass Transfer,	Chem Engg Thermodynamics I and II			
	Li	st of Courses where this course will be prerequisite			
	Biochemical Engineering, Env	ironmental Engineering and Process Safety, Proc. Dev and Engg.,			
	Multiphase Reactor Engineering	g, Home Paper I and II			
Description of relevance of this course in the B. Chem. Engg. Program					

Chemical Reaction Engineering is concerned with the utilisation of chemical reactions on a commercial scale. This course is very relevant but not limited to the following industries: Inorganic chemicals, organic chemicals, petroleum & petrochemicals, Pulp & paper, Pigments & paints, rubber, plastics, synthetic fibres, Foods, Dyes and intermediates, Oils, oleochemicals, and surfactants, Minerals, cleansing agents, Polymers and textiles, Biochemicals and biotechnology, pharmaceuticals and drugs, Microelectronics, energy from conventional and non-conventional resources, Metals

	Course Contents (Topics and subtopics)					
1	Batch reactor (BR), continuous stirred tank reactor (CSTR), plug flow reactor (PFR), packed-bed	2				
	reactor (PBR)					
2	Design equations for BR, CSTR, PFR, PBR, and applications of design equations to various series-	6				
	and parallel- combinations of flow reactors					
3	Rate laws and stoichiometry	4				
4	Isothermal reactor design applied to BR, CSTR, PFR, PBR	6				
5	Analysis of rate data: differential method, integral method	4				
6	Multiple reactions	4				
7	Reaction mechanisms, pathways, bioreactions	6				
8	Catalysis and catalytic reactors, catalyst deactivation, external diffusion effects on heterogeneous	8				
	reactions, diffusion and reaction in solid catalysts;					
9	Introduction to non-isothermal reactor design	6				
10	Residence time distribution in reactors; models for non-ideal reactors	8				
11	Mass transfer with chemical reaction in fluid-fluid and fluid-fluid-solid systems; Model contactors,	6				
	pilot plants, and collection of scale-up data					
	List of Text Books / Reference Books					
1	Elements of Chemical Reaction Engineering – H. Scott FOGLER					
2	Chemical Reaction Engineering – Octave LEVENSPIEL					
3	The Engineering of Chemical Reactions – Lanny D. SCHMIDT					
4	An introduction to Chemical Engineering Kinetics and Reactor Design – Charles HILL					
5	Heterogeneous Reactions, Vol. I and II – L. K. Doraiswamy, M. M. Sharma					
	Course Outcomes (students will be able to)					
1	design chemical reactors optimally, using minimum amount of data					
2	design experiments in a judicious way to get the required data, if not available					
3	fix some problems related to operability and productivity					
4	maintain and operate a process in a safe manner					
5	increase capacity and/or selectivity and/or safety by improving/changing the reactor type/sequence					
	and/or operating conditions					

	Course Code: CET 1402	Course Title: Separation Processes	Credits =		4	
			L	Т	Р	
	Semester: V	Total contact hours:60	2	2	0	
		List of Prerequisite Courses				
Material & Energy Balance Calculations, Chemical Engineering Operations – I, Chem. Eng.						
	Thermodynamics-I ar	d II, Momentum Transfer, Applied Mathematics I and II				
		List of Courses where this course will be prerequisite				
	Chemical Engineerin	g Laboratory, Process Simulation Lab - I and II, Home Paper I and II,				
	Proc Dev and Engg.,					
	Description of relevance of this course in the B. Chem. Engg. Program					

This is a course further built up on and in continuation with Chem. Engg. operations. It forms the basis oc Chemical Engineering Principles and hence it is required in almost all the courses and throughout the professional career of a Chemical Engineer.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Extraction and Leaching of ternary systems: Ternary diagrams, Hunter-Nash graphical method and	15
	Maloney-Schubert graphical equilibrium-stage method, Solvent Selection, Operating point, number	
	of stages, maximum solvent to feed ratios, minimum reflux, minimum number of stages, Introduction	
	to reactive extraction, aqueous two phase extraction, extraction of biomolecules, supercritical fluid	
	extraction, Solid-liquid extraction: Solid - liquid equilibria, efficiency, performance evaluation,	
	Equipment for extraction, leaching and their sizing, Design considerations	

2	Adsorption and Ion exchange: Liquid Adsorption, Ion-Exchange Equilibria, Equilibria in	12
	Chromatography, Breakthrough Curves, Kinetic and transport considerations, Convection-Dispersion	
	Model, Separation Efficiency (Plate Height or Bandwidth), Correlations for Transport-Rate	
	Coefficients, Equipment for sorption operations, Scale-Up and Process Alternatives, Adsorptive	
	Membranes, simulated-moving-bed operation, modes of operation	
3	Crystallization: Theory of solubility and crystallization, phase diagram (temp/solubility relationship),	12
	Supersaturation, Nucleation, Crystal Growth, Population balance analysis, method of moments for	
	rate expressions for, volume, area and length growth, CSD distribution, MSMPR operation,	
	evaporative and cooling (rate expressions), most dominant size, ideal classified bed, Precipitation,	
	Melt crystallization, Process design of crystallizers and their operation	
4	Humidification and Cooling Towers: Method of changing humidity and equipment, Cooling tower	9
	process design, counter-current, concurrent and cross current, mass and heat balances in bulk and	
	interfaces, Estimation of air quality, performance evaluation of cooling towers.	
5	Membrane Separations: Types of separations, reverse osmosis, ultrafiltration, gas separation, vapour	12
	permeation and pervaporation, dialysis, electrodialysis, nanofiltration, Transport Through Porous	
	Membranes, Resistance Models, Liquid Diffusion Through Pores, Gas Diffusion Through Porous	
	Membranes, Transport Through Nonporous Membranes, Solution-Diffusion for Liquid Mixtures, Gas	
	Mixtures, Concentration Polarization and Fouling, Membrane modules, arrangement of modules in	
	cascades, performance criteria and design considerations	
	List of Text Books/ Reference Books	
1	Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle	
	technology and separation processes. Butterworth-Heinemann, Woburn, MA.	
2	Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J.	
3	McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-	
	Hill Science/Engineering/Math, Boston.	
4	Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-	
	Hill Professional, Edinburgh.	
5	Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt.	
	Ltd, New Delhi.	
L	Course Outcomes (students will be able to)	
1	List situations where liquid-liquid extraction might be preferred to distillation, Make a preliminary	
	selection of a solvent using group-interaction rules, Size simple extraction equipment	
2	Differentiate between chemisorption and physical adsorption, List steps involved in adsorption of a	
	solute, and which steps may control the rate of adsorption, Explain the concept of breakthrough in	
	fixed-bed adsorption	
3	Explain how crystals grow, Explain the importance of supersaturation in crystallization. Describe	
	effects of mixing on supersaturation, mass transfer, growth, and scale-up of crystallization	
4	Explain membrane processes in terms of the membrane, feed, sweep, retentate, permeate, and solute-	
	membrane interactions. Distinguish among microfiltration, ultrafiltration, nanofiltration, virus	
	filtration, sterile filtration, filter-aid filtration, and reverse osmosis in terms of average pore size.	
	Explain common idealized flow patterns in membrane modules.	

	Course Code: CET 1202	Course Title: Biochemical Engineering	Crec	lits =	3	
			L T P		Р	
	Semester: V	Total contact hours: 45	2	1	0	
	List of Prerequisite Courses					
	Chemical Reaction Engineering, Introduction to Biological Sciences and Bioengineering, Physical Chemistry, Material and Energy Balance Calculations, Chem Engg Thermodynamics I and II, Chem Engg Operations					
	Li	st of Courses where this course will be prerequisite				
	Multiphase Reactor Engineering, Env. Engg and Proc Safety, Proc Dev and Engg., Home Paper I and II					
	Description	of relevance of this course in the B. Chem. Engg. Program				
This	course integrates Biological scie	nces and chemical engineering and a requisite for Biobased Industry				
	C	ourse Contents (Topics and subtopics)	Req	d. hou	rs	

1	Introduction to Biotechnology: Role of chemical engineers in biotechnology	2
2	Basic of Genetic Engineering and Tissue Culture : Recombinant DNA technology	2
3	Structure function relations of enzymes; Classification,	2
4	Mechanism of Enzyme action, Enzyme kinetics, inhibition and regulation	2
5	Enzyme purification and characterization, Coenzymes, cofactors	2
6	Enzyme reactors, thermostabilization, immobilization of enzymes	2
7	Enzymes as industrial catalysts- Examples	2
8	Bioprocess Development	3
9	Plant and animal cell cultures for the production of biochemicals, Immobilized cells.	4
11	Kinetics of microbial growth, models and simulations, Batch and continuous culture, Mixed microbial	4
	culture ,	
12	Biochemical process development and bioreactors using biological catalysts	4
13	Integration of downstream processing with bioprocessing	4
14	Transport phenomena in bioreactions and bioreactors	4
15	Fundamentals of fermentation-submerged fermentation, Fermenter design and basic biochemical	4
	engineering aspects of fermentation	
16	Reactor design for biochemical reactions and scale up, Process Design for bioproducts, Bioreactor	4
	design, Scale up of bioreactions/reactors,	
	List of Text Books/ Reference Books	
	Biochemical Engineering Fundamentals, Bailey and Olis, Wiley	
	Biotransformations and Bioprocesses, Doble, Anilkumar and Gaikar, Marcel Dekker	
	Course Outcomes (students will be able to)	
1	calculate microbial/enzymatic kinetics parameters	
2	Design enzyme reactors and scale up fermenters	
3	calculate biomass production/substrate requirements	
4	decide process parameters	
5	estimate energy equipments/oxygen requirements	
6	estimate bio-reactor size/time for a given microbial/enzymatic process.	

	Course Code: CEP 1704	Course Title: Chemical Engineering Laboratory-II	Credits = 3				
			L	Т	Р		
	Semester: V	Total contact hours: 90	0	0	6		
	List of Prerequisite Courses						
1	Material and Energy Balance	Calculations, Momentum and Mass Transfer, Chemical Engineering					
	Thermodynamics – I and II, (Chem Engg Operations, Chemical Reaction Engineering, Separation					
	Processes						
	Li	st of Courses where this course will be prerequisite					
	Students will be able to understa	and pricinples in a better way so it is required in all the courses					
	Description	of relevance of this course in the B. Chem. Engg. Program					
Cher	mical Engineering lab provides st	udents the first hand experience of verifying various theoretical concep	ts lear	nt in t	heory		
cour	ses. It also exposes them to pract	ical versions of typical chemical engineering equipments and servers as	a brid	lge be	tween		
theor	ry and practice. This particular la	ab focuses on heat and mass transfer principles, chemical engineering	therm	odyna	imics,		
adso	rption, extraction and crystallizat	ion.	1				
	C	ourse Contents (Topics and subtopics)	Requ	l. hou	rs		
1	8-10 Experiments on heat transf	er	20				
2	5-7 Experiments on mass transfe	er	16				
3	3-5 Experiments on chemical en	gineering thermodynamics	10				
4	2-3 Experiments on adsorption		6				
5	1-2 Experiments on extraction		4				
6	1-2 Experiments on crystallizati	on	4				
		List of Text Books/ Reference Books					
1	McCabe W.L., Smith J.C., and I	Harriott P. Unit Operations in Chemical Engineering, 2014					
2	Kern D.Q. Process heat reansfer	, 1950					
3	Treybal R.E. Mass-transfer Ope	rations. 1980					
4	Green D. and Perry R. Perry's C	hemical Engineers' Handbook, Eighth Edition, 2007.					
		Course Outcomes (students will be able to)					

1	Learn how to experimentally verify various theoretical principles	
2	Visualize practical implementation of chemical engineering equipments	
3	Develop experimental skills	

	Course Code: CEP 1702	Course Title: Process Simulation Lab - I	Cre	Credits = 2				
			L	Т	Р			
	Semester: V	Total contact hours: 60	0	0	4			
		List of Prerequisite Courses						
1	Applied Mathematics - I and	I II, Material & Energy Balance Calculations, Chem. Eng.						
	Thermodynamics-I and II, Mor	nentum and Mass Transfer, Chemical Engineering Operations						
	Engineering Applications of Com	puters, etc.						
	List	of Courses where this course will be prerequisite	-					
1								
	Description of	f relevance of this course in the B. Chem. Engg. Program						
The	course will help to write programs	for chemical engineering problems in various basic as well as advand	ced p	rograr	nming			
softv	vare such as C/C++, SciLAB, Pyt	non etc. Students will solve problems using various numerical meth	ods	for ch	emical			
engi	neering subject which they have lea	rnt so far. The course is designed in such a way that students will get	an o	pportu	nity to			
revis	se chemical engineering basic along	with developing software skills.						
	Cou	Req	d. hou	irs				
1	C programming/Visual Basic Revisions: Boundary layer on flat plate, Solution of ODE, interpolation.							
	Batch distillation design problem							
2	Introduction to Python and SCILA	B programming	6					
3	Material and energy balance (a) re	ecycle problems (b) humidity calculations (cooling tower design) (c)	6					
	adiabatic flame temperature (num	erical integration)						
4	Thermodynamics: (a) Vapor press	sure estimation from equation of state b) VLE data correlation using	6					
	activity coefficient models (c) His	gh Pressure VLE, gas solubility using EOS						
5	Fluid flow: (a) solution to laminar	flow problems (numerical) (b) piping system calculations	6					
6	Unit operations: (a) Absorption cc	lumn design (b) Extractor design	6					
7	Reaction engineering: Concentrat	ion profiles of series/parallel reactions, PFR design, estimation of	6					
	rate constants for catalytic reaction	18						
		List of Text Books/ Reference Books	-					
1	Jelen, B., VBA and Macros: Micr	osoft Excel 2010						
2	www.scilab.in (Free Books for Ch	emical Engineering)						
		Course Outcomes (students will be able to)						
1	Use advanced programming softw	are with built in functions						
2	Write own functions/macros							
3	Solve chemical engineering proble	ems using computers						

SEMESTER – VI									
No.	Subjects	Credits	Hrs/week			Marks for various Exams			
			L	Т	Р	C. A.	M. S.	E. S.	Total
CET 1601	Material Science and Engineering	3	2	1	0	10	15	25	50
CET 1203	Multiphase Reaction Engineering	3	2	1	0	10	15	25	50
CET 1503	Environmental Engg & Process Safety	4	2	2	0	20	30	50	100
CET 1703	Chemical Process Control	4	3	1	0	20	30	50	100
CET	Chem. Engg. Elective – I	3	2	1	0	10	15	25	50
CEP 1706	Chem. Eng. Laboratory-III	3	0	0	6	50		50	100
CEP 1705	Process Simulation Lab – II	2	0	0	4	25		25	50
GEP 1111	Equipment Design and Drawing-I	2	2	0	4	25		25	50
	Total	24	13	6	14				550

	Course Code: CET 1601	Course Title: Material Science and Engineering	Credits = 3		3
			L	Т	Р
	Semester: VI	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			
	Structural Mechanics, Applied I	Physics I and II,			
	Ι	ist of Courses where this course will be prerequisite			
	Equipment design and drawing Proj Engg. and Eco	I and II, Home Paper I and II, Process Development and Engg. Chem			
Description of relevance of this course in the B. Chem. Engg. Program					
Sele	ction of MOC for a given application	ation, maintenance and corrective measures for various engineering materi	als.		
		Course Contents (Topics and subtopics)	Reqd	l. hou	rs
1	Engineering Materials: Classific	ation, study of ferrous and non	3		
	ferrous materials		<u> </u>		
2	Phase diagrams of steel, brass a	nd cupronickel and the applications	5		
	of phase diagrams				
3	Effect of structure on properties: subatomic to macroscopic level				
4	Modification and control of material properties				
5	Polymeric materials, Ceramic	materials, Composite materials and Smart materials	4		
6	Corrosion Engineering: Elctroch	nemical principles, different types of	10		
	corrosion, Polarisation, mechan	isms of corrosion control and prevention,			
	preventive coatings. Corrosion	behavior of important alloys such as			
_	stainless steels, brass etc.		10		
7	Theory of failure: Crystal defec	s, plastic deformation. Types of	10		
0	mechanical failure, fracture, fai	Igue and creep	4		
8	Criteria for selection of material	s in chemical process industry	4		
1	The Essence of Materials for Fr	gineers Robert W Messler Ir			
2	Materials Science and Engineer	ing Radhavan V			
3	Materials Science and Engineer	ing Van Vlack I H			
<u>ј</u>	Engineering Materials and Appl	ications Flin R A Trojan P K			
-	Engineering Waterials and App	Course Outcomes (students will be able to)	L		
1	Students will be able to draw si	nple Phase Diagram			
2	Describe causes of mechanical t	ailure			
3	List types of corrosion and desc	ribe method to control them			

Course Code: CET 1203	Course Title: Multiphase Reaction Engineering	Cr	edits =	lits = 3		
		L	Т	Р		
Semester: VI	Total contact hours: 45	2	1	0		
List of Prerequisite Courses						

	Chemical Reaction Engineering, Momentum and Mass Transfer (CET 1101: Semester III), Heat	
	Transfer, Chemical Reaction Engineering, Chemical Engineering Operations Separation Processes,	
	Chem Engg Thermodynamics I and II	
	List of Courses where this course will be prerequisite	
	Home Paper I and II, Proc Dev and Engg.,	
	Description of relevance of this course in the B. Chem. Engg. Program	
Mult	tiphase Reaction Engineering is concerned with the utilisation of chemical reactions on a commercial scal	e. This course is
very	relevant but not limited to the following industries: Inorganic chemicals, organic chemicals, petroleum &	b petrochemicals,
Pulp	& paper, Pigments & paints, rubber, plastics, synthetic fibres, Foods, Dyes and intermediates, Oils, ol	eochemicals, and
surfa	ctants, Minerals, cleansing agents, Polymers and textiles, Biochemicals and biotechnology, pharmaceu	ticals and drugs,
Micr	oelectronics, energy from conventional and non-conventional resources, Metals	
	Course Contents (Topics and subtopics)	Reqd. hours
1	Classification of multiphase reactors, qualitative description, examples of industrial importance	2
	Hydrodynamics, scale-up, process design and performance of the following major classes of multiphase	
	reactors, case studies and problems, w.r.t:	
	- Stirred tank reactors,	10
	- Bubble columns, packed bubble columns, sectionalised bubble columns,	8
	- Internal loop and external loop air-lift reactors, jet loop reactors,	4
	- Fluid-fluid reactors such as spray columns, packed columns, plate columns, static mixers, rotating	6
	disc contactors	
	- Fixed bed reactors, trickle bed reactors,	7
	- Solid-liquid and gas-solid fluidised bed reactors, solid-gas transport reactors	8
	List of Text Books / Reference Books	
1	Heterogeneous Reactions, Vol. I and II – L. K. Doraiswamy, M. M. Sharma	
2	Fluid Mixing and Gas Dispersion in Stirred Reactors – G. B. Tatterson	
3	Bubble Column Reactors – W. D. Deckwer	
4	Fluidisation – D. Kunni and O. Levenspiel	
5	Gas Liquid Reactions – P. V. Danckwerts	
6	Fluidisation – J. F. Davidson and D. Harrison	
7	Random Packings and Packed Tower Design – R. F. Strigel	
	Course Outcomes (students will be able to)	
1	calculate operating regime for a given reaction.	
2	calculate intrinsic kinetics from the data on model contactors.	
3	calculate conversion / selectivity / size / temperature / pressure / power required for conducting a given	
	multiphase reaction equipment.	

Course Code: CET 1503 Course Title: Environmental Engineering and Process		Cre	edits =	4
	Safety	L	Т	Р
Semester: VI	Total contact hours: 60	2	2	0
List of Prerequisite Courses				
Material & Energy Balance Calculations, Chemical Reaction Engineering, Chemical Engineering				
Operations, Momentum and Mass Transfer, Biochemical Engg., Chem Engg Thermodynamics I and II				
List of Cou	rses where this course will be prerequisite			
Home Paper I and II, Chem Proc Dev an	d Engg.,			
Description of releva	ance of this course in the B. Chem. Engg. Program			

The course 'Environmental Engineering and Process Safety' is highly relevant in all fields of activities, and process industry in particular. A chemical engineer working in any function of process industry should have working knowledge of all the prevailing safety, environment, and health standards, and may be involved in / responsible for any or all of the following:

- site process safety, environmental affairs
- assisting the Health Safety Environment (HSE) team
- employee safety observations and pre-job risk assessments
- implementation of HSE policies and guidelines to help ensure that all employees, contractors, and visitors enjoy high levels of safety, health and environmental protection; this reduces company's liability exposure.
- improvement of process safety performance and reduction of risk by facilitating Process Hazard Analyses and Layer of Protection Analyses
- incident investigations for process safety and environmental incidents
- recognising information that would be pertinent to process safety documentation and follow through with site personnel to ensure information is well documented
- developing and updating site Policies and Procedures related to process safety and environmental.
- capital and other project teams to identify and resolve regulatory issues, analyse process and property hazards, and establish protective measures to mitigate risks to a tolerable level.
- assisting the plant with government interfaces and inspections.
- training using internal and external resources; provides guidance to site management for implementation of programs or controls to comply with environmental requirements.
- managing site environmental programs including but not limited to waste management, spill prevention & response, etc.
- preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner.
- obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance.
- providing environmental guidance; develop procedures and training, and HSE support as needed.
- participate in site objectives in the areas of community relations.

The above clearly highlights the necessity and significance of the course. This course will certainly add value to our chemical engineering graduates.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+	4
2	Environmental impact assessment, Life cycle assessment (LCA)	4
3	Pollution prevention in chemical manufacturing, effluent valorisation	2
4	Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control), Noise pollution	6
5	Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste	6
6	Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)	8
7	Toxicology; Industrial hygiene	2
8	Source models; Toxic release and dispersion models	6
9	Fires and explosions; Concepts to prevent fires and explosions	4
10	Chemical reactivity	2
11	Reliefs and reliefs sizing; Hazard identification; Risk assessment	6
12	Safety procedures and designs	4
13	Some case histories	6
	List of Text Books / Reference Books	
1	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR	
2	Guidelines for Process Safety Management, Environment, Safety, Health, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)	
3	Environmental Engineers' Handbook – Irene LIU (Editor)	
4	Chemical Process Safety Learning from Case Histories – Roy E. SANDERS	
5	Guidelines for Process Safety Documentation - Center for the Chemical Process Safety of the	
	American Institute of Chemical Engineers (AIChE)	

6	Environmental and Health and Safety Management: A Guide to Compliance – Nicholas P.	
	CHEREMISINOFF, Madelyn L. GRAFFA	
7	Environmental Pollution Control Engineering – C. S. Rao	
8	Environmental Engineering – H. S. Peavy	
	Course Outcomes (students will be able to)	
1	calculate BOD / COD for a given composition of effluent stream, Estimation of bio Kinetics	
2	calculate adiabatic lapse rate and determine conditions for suitability of atmospheric dispersion,	
	effective stack height, chimney design	
3	calculate concentrative of pollutant at any point in the neighbourhood of emission given atmospheric	
	conditions like wind, dispersion, environmental factors etc.	
4	calculate size/time/power required for primary clarifier, secondary treatment, tertiary treatment, sizing	
	of different types of Biological treatments etc.	
5	identify hazards in a given process and assess the same and provide solutions for operating safely.	
6	specify safety requirements for storage and handling of a given chemical.	

	Course Code: CET 1703	Course Title: Chemical Process Control	Cree	dits =	4		
			L	Т	Р		
	Semester: VI	Total contact hours: 60	3	1	0		
	•	List of Prerequisite Courses					
	Material and Energy Balance Chem Engg., Momentum and Engg Operations, Separation Pr	Calculations, Applied Mathematics I and II, Mathematical Methods in Mass Transfer, Chemical Reaction Engineering, Heat Transfer, Chem occsses,					
	T	ist of Courses where this course will be provequicite					
	Chemical Engineering Laborato	ary Process Sim Lab Home Paper Land II. Proc Dev and Engg					
Description of relevance of this course in the B Chem Engg Program							
Proc engi distu impa	ress control plays a very critical neering courses focus on the stea urbances which deviates the opera act of such disturbances and equip	role in the context of actual operation of a chemical plant. Most of t dy state operation. In the real life environment, process is continuously su ation from the designed steady state. This course specifically prepares stude p them with the tools available with the chemical engineer to tackle these s	he co bjecte lents situati	ed to v to asse ons.	emical arious ess the		
		Course Contents (Topics and subtopics)	Req	d. hou	irs		
1	Introduction to process control: process modeling	Motivation, importance, components of control system, control relevant	3				
2	Dynamics of first, second and features, etc.	I higher order systems: Examples systems, characterizing parameters,	12				
3	Feedback control: Motivation, of proportional, integral and der	elements of feedback control, servo problem, regulatory problem, effect ivative action, responses of P, PI and PID controllers	6				
4	Controller selection and desig control loops (level, pressure, fl	n: Controller selection guidelines, controller design criteria, common ow, temperature), reactor control, distillation control	6				
5	Controller tuning: Open loop tu packages	uning, closed loop tuning, direct synthesis, commercial controller tuning	6				
6	Stability analysis: Laplace doma	ain analysis, frequency domain analysis	6				
7	Multivariable and advanced co basics of ratio control, split rar predictive control, geometric co	ntrol: Cascade control, dynamic matrix control, internal model control, age control, override control, adaptive control, inferential control, model ntrol	12				
8	Digital control: Discrete time sy	stems, basics of z-transforms, stability analysis	3				
9	Electronics for control systems HMI	: Distributed control system, Programmable Logic Controllers, SCADA,	3				
10	Instrumentation: Basic measure temperature, types of control va	rement devices and working principles for level, flow, pressure and lves, etc.	3				
	· · · · · · · · · · · · · · · · · · ·	List of Text Books/ Reference Books					
1	Stephanopoulos, G.Chemical Pr	rocess Control: An Introduction to Theory and Practice.					
2	Bequette, B.W.Process Control:	Modeling, Design, and Simulation.					
3	Seborg, D.E. and Mellichamp, I	D.A. and Edgar, T.F. and Doyle, F.J.Process Dynamics and Control.					
4	Johnson, C.D.Process Control I	nstrumentation Technology.					

	Course Outcomes (students will be able to)		
1	Understand the importance of process dynamics (unsteady state operation)		
2	Design a control strategy for key unit operations (reactor, distillation column, etc)		
3	Tune a controller to reject disturbances or manage operating point transitions		
4	Understand working principles of basic instruments available for flow, pressure, level and temperature		
	measurement		
5	Describe modern industrial control system architecture		

Course Code: CEP 1706	Course Title: Chemical Engineering Laboratory-III	Cre	Credits = 3	
1			Т	Р
Semester: VI Total contact hours: 90		0	0	6
	List of Prerequisite Courses			
Material and Energy Balance (Calculations, Momentum and Mass Transfer, Heat Transfer, Chemical			
Reaction Engineering, Chemical Engg Operations, Separation Processes, Chem Engg Lab I and II				
L	ist of Courses where this course will be prerequisite			
Home Paper I and II, Chem Prod	c Dec and Engg.,			

Description of relevance of this course in the B. Chem. Engg. Program

Chemical Engineering lab provides students the first hand experience of verifying various theoretical concepts learnt in theory courses. It also exposes them to practical versions of typical chemical engineering equipments and servers as a bridge between theory and practice. This particular lab focuses on chemical reaction engineering, multiphase reaction engineering, process dynamics and control.

	Course Contents (Topics and subtopics)	Reqd. hours
1	5-7 Experiments on Chemical Reaction Engineering	16
2	2-4 Experiments on Bubble column	6
3	3-5 Experiments on MACs	10
4	2-3 Experiments on fluidized beds	6
5	5-7 Experiments on process dynamics	16
6	2-4 Experiments on process control	6
7		
	List of Text Books/ Reference Books	
1	Fogler H.S. Essentials of Chemical Reaction Engineering, 2010	
2	Doraiswami L.K. and Sharma M.M. Heterogeneous reactions, volume I and II.	
3	Stephanopoulos, G.Chemical Process Control: An Introduction to Theory and Practice.	
4	Green D. and Perry R. Perry's Chemical Engineers' Handbook, Eighth Edition, 2007.	
	Course Outcomes (students will be able to)	
1	Learn how to experimentally verify various theoretical principles	
2	Visualize practical implementation of chemical engineering equipments	
3	Develop experimental skills	

Course Code: CEP 1705 Course Title: Process Simulation Lab - II		Cre	dits =	2		
		L	Т	Р		
Semester: VI	Total contact hours: 60004					
	List of Prerequisite Courses					
Applied Mathematics – I and II	, Material & Energy Balance Calculations, Chem. Eng. Thermodynamics-					
I and II, Momentum and Mass	Transfer, Chemical Engineering Operations, Engineering Applications of	f				
Computers, Process Simulation	Lab - I (CEP1702), Chemical Reaction Engineering (CET 1201)					
I	List of Courses where this course will be prerequisite					
Project II – Home paper I and II						
Descriptio	on of relevance of this course in the B. Chem. Engg. Program					
In this course, students will develop	op a computer software for design and optimization of various cher	mical	engin	eering		
equipments. This course will help students to complete home paper which is Techno-economic feasibility analysis of chemical						
manufacturing facility. The course of	content is similar to the activities carried out by any organization wor	king	on "de	etailed		
engineering packages" In this course	student will learn the widely used chemical engineering software such as	ASPE	EN.			

	Course Contents (Topics and subtopics)	Reqd. hours
1	Introduction to process simulation software (Prediction of multicomponent VLE using Aspen, column	9
	design, rating, reactor balances)	
2	Heat transfer: triple effect evaporator, STHE design	6
3	Separation processes: Design of crystallizers, Distillation, Chromatography, spray dryers etc	9
4	Design of multiphase reactors: stirred vessels, Bubble columns	6
5	ASPEN simulation: azeotropic distillation, reactive distillation, column sizing	9
6	Process control: P, PI, PID controller simulations, DCS Control system	6
	List of Text Books/ Reference Books	
1	Coker, Ludwig's Applied Process Design for Chemical and Petrochemical Plants	
2	Perry's Chemical Engineering Handbook	
3	Albright's Chemical Engineering Handbook	
4	ASPEN manual	
	Course Outcomes (students will be able to)	
1	Design any equipment once the guidelines are available	
2	Optimize the process conditions	
3	Techno-economic feasibility analysis of chemical manufacturing facility	

	Course Code: GEP 1111	Course Title:Equipment Design & Drawing I	Credits = 2		2
			L	Т	Р
	Semester:VI	Total contact hours: 90	2	0	4
		List of Prerequisite Courses			
	Structural Mechanics, Materials	Science and Engineering, Engineering Graphics I and IIm			
	L	ist of Courses where this course will be prerequisite			
	Home Paper I and II, Equipme	nt Design & Drawing II, Chemical Project Engineering and Economics,			
	Process Dev and Engineering				
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program			
Kno	wledge of chemicals and chemic	cal producing equipments and plants are essential for professional Chem	ical e	enginee	er and
Tech	nologist. This subject will help s	students to understand use of basics of applied science in the form of me	echan	ics, str	ength
of m	aterials, selection of materials an	nd suitable manufacturing techniques and the details of operating condition	ons o	f equip	oment
and	its design procedure. This will	help Chemical engineer to understand process equipments and their de	sign (concep	of and
secti	on of proper equipments for the	designed functions of the plats. It will help them to understand various of	lesign	1 codes	s used
101 1 befor	re and after assembly of equipments	and the various types of destructive and non destructive tests performe and defining its capacity reliability and its life	a on	equip	ments
Dero	Te and after assembly of equipme	Course Contents (Topics and subtopics)	Dog	d hou	re
1	Basic design concepts use of s	tandards and design stresses and factor of safety selection of materials	15	<u>u. nou</u>	15
1	working conditions corrosion a	nd its effects on equipments. Standard design codes	15		
2	Design of pressure vessels st	tresses acting on pressure vessels operating conditions selection of	15		
-	materials, pressure vessel cod	es, design stress and design criteria's. Design of Shell, Head, Nozzle,	10		
	Flanged joints for heads and noz	zzles, study of various types of supports used for pressure vessels			
3	Design of Storage vessels: Stor	age of various types of fluids and liquids in tanks, Loss mechanism of	15		
	storage of volatile and non vol-	atile liquids and gases, Types of storage vessels, Vessels for storing of			
	gases, method of storage of gas	es, Design of rectangular and cylindrical tank with components such as			
	shell, bottom plate, self supporti	ng roof design, types of roofs,			
4	Testing of process equipment, v	arious	15		
5	Practical's: Design of Pressure	vessel and storage vessel, Drawings showing accessories and details of	15		
	pressure vessel and storage vess	el			
		List of Text Books/ Reference Books	r		
	Process equipment Design By V	V Mahajani, S. B. Umarji			
	Equipment Design by Dawande				
	Process equipment Design by Y	oung			
	weiding Technology by O.P. Kl	nanna, weiding Technoloy by Little			
1	Understand the use of basis con	course outcomes (students will be able to)	<u> </u>		
2	Select of material of construction	n and fabrication techniques	├		
2	Use of design concept for design	in and receive advinment considering its maximum operating conditions	├		
3	Use of design concept for design	mig process equipment considering its maximum operating conditions.			

4	Use standard equipments and use factor of safety while designing non standard equipments and their components.	
5	Use of safety norms in fabrication of equipments the understand importance of testing of equipments.	

SEMESTER – VII (will be of 10 weeks duration)										
No.	Subjects	Credits Hrs/week			Marks for various Exams					
			L	Т	Р	С. А.	M. S.	E. S.	Total	
CET 1504	Chemical Project Engg. & Economics	3	3	1	0	10	15	25	50	
CET 1505	Process Development and Engineering	4	4	2	0	20	30	50	100	
HUT 1102	Perspectives of Society, Sci. & Tech.	3	3	1	0	10	15	25	50	
CET	Chem Engg Elective – II	3	3	2	0	10	15	25	50	
CEP 1717	Optimization of Chem. Engg. Systems	2	2	0	4	25		25	50	
CEP 1708	Project 1: Seminar	2	0	0	4	50			50	
CEP 1709	Project 2: Home Paper – I	2	0	0	4	50			50	
	Total	19	15	6	12				400	

	Course Code: CET 1504	Course Title: Chemical Project Engg and Economics	Credits = 3		3		
			L	Т	Р		
	Semester: VII	Total contact hours: 45	2	1	0		
		List of Prerequisite Courses					
	Material and Energy Balance Ca	lculations, Equip Des and Dwg I, Energy Engineering, Ind Eng Chem.					
	Lis	st of Courses where this course will be prerequisite					
	Home Paper I and II						
	Description	of relevance of this course in the B. Chem. Engg. Program					
This	course is required for the future p	professional career					
	Course Contents (Topics and subtopics)						
1	Introduction to greenfield proje	cts and global nature of projects. Impact of currency fluctuations on	6				
-	Project justification and cash f	lows and Concepts of "Quality by Design" including typical design	U				
	deliverables and understanding	constructability operability and maintainability during all stages of					
	project execution. Meaning of P	roject Engineering, various stages of project implementation					
2	Relationship between price of	a product and project cost and cost of production, EVA analysis.	8				
	Elements of cost of productio	n, monitoring of the same in a plant, Meaning of Administrative					
	expenses, sales expenses etc. In	troduction to various components of project cost and their estimation.					
	Introduction to concept of Inflation, location index and their use in estimating plant and machinery						
	cost. Various cost indices, Relat	tionship between cost and capacity.					
4	7						
	finance, time value of money. Concept of interest, time value of money, selection of various						
	alternative equipment or system based on this concept. Indian norms, EMI calculations. Depreciation						
	concept, Indian norms and their utility in estimate of working results of project. Working capita						
_	concept and its relevance to proj	ect.	_				
5	Estimate of working results of	proposed project. Capacity utilization, Gross profit, operating profit,	7				
	profit before tax, Corporate tax,	dividend, Net cash accruals. Project evaluation: Cumulative cash flow					
	analysis Break-Even analysis,	incremental analysis, various ratios analysis, Discounted cash flow					
6	analysis Process Selection Site Selection	Eassibility Doport	1				
7	Project: Concention to Commis	gioning: milestones. Project execution as conglemention of technical	4				
/	and non technical activities con	tractual details. Contract: Meaning, contents, Types of contract Lump.	0				
	sum Turnkey (I STK) Eng. Pro	curement and Construction (EPC) Eng. Procurement and Construction					
	Management (FPCM) Mergers	and Acquisitions					
8	Reading of Balance Sheets and e	evaluation of Techno-commercial Project Reports	3				
9	PERT, CPM, bar charts and net	vork diagrams	4				
-							
		List of Text Books/ Reference Books					
	Chemical Project Economics, M	ahajani V. V. and Mokashi S M.					
	Plant Design and Economics for	Chemical Engineers, Peters M.S., Timmerhaus K.D.					
	Process Plant and Equipment Co	ost Estimation, Kharbanda O.P.					
Course Outcomes (students will be able to)							

1	Calculate working capital requirement for a given project	
2	Calculate cost of equipment used in a plant total project cost	
3	Calculate cash flow from a given project	
4	Select a site for the project from given alternatives	
5	List out various milestones related to project concept to commissioning	

	Course Code: CET 1505	Course Title: Process Development and Engineering	Cre	dits =	4
			L	Т	Р
	Semester: VII	Total contact hours: 60	3	1	0
	1	List of Prerequisite Courses			
	All chemical Engineering subject	cts, Material Science and Engineering, Env Engg and Proc Safety			
	Li	st of Courses where this course will be prerequisite			
	Home Paper I and II				
	Description	1 of relevance of this course in the B. Chem. Engg. Program			
This proc	course integrates all the chemica esses and evaluating alternatives	al engineering and allied subjects for appropriate design of process pla	ınts, in	select	ion of
	C	ourse Contents (Topics and subtopics)	Reg	d. hor	irs
1	Development of a preliminary P	rocess System: Modular approach	2		
2	Multiple process synthesis, sele	ction of process, basic economic evaluation	2		
3	Sequencing of operations and in	tegration in processes	2		
4	Batch vs continuous vs semi-bat	tch processes- Scale up	3		
5	Process Engineering aspects of	ow and medium volume chemicals including process development.	3		
6	Concept of dedicated and multip	product plant facilities, pilot plant, mini plants	3		
7	Development and evaluation of alternative flow sheets				
8	Scale up aspects; identification of controlling steps of process,				
9	Green Engineering principles		6		
10	Utilisation of energy; cost of uti	lities, heat exchange networks	3		
11	Process intensification	1	3		
12	Preparation of Conceptual proce	ess and instrumentation diagrams.	3		
13	Preparation of process specifica	tions for typical equipment.	2		
14	Safety and Risk of chemical pro	Cesses	2		
13	Learn from mistakes	List of Taxt Books/ Deforence Books			
	Industrial Chemical Process De	Sign D I Erwine	-		
	Laboratory Chemical Process D	evelonment Anderson N	+		
	Organic Unit Processes Groggi	ns			
	Chemical Process Engineering	Design and Economics Silla H			
-	Handbook of Chemical Process	Development, Chandalia S. B.	-		
	Conceptual Chemical Plant Des	ign, Douglas J. M.			
	1				
	1	Course Outcomes (students will be able to)			
1	to select a strategy for a process	from amongst the alternatives			
2	Determine strategy for carrying	out a particular process			
3	Prepare specifications for a part	icular equipment			
4	Calculate utility requirements				

Course Code: HUT 1102	Course Title: Perspectives of Society Science and Technology	Credits = 3			
		L	Т	P	
Semester: VII	Total contact hours: 45	2	1	0	
List of Prerequisite Courses					
All the Science and Engineering	Courses so far				
List of Courses where this course will be prerequisite					
Home Paper I and II					
Description of relevance of this course in the B. Chem. Engg. Program					

This	This course is relevant for future professional career of a Chemical Engineer.					
	Course Contents (Topics and subtopics)	Reqd. hours				
1	History of Science and Technology and its relevance in the respective era	4				
2	Recent developments in technology (chemical, biotechnology energy, telecommunications, etc.) and	4				
	their influence on society					
3	Economics and Sustainable Development	4				
4	Value system and Ethics in the profession of Technology, Science and Engineering.	3				
5	Problems before the World and India. Various approaches in solving them.	3				
6	Integrating Issue: Society and Science	4				
7	Industrial disasters and their effect on science and technology and society	3				
8	Environmental degradation, global warming and their effect on science and technology and society	3				
9	IPR issues and their relevance to science and technology and society	3				
10	Some aspects of future of Society, Technology, Science and Engineering.	3				
11	Interdependence of Theology and Science	3				
12	Impact of climate change on the nexus of water, energy and water	2				
13	Technology and World Peace Role of Innovation and R&D	3				
14	Industry-Academia Interaction to Enhance Standard of Living	3				
	List of Text Books/ Reference Books					
1	Science, Technology and Society: An Encyclopedia by Sal Restivo, Oxford University Press 2005					
2	Science, Technology and Society: A Sociological Appraoach by Wenda K. Bauchspies, Jennifer					
	Croissant, Sal P. Restivo					
3	Vision of STS: Counterpoints in Science Technology and Society Studies by Stephan H. Cutcliffe,					
	Carl Mitcham, Sunny Press 2012					
	Course Outcomes (students will be able to)					
1	List some historical scientific developments					
2	State importance and implications of patents and some of the relevant laws					

	Course Code: CEP 1717	Course Title: Optimization of Chemical Engineering Systems	Credits = 2		2
			L	Т	Р
	Semester: VII	Total contact hours: 90	2	0	4
	•	List of Prerequisite Courses			
1	Applied Mathematics – I and II,	, All the Chemical Engieering Courses			
	Li	ist of Courses where this course will be prerequisite			
1	Home Paper I and II				
	Description	n of relevance of this course in the B. Chem. Engg. Program			
In th	is course, various optimization e	ncountered in Chemical Engineering are covered. Many Chemical Eng	ineeri	ng pro	blems
enco	ounter trade-offs between two or	more parameters and thus formulation and solution of an optimizatio	n prob	olem h	elps a
Cher	mical Engineer to obtain the best	solution.			
	C	Course Contents (Topics and subtopics)	Req	d. hou	irs
1	\mathbf{E} = 1 = 1 = 1 = 1 = 1 = 1		4		

	Course Contents (1 opics and subtopics)	Reqa. nours			
1	Equation scaling, normalization, convergence	4			
2	Integer programming (simple scheduling)	6			
3	Linear programming (simple production planning, fuel blending)	6			
4	Quadratic programming (data fitting, optimal control)	6			
5	Nonlinear programming (Reflux ratio optimization, consecutive reaction, reactor-separator recycle	10			
	systems)				
6	Mixed integer linear programming (flowsheet optimization, supply chain optimization)	10			
7	Multi-objective optimization (design and operation of chemical processes)	8			
	List of Text Books/ Reference Books				
1	Floudas, C.A. Nonlinear and mixed-integer optimization: Fundamentals and applications				
2	Vanderbei, R.J. Linear programming: Foundations and extensions				
3	Collette, Y. and Siarry, P. Multi-objective optimization				
	Course Outcomes (students will be able to)				
1	Formulate a Chemical Engineering problem into an optimization problem				
2	Solve (analytically or numerically) optimization problems encountered in Chemical Engineering				

Course Code: CEP 1708 Course Title: Project 1: Seminar				
	L	Т	Р	
Total contact hours: 60	0	0	4	
List of Prerequisite Courses				
All Courses				
List of Courses where this course will be prerequisite				
	Course Title: Project 1: Seminar Total contact hours: 60 List of Prerequisite Courses List of Courses where this course will be prerequisite	Course Title: Project 1: Seminar Cre Image: List of Courses of Prerequisite Courses 0 List of Prerequisite Courses Image: List of Courses where this course will be prerequisite List of Courses where this course will be prerequisite Image: List of Courses where this course will be prerequisite	Course Title: Project 1: Seminar Credits = L T Total contact hours: 60 0 List of Prerequisite Courses Image: Course S List of Courses where this course will be prerequisite Image: Course S List of Course S Image: Course S List of Course S Image: Course S Image: Course S Image: Course S	

Description of relevance of this course in the B. Chem. Engg. Program This course enables students to gather scientific information on a particular topic, analyze the information from Scientific principles, present a written and oral summary on that topic. This enables the students to function in a professional

	~		Course Conten	ts (Topics and	l subtopics)		R	eqd. hours
envi	ronment later or	n in their caree	er.					
prine	ciples, present	a written and	l oral summary of	on that topic.	This enables the	e students to	function in	a professional

	Course Contents (Topics and subtopics)	keqa. nours		
1	Students will be required to prepare a critical review of selected topics in Chemical Engineering and			
	allied subjects and submit in the form of a standard typed report. Typically, the report should contain			
	and will be evaluated based on the following points:			
	(i) Introduction: 2 pages maximum,			
	(ii) Exhaustive review of literature (including figures): 10 – 12 pages: 50% weightage			
	(iii) Critical analysis of the literature and comments on the analysis (including figures): $10 - 12$ pages:			
	50% weightage. The critical analysis of literature should include the following points:			
	are the papers technically correct?; are assumptions reasonable; is the reasoning logical? If you think it			
	is not, specify what you think is incorrect and suggest the correct approach. Are the methods used in			
	the literature appropriate? Are there any internal contradictions or computational errors and are there			
	any loopholes in the observations? If so, please explain. Critical analysis of papers should also contain			
	quantitative comparison of observations, results and conclusion amongst the various papers.			
	Each student will also be required to make an oral presentation of the review. Weight age would be			
	40% for the presentation and 60% for the report. Additional details and requirements are given to the			
	students every year by the coordinator of this activity.			
	List of Text Books/ Reference Books			
	Course Outcomes (students will be able to)			
1	Collect literature on a given topic			
2	Classify the collected literature into various categories.			
3	Summarize and write a few paragraph on each paper			
4	Compare the information content given in different papers			
5	Analyze a particular paper based on principle of Chemical Engineering			
6	Write a report based on his / her work			

	Course Code: CEP 1709	Course Title: Project 2: Home Paper – I	Cre	Credits = 2		
			L	Т	Р	
	Semester: VII	Total contact hours: 60	0	0	4	
	•	List of Prerequisite Courses				
	All					
]	List of Courses where this course will be prerequisite				
	Home Paper II					
	Descripti	on of relevance of this course in the B. Chem. Engg. Program				
This	course enables students to int	egrate all the subjects that they have learnt and design plants / processed	es fro	m Che	emical	
Engi	neering Principles.					
		Course Contents (Topics and subtopics)	Req	d. hou	irs	
1	Every student will be require	d to solve a problem on design, which will set by one or more of the				
	teachers in the institution. The design will have to be submitted in the form of a standard typed report.					
	Every student will be orally examined. The student will be assessed based on the progress made during					
	the semester. There would be					
	Balance. The submissions wil	l be presented to a panel of faculty members / examiners There will be a				

	weightage of 60% for the submissions and 40% for the presentation.				
	Additional details may be given to the students from time to time by the coordinator.				
	List of Text Books/ Reference Books				
	Course Outcomes (students will be able to)				
1	Identify market requirement related to a particular chemical				
2	Draw a process block diagram from a given process description.				
3	Select a site for the project				
4	Develop a PFD based on block diagram				
5	Do material and energy for all the equipment in PFD.				

SEMESTER – VIII									
No. Subjects Credits			Hr	s /wee	ek	Marks for various Exams			
			L	Т	Р	С. А.	M. S.	E. S.	Total
HUT 1103	Ind. Psychology & H. R. Management	3	2	1	0	10	15	25	50
HUT 1104	Industrial Management – I	3	2	1	0	10	15	25	50
HUT 1105	Industrial Management – II	3	2	1	0	10	15	25	50
MAT 1106	Design & Analysis of Experiments	3	2	1	0	10	15	25	50
CET	Chem Engg. Elective – III	3	2	1	0	10	15	25	50
GEP 1112	Equipment Design and Drawing -II	2	2	0	4	25		25	50
CEP 1711	Project 3: Home Paper – II	3	0	0	6	50		100	150
	Total	20	12	5	10				450

	Course Code: HUT 1103	Course Title:	Industrial	Psychology	and	Human	Resource	Cre	dits =	3
		Management						L	Т	Р
	Semester: VIII	Total contact ho	ours: 45					2	1	0
		List	of Prerequisi	te Courses						
		List of Courses w	here this cou	rse will be pro	erequisi	te				
	Descript	ion of relevance o	f this course	in the B. Cher	m. Engg	. Prograi	n			
This	course equips students with hum	nan resource manag	gement skills	to be able to fu	unction e	effectively	in their pro	fessi	onal ca	areer
		Course Contents	(Topics and	subtopics)				Req	ld. hou	ars
1	Introduction & Overview of the	course,						3		
2	Changes/Challenges in HRM,							3		
3	Management Theories							6		
4	Research Methodology & Statis	stical Tools						3		
5	Management of Change			6						
6	Organizational Culture & Climate			3						
7	Knowledge Productivity			3						
8	New Leadership Motivation Theories			3						
9	Talent Management							3		
10	Training & Development							3		
11	Performance Management							3		
12	Selection & Recruitment							3		
13	Compensation, Unions, Entrepr	eneurship						3		
		List of T	ext Books/ Re	eference Book	S					
	Personality and Organization.,A	Argyris C.								
	The Essence of Leadership, Loc	cke, Edwin A.								
	Organisational Behaviour, Robb	oins S								
	Managing Human Resources, B	ach, S. 2005								
	Human Resource Management:	A Contemporary	Approach, Cla	ydon, T and J	. Beardw	vellFolger	, R. and R.			
	1	Course Outco	mes (students	s will be able t	to)					
1	Students should be able to expla	ain the fundamenta	l concepts of	IPHRM.						
2	Students should be able to analy	ze practical situati	ions							
3	Students will be able to provide	applicable solutio	ns.							

Course Code: HUT 1104	Course Title: Industrial Management – I	0	Credits = 3		Credits =		3
		I	L	Т	Р		
Semester: VIII	Total contact hours: 45	2	2	1	0		
•	List of Prerequisite Courses						
	List of Courses where this course will be prerequisite						

	Description of relevance of this course in the B. Chem. Engg. Program						
This	course is essential for effective functioning of students in their professional career						
	Course Contents (Topics and subtopics)	Reqd. hours					
1	Introduction: Principles, thoughts and contributions of FW Taylor, Henry Fayol and Elton Mayo.	10					
	Responsibilities of management: society and development. Functions of Management: Planning,						
	Motivating, Leading, Controlling; Business organization structures, limitations, relative merits & demerits.						
2	Organisational Process and Behaviour : Introduction and Meaning of Organization, Organization as a	10					
	process, Span of Control, Authority, Responsibility and Accountability, Delegation of authority,						
	Decentralization of authority. Enhancing Managerial Effectiveness through self and others, Individual						
	Personality & Behaviour, Perception, Attitudes, Values and Aptitude, Frustration, Conflict, Organisational						
	structure, Organisational culture, Organisational transformation, Organisational Effectiveness and						
_	Assessment;						
3	Technology Management: Strategies & their applications in industry, Business specifications versus	10					
	Technical specifications, Introduction to Strategic Innovation, Introduction to technology transfer						
4	Marketing Management: Marketing vs sales, advertising, marketing research, supply chain management,	10					
	Brand Management						
5	Laws: Company Laws, Factory Laws, Labor Laws and Intellectual Property Rights (IPR)	10					
6	Communication Skills: Communication process, media channels, written and verbal/ presentation skills,	5					
	barriers to effective communications. counseling and coaching,						
	List of Text Books/ Reference Books						
	Essentials of Management, Koontz						
	Innovation and Entrepreneurship, Peter Drucker						
	Industrial Management– I, Jhamb L. C. and Jhamb S.						
	Essentials of Organizational Behavior, S. Robbins						
	Organizational Behaviour, Luthans F						
	Principles of Marketing, Kotler						
	Research and Development Management, Bamfield P						
	Industrial Management, Spriegel U.S.						
	Course Outcomes (students will be able to)						
1	Students should be able to explain the fundamental concepts of Industrial Management						
2	Students should be able to analyze practical situations and be able to provide applicable solutions.						

	Course Code: HUT 1105	Course Title: Industrial Management – II	Credits = 3		3
			L	Т	Р
	Semester: VIII	Total contact hours: 45	2	1	0
-		List of Prerequisite Courses		·	
]	List of Courses where this course will be prerequisite	-		
	Descripti	on of relevance of this course in the B. Chem. Engg. Program			
This	course is essential for effective f	unctioning of students in their professional career			
		Course Contents (Topics and subtopics)	Reqd	l. hou	rs
1	Production Operations Manag systems, Interface management. competitive weapon Investr Customer focus strategy, Facil strategy, Quick time delivery str Concepts of Productivity, Me Business Process Re-engineerin Processes & tools in WCM, Ka management in WCM, HR D scenario, Maintenance practices	ement: Production Management – Modern Approach, Manufacturing Manufacturing / Operations Strategy – Principles & concept, Operations as nent strategy, Capacity strategy, Quality strategy, Technology strategy, ity location strategy, Product flexibility strategy, Short delivery process ategy, asurement & Improvement, Lean Manufacturing, Value Engineering, g. World Class Manufacturing (WCM) - Principles & concepts, Systems, inban, JIT, Waste identification & elimination, Poka Yoke system, EHSS imensions in WCM, WCM in reference to Indian industry and Indian	9		
2	Financial Management: Investn analysis and risk control / mitig Fund Flow analysis, Financial Comparable Company evaluation	nent decisions, Linking investment to Product Life Cycle, Investment risk ation, Accounting system, Step costing diagram, Balance sheet evaluation, ratios & their evaluation / significance, Cost control by variable analysis, n, Budgeting and budgetary control.	9		

3	Quality Management: Quality – concept / meaning, Modern approach to Quality Management, QA versus	9
	QC, Acceptance sampling and statistical quality control, Deming's 14 points of QM, TQM Principles &	
	implementation, ISO 9000-2000, ISO 14000 (Environment) & ISO 50000 (Energy) quality standards.	
4	Maintenance Management: Causes, costs, life profiles, Classifications, Organization, Equipment & plant	9
	reliability and availability, Management of shutdowns & turnarounds.	
5	Materials Management: Definition, objectives, organization, stages, factors responsible, value analysis,	9
	Management of project materials and maintenance materials, Purchasing and vendor development, Spares	
	strategy, Ware-housing, store-keeping and inventory control.	
	List of Text Books/ Reference Books	
	Production & Operations Management – An Applied Modern Approach, J. S. Martinich	
	Industrial Management – I, Jhamb L. C. and Jhamb S.	
	Industrial Management, Spriegel U.S.	
	Operations Management for Competitive Advantage, Richard B. Chase, F. Robert Jacobs, Nicholas	
	Acquilano	
	World Class Manufacturing - A strategic Perspective, B.S. Sahay, K.B.C. Saxena, A Kumar	
	Management Finance, Varanasay Murthy	
	Financial Management, R. M. Srivastava	
	Quality, John M. Nicholas	
	Quality Planning and Analysis, Juran and Gryna	
	Course Outcomes (students will be able to)	
1	Students should be able to explain the fundamental concepts of Industrial Management	
2	Students should be able to analyze practical situations and be able to provide applicable solutions.	

	Course Code: MAT 1106	Course Title: Design and Analysis of Experiments	Credits =		=3
			L	Т	Р
	Semester: VIII	Total contact hours: 45	2	1	0
	·	List of Prerequisite Courses			
	Applied Mathematics I				
	List of C	ourses where this course will be prerequisite			
	This course is required for graduating	engineers to function effectively in Industry, Academia and other			
professional spheres. This course is in Semester VIII					
	Description of rel	evance of this course in the B. Chem. Engg. Program			
Moc	lern day manufacturing activities and R	&D activites need decisions taken with a scientific rigour and she	ould	be w	vell-
sup	sorve industry P &D ergenisations or a	ing graduates who will serve industry as well as posigraduate research	stude	dooi	sion
mak	ing This also involves extraction of m	eaningful data from well-designed minimal number of experiments	at th		SIOII
noss	sible material costs This course will also	beln the students in all domains of their life by imparting them a visit	on fo	r cri	tical
appr	raisal and analysis of data	help the students in an domains of their fife by imparting them a visit	511 10	1 0110	licui
uppi	Cours	e Contents (Topics and subtopics)	I	Sead	
			ł	iour	s
1	Overview of statistical analysis of da	ta, statistical sampling, statistical inference, tests of significance,		8	
	regression analysis.				
2	Analysis of variance.			8	
3	Statistical design of experiments, Factor	ial design, Response Surface Methodology (RSM).		14	
4	Box-Behnken and Plackett Burman met	hods, Central Composite Design (CCD)		15	
]	List of Text Books / Reference Books			
1	Design of Experiments in Chemical Eng	ineering: Živorad R. Lazić			
2	Design and Analysis of Experiments: D	. C. Montgomery			
3	Introduction to Statistical Quality Control	ol: D. C. Montgomery			
4	Response Surface Methodology: Proces	ss and Product Optimization using Designed Experiments: R. H.			
	Myers, D. C. Montgomery				

Course Outcomes (students will be able to)				
1	Realize importance of statistical analysis of data			
2	Statistically correlate one set of data with another set, and identify whether the correlation is significant or			
	not			
3	List out set of experiments needed for a particular situation/process considering the interation between			
	parameters/numbers of experiments needed			
4	Apply the methods of experimental design to optimisation, and to identifying those parameters that are of			
	highest importance			

	Course Code: GEP 1112	Course Title: Equipment Design and Drawing-II	Cred	its = 1	2
			L	Т	Р
	Semester: 8	Total contact hours: 90	2	0	4
	•	List of Prerequisite Courses			
	Equipment Design and Drawin	g-I, Structural Mechanics, Material Sci and Engg			
		List of Courses where this course will be prerequisite			
	Home Paper II				
	Descrij	ption of relevance of this course in the B. Chem. Engg. Program			
Cher	mical Engineers should have kn	owledge about Mechanical Design of Chemical Process Equipments such as	React	tion V	essels,
Heat	Exchangers ,Distillation Colu	mns etc . This will also be useful for using Design software which is widely	/ used	in che	emical
indu	stries.		<u> </u>		
		Course Contents (Topics and subtopics)	Reqd	l. hou	rs
1	Mechanical Design of Reaction	on Vessels .	8 hou	irs(The	eory)
	a) Design of shells subje	ected to internal and external pressures.	12	(P	
	b) Types of Jackets /Co	ils used for heating and cooling in reaction vessels and their design.	hours	(Prac	ticals)
	c) Type of agitators and	their design.			
-	d) Design of agitator sys	stem components such as shafts, stuffing box etc.	4.1	(1	
2	High Pressure Vessels.		4 hou	irs (the	eory)
2	a) Construction and desi	gn.	0 1		
3	Mechanical Design of Heat Ex	changers	8 nou	irs (in	eory)
	a) Types of heat exchange	gers such as double pipe, shell and tube type and special heat exchangers.	12		hours
	b) Components of shell a	and tube type neat exchangers.	12 (proc	tion(a)	nours
	bead ato	inponents of near exchangers such as Fixed tube sheet type, 0 tube, Floating	(prac	licals)	
	d) Various codes for hea	t exchangers			
1	Mechanical design of distillation	on columns	6 hor	ire (the	eory)
4	a) Types of columns suc	h as tray and packed. Types of packings	12	ns (un	hours
	b) Various components (of columns such as travs, nackings, downcomers hubble can etc.	(prac	ticals)	nouis
	c) Design of shell for ya	rious stress conditions	prue	(ieuis)	
	d) Tray supports and the	ir design			
5	Design of supports such as bra	cket, saddle and skirt for chemical process equipments	4 (the	eorv)	
6	Engineering flow sheets	r	2 (the	eory)	
7	Piping and Instrumentation dia	agrams.	7	/	
	1 0		hours	(pract	icals)
List of Text Books/ Reference Books					
Process Egipment Design . V.V.Mahajani , S.B.Umarji 5 th Edition					
	· · · · · · · · · · · · · · · · · · ·	Course Outcomes (students will be able to)	•		
1	Students will be able to desig	m (Mechanical) various parts such as shell, nozzles, for chemical process			
	equipments.	-			
2	Students will be able to prepar	e drawing for chemical process equipments.		_	

	Course Code: CEP 1711	Course Title: Project 3: Home Paper – II	Credits = 3		3		
			L	Т	P		
	Semester: VIII	Total contact hours: 90	0	0	6		
	List of Prerequisite Courses						
	All						
List of Courses where this course will be prerequisite							

	Description of relevance of this course in the B. Chem. Engg. Program					
This	course enables students to integrate all the subjects that they have learnt and design plants / processes	s from Chemical				
Eng	ineering Principles.					
	Course Contents (Topics and subtopics)	Reqd. hours				
1	There would be two submissions: (iii) Process Design, (iv) P&ID, Mechanical design, Costing, feasibility.					
	The submissions will be presented to a panel of faculty members / examiners. The submissions would be					
	given a weightage of 50 marks. There will be a weightage of 60% for the submissions and 40% for the					
	presentation. Final report of the home paper would be given a weightage of 50 marks. There will be a viva-					
	voce after the submission of the report. The weightage for the viva-voce would be 50 marks. Additional					
	details may be given to the students from time to time by the Coordinator					
	List of Text Books/ Reference Books					
	Course Outcomes (students will be able to)					
1	Students should be able to design, calculate size/power/internals, etc required for all the process equipment					
	in the PFD together with necessary instrumentation, safety aspects.					
2	Students should be able to calculate costs of equipment					
3	Students should be able to perform a techno economic feasibility of the selected process.					

ELECTIVE SUBJECTS

The elective subjects may be added from time to time with prior approval from UGPC/Senate.

PYT 1104E – Molecular Quantum Mechanics (Applied Physics Department)

Revision of Basic Concepts

1.

Schrodinger equation for the hydrogen atom, solution in terms of radial and angular wavefunctions, significance of quantum numbers, atomic spectra.

The quantum harmonic oscillator, eigenvalues and eigenfunctions (no detailed derivation), significance of 'zero-point' energy.

Origin of Molecular Spectra

Analysis of diatomic molecule as a rigid rotator, rotational and vibrational energy levels of a simple diatomic molecule.

Approximation methods in Quantum Mechanics

Brief introduction to perturbation theory with simple examples, variational theorem, analysis of helium atom as an example.

Molecular Quantum Mechanics

Molecular orbital and valence bond theories for diatomic molecules, Born-Oppenheimer approximation, LCAO method in H_2^+ ion and H_2 molecule, valence bond method

2. **PYT 1105E – Statistical Mechanics (Applied Physics Department)**

Basic Statistical Approach to a System

Applicability of the statistical approach to a system, equilibrium and fluctuations, irreversibility and approach to equilibrium, counting of system states – macrostates and microstates, equiprobability postulate, concept of statistical ensemble, number of accessible states of a system, phase space.

Ensemble approach to Thermodynamics of Physical Systems

Isolated system – microcanonical ensemble, system in contact with a heat reservoir, canonical ensemble, Maxwell-Boltzmann distribution as an example, mean values in a canonical ensemble, partition function for a canonical ensemble, relation to thermodynamics.

Generalised Interactions

Grand canonical ensemble, systems with variable number of particles, chemical potential, partition function for a grand canonical ensemble, relation to thermodynamic variables.

Applications to Multi-phase Systems

Stability conditions for a homogeneous system, equilibrium between phases, phase transformations, general relations for a system with several components, general conditions for chemical equilibrium, chemical equilibrium between ideal gases, the equilibrium constants in terms of partition functions.

3. CHT 1403E – Advanced Spectroscopy (Applied Chemistry Department)

UV-VIS spectroscopy - Woodward rules, aromatic and heterocyclic compounds

IR spectroscopy: FT technique, group frequencies, vibrational coupling. NIR spectroscopy. New applications **Raman spectroscopy:** Stokes, anti-Stokes and Releigh scattering, rotational and vibrational transitions. Raman vs IR.

NMR spectroscopy: Pulse technique, FID, and FT. Relaxation and saturation phenomena, quadrupole relaxation, isotopomers.

H1 NMR: Chemical shifts and factors affecting the same, spin-spin coupling of different systems, different spin systems, coupling constants.

Simplification of complex spectra: Double resonance and decoupling, lanthanide shift reagents, INDOR technique.

C13 NMR: Basics, doble resonance,

2D NMR: H1-H1- COSY, H1-C13 HETCOR- APT and DEPT, C13-C13 connecticity: INADEQUATE

F19 and P31 NMR

Through space interactions: NOE and NOESY

Solid state NMR and MAS.

Mass spectrometry: Basics, EI and CI techniques. Isotopic abundance, fragmentation, rearrengment of ions, Maclaferty rearrangement, retrodiels-alder reaction.

Hyphenated techniques: GC-MS, LC-MS, LC-MS-MS, GC-IR, GC-AIS, GC-NMR, LC-NMR

ESR spectroscopy: Theory, experimental technique, Hyperfine splitting

Mossbaur spectroscopy

4.

Structure elucidation using combined stereoscopic methods

Emission: Flame photometry, ICP, Ark-Spark spectra, Phosphorescence, XRF

CHT 1205E – Organometallic Chemsitry (Applied Chemistry Department)

Nature of C-M bond: Metal-carbon bond with main group and transition elements. Factors controlling metal-carbon bond formation. Methods of M-C bond formation. Nomenclature and heptacity. Electron counting and 16 and 18 electron rules - applications and exceptions. Stability. Stereochemical nonrigidity in organometallic compounds.

Structure and bonding of metal alkyls and aryls. Complexes with CO and related ligands, olefins, acetylenes and related unsaturated molecules. Organic transition metal complexes as protective and stabilizing groups for double bond, triple bond, propyl cation and short lives species. Complexes with cyclopentadiene and arenes and other CnHn sandwich and half-sandwich complexes. Hydride, dinitrogen and dihydrogen complexes

Bimetallic and cluster complexes: Structure and applications in catalysis

Basic organometallic reactions: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination, reductive elimination –mechanism and stereochemistry.

Nucleophilic regents with C-M bond: Li, Mg, Al, Ti and Ce alkyls; Organicuprates, organic zinc reagents

Alkyne complexes: Pauson Khand reaction. The use of stoichiometric transition metal complexes in the synthesis of complexes organic molecules - enantioselective synthesis via organometallic compounds.

Organo silicon compounds, boranes, carboranes and, metallocarboranes, organo platinum complexes, metallocenes

Importance of organometallic compounds in Biological systems

CHT 1206E – Green Chemistry & Catalysis (Applied Chemistry Department)

Concept of Green Chemistry: Twelve principles of green chemistry, E factor, Waste management

Types of catalysis: Homogeneous and Heterogeneous catalysis. Catalytic cycles

Organometallic compounds used as catalysts: Pd, Rh, and Ru in C-C bond formation. Catalytic properties of mononuclear compounds

Homogeneous catalysis: Hydrogenation, hydroformylation, hydrocyanation, Hydrosilylation, Wilkinson catalysts, Chiral ligands and chiral induction, Ziegler-Natta catalysts

Mercuration and oxymercuration

5.

Organopalladium catalysts: Suzuki coupling, Heck coupling and related cross coupling reactions.

Alkene oligomerization and metathesis.

Catalytic oxidations and reductions: Epoxidation, dihydroxylations.

including carbonylation, decarbonylation, olefin isomerization, arylation

Important catalytic reactions: Monsanto acetic acid process, Wacker process, Heck reaction.

6. **CHT 1303 – Theoretical and Computational Chemistry (Applied Chemistry Department)**

Basics: Wave character and wave functions, De Broglie equation, normalization and orthogonalization,

Quantum mechanical operators, Schrodinger equation, particle in an infinite square well potential, quantum mechanical harmonic oscillator, angular momentum operator and rigid rotor, Born Oppenheimer approximation, potential energy surfaces, self consistent field wave functions,

Computational methods: Molecular mechanics, MO theory, semi empirical and ab initio methods, SCF theory, Hartree Fock method, DFT.

7. MAT 1107E – Momentum, Heat and Mass Transfer (Applied Mathematics Department)

Derivation of equation of momentum, energy, mass transfer in curvilinear coordinate system, constitutive equation (Newtonian & Non Newtonian fluids), Flow in some simple cases - Flow between two concentric cylinders, flow between two concentric rotating cylinders, hydrodynamics of bearings lubrication, steady flow around a sphere (theory of very slow motion).

Singular perturbation theory, derivation of bounder layer equations (using singular perturbation theory), similar and non similar solutions for some forced, mixed and natural convection problems (using bounder layer theory). Flow stability, theory of ordinary diffusion in liquids, diffusion with homogenous chemical reaction, diffusion into a falling liquids films (forced convection mass transfer).

8. MAT 1108E – Turbulent Flow and CFD (Applied Mathematics Department)

Derivation of equations of momentum and energy for turbulent flows. Modelling of turbulent flows: kinetic energy, algebraic stress model, Low Reynolds number model, LES model etc.

Turbulent boundary layer flows and similar solutions

Grid generation

Use of Control volume method, Methods of lines, Finite difference, Finite element and various algorithms (SIMPLE, SIMPLER & SIMPLEC etc) to solve the momentum, energy and mass transfer equations for simulation of some practical problems (Simulation of stirred vessel, Natural convection flow inside a closed chamber etc)

9. **GET 1303E – Advanced Strength of Materials (General Engineering Department)**

Analysis of Trusses - Condition for perfect truss, redundancy, stable, unstable truss. Analysis of truss by method of joints, method of sections.

Torsion of a circular shaft - concept, basic derivation, shear stress distribution, simple problem.

Short and Long columns (Struts) - Basic concept, crippling load, end conditions. Euler's and Rankine's

approach (without derivations)

Thick and Thin cylinders - concept of radial, longitudinal stresses, behaviour of thin cylinders. Problems on thin cylindrical and spherical shells. Behaviour of thick cylinders (theory only).

Advance stresses and strains – Representation of stress and strain at a point, Stress stain relationship, plane stress and plane strain. Transformation of stresses and its importance, Principal stresses and strains, maximum shearing stress, Mohr's circle its use and construction.

Basics of Engineering Design - Steps in the engineering design, Importance of analysis, 1-D, 2-D and 3-D analysis and interpretation of results. Design philosophies, factor of safety, Force displacement relationship, Strain deformation relationship, Introduction to finite element packages. Computer aided analysis and design.

Composite Materials – Types of composite materials, fillers for composites, polymer composites, fibres and matrix for a composite material, Types of fibres, their properties, woven and non woven fibres, manufacturing of polymer composite materials. Mechanics of composite materials, Properties and testing of composite materials, Uses of composite materials.

Advance materials for industrial applications - Advances in materials, Materials used for coatings, anticorrosive coatings, special purpose floorings, water proofing compounds, Various polymers and epoxies used for industrial applications. Different types of performance enhancing and special purpose construction chemicals. Plasticizers and super-plasticizers, air entraining agents, accelerators and retarders, viscosity modifying agents, corrosion inhibitors.

10. HUT 1105E – Industrial Economics (Humanities)

Nature and Significance of Economics

Demand and supply / elasticity of demand and supply, price determination, demand forecasting

theory of firm : (A) financial aspects : cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects : factors of production, role of entrepreneur, laws of return, returns to scale.

Money market and capital market, evolution of money and banking, foreign exchange and currency devaluation.

Budget, taxation, public expenditure, borrowing and deficit financing

Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization

11. CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department)

Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyers reaction, Darzens condensation, etc. Typical reaction schemes for the synthesis of medium and low volume chemicals, with an emphasis on the alternative flow sheets of the entire process.

12. **CET 1204E – Electrochemical Engineering (Chemical Engineering Department)**

Introduction to eletrochemical engineering. Theoretical aspects and special features of electrochemical process. Role of mass transfer in a variety of electrochemical processes. Some aspects of electrochemical reactor design. Scale-up and optimization of reactors.

13. **CET 1712E – Mathematical Methods in Chemical Engineering (Chemical Engineering Department)**

Classification of problems in Chemical Engineering. Typical problems from heat transfer, catalysis, mass transfer with chemical reaction, dynamics of process equipments, etc. Numerical evaluation of Laplace Transforms.

Separation of variables, Eigen values, Collocation Techniques.

14. **CET 1713E – Statistical Methods in Engineering (Chemical Engineering Department)**

Continuous and discrete probability distributions, normal, chi-square, gamma, Poisson distributions. Applications. t-Tests, F-Test, Homogeneity tests, Quality Control. Acceptance sampling Linear regression and lack of fit Contingency tables.

15. **CET 1103E – Heat Transfer Equipment Design (Chemical Engineering Department)**

Classification of Heat Transfer Equipment, direct, indirect, boiling, fired, Fluidised, geometry, construction.

Thermal design methods of heat exchangers : survey, capital NTU, LMTD concept, temperature approach, etc.

Shell and Tube heat exchangers : thermal, mechanical design, hydraulic design and equations, introduction to codes and standards

Extended surface heat exchanger design : plates, plate fins, effectiveness factor.

Heat transfer equipment with phase change, two phase flow maps, and design of equipments for heat transfer and pressure drop.

Fluidised bed and direct heat exchangers design methodology.

Synthesis of optimal heat exchanger networks.

Worked Examples

16.

CET 1205E – Mixing (Chemical Engineering Department)

Examples of industrial importance

Flow pattern, power consumption, classification of impellers, internals

Mechanism of mixing, Blending in viscous and turbulent system, Suspension of solid particles, Heat transfer, Gas-liquid dispersion, Liquid-liquid dispersions, Three phase dispersions, Solid-solid mixing, emulsions, pastes, Mass transfer at gas-liquid, liquid-liquid, solid-solid and solid-liquid interface

Process design and scale-up considerations case studies

17. **CET 1507E – Petroleum Reservoir Engineering (Chemical Engineering Department)**

Energy sources, world scenario, oil pricing, Genesis of petroleum and migration, Composition of petroleum and its classification, Petroleum reservoirs, Exploration and drilling technology, Well logging and well completion, Core analysis, Capillarity and wettability, Models of pore structure and multiphase flow, Well stimulation and production strategy, Well pressure behaviour, Gas reservoir engineering, Fluid displacement and frontal displacement; Buckley-Leverett theory, Material balance, Decline curve analysis, Well patterns and displacement efficiencies, Primary recovery, Gravity drainage, Waterflooding, Mechanisms of microscopic and macroscopic flow, Transportation of oil and gas, Production rate, reservoir life, Heavy oil and tar sand technologies, Residual oil determination, Computer modelling of reservoirs, Tertiary recovery methods

18. **CET 1508 – Enhanced Oil Recovery (Chemical Engineering Department)**

Residual oil and tracer studies, Defining enhanced oil recovery, Basic equations for fluid flow in porous media, Petrophysics and petrochemistry, Phase behaviour and fluid properties, Efficiency of waterflooding, Pore level mechanisms, Mobility control, capillary number, bond number correlations, Heterogeneity of pore structure and reservoirs, Thermal methods, Steam stimulation, steam flooding and hot water drive, Combustion- forward and reverse, Ancillaries in thermal methods, Miscible flooding, Surfactant flooding, Microemulsion flooding, Foam flooding, Polymer flooding, Micellar-polymer flooding, Alkaline flooding, Carbon dioxide flooding, Inert gas injection, Reactive gas injection, Microbial recovery

19. **CET 1104E – Flow Though Porous Media (Chemical Engineering Department)**

Relevance of pore structure in science and technology, Examples from oil reservoirs, catalysis, soil science, membranes, aquifers, foods, polymers, biology, etc., Pore structures and their determination, Capillarity and wettability, Models of pore structure, Wettability and flow histories, Single phase flow, Multiphase flow, Percolation processes and network models, Fractal models, Simulations of macroscopic properties, Pore level mechanisms of flow, Diffusion and dispersion in porous media, Membrane transport, Analysis of trickle and packed beds, Ultrafiltration, Models of catalyst poisoning and deactivation, Geostatistics

20. **CET 1509E – Refinery Science and Engineering (Chemical Engineering Department)** Terminology, Origin, Kerogen, Occurrence, Recovery, Classification, Composition, Evaluation, Fractionation, Identification, Asphaltic constituents, Refining chemistry, Refining distillation, Thermal cracking, Catalytic cracking, Hydroprocessing, Reforming, Treatment processes, Gas cleaning, Products, Petrochemicals

21. **CET 1206E – Fundamentals of Catalytic Science and Engineering (Chemical Engineering Department)** Relevance and examples, Atom economy and green chemistry concepts, Homogenous and heterogeneous catalysis, Fundamentals of homogeneous catalysis and mechanisms and kinetics, Fundamentals of adsorption, isotherms, energetics, structural and dynamic considerations, Mechanisms, models and kinetics of surface reactions, Fractal models, Determination of surface structure though modern methods, Significance of Pore structure and models, Solid and surface chemistry of catalysis, Quantum mechanical, molecular mechanical and hybrid models, Catalyst design through artificial intelligence and computer modelling, Poisoning, promotion, deactivation and selectivity, Catalytic process engineering, Measurement of catalytic rates and kinetic parameters, Types of reactors

22. CET 1207E – Homogeneous Catalysis (Chemical Engineering Department)

Examples, Single phase and multiphase catalytic reactions, Acid--base catalysis, Transition metal catalysis, Biocatalysis : Microbes and enzymes, Phase transfer catalysis, Micellar catalysis, Microemulsion catalysis, Electron transfer catalysis, Heteropoly acid catalysis, Homogeneous polymer catalysis, Heterogenisation of homogeneous catalysts, Catalysis by microwaves and ultrasound, Catalyst recovery and reuse

23. CET 1208E – Catalytic Green Science and Technology (Chemical Engineering Department)

Green synthesis and heterogeneous catalysis, Metal and supported metal catalysis, metal-support interaction, Metal oxides and determination of acidity and basicity, Nature and type of supports, Solid acid catalysis, Solid base catalysis, Catalyst design, preparation and activation, Clay and modified clays, Ion exchange resins, Zeolites and zeotypes, Heteropoly acids, Inorganic-organic catalysts, Immobilised enzymes, zeozymes, complexes, Electrochemical catalysis, Photocatalysis, Microwave catalysis, Ultrasound catalysis, Synergistic catalysis, Important examples from, Refinery industry -FCC, reforming, platforming, hydroforming, polymerisation, alkylation, isomerisation; hydrodesulfurisation, hydronitrogenation, Pharmaceutical and fine chemical industry, Dyestuff and intermediate industries, Perfume and flavour industry, Polymer industry, Textile industry, Paint industry, Edible oil industry, Food industry, Waste water treatment, Catalysis for auto-exhaust pollution abatement, DeNox, DeSOx technologies

24. **CET 1602E – Colloid and Interfacial Science (Chemical Engineering Department)**

Capillarity: Definition, Existence of surface tension/surface free energy, Laplace equation, Young Equation, Capillarity rise phenomena, Measurement of surface tension, Contact angle Wetting characteristics

Surface Thermodynamics : Surface thermodynamic properties, Kelvin Eqn. Gibbs eqn, Surface Excess, Monolayer phase

Adsorption: Localised vs Mobile adsorption, Adsorption isotherms Langmuir, Freundlich, BET etc., - Potential theory, Adsorption from solution, Electrical Diffuse Double layer theory, Debye Huckel theory scaled particle theory, Stern layer, Surfactant adsorption

Micelles: Classes of surfactants, synthesis of surfactants, Micelle structures, Determination of HLB, Models for micelle formation, Swollen micelles, Hydrotropy

Solubilization in micelles :Location of solubilizate in micelles, Measurement of solubilization, Spectroscopic methods:NMR, Fluorescence, IR etc, Detergency, selective solubilization

Emulsions :Micro and macro emulsions, Stability of emulsions (Mechanical vs. thermodynamic), Bancroft rule, deemulsification, HLB for emulsion, multiple emulsions, applications

Foams: Gibbs triangle, Film elasticity, drainage of films, Foam, defoaming, applications of foams

25. **CET 1603E – Interfacial Science and Engineering (Chemical Engineering Department)**

Definitions: Chemical and physical properties of interfaces, Introduction to surface mechanisms and thermodynamics, capillarity, meniscus shapes, contact angle, surface tension and its measurement, Laplace Equation, Young's equation, Kelvin Equation, Gibbs equation, equilibrium criteria, dividing surface, monolayers and films, mobile and fixed interfaces Interfacial areas and degrees of wetting, aerosols, liquid-liquid and particulate dispersions, Bubbles, and drops aphrons.

Microphases: Definitions and dynamics, Micelle formation surfactants CMC, structures of micelles, swollen micelle and microemulsions models, phase diagrams, Macroemulsions, Mechanical vs thermodynamic stability, HLB, Bancroft rule and other systems, Foams Colloids, Film elasticity, drainage, association, Langmuir-Blodgets film production. Experimental techniques of measurement of relevant properties: surface tension, solubilization, thermodynamic properties, spectroscopic techniques

Rheological aspects of two phase (involving microphases) flow and transport, visco-elasticity of surfactant solutions.

Solubilization and catalysis by microphases: Models, theories and data, surface potential and equations of state, double layer theory, layer Debye Huckel theory, Thermodynamics of solubilization, Hydrotropy

Emulsification and Demulsification, foam breakage, theories of coalescence, and agglomeration, Brownian motion, shear and other models.

Applications: Adsorption, foam fractionation, froth floatation Enhanced oil recovery, Novel separation processes, Coagulation, Flocculation, Microelectronics, surface vapour deposition, other applications with techniques

Monte Carlo simulation for molecular dynamics of structures, graphics software for structural display., Diffusion on the surface and in microphases.

26. **CET 1403E – Adsorptive Separations (Chemical Engineering Department)**

Separation Processes: overview, alternative separation techniques, Mass separating agents

Adsorbents: Molecular sieves activate carbon, zeolites alumina, silica ion exchangers, Polymeric adsorbents Physical and Reactive adsorption: Selectivity engineering in catalysis, Gaseous and liquid adsorption, Thermodynamics of adsorption, Statistical thermodynamics of adsorption phenomena, Surface excess, theories of adsorption. Separations: Bulk separation, purifications, Concentration and recovery from dilute solutions: metals, organic chemicals, microelectronics

Design of adsorbers: Gaseous and liquid phase adsorption

Theoretical analysis of diffusion in relation to adsorption in micropores

Chromatographic separations: Bulk chemicals separations, Purification, refining operations, Biochemical applications

Novel separation techniques using adsorbents, Industrial examples

27.

CET 1209E – Advanced Biochemical Engineering (Chemical Engineering Department)

Biotechnology, Biochemistry and microbiology, Enzymatic reactions, cell culturing

Enzyme engineering, enzyme modifications, stability, reactivity and selectivity considerations

Genetics and Genetic engineering, DNA recombinant technology, Hybridoma technology, single cell proteins, gene manufacturing

Fermentation and design of fermenters with modified organisms

Bioprocess simulations, molecular modelling for protein synthesis and drug design, protein engineering

Applications in fermentation industry, pharmaceutical industry, medical field such as gene therapy, Biomedical engineering

Bioreactor design, Scale up of bioreactions/reactors, Downstream processing in biochemical industry Organic synthesis using enzymes

28. CET 1404E – Downstream Processing in Biochemical Industry (Chemical Engineering Department)

Separation processes in biochemical industry, Separation processes for bulk chemicals and proteins, special needs, Unit operations on biochemical industry, such as filtration, centrifugation, heat and mass transfer, Solvent extraction: liquid-liquid extractions, phase diagrams, thermodynamics of liquid-liquid extraction, physical vs reactive extraction, liquid ion exchangers, design of extractors, two phase flow in extractors, modelling and simulation of extractors, Aqueous two phase extraction, affinity partitioning, dye ligand partitioning, Reverse micellar extraction of proteins and enzymes, Adsorption: physical and chemical adsorption, theories of adsorption, ion exchange resins and polymeric adsorbents, adsorption of small molecular weight bioproducts such primary and secondary metabolic products of cells, Protein purifications, precipitation, affinity precipitation, adsorptive and chromatographic separations of proteins, design of adsorption columns, Methods of operation., Gel permeation chromatography, metal ligand chromatography, dye ligand chromatography, affinity chromatography, expanded bed chromatography,

Applications in biochemical industry.

29. CET 1405E – Advanced Separation Processes

Membrane Processes : Principles of various membrane processes like Reverse Osmosis, pervaporation, gas separation and electro-dialysis. Design equations and module design. Concentration polarization.

Adsorption and Ion Exchange Processes : Adsorption and ion exchange equilibria. Various isotherms. Contact filtration, design of fixed bed adsorber including breakthrough cuurve.

Chromatographic Separations : Principles of chromatographic separation, criteria for effective separation, supports and methodology and process design.

Separation of Racemic Mixtures : Principles of racemic modification and their application in separation of racemic mixtures with specific examples.

Dissocaition Extraction, Reactive Extraction

30. **CET 1210E – Introduction to Polymer Engineering (Chemical Engineering Department)**

Introduction to Polymers : Classification based on application and history, Natural and synthetic polymers and types e.g. fibres, rubbers, adhesives, resins, plastics, etc.

Classification based on properties/structures : Thermoplastic, thermosetting, crystalline, amorphous, molecular weights status, transitions, glass transition temperature

Polymer formation/modification : Functionality and reactions, chain, ionic, condensation, co-ordination, complex polymerisation, Kinetic schemes, Orders of reactions, Cross-linking, Co-polymerisation, Heat effects

Polymerisation Processes and methods of manufacture : Bulk, Solution, Suspension and emulsion polymerisation with examples, polystyrene, polyethylene/propylene, styrene-Butadiene, poly urethane, Epoxy, PET, Kinetics, reaction rates, diffusional limitations, Biodegradable polymers.

31. **CET 1604E – Polymer Processing (Chemical Engineering Department)**

Plastic Technology : Moulding, (injection, blow) extrusion, cold-not and vacuum forming multipolymer systems. Equipments design and operating conditions

Fibre Technology : Textile processing, fibre spinning and after treatment. Equipments design and operating conditions

Elastomer Technology : Vulcanisation, Reinforcement compounding

Equipments- design & operating conditions, environmental impact

Recycle of polymers : Reprocessing techniques and limitations

Selection of polymers : domestic & engineering usage

Rheological and mechanical measurements concept of solution viscosity

32. **CET 1211E – Polymer Reactor Engineering (Chemical Engineering Department)**

Kinetic modelling, concept of reactor design, optimisation and control of polymerisation process, isolation and separation of monomers/catalyst/by products etc for Bulk polymerisation, Solution polymerisation, Emulsion polymerisation, suspension polymerisation with case studies

Kinetic modelling of co-polymerisation processes.

33. CET 1605E – Advanced topics in Polymer Chemistry/Physics Characterisation/Analysis of Polymers (Chemical Engineering Department)

Structure/property relationship : Morphology & Cristallinity Mechanical and Chemical properties Structure/Rheology relationships

Rheology, elasticity, Viscoelasticity, yield and fracture chemical resistance Properties of commercial polymers. PE, PP, Acrylic, amides & peptides phenolic & Urethane resins Role of Additives : Type of additives and their role in altering the properties Polymer composites : Carbon filled, fibre filled etc. Reinforced polymers

Analysis of polymer solubility, thermodynamics and phase equilibrium of polymer solutions, End group analysis, Colligative property measurement, Light scattering, Solution viscosity and molecular size and wt distribution. Spectroscopic methods, microscopy, thermal analysis.

Selection of polymers, domestic and engineering usage.

34. CET 1510E – Fuels Engineering (Chemical Engineering Department)

Classification of fuels : G/L/S

Automotive Fuels Bharat Standards II III & IV

Gaseous Fuels:

Natural Gas: Processing for pipe line specs

CO₂/H₂S/COS Removal

Gas dehydration

Gas compression for pipe line transport

Coal bed methane, Bio Gas (methane)

CNG : As auto fuel, Compression, CNG stations

LNG : Liquefaction of NG JT effect, closed & open cycle , Storage of

LNG, Transportation of LNG, vessels / truck, terminal, Gasification

of LNG to NG for pipeline transport

Liquid Fuels:

- Refinery sources, Reforming for fuels
- LPG : Domestic and Auto LPG Storage and handling,
- Manufacture and Storage (Partly in I&EC) Petrol, Diesel, Aviation Turbine Fuel, HSD, LDO. Furnace oil, Fuel oil, LSHS.
- Biofuels : bioethanol, biodiesel

Solid Fuels : Characterization

- Coal
- Biomass
- Residue from Refinery
- Plastic waste
- Municipal domestic waste

Combustion of Fuels :

- Basic equation, air requirement norms for excess air.
- Heating value : GHV/LHV Calculations for mixture of components
- Wobbe number for Gaseous Fuels definition and significance.
- Burners : Gas/Liquid/Hydrogen
- Flue gas composition, Dew point calculations
- Treatment of flue gas to meet local standards, Carbon Credit
- Gasification of i) Coal, Indian Coal

ii) Biomass

iii)Refinery Heavy Residue

Power generation, combined cycle, cogeneration

35. **CET 1511E – Plant Utilities (Chemical Engineering Department)**

Role of Process Utilities in process industries. Impact on Project economics

Water, its characteristics and its conditioning and treatment for process industries e.g. boiler feed water, cooling water. Recycling aspects of water from blow downs.

Application of steam systems in chemical process plants, design of efficient steam heating systems, condensate utilization, flash steam, steam traps.

Characteristics properties, classification, selection and industrial applications

Characteristics of air and air receivers, instrument air. Inert gas generation

Vacuum system engineering.

Electrical Power : HT/LT

Area classification, Motors/drives selection accordingly. Single line diagram. Emergency Drives Identification Emergency power. Inverters, DG sets. Etc.

Estimation of utilities Utilities Audit

36. CET 1512E – Project Management: Case Study Approach (Chemical Engineering Department)

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution : conception to commissioning.

Project execution as conglomeration of technical and non technical activities.

Detailed Engineering activities.

Pre project execution main clearances and documents

Project team : Role of each member. Importance

Project site : Data required with significance.

Project contracts. Types and contents.

Project execution

Project cost control.

Bar charts and Network diagram.

Project commissioning: mechanical and process.

37. **CET 1606E – Advanced Materials (Chemical Engineering Department)**

Nanostructured Materials: Metal nano particles, their structure and properties Carbon nano tubes: manufacture, properties and applications.

Nano materials in catalysis.

Composite Materials: Polymer composites, metal-metal composites, polymer-metal

composites, metal- ceramic composites.

Superconducting Materials: Principles of superconductivity, properties, advantages

and limitations of superconductors. Applications

superconductors

Smart Materials: Shape memory alloys, Auxetic materials and Biomimmicking materials. Stimulii for sensors and actuators.

38. **CET 1513E – Process Systems Engineering (Chemical Engineering Department)**

Introduction to Systems Engineering: Systems and their origin, examples of problems in Systems Engineering **Foundations of Systems Engineering:** Scope and Formulation of Engineering Problems, Goals, Objectives, Specifications and Constraints, Types of Models; Hierarchical decomposition of systems, Types of Problems: Forward solution and inversion of models

Structural Analysis of Systems: Graphs and digraphs: Representation of systems, Partitioning and Precedence Ordering of systems, Structural analysis of modeling equations, Structural controllability and observability of systems, Applications to engineering problems

Steady State Analysis of Systems: Formulating steady-state models and simulations, Degrees of freedom and design specifications, The Sequential-Modular Strategy, The Equation-Oriented Strategy, Applications to engineering problems

Optimization of Systems: Theory and Algorithms: Basic concepts and definitions, Linear programming, Unconstrained nonlinear optimization, Nonlinear Programming, Combinatorial optimization, Applications to engineering problems

Simulation of Dynamic Systems: Basic concepts: Systems described by ODEs and DAEs, Formulating dynamic simulations; consistent initialization, Numerical integration of ODEs and DAEs, Modeling-simulation of hybrid Discrete/Continuous systems, Applications to engineering systems

Model-Based Process Control: The nature of feedback control, The concept of model-based control systems, Design and analysis of model-based control systems applications

39. **CET 1106 – CFD applications in chemical processes (Chemical Engineering Department)**

Derivation of equations of momentum and energy for turbulent flows.

Finite volume technique

One dimensional heat conduction and flow

Grid generation

Space and time discretization

Pressure velocity coupling (simple, simpler & SIMPLEC)

OpenFOAM software, simulation of pipe flow, backward step, flow past cylinder

Commercial software, simulation of pipe flow, backward step, flow past cylinder, stirred vessel, bubble column, cyclone separator, spray dryer etc.

Suggested Books:

Versteeg and malalasekera, "An introduction to computational fluid dynamics. The finite volume method", (2007)

Patankar S., "Numerical heat transfer and fluid flow", (1980)

40. CET 1407 – Process Design of Heat and Mass Transfer Equipment

(3 Credits: 2 Lectures + 1 Tutorial – 3 hours per week, 45 hrs total)

Advanced Process design aspects of various process equipments will be considered through several case studies;

and will cover: hydrodynamic characteristics, heat and mass transfer characteristics, selection criteria, etc. The topics will include some of the following equipment (but not limited to):

- (1) Equipment for heat transfer: plate heat exchangers, plate fin exchangers, finned tube exchangers, thermo-siphon reboilers, evaporators, condensers, etc.
- (2) Equipment for Unit operations: plate and packed columns, spray towers, etc.
- (3) Equipment for Multiphase reactions: Stirred tanks, gas inducing reactors, bubble columns / modified bubble columns, air-lift reactors, packed and plate columns, trickle bed reactors, ejectors, etc.

41. **CET 1408 Advanced Membrane Separations**

Introduction : classification and definitions

Membrane Processes and their applications: Microfiltration, Ultrafiltration and micelle-enhanced ultrafiltration, Nanofiltration, Reverse osmosis, Dialysis, piezodialysis, electrodialysis, Pervaporation and membrane distillation, Gas permeation,Liquid membranes, Ion exchange membranes

Transport mechanisms, and mathematical modelling

Membranes: Design of membranes, Characterization

Polarisation and fouling: Polarisation phenomena and fouling concentration polarization, Characteristic flux behaviour in pressure driven membrane operation, Membrane fouling, Methods to reduce fouling

Process design: modules and configurations: Capillary, hollow fibre, tubular, Plate and frame, Spiral wound Membrane reactors and their applications in biotechnology

Text books:

Mulder, M.H.V. Membrane Separations, Springer.

Philip, R., Wankat, C. Rate-Based Separations, Springer.

Reference books:

Nunes, S.P., Peinemann, K.V. Membrane Technology in the Chemical Industry, Wiley.

Rautanbach and R. Albrecht, Membrane Processes, Wiley.

Crespo, J.G., Bodekes, K.W. Membrane Processes in Separation and Purification, Kluwer Academic Publications.

Geankoplis, C.J. Transport Processes and Unit Operations, Prentice-Hall.

42. **CET 1607 Biomaterials: Biodegradable Materials for Biomedical Applications**

Introduction of Biomaterials

Biomaterials Surfaces: Structure and Properties, Surface Energy

Adsorption and Reconstruction at Surfaces,

Protein-Surface Interactions

Proteins: Structure, Properties, Functions, Protein Adsorption: Complex Phenomena, Measurement

Cell-Surface Interactions: Host Response to Biomaterials: Cell adhesion mechanism, coagulation cascade, immune response

Surface Characterization: AES, XPS, AFM, Contact Angle

Quantifying Cell Behavior: Cell Culture, Cellular Assays

Biosensors and Diagnostic devices

Drug Delivery: Controlled Release, Diffusion Controlled and Membrane based devices, Mechanical Pumps

Biomaterial for Organ Replacement

Mechanical Properties, Bone Substitutes

Introduction of Tissue Engineering: Cell, Scaffold design, Artificial liver, pancreas, cartilage

Regulatory overview

Text Books:

Ratner, Buddy D., et al. Biomaterials Science: An Introduction to Materials in Medicine. 2nd ed. Burlington, MA: Academic Press, 2004. ISBN: 9780125824637.