INSTITUTE OF CHEMICAL TECHNOLOGY

Master of Technology in Green Technology

Syllabus

(2021 - 2022)

PREAMBLE

Vision and Mission of the Department

Vision

To become a globally recognized Green Technology Centre of Excellence through illustrious academic contributions at the national and international level.

Mission

- 1) To promote the objectives, principles and outcome of green processes and products.
- 2) To transmit research outcome to industry for making processes and products environmentally benign.
- 3) Human resource development with awareness of environment and hazard related issues.
- 4) To undertake sponsored projects of national relevance.
- 5) To get quality publications in pear reviewed journals, national and international forums for the benefit of scientific community and society.

Program Education Objectives

PEO1	Post-graduate students of this program will learn to understand the issues of the
	environment and the concepts of Green Chemistry and Technology.
PEO2	They are expected to develop analytical and problem solving skills.
PEO3	They will learn the tools and methodologies that would make processes and products
	hazard and waste free, environmentally and energetically effective.
PEO4	They will be able to think critically and come up with rational solutions for making
	industrial processes that are compatible to environment and the society.

Program Outcomes

0	
PO1	An ability to independently carry out research/investigation and development work to
	solve practical problems
PO2	An ability to write and present a substantial technical report/document
PO3	Students should be able to demonstrate a degree of mastery over the area as per the
	specialization of the program. The mastery should be at a level higher than the
	requirements in the appropriate bachelor program
PO4	Students should be able to work as professional researchers or entrepreneurs with social
	and environmental awareness of green technology and cope up with futuristic
	technologies which will lead the chemical processing towards sustainability

			Hr/Week			Marks			
No.	Subject	Credit	L	Т	Р	Continuous Assessment	Mid-semester Examination	Final Examination	Total
					CEN				
	Core I:				SEN	AESTER I			
GTT2001	Fundamentals of Green Chemistry and Technology	3	2	1	0	10	15	25	50
GTTXX	Core II: Chemical Process Development and Engineering	3	2	1	0	10	15	25	50
GTT2003	Engineering	3	2	1	0	10	15	25	50
	Elective I	3	2	1	0	10	15	25	50
CETXX	Chemical Safety and Risk Management	3	2	1	0	10	15	25	50
GTP2100	Seminar	2	0	0	4			30 (Report) 20 (Presentation)	50
GTP2101	Chemical Engineering Practical	3	0	0	6	25		25	50
GTP2102	Research Project I	4	0	0	8			30 (Report) 20 (Presentation)	50
	TOTAL:	24	10	5	18				400
					CTT				
	Core IV:			i	SEN	IESTER II			
GTT2004	Advances in Separation Processes	3	2	1	0	10	15	25	50
GTTXX	Core V: Catalysis	3	2	1	0	10	15	25	50
GTT2006	Core VI: Environmental Engineering and Pollution Control	3	2	1	0	10	15	25	50
	Elective II	3	2	1	0	10	15	25	50
	Elective III	3	2	1	0	10	15	25	50
	Elective IV	3	2	1	0	10	15	25	50
GTP2103	Research Project II	6	0	0	12			60 (Report) 40 (Presentation)	100
	TOTAL:	24	12	6	12				400
					SEM	ESTER III			
GTPXX -	Research Project III: 2	4 Credits	5		, .				
						ESTER IV			
GTP2105	- Research, Thesis and	d Open D	efer	nce: 2	24 C	redits			

Syllabus Details for the Degree of Master of Technology in Green Technology

Semester I

	Course Code: GTT2001	Course Title: Fundamentals of Green Chemistry and	Cre	edits =	= 3
		Technology	L	Т	Р
	Semester: I	Total contact hours: 45	2	1	0
				-	Ŭ
	Сон	rse Outcomes (students will be able to)			
1	Understand the relevance and co			K2	
2		netrics of green chemistry and engineering		K4	
3		sses for a product and recommend the best choice		K5	
		List of Prerequisite Courses	1		
	Industrial & Engineering Chemi	stry; Chemical Processes; Applied Chemistry			
	List of	courses where this course will be prerequisite			
	Research Project II, III and Rese				
	Description of relev	ance of this course in the M. Tech. (Green Tech.) Prog	ram		
.nell	nical and allied industries.				
	C .		D	1 1	
		se Contents (Topics and subtopics)	Rec	<mark>ld. h</mark> o	ours
	Twelve principles of green chen	nistry and green engineering with examples	Rec	4	ours
2	Twelve principles of green chen Green chemistry metrics – atom	nistry and green engineering with examples economy, E-factor, reaction mass efficiency etc.	Rec	4	ours
2	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, differ	nistry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of	Rec	4	ours
2	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, differ waste minimization and recyclin	nistry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of	Rec	4 4 6	ours
23	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of g and methods for abatement	Rec	4 4 6 4	ours
23	Twelve principles of green chen Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of g s and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a	Rec	4 4 6	ours
2 3 4	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, differ waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficient	nistry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of g and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods	Rec	4 4 6 4	ours
2 3 4 5	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, differ waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g	nistry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of g and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods	Rec	$ \begin{array}{r} 4\\ -4\\ -6\\ -4\\ -8\\ \end{array} $	ours
2 3 4 5 6	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, differ waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficient Green reagents and catalysis in g Designing green processes, safe	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of g and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis	Rec	$ \begin{array}{r} 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 4 \end{array} $	ours
2 3 4 5 6 7	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for ac	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of g and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention,		$ \begin{array}{r} 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \end{array} $	
2 3 4 5 6 7	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficient Green reagents and catalysis in g Designing green processes, safe Safe product and process design	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of g and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention,			
2 3 4 5 6 7	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for ac	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of ag and methods for abatement less, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention, acident prevention		$ \begin{array}{r} 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \end{array} $	
2 3 4 5 6 7	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for ac Industrial case studies	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of ag and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention, acident prevention		$ \begin{array}{r} 4 \\ 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \\ \hline 5 \end{array} $	
2 3 4 5 6 6 7 7 8 8	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for act Industrial case studies	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of the s and methods for abatement ess, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention, ecident prevention List of Text Books 7 – Albert Matlack, CRC Press		$ \begin{array}{r} 4 \\ 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \\ \hline 5 \end{array} $	
2 3 4 5 6 7 8 8 1 2	Twelve principles of green chen Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for act Industrial case studies	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of ag and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention, acident prevention		$ \begin{array}{r} 4 \\ 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \\ \hline 5 \end{array} $	
2 3 4 5 6 7 8 8 1 2	Twelve principles of green chen Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for act Industrial case studies	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of lg and methods for abatement ess, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention, ecident prevention List of Text Books 7 – Albert Matlack, CRC Press 7 – V. K. Ahluwalia, M. Kidwai, Springer		$ \begin{array}{r} 4 \\ 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \\ \hline 5 \end{array} $	
2 3 4 5 6 7 7 8 8 1 2 3 4	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for act Industrial case studies Introduction to Green Chemistry Green Chemistry and Engineeri David J. C. Constable, Wiley Green Chemistry – An Introduct	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of ag and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention, ecident prevention List of Text Books 7 – V. K. Ahluwalia, M. Kidwai, Springer ng: A Practical Design Approach – Concepción Jiménez-González, tory Text – M. Lancaster, RSC		$ \begin{array}{r} 4 \\ 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \\ \hline 5 \end{array} $	
2 3 4 5 6 7 7 8 8 1 2 3 4	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficient Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for act Industrial case studies Introduction to Green Chemistry Green Chemistry and Engineeri David J. C. Constable, Wiley Green Chemistry Metrics: Measu	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of ag and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention, ecident prevention List of Text Books 7 – Albert Matlack, CRC Press 7 – V. K. Ahluwalia, M. Kidwai, Springer ng: A Practical Design Approach – Concepción Jiménez-González,		$ \begin{array}{r} 4 \\ 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \\ \hline 5 \end{array} $	
2 3 4 5 6 7 7 8 8 1 2 3 3 4	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for act Industrial case studies Introduction to Green Chemistry Green Chemistry and Engineeri David J. C. Constable, Wiley Green Chemistry – An Introduct	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of ag and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention, ecident prevention List of Text Books 7 – V. K. Ahluwalia, M. Kidwai, Springer ng: A Practical Design Approach – Concepción Jiménez-González, tory Text – M. Lancaster, RSC		$ \begin{array}{r} 4 \\ 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \\ \hline 5 \end{array} $	
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \end{array} $ $ 4 $ $ 5 $ $ 6 $ $ 7 $ $ 8 $ $ 1 $ $ 2 $ $ 3 $ $ 4 $ $ 5 $ $ 4 $ $ 5 $ $ 4 $ $ 5 $ $ 4 $ $ 5 $ $ 5 $ $ 6 $ $ 7 $ $ 8 $ $ 4 $ $ 5 $ $ 4 $ $ 5 $ $ 6 $ $ 7 $ $ 7 $ $ 8 $ $ 7 $ $ 7 $ $ 8 $ $ 7 $	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for act Industrial case studies Introduction to Green Chemistry Green Chemistry and Engineeri David J. C. Constable, Wiley Green Chemistry Metrics: Meast Constable (Eds.), Wiley	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of log and methods for abatement ess, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention, recident prevention List of Text Books 7 – Albert Matlack, CRC Press 7 – V. K. Ahluwalia, M. Kidwai, Springer ng: A Practical Design Approach – Concepción Jiménez-González, tory Text – M. Lancaster, RSC pring and Monitoring Sustainable Processes – Alexi Lapkin and David		$ \begin{array}{r} 4 \\ 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \\ \hline 5 \end{array} $	
2 3 4 5 6 7 7 8 8 1 2 3 3 4	Twelve principles of green chem Green chemistry metrics – atom Waste – sources of waste, diffe waste minimization and recyclin Pollution – types, causes, effects Environmentally benign process reaction medium, energy efficien Green reagents and catalysis in g Designing green processes, safe Safe product and process design inherently safer chemistry for ac Industrial case studies Introduction to Green Chemistry Green Chemistry and Engineeri David J. C. Constable, Wiley Green Chemistry Metrics: Meast Constable (Eds.), Wiley List of A	histry and green engineering with examples economy, E-factor, reaction mass efficiency etc. rent types of waste, chemical, physical and biochemical methods of ag and methods for abatement es, alternate solvents, supercritical solvents, ionic liquids, water as a nt design of processes, photo-, electro- and sono-chemical methods green synthesis design, process intensification, in-process monitoring – Design for degradation, real-time analysis for pollution prevention, ecident prevention List of Text Books 7 – V. K. Ahluwalia, M. Kidwai, Springer ng: A Practical Design Approach – Concepción Jiménez-González, tory Text – M. Lancaster, RSC		$ \begin{array}{r} 4 \\ 4 \\ 4 \\ 6 \\ 4 \\ 8 \\ 4 \\ 6 \\ 5 \\ 5 \\ \hline 5 \end{array} $	

	Course Code: GTTXX	Course Title: Chemical Process Development and	Cre	edits =	= 3
		Engineering	L	Τ	P
	Semester: I	Total contact hours: 45	2	1	0
	C				
		urse Outcomes (students will be able to)	1	IZ 1	
	Describe key steps in the develo	*		K1	
	Assess techno-economic param			K5	
	*	elopment and engineering of chemical processes		K1	
		elopment and engineering to improve existing processes cesses and provide recommendations for the best choice		K3 K5	
	*	unch of novel processes and products		K5 K6	
	Develop methodology for the la	unen of nover processes and products		KU	
		List of Prerequisite Courses			
	Industrial & Engineering Chemi	stry; Chemical Processes; Industrial Catalysis; Chemical Technology			
	List of	courses where this course will be prerequisite	1		
	Research Project II, III and Res				
	v '	•	l		
	Description of relev	ance of this course in the M. Tech. (Green Tech.) Prog	ram		
		o several useful concepts such as green-to-sustainable processes, trans rocess intensification, scale-up and retrofit.	sition		batc
	ontinuous, modular production, p	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics)	T	<mark>qd. h</mark> c	
	ontinuous, modular production, p Cour From green to sustainable proce	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) asses, Tools for development of advanced sustainable technologies	T	qd. h o 4	
	ontinuous, modular production, p Cour From green to sustainable proce Methods for sustainability asso	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics)	T	<mark>qd. h</mark> c	
	ontinuous, modular production, p Cour From green to sustainable proce Methods for sustainability ass sustainability at process level	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) asses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance	T	nd. h o 4 4	
	ontinuous, modular production, p Cour From green to sustainable proce Methods for sustainability ass sustainability at process level Intensification of chemical proc	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) esses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods	T	qd. h o 4	
	ontinuous, modular production, p Cour From green to sustainable proce Methods for sustainability ass sustainability at process level Intensification of chemical proc for PI; Separation process intensi	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) asses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies	T	nd. h o 4 4	
	ontinuous, modular production, p Cour From green to sustainable proce Methods for sustainability asso sustainability at process level Intensification of chemical proc for PI; Separation process intensi Small-scale continuous chemical	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) sses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies Il production; Technology gaps and challenges	T	qd. h o 4 4 6	
	ontinuous, modular production, p Cour From green to sustainable proce Methods for sustainability asso sustainability at process level Intensification of chemical proc for PI; Separation process intensi Small-scale continuous chemical	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) asses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies	T	qd. h o 4 4 6 4	
	ontinuous, modular production, p Cour From green to sustainable proce Methods for sustainability assess sustainability at process level Intensification of chemical proce for PI; Separation process intenses Small-scale continuous chemical Scale-up of chemical processess of new chemical processes	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) sses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies Il production; Technology gaps and challenges	T	qd. h o 4 4 6 4	
	Cour From green to sustainable proce Methods for sustainability assessustainability at process level Intensification of chemical proce for PI; Separation process intensi Small-scale continuous chemical Scale-up of chemical processes future production concepts in the Steps to transform a batch process	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) esses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies il production; Technology gaps and challenges objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process	T	ad. ho <u>4</u> <u>4</u> <u>6</u> <u>4</u> <u>6</u>	
	Cour From green to sustainable proce Methods for sustainability assistatinability at process level Intensification of chemical proce for PI; Separation process intensist Small-scale continuous chemical Scale-up of chemical processes future production concepts in the Steps to transform a batch proces Methodology for techno-econor	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) esses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies Il production; Technology gaps and challenges Objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous	T	qd. ho 4 4 6 4 6 4 6	
	Cour From green to sustainable proce Methods for sustainability assistatinability at process level Intensification of chemical proce for PI; Separation process intensist Small-scale continuous chemical Scale-up of chemical processes of new chemical processes Future production concepts in the Steps to transform a batch proces Methodology for techno-econor process development	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) esses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies il production; Technology gaps and challenges ; Objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process nic process evaluation; Examples; Introduction to new approaches for	T	$ \frac{4}{4} \frac{4}{6} \frac{4}{6} $	
	Cour From green to sustainable proce Methods for sustainability assistatinability at process level Intensification of chemical proce for PI; Separation process intend Small-scale continuous chemical Scale-up of chemical processes of new chemical processes Future production concepts in the Steps to transform a batch proces Methodology for techno-econor process retrofit; Analysis of process	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) esses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies il production; Technology gaps and challenges objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process	T	$\begin{array}{c} \mathbf{a} \mathbf{d} \cdot \mathbf{h} \mathbf{a} \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline 4 \\ \hline \end{array}$	
-c	Cour From green to sustainable proce Methods for sustainability assessustainability at process level Intensification of chemical proce for PI; Separation process intensist Small-scale continuous chemical Scale-up of chemical processes of new chemical processes Future production concepts in the Steps to transform a batch proces Methodology for techno-econor process retrofit; Analysis of process retrofits	rocess intensification, scale-up and retrofit. Se Contents (Topics and subtopics) asses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies al production; Technology gaps and challenges c Objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process nic process evaluation; Examples; Introduction to new approaches for process bottlenecks; Methods to identify and remove bottlenecks;	T	$ \begin{array}{c} \underline{\textbf{qd. ho}} \\ \underline{4} \\ \underline{4} \\ \underline{6} \\ \underline{6} \\ \underline{4} \\ \underline{6} \\ $	
-c	Cour From green to sustainable proce Methods for sustainability assistatinability at process level Intensification of chemical proce for PI; Separation process intend Small-scale continuous chemical Scale-up of chemical processes of new chemical processes Future production concepts in the Steps to transform a batch proces Methodology for techno-econor process retrofit; Analysis of process	rocess intensification, scale-up and retrofit. Se Contents (Topics and subtopics) asses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies al production; Technology gaps and challenges c Objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process nic process evaluation; Examples; Introduction to new approaches for process bottlenecks; Methods to identify and remove bottlenecks;	T	$ \frac{4}{4} \frac{4}{6} \frac{4}{6} $	
-c	Cour From green to sustainable proce Methods for sustainability assistatiaability at process level Intensification of chemical proce for PI; Separation process intensist Small-scale continuous chemical Scale-up of chemical processes Future production concepts in the Steps to transform a batch process Methodology for techno-econor process retrofit; Analysis of procedures for process retrofits Product design; Developing and	rocess intensification, scale-up and retrofit. Se Contents (Topics and subtopics) asses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies all production; Technology gaps and challenges c Objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process nic process evaluation; Examples; Introduction to new approaches for process bottlenecks; Methods to identify and remove bottlenecks; l launching new products List of Text Books	T	$ \begin{array}{c} \underline{\textbf{qd. ho}} \\ \underline{4} \\ \underline{4} \\ \underline{6} \\ \underline{6} \\ \underline{4} \\ \underline{6} \\ $	
-c	Cour From green to sustainable proce Methods for sustainability assistatiability at process level Intensification of chemical proce for PI; Separation process intensist Small-scale continuous chemical Scale-up of chemical processes of new chemical processes Future production concepts in the Steps to transform a batch proces Methodology for techno-econor process retrofit; Analysis of process retrofits Product design; Developing and Industrial Chemical Process De	rocess intensification, scale-up and retrofit. Se Contents (Topics and subtopics) asses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies 11 production; Technology gaps and challenges 12 Objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process nic process evaluation; Examples; Introduction to new approaches for process bottlenecks; Methods to identify and remove bottlenecks; 11 launching new products List of Text Books sign – D. L. Erwine, McGraw-Hill	T	$ \begin{array}{c} \underline{\textbf{qd. ho}} \\ \underline{4} \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \overline 6 \\ \hline 6 \\ \hline 4 \\ \overline 6 \\ \hline 4 \\ \overline 6 \\ \overline 4 \\ \overline 6 $	
-c	Cour From green to sustainable proce Methods for sustainability assessustainability at process level Intensification of chemical proce for PI; Separation process intensification of chemical process Small-scale continuous chemical Scale-up of chemical processes future production concepts in the Steps to transform a batch process Methodology for techno-econor process development Procedures for process retrofits Product design; Developing and Industrial Chemical Process De Unit Processes in Organic Synth	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) asses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies all production; Technology gaps and challenges objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process mic process evaluation; Examples; Introduction to new approaches for process bottlenecks; Methods to identify and remove bottlenecks; I launching new products List of Text Books sign – D. L. Erwine, McGraw-Hill hesis – P. H. Groggins, McGraw-Hill	T	$ \begin{array}{c} \underline{\textbf{qd. ho}} \\ \underline{4} \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \overline 6 \\ \hline 6 \\ \hline 4 \\ \overline 6 \\ \hline 4 \\ \overline 6 \\ \overline 4 \\ \overline 6 $	
)) 1 2 3	Cour From green to sustainable proce Methods for sustainability assessustainability at process level Intensification of chemical proce Small-scale continuous chemical Scale-up of chemical processes of new chemical processes Future production concepts in the Steps to transform a batch process Methodology for techno-econor process retrofit; Analysis of p Procedures for process retrofits Product design; Developing and Industrial Chemical Process De Unit Processes in Organic Synth Chemical Technology – Andread	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) sses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies ul production; Technology gaps and challenges objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process mic process evaluation; Examples; Introduction to new approaches for process bottlenecks; Methods to identify and remove bottlenecks; I launching new products List of Text Books sign – D. L. Erwine, McGraw-Hill esis – P. H. Groggins, McGraw-Hill s Jess, Peter Wasserscheid, Wiley-VCH	T	$ \begin{array}{c} \underline{\textbf{qd. ho}} \\ \underline{4} \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \overline 6 \\ \hline 6 \\ \hline 4 \\ \overline 6 \\ \hline 4 \\ \overline 6 \\ \overline 4 \\ \overline 6 $	
	Cour From green to sustainable proce Methods for sustainability assessustainability at process level Intensification of chemical proce Small-scale continuous chemical Scale-up of chemical processes of new chemical processes Future production concepts in the Steps to transform a batch process Methodology for techno-econor process retrofit; Analysis of p Procedures for process retrofits Product design; Developing and Industrial Chemical Process De Unit Processes in Organic Synth Chemical Technology – Andread	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) asses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies all production; Technology gaps and challenges objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process mic process evaluation; Examples; Introduction to new approaches for process bottlenecks; Methods to identify and remove bottlenecks; I launching new products List of Text Books sign – D. L. Erwine, McGraw-Hill hesis – P. H. Groggins, McGraw-Hill	T	$ \begin{array}{c} \underline{\textbf{qd. ho}} \\ \underline{4} \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \overline 6 \\ \hline 6 \\ \hline 4 \\ \overline 6 \\ \hline 4 \\ \overline 6 \\ \overline 4 \\ \overline 6 $	
-c-c	Cour From green to sustainable proces Methods for sustainability assistatinability at process level Intensification of chemical process intensification of chemical process intensification of chemical processes Small-scale continuous chemical Scale-up of chemical processes of new chemical processes Future production concepts in the Steps to transform a batch process Methodology for techno-econor process retrofit; Analysis of process retrofits Product design; Developing and Industrial Chemical Process De Unit Processes in Organic Synth Chemical Technology – Andrea Industrial Catalysis – A Practication	rocess intensification, scale-up and retrofit. se Contents (Topics and subtopics) sses, Tools for development of advanced sustainable technologies essment; Tools, indicators and framework; Challenges to advance esses; Guiding principles and elements of PI; Equipment and methods sification; Examples and case studies ul production; Technology gaps and challenges objectives, steps and procedures; Pilot plants; Commercial scale-up the chemical industry; Modular, small-scale and continuous ess reaction to a continuous process mic process evaluation; Examples; Introduction to new approaches for process bottlenecks; Methods to identify and remove bottlenecks; I launching new products List of Text Books sign – D. L. Erwine, McGraw-Hill esis – P. H. Groggins, McGraw-Hill s Jess, Peter Wasserscheid, Wiley-VCH	T	$ \begin{array}{c} \underline{\textbf{qd. ho}} \\ \underline{4} \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \hline 6 \\ \hline 4 \\ \overline 6 \\ \hline 6 \\ \hline 4 \\ \overline 6 \\ \hline 4 \\ \overline 6 \\ \overline 4 \\ \overline 6 $	

	Course Code: GTT2003	Course Title: Chemical Reaction Engineering	Cre	edits :	= 3
			L	Т	Р
	Semester: I	Total contact hours: 45	2	1	0
	Cou	rse Outcomes (students will be able to)			
1	Understand various types of che			K2	
2		for determination of the relevant parameters	K3		
3		and analyze reactor performance		K4	
4	Develop procedures for the desi	gn of reactors for a particular application		K6	
		List of Prerequisite Courses			
	Physical Chemistry; Applied M				
		courses where this course will be prerequisite			
	Research Project II, III and Rese	*			
	Description of relev	ance of this course in the M. Tech. (Green Tech.) Prog	ram		
	Jois, muss transfer considerations	s, kinetics study, design procedures etc.			
	Cour	se Contents (Tonics and subtonics)	Red	nd h	niire
1		se Contents (Topics and subtopics)	Ree	q d. h o	ours
1	Reaction types and examples, k	cinetics of homogeneous and heterogeneous reactions, rate laws and	Re	qd. h o 6	ours
1	Reaction types and examples, k stoichiometry, collection and an	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data	Ree	-	ours
1 2	Reaction types and examples, k stoichiometry, collection and an Introduction to reactor design configurations	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor	Ree	6	ours
2	Reaction types and examples, k stoichiometry, collection and an Introduction to reactor design configurations Multiple reactions, maximizing	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety	Ree	6	ours
2	Reaction types and examples, k stoichiometry, collection and an Introduction to reactor design configurations Multiple reactions, maximizing Hydrodynamics in fluidized bed	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ls, bubble columns, slurry reactors, spray columns, loop reactors and	Ree	6 6	ours
2 3 4	Reaction types and examples, kstoichiometry, collection and anIntroduction to reactor design configurationsMultiple reactions, maximizingHydrodynamics in fluidized bed mechanically agitated contactorEstimation of design paramete	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ls, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat		6 6 3	DUITS
2 3 4 5	Reaction types and examples, kstoichiometry, collection and anIntroduction to reactor designconfigurationsMultiple reactions, maximizingHydrodynamics in fluidized bedmechanically agitated contactorEstimation of design parametetransfer coefficients, extent of n	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ls, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat		6 6 3 6	
2 3 4 5 6 7	Reaction types and examples, kstoichiometry, collection and anIntroduction to reactor designconfigurationsMultiple reactions, maximizingHydrodynamics in fluidized bedmechanically agitated contactorEstimation of design parametetransfer coefficients, extent of nExperimental methods in multipNon-elementary reactions, activ	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ds, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat hixing ohase reaction engineering, mathematical modeling e intermediates and reaction pathways		6 6 3 6 6 6 3	DURS
2 3 4 5 6 7 8	Reaction types and examples, kstoichiometry, collection and anIntroduction to reactor designconfigurationsMultiple reactions, maximizingHydrodynamics in fluidized bedmechanically agitated contactorEstimation of design parametetransfer coefficients, extent of nExperimental methods in multipNon-elementary reactions, activEnergy balance, non-isothermal	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ds, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat hixing ohase reaction engineering, mathematical modeling e intermediates and reaction pathways operation of reactors		6 6 3 6 6 6 3 3 3	
2 3 4 5 5 6 7 8 9	Reaction types and examples, Isstoichiometry, collection and anIntroduction to reactor designconfigurationsMultiple reactions, maximizingHydrodynamics in fluidized bedmechanically agitated contactorEstimation of design parametetransfer coefficients, extent of nExperimental methods in multipNon-elementary reactions, activEnergy balance, non-isothermalDesign of non-isothermal reactor	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ls, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat hixing ohase reaction engineering, mathematical modeling e intermediates and reaction pathways operation of reactors ors		6 6 3 6 6 6 3 3 3 3	
2 3 4 5 5 6 7 8 9	Reaction types and examples, Isstoichiometry, collection and anIntroduction to reactor designconfigurationsMultiple reactions, maximizingHydrodynamics in fluidized bedmechanically agitated contactorEstimation of design parametetransfer coefficients, extent of nExperimental methods in multipNon-elementary reactions, activEnergy balance, non-isothermalDesign of non-isothermal reactor	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ds, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat hixing ohase reaction engineering, mathematical modeling e intermediates and reaction pathways operation of reactors		6 6 3 6 6 6 3 3 3	
2 3 4 5 5 6 7 8 9	Reaction types and examples, k stoichiometry, collection and an Introduction to reactor design configurations Multiple reactions, maximizing Hydrodynamics in fluidized bec mechanically agitated contactor Estimation of design paramete transfer coefficients, extent of n Experimental methods in multip Non-elementary reactions, activ Energy balance, non-isothermal Design of non-isothermal reactor Choice of reactor-type, factors a	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ds, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat nixing ohase reaction engineering, mathematical modeling e intermediates and reaction pathways operation of reactors ors iffecting selection, industrial examples List of Text Books		6 6 3 6 6 6 3 3 3 3	
2 3 4 5 6 7 8 9 10 1	Reaction types and examples, kstoichiometry, collection and anIntroduction to reactor designconfigurationsMultiple reactions, maximizingHydrodynamics in fluidized bedmechanically agitated contactorEstimation of design parametetransfer coefficients, extent of nExperimental methods in multipNon-elementary reactions, activEnergy balance, non-isothermalDesign of non-isothermal reactorChoice of reactor-type, factors aChemical Reaction Engineering	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ls, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat nixing ohase reaction engineering, mathematical modeling e intermediates and reaction pathways operation of reactors ors affecting selection, industrial examples List of Text Books – Octave Levenspiel		6 6 3 6 6 6 3 3 3 3	
2 3 4 5 6 7 8 9 10 1 2	Reaction types and examples, k stoichiometry, collection and an Introduction to reactor design configurations Multiple reactions, maximizing Hydrodynamics in fluidized bed mechanically agitated contactor Estimation of design paramete transfer coefficients, extent of n Experimental methods in multip Non-elementary reactions, activ Energy balance, non-isothermal Design of non-isothermal reactor Choice of reactor-type, factors a Chemical Reaction Engineering Elements of Chemical Reaction	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ls, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat hixing ohase reaction engineering, mathematical modeling e intermediates and reaction pathways operation of reactors ors affecting selection, industrial examples List of Text Books – Octave Levenspiel Engineering – H. Scott Fogler		6 6 3 6 6 6 3 3 3 3	
2 3 4 5 7 8 9 10 1 2 3	Reaction types and examples, Isotichiometry, collection and an Introduction to reactor design configurations Multiple reactions, maximizing Hydrodynamics in fluidized bed mechanically agitated contactor Estimation of design parameter transfer coefficients, extent of n Experimental methods in multiper Non-elementary reactions, active Energy balance, non-isothermal Design of non-isothermal reactor Choice of reactor-type, factors a Chemical Reaction Engineering Elements of Chemical Reaction Heterogeneous Reactions, Vol.	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ls, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat hixing obase reaction engineering, mathematical modeling e intermediates and reaction pathways operation of reactors ors iffecting selection, industrial examples List of Text Books – Octave Levenspiel Engineering – H. Scott Fogler I and II – L.K. Doraiswamy, M.M. Sharma		6 6 3 6 6 6 3 3 3 3	
2 3 4 5 7 8 9 10 1 2 3	Reaction types and examples, k stoichiometry, collection and an Introduction to reactor design configurations Multiple reactions, maximizing Hydrodynamics in fluidized bed mechanically agitated contactor Estimation of design paramete transfer coefficients, extent of n Experimental methods in multip Non-elementary reactions, activ Energy balance, non-isothermal Design of non-isothermal reactor Choice of reactor-type, factors a Chemical Reaction Engineering Elements of Chemical Reaction	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ls, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat hixing obase reaction engineering, mathematical modeling e intermediates and reaction pathways operation of reactors ors iffecting selection, industrial examples List of Text Books – Octave Levenspiel Engineering – H. Scott Fogler I and II – L.K. Doraiswamy, M.M. Sharma		6 6 3 6 6 6 3 3 3 3	
	Reaction types and examples, k stoichiometry, collection and an Introduction to reactor design configurations Multiple reactions, maximizing Hydrodynamics in fluidized becomechanically agitated contactor Estimation of design parameter transfer coefficients, extent of n Experimental methods in multip Non-elementary reactions, activ Energy balance, non-isothermal Design of non-isothermal reactor Choice of reactor-type, factors a Chemical Reaction Engineering Elements of Chemical Reactions, Vol. Chemical Engineering Kinetics	cinetics of homogeneous and heterogeneous reactions, rate laws and alysis of rate data , reactor types, multiple reactors, recycle reactors, novel reactor rate and selectivity, reactor safety ls, bubble columns, slurry reactors, spray columns, loop reactors and s rs such as pressure drop, fractional phase hold-up, mass and heat hixing obase reaction engineering, mathematical modeling e intermediates and reaction pathways operation of reactors ors iffecting selection, industrial examples List of Text Books – Octave Levenspiel Engineering – H. Scott Fogler I and II – L.K. Doraiswamy, M.M. Sharma		6 6 3 6 6 6 3 3 3 3	

Course Code:	Course Title: Elective I	Cre	= 3	
		L	Τ	P
Semester: I	Total contact hours: 45	2	1	0
didate will have to choose one o ects is given at the end.	f the elective subjects offered for that semester. A consolidated list	of all	the ele	ctive

	Course Code: CETXX	Course Title: Chemical Safety and Risk Management	Credits = 3		
			L T		P
	Semester: I	Total contact hours: 45	2	1	0
		rse Outcomes (students will be able to)	1		
1	List principles of safety, risk ma			K1	
2	Define safety principles, proced			K1	
3		o chemicals, fires, electricity, pathogens etc.		K2	
4	Apply SHE management princip			K3	
5		tal impact of projects and processes		K4	
6	Perform tasks such as hazard ide			K3	
		List of Prerequisite Courses			
	Chemical Processes	1			
		courses where this course will be prerequisite			
		vanced level course on chemical process safety.			
		ance of this course in the M. Tech. (Green Tech.) Prog			
'his	1 7	ion on several safety-related aspects in the chemical industry or resea			
		urse Contents (Topics and subtopics)	Req	d. hou	Irs
1	Introduction to Safety and Ris			3	
		volution of safety and risk management			
2		physical hazard, toxic hazard and eco-toxicity		4	
		eet), 16-point MSDS, uniformity in MSDS, details of MSDS, LD50 &			
		, Flash, Vapour pressure; Globally Harmonized System (GHS), R&S			
	phrases				
3	PSM elements			2	
	Why PSM; Overview of 14 elem				
4		– What-If, Checklist, HAZOP, FEMA etc.		3	
		HAZAN Analysis; Cause and Consequence Analysis; FEMA; LOPA;			
	Fault Tree Analysis; QRA				
5	Hazard identification and asse			2	
	Hazard identification, assessmen				
6	Flammability and fire safety-e			2	
		ishers, Agents for fire-fighting, Fire hydrant			
7		tories act, water and environment act		2	
	Statutory regulations in India; C	odes and Standards; Scenario at present and vision for future; Factory			
	Act.				
8	Human elements in safety - be	haviour safety		2	
9	Laboratory safety			2	
0	Basics and Dos & Do nots Basic OSH			1	
0				1	
1	Occupational hygiene basics Compliance to statutory safety	- andita		1	
1	Overview of safety audits based			1	
2	Biosafety	on iso standards (14000)		6	
4		y of pathogens; Pathogenic risks; Containment; Biosafety levels;		0	
		ling pathogens; Personal protective equipment; Disinfection and			
		ste disposal; Emergency measures			
3		safety & fire safety-fire hydrant system design		1	
5		ant layout with design of fire safety system		1	
4	Management Practice in SHE			3	
г		n management, policy management; Fundamentals of safety		5	
		ational safety, job hazard analysis (confined space, height safety, hot			
		ity; Cyber security as applicable to Chemical Projects; Management			

	of change; Incident reporting and investigation; Human elements in safety, ergonomics and behavioral	
	safety	
15	Hazard assessment – 2. Process safety, thermal safety, dust explosion etc.	2
15	Inherent safety concepts for processes and unit operations; Powder handling hazards - dust explosion	2
16	Safety in utilities	2
	Safety in electrical power generation units including nuclear, steam boilers, boiler feed water, thermic	
	fluids, transformers	
17	Storage, handling and transportation of hazardous substances	3
	Safety provisions during transport of petroleum products including LNG and other hazardous	
	materials by ship, rail, air cargo and roads; transport emergency; isolated storage; warehouses; color	
	coding of pipelines; inventory management; packaging and labelling.	
18	Environmental Impact Assessment	2
	Environmental impact and risk assessment (EIRA), risks of projects, process related risks,	
	measurement and monitoring tools	
19	Emergency response plan	2
	Hazard identification and elements of emergency response plan; OHC categorization, control banding	
	and precautions while handling substances; GMP principles	
	List of Textbooks	
1	Elements of Industrial Hazards – Ratan Raj Tatiya, CRC Press	
2	Environmental Life Cycle Analysis – Ciambrone, D. F., CRC Press	
	List of Additional Reading Material / Reference Books	
1	Handbook on Life Cycle Assessment: Operational Guide to ISO Standards, Kluwer Academic Pub.	

Course Code: GTP2100	Course Title: Seminar	Cre	dits =	: 2
		L	Т	P
Semester: I	Total contact hours: 60	0	0	4

Seminar will be supervised by the seminar supervisor (viz. a faculty member other than the research supervisor). Candidate should perform comprehensive analysis of the literature related to a topic (other than the research topic), which is suggested by the seminar supervisor. Candidate shall submit a report (as per the guidelines provided below) and make a presentation of the work done to the seminar supervisor and an external examiner from the Department/Industry. A suitable combination of the marks for report and presentation will be considered for the final evaluation.

Guidelines

- 1. Typically, the report should contain the following:
- (a) Introduction: 3 pages at the most
- (b) Exhaustive review of literature (including figures): 10 15 pages
- (c) Critical analysis of the literature and comments: critical analysis should also contain quantitative comparison of observations, results and conclusions reported in past works
- 2. Two typed copies of the report on thesis size bond paper (297 mm \times 210 mm) should be submitted to the <u>Coordinator</u> at the <u>date/time decided by the Coordinator</u>. In addition, soft copy of the report should be uploaded on the portal. The detailed timetable for the presentation should be communicated to the students.
- **3.** The report should be prepared using the Times New Roman font (size 12) with 1 1/2 spacing leaving 1-inch margin on all sides producing approximately 29 lines per page. The report should be typed on one side of the paper and need not be bound in a hard cover binding. Figures and tables should be shown as a part of the running text. Each figure should be drawn inside a rectangular box of 12 cm width and 10 cm height. The figures must be sufficiently clear and hand-drawn figures will be acceptable. Particular care must be taken if a figure is photocopied from source. Each figure must have a sequence number and caption below. Each table must have a sequence number and title at the top.
- **4.** Name of the student, title of the problem and year of the examination must be indicated on the top cover. THE NAME OF THE SEMINAR SUPERVISOR (ONLY INITIALS) MUST APPEAR ON THE BOTTOM RIGHT CORNER OF THE TOP COVER.

- 5. The report must be precise. All important aspects of the topic should be considered and reported. The total number of pages, including tables, figures and references should not exceed 30. Chapters or subsections need not begin on new pages, while getting the report typed.
- **6.** Typographical errors in the report must be corrected by the student. The student will be discredited for any omission in the report. All the symbols used in the text should be arranged in an alphabetical order and given separately after conclusions.
- 7. The list of references should be arranged in alphabetical order of the names of authors. In the text, the reference should be cited with the author's name and year (author year style). For example:
 - a. The flow pattern in gas-liquid-solid fluidized bed has been reported in the published literature (Murooka et al., 1982).

OR

- b. Murooka et al. (1982) have measured flow patterns in gas-liquid-solid fluidized beds. The title of the article should also be included. The references must be given in the following standard format.
- (a) Format for listing references of articles from periodicals: Murooka S., Uchida K. and Kato Y., "Recirculation turbulent flow of liquid in gas-liquid-solid fluidised bed", J. Chem. Engg. Japan, 15, 29-34 (1982).
- (b) Format for listing references of books: Constant R. F. Crystallization, Academic Press, New York, pp. 89-90, 1968.(c) Format for listing thesis:
- Niranjan K., "Hydrodynamic and Mass Transfer Characteristics of Packed Columns", Ph.D. (Tech.) Thesis, University of Mumbai, 1983.
- (d) Format for listing references of Patents in Chemical Abstracts: Cananaush R.M., U.S. Patent 2,647,141, Cf. C.A. 48, 82636 (1954).
- (e) Format for listing Handbooks, Tables, Symposia etc.: Kumar R and Kuloor N.R., "Formation of Drops and Bubbles", in Advances in Chemical Engineering, Vol.8, T.B. Drew et.al. (Eds.) New York, Academic Press, pp.256-364 (1970).
- (f) Format for listing Private Communications and other categories: Sharma, M.M., Private Communication (1984).
- **8.** Consistency of units should be maintained in the written report. SI systems should be used [For SI system Ref: Ind. Chem. Engr., 24, 32, 3 (1983)]. Units used in the literature (if not SI) should be correctly converted.
- 9. The time allotted for the oral presentation is 20 minutes: additional 10 minutes are provided for questions and answers.
- **10.** INCOMPLETE AND CARELESSLY WRITTEN REPORT IS LIABLE TO BE REJECTED.
- **11.** The last date for submission will NOT be extended.
- **12.** There must not be any acknowledgment about the guidance by the faculty in the report.
- **13.** The report will be evaluated on the basis of (i) rational approach to the problem, ii) correctness and completeness of the written text and iii) performance in the oral presentation.
- 14. Word-to-word copying from the published article is not permitted. Flowery language is not to be used.

	Course Outcomes (students will be able to)
1	Collect literature related to an assigned area	K1
2	Understand the lacunae in the literature	K2
3	Analyze the literature and present suitable guidelines	K4
4	Write a neat report following the guidelines	K2, K4
5	Propose a defined plan for the research	K6
	List of Prerequisite Courses	
1	Undergraduate seminar or design project	
	List of courses where this course will be prereq	uisite
	Research Project II, III and Research, Thesis & Open Defence	

Description of relevance of this course in the M. Tech. (Green Tech.) Program This course enables students to gather scientific information on a particular topic, analyze the information, and present a written and oral summary on that topic. This enables the students to function in a professional environment later on in their career.

1 Ui 2 Ai 3 Du 1 Cl	Inderstand basic chemical engir nalyze laboratory data Develop experimental and analy Chemical Engineering Operation List of	tical skills List of Prerequisite Courses		T 0 K2 K4 K6	
1 Ui 2 Ai 3 Do	Cou Inderstand basic chemical engir nalyze laboratory data bevelop experimental and analy chemical Engineering Operation List of	rse Outcomes (students will be able to) neering principles tical skills List of Prerequisite Courses	0	K2 K4	
2 Ai 3 Do 1 Cl	Inderstand basic chemical engir nalyze laboratory data Develop experimental and analy Chemical Engineering Operation List of	tical skills List of Prerequisite Courses		K4	
2 Ai 3 Do	Inderstand basic chemical engir nalyze laboratory data Develop experimental and analy Chemical Engineering Operation List of	tical skills List of Prerequisite Courses		K4	
2 Ai 3 Do	nalyze laboratory data bevelop experimental and analy chemical Engineering Operation List of	tical skills List of Prerequisite Courses		K4	
3 Do	evelop experimental and analy hemical Engineering Operation	List of Prerequisite Courses			
1 C1	hemical Engineering Operation	List of Prerequisite Courses		K6	
	List of	*			
	List of	*			
Re					
Re		courses where this course will be prevequisite			
K	and and Dania of H. III and Dana	courses where this course will be prerequisite arch, Thesis & Open Defence; Advances in Separation Processes	r		
	esearch Project II, III and Rese	arch, Thesis & Open Defence; Advances in Separation Processes			
		ance of this course in the M. Tech. (Green Tech.) Prog	I		
	Cours	e Contents (Topics and subtopics)	Re	q <mark>d.</mark> h	ours
		ts from the below-mentioned list will be performed:			
		ittings; Orifice, venturi and rotameter; Flow through packed beds;			
	ompressors, blowers and pump				
		nd plate heat exchangers; Evaporators			
	dsorption isotherms; Adsorption	on in packed, plate and bubble columns and stirred vessels			
	Distillation in packed and/or plat				
	pray, packed and mechanically				
	Iembrane separations				
	inetics of solid-catalyzed liquid				
		ted to advanced analytical instruments such as GC, HPLC, GC-MS,			
		bectrophotometry, TEM, ICP, particle size analyzer etc. The students			
	nd a case study.	a report on theory, working principle, standard operating procedure			
		List of Text Books			
La	aboratory manuals on chemical	engineering operations			
	- • • • • •				
	List of A	dditional Reading Material / Reference Books	-		

	Course Code: GTP2102	Course Title: Research Project I	Cree	dits =	- 4
			L	Т	P
	Semester: I	Total contact hours: 120	0	0	8
liten perf sub- and be c	ature related to the research area, form few preliminary trials in the l mit a report (as per the guidelines an external examiner from the De	by the research supervisor. Candidate should perform comprehensi- decide scope of work, appropriately plan experimental and analytic aboratory. All these activities will be supervised by the research guid provided below) and make a presentation on the work done to the re- partment/Industry. A suitable combination of the marks for report and Candidate should also submit attendance record and laboratory journal	al proc e. Can search l prese	cedure didate super ntation	es and shall rvisor n will
1.	Critical analysis of the literature observations, results and concluse Brief discussion on the scope of Two typed copies of the report or	ncluding figures): around 10 pages re and comments: critical analysis should also contain quantitative ions reported in past works work, plan of experiments, setup/procedures and results of few preliments thesis size bond paper (297 mm × 210 mm) should be submitted to the	ninary he <u>Co</u>	trials ordina	<u>itor</u> at
	The detailed timetable for the pre	ordinator. In addition, soft copy of the report should be upload sentation should be communicated to the students.		-	
3.	all sides producing approximately bound in a hard cover binding. F drawn inside a rectangular box of figures will be acceptable. Particu	ing the Times New Roman font (size 12) with 1 1/2 spacing leaving 29 lines per page. The report should be typed on one side of the pape gures and tables should be shown as a part of the running text. Each 12 cm width and 10 cm height. The figures must be sufficiently clea ilar care must be taken if a figure is photocopied from source. Each fi ow. Each table must have a sequence number and title at the top.	er and i figure r and h	need r e shou nand-c	not be ild be Irawn
4.		oroblem and year of the examination must be indicated on the top co INITIALS) MUST APPEAR ON THE BOTTOM RIGHT CORNE			
5.		nportant aspects of the topic should be considered and reported. The and references should not exceed 30. Chapters or subsections need bed.			
6.		t must be corrected by the student. The student will be discredited fo in the text should be arranged in an alphabetical order and given			
7.		rranged in alphabetical order of the names of authors. In the text, the nd year (author – year style). For example:	refere	ence sl	nould
		id fluidized bed has been reported in the published literature (Murool OR			,
	be included. The references must	ared flow patterns in gas-liquid-solid fluidized beds. The title of the a be given in the following standard format.			
	e	ticles from periodicals: Murooka S., Uchida K. and Kato Y., "Recirc fluidised bed", J. Chem. Engg. Japan, 15, 29-34 (1982).	ulation	n turbi	llent
		cademic Press, New York, pp. 89-90, 1968.			
		Mass Transfer Characteristics of Packed Columns", Ph.D. (Tech.) T	hesis,	Unive	rsity
	Format for listing references of P Cananaush R.M., U.S. Patent 2,6 Format for listing Handbooks, Ta	47,141, Cf. C.A. 48, 82636 (1954).	;, Vol.{	8, T.B	

Drew et.al. (Eds.) New York, Academic Press, pp.256-364 (1970).

- (f) Format for listing Private Communications and other categories:
- Sharma, M.M., Private Communication (1984).
- 8. Consistency of units should be maintained in the written report. SI systems should be used [For SI system Ref: Ind. Chem. Engr., 24, 32, 3 (1983)]. Units used in the literature (if not SI) should be correctly converted.
- **9.** The time allotted for the oral presentation is 20 minutes: additional 10 minutes are provided for questions and answers.
- 10. INCOMPLETE AND CARELESSLY WRITTEN REPORT IS LIABLE TO BE REJECTED.
- 11. The last date for submission will NOT be extended.
- **12.** There must not be any acknowledgment about the guidance by the faculty in the report.
- **13.** The report will be evaluated on the basis of (i) rational approach to the problem, ii) correctness and completeness of the written text and iii) performance in the oral presentation.
- **14.** Word-to-word copying from the published article is not permitted. Flowery language is not to be used.

L	Collect literature related to an assigned area	K1
2	Understand the lacunae in the literature	K2
3	Analyze the literature and present suitable guidelines	K4
4	Write a neat report following the guidelines	K2, K4
5	Propose a defined plan for the research	K6
	List of Prerequisite Courses	
1	Undergraduate seminar or design project	
	List of courses where this course will be prerequisite	
	Research Project II, III and Research, Thesis & Open Defence	
	Description of relevance of this course in the M. Tech. (Green Tecl	h.) Program

This course enables students to gather scientific information on a particular topic, analyze the information, present a written and oral summary on that topic, identify scope of work and plan experiments. This enables the students to function in a professional environment later on in their career.

Semester II

	Course Code: GTT2004	Course Title: Advances in Separation Processes	Cre	dits =	= 3
		L	L	Т	P
	Semester: II	Total contact hours: 45	2	1	0
					-
	Сон	rse Outcomes (students will be able to)			
		iples in traditional separation techniques		K2	
	Analyze the performance of a se	* * *		K4	
		ocesses and provide recommendations for the best choice		K5	
	Develop strategies for product s			K6	
		List of Prerequisite Courses			
	Chemical Processes				
	List of	courses where this course will be prerequisite			
	Research Project III and Research	ch, Thesis & Open Defence			
	Description of relev	ance of this course in the M. Tech. (Green Tech.) Prog	ram		
5					
<u> </u>	Cours	se Contents (Topics and subtopics)	Rec	ıd. ho))))
J ~~		se Contents (Topics and subtopics)	Rec	Id. h o	our
	Cours Types of separation processes Mass transfer and diffusion	se Contents (Topics and subtopics)	Rec	Id. h o	our
	Types of separation processes Mass transfer and diffusion Adsorption – adsorption equilibric scale up of adsorption	ia, batch adsorption, kinetics of adsorption, adsorption in fixed beds,	Rec	2	bur
	Types of separation processes Mass transfer and diffusion Adsorption – adsorption equilibries scale up of adsorption Distillation – vapor-liquid equ	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, nilibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation,	Rec	2 2	bur
	Types of separation processes Mass transfer and diffusion Adsorption – adsorption equilibries scale up of adsorption Distillation – vapor-liquid equilibries distillation, heat transfer in distillistillation, reactive distillistillation, reactive distillistillation, reactive distillistillation, reactive distillistillation, reactive distillistillation, reactive distillation, reactive disti	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, nilibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation,	Rec	2 2 6	
	Types of separation processes Mass transfer and diffusion Adsorption – adsorption equilibits scale up of adsorption Distillation – vapor-liquid equilibrication distillation, heat transfer in distil steam distillation, reactive distil Liquid-liquid extraction with ter	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, nilibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation, lation	Rec	2 2 6 9	
	Types of separation processes Mass transfer and diffusion Adsorption – adsorption equilibries scale up of adsorption Distillation – vapor-liquid equidistillation, heat transfer in distillation steam distillation, reactive distill Liquid-liquid extraction with ter Chemical, physical and biocher release from biological cells Design of downstream proce extraction	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, nilibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation, lation nary systems – theory, design and scale up nical aspects of isolation and purification of bio-molecules, product ssing equipment, downstream process economics, super-critical		2 2 6 9 6	
	Types of separation processesMass transfer and diffusionAdsorption – adsorption equilibricscale up of adsorptionDistillation – vapor-liquid equilibricdistillation, heat transfer in distillation, heat transfer in distillation, reactive distillation, reactive distillation, reactive distillation, reactive distillation, physical and biocherChemical, physical and biocherrelease from biological cellsDesign of downstream proceextractionPrinciples of separations throupervaporation, selection of men	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, nilibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation, lation nary systems – theory, design and scale up nical aspects of isolation and purification of bio-molecules, product ssing equipment, downstream process economics, super-critical gh membranes – micro-filtration, ultra-filtration, reverse osmosis, nbranes, mechanism of fouling, design and scale-up of membrane		$ \frac{2}{2} 6 9 6 4 4 $	
	Types of separation processes Mass transfer and diffusion Adsorption – adsorption equilibities scale up of adsorption Distillation – vapor-liquid equidistillation, heat transfer in distillation, teat transfer in distillation, reactive distill Liquid-liquid extraction with ter Chemical, physical and biocher release from biological cells Design of downstream proce extraction Principles of separations throu	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, nillibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation, lation nary systems – theory, design and scale up nical aspects of isolation and purification of bio-molecules, product ssing equipment, downstream process economics, super-critical gh membranes – micro-filtration, ultra-filtration, reverse osmosis, nbranes, mechanism of fouling, design and scale-up of membrane electro-dialysis		$\begin{array}{c} 2\\ 2\\ 6\\ 9\\ \hline \\ 6\\ 4\\ \hline \\ 4\\ \hline \end{array}$	
	Types of separation processesMass transfer and diffusionAdsorption – adsorption equilibricscale up of adsorptionDistillation – vapor-liquid equilibricdistillation, heat transfer in distillistillation, heat transfer in distillisteam distillation, reactive distillingLiquid-liquid extraction with terChemical, physical and biocherrelease from biological cellsDesign of downstream proceextractionPrinciples of separations throupervaporation, selection of merequipment, electrophoresis and of	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, hilibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation, hation nary systems – theory, design and scale up nical aspects of isolation and purification of bio-molecules, product essing equipment, downstream process economics, super-critical gh membranes – micro-filtration, ultra-filtration, reverse osmosis, nbranes, mechanism of fouling, design and scale-up of membrane electro-dialysis occulation, sedimentation		2 2 6 9 6 4 4 6	
	Types of separation processesMass transfer and diffusionAdsorption – adsorption equilibricscale up of adsorptionDistillation – vapor-liquid equilibricdistillation, heat transfer in distillicsteam distillation, reactive distillicLiquid-liquid extraction with terChemical, physical and biocherrelease from biological cellsDesign of downstream proceextractionPrinciples of separations throupervaporation, selection of merequipment, electrophoresis and ofPrecipitation, coagulation and fl	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, nilibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation, nary systems – theory, design and scale up nical aspects of isolation and purification of bio-molecules, product ssing equipment, downstream process economics, super-critical gh membranes – micro-filtration, ultra-filtration, reverse osmosis, nbranes, mechanism of fouling, design and scale-up of membrane electro-dialysis occulation, sedimentation ing		2 2 6 9 6 4 4 6 2	
	Types of separation processes Mass transfer and diffusion Adsorption – adsorption equilibits scale up of adsorption Distillation – vapor-liquid equilibits distillation, heat transfer in distil steam distillation, reactive distil Liquid-liquid extraction with ter Chemical, physical and biocher release from biological cells Design of downstream proce extraction Principles of separations throu pervaporation, selection of men equipment, electrophoresis and of Precipitation, coagulation and fl Crystallization, sublimation, dry	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, hilibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation, hation nary systems – theory, design and scale up nical aspects of isolation and purification of bio-molecules, product essing equipment, downstream process economics, super-critical gh membranes – micro-filtration, ultra-filtration, reverse osmosis, nbranes, mechanism of fouling, design and scale-up of membrane electro-dialysis occulation, sedimentation		2 2 6 9 6 4 4 6 2	
	Types of separation processesMass transfer and diffusionAdsorption – adsorption equilibricscale up of adsorptionDistillation – vapor-liquid equilibricdistillation, heat transfer in distillisteam distillation, reactive distillisteam distillation, reactive distillingLiquid-liquid extraction with terChemical, physical and biocherrelease from biological cellsDesign of downstream proceextractionPrinciples of separations throupervaporation, selection of merequipment, electrophoresis and ofPrecipitation, coagulation and flCrystallization, sublimation, dryPrinciples of Mass Transfer and	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, illibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation, lation nary systems – theory, design and scale up nical aspects of isolation and purification of bio-molecules, product ssing equipment, downstream process economics, super-critical gh membranes – micro-filtration, ultra-filtration, reverse osmosis, nbranes, mechanism of fouling, design and scale-up of membrane electro-dialysis occulation, sedimentation ing List of Text Books		2 2 6 9 6 4 4 6 2	
	Types of separation processesMass transfer and diffusionAdsorption – adsorption equilibrisscale up of adsorptionDistillation – vapor-liquid equilibristillation, heat transfer in distillation, reactive distillation, reactive distillation, reactive distillation, reactive distillation, reactive distillation, and biocher release from biological cellsDesign of downstream proceextractionPrinciples of separations throupervaporation, selection of mericipitation, coagulation and flCrystallization, sublimation, dryPrinciples of Mass Transfer andTransport Processes and Unit Operation	ria, batch adsorption, kinetics of adsorption, adsorption in fixed beds, iilibria, normal and fractional distillation, batch and continuous lation, azeotropes and separation of azeotropes, extractive distillation, lation nary systems – theory, design and scale up nical aspects of isolation and purification of bio-molecules, product ssing equipment, downstream process economics, super-critical gh membranes – micro-filtration, ultra-filtration, reverse osmosis, nbranes, mechanism of fouling, design and scale-up of membrane electro-dialysis occulation, sedimentation ing List of Text Books Separation processes – B. K. Dutta		2 2 6 9 6 4 4 6 2	

	Course Code: GTTXX	Course Title: Catalysis	Cre	dits =	= 3
1			L	Т	P
ļ	Semester: II	Total contact hours: 45	2	1	0
	Co	urse Outcomes (students will be able to)			
		atalysts and their features and industrial applications		K2	
	Determine suitability of a catal			K3	
	Analyze catalytic features and c			K4	
-	Compare different catalysts and	l provide recommendations on the best choice		K5	
		List of Dronoguicita Courses			
	Applied Chemistry; Chemical I	List of Prerequisite Courses			
	Applied Chemisury, Chemicar I	10005505			
	List of	courses where this course will be prerequisite			
	Research Project III and Resear	· · ·			
	2				
	Description of relev	vance of this course in the M. Tech. (Green Tech.) Prog	ram		
	Cour	rse Contents (Topics and subtopics)	Rec	d. ho	m
	Heterogeneous and homogeneo		Inter	1	
2		esis and characterization of solid catalysts		6	
3		rption isotherms, kinetics of catalytic reactions, Hougen-Watson and oter effects, catalyst deactivation and reuse, heterogeneous catalysts in		6	
ŀ	Catalysis using solid acids an	nd bases, zeolites, mesoporous materials and clay catalysts, shape and metal oxides, applications in bulk and fine chemical synthesis		6	
5	Catalysis for environmental app			2	
		concepts of organometallic complexes - oxidation state, electron count		6	
5	and coordination unsaturation, insertion and β elimination type	important reaction types – oxidative addition, reductive elimination, e reactions.			
	insertion and β elimination type Carbonylation, hydroformyla oligomerization, decarbonylatio	e reactions. ation, polymerization reactions, coupling reactions, alkene		6	
3	insertion and β elimination type Carbonylation, hydroformyla oligomerization, decarbonylatio Metal ligand multiple bonds	e reactions. ation, polymerization reactions, coupling reactions, alkene		3	
/ 	insertion and β elimination type Carbonylation, hydroformyla oligomerization, decarbonylatio Metal ligand multiple bonds Organo-metallic complexes	e reactions. ation, polymerization reactions, coupling reactions, alkene on, asymmetric catalysis		3	
7 3	insertion and β elimination type Carbonylation, hydroformyla oligomerization, decarbonylatio Metal ligand multiple bonds Organo-metallic complexes	e reactions. ation, polymerization reactions, coupling reactions, alkene		3	
	insertion and β elimination type Carbonylation, hydroformyla oligomerization, decarbonylatio Metal ligand multiple bonds Organo-metallic complexes	e reactions. ation, polymerization reactions, coupling reactions, alkene on, asymmetric catalysis atalysts, phase-transfer catalysts, bio-catalysts		3	
80	insertion and β elimination type Carbonylation, hydroformyla oligomerization, decarbonylatio Metal ligand multiple bonds Organo-metallic complexes Heterogenized homogeneous ca	e reactions. attion, polymerization reactions, coupling reactions, alkene on, asymmetric catalysis attalysts, phase-transfer catalysts, bio-catalysts List of Text Books		3	
5 7 8 9 0	insertion and β elimination type Carbonylation, hydroformyla oligomerization, decarbonylatio Metal ligand multiple bonds Organo-metallic complexes Heterogenized homogeneous ca Heterogeneous Catalysis in Pra	e reactions. attion, polymerization reactions, coupling reactions, alkene on, asymmetric catalysis atalysts, phase-transfer catalysts, bio-catalysts List of Text Books ctice – Charles N. Satterfield, McGraw-Hill		3	
	insertion and β elimination type Carbonylation, hydroformyla oligomerization, decarbonylatio Metal ligand multiple bonds Organo-metallic complexes Heterogenized homogeneous ca Heterogeneous Catalysis in Pra Homogeneous Catalysis: Mech	e reactions. attion, polymerization reactions, coupling reactions, alkene on, asymmetric catalysis atalysts, phase-transfer catalysts, bio-catalysts List of Text Books ctice – Charles N. Satterfield, McGraw-Hill anisms and Industrial Applications – Sumit Bhaduri, Doble Mukesh		3	
0	insertion and β elimination type Carbonylation, hydroformyla oligomerization, decarbonylatio Metal ligand multiple bonds Organo-metallic complexes Heterogenized homogeneous ca Heterogeneous Catalysis in Pra Homogeneous Catalysis: Mech	e reactions. attion, polymerization reactions, coupling reactions, alkene on, asymmetric catalysis atalysts, phase-transfer catalysts, bio-catalysts List of Text Books ctice – Charles N. Satterfield, McGraw-Hill		3	
0	insertion and β elimination type Carbonylation, hydroformyla oligomerization, decarbonylatio Metal ligand multiple bonds Organo-metallic complexes Heterogenized homogeneous ca Heterogeneous Catalysis in Pra Homogeneous Catalysis: Mech Industrial Catalysis – A Practic	e reactions. attion, polymerization reactions, coupling reactions, alkene on, asymmetric catalysis atalysts, phase-transfer catalysts, bio-catalysts List of Text Books ctice – Charles N. Satterfield, McGraw-Hill anisms and Industrial Applications – Sumit Bhaduri, Doble Mukesh		3	

	Course Code: GTT2006	Course Title: Environmental Engineering and	Cre	edits :	= 3
		Pollution Control	L	Τ	P
	Semester: II	Total contact hours: 45	2	1	0
	·	·			
	Cou	rse Outcomes (students will be able to)			
		ts of contaminants and typical treatment levels		K1	
2		ting and upcoming pollution control measures		K2	
3		d provide recommendations for the best option		K5	
1	Formulate strategies for control	of pollution and valorization of waste		K6	
		List of Prerequisite Courses	L		
	Chemical Processes, Chemical H	Process Development and Engineering			
	T. (0				
		courses where this course will be prerequisite			
	Research Project III and Research	ch, Thesis & Open Defence			
	Description of relev	ance of this course in the M. Tech. (Green Tech.) Prog	ram		
		se Contents (Topics and subtopics)	Rec	ld. ho	ours
l	Environmental acts and regulation	ons, quality standards, EHS management, ISO14000+		4	
2	Environmental Impact Assessme			6	
3	Water pollution – nature and environment and health	types of water pollutants, sources of water pollutants, impact on		4	
1		, levels of treatment, classification of treatment processes, examples		6	
	and case studies, removal of c materials for wastewater treatme	color, odor, NH ₄ -N and heavy metals, recovery of nutrients, nano-			
5		nent, waste-to-energy techniques, hazardous waste treatment		6	
	Air pollution – types of polluta	ants, sources and impacts, methods for prevention of air pollution,		6 10	
5	Air pollution – types of polluta dispersion and sampling, plume	ants, sources and impacts, methods for prevention of air pollution, behavior, emergency response to sudden leaks			
) '	Air pollution – types of polluta dispersion and sampling, plume Prevention of pollution in the ch	ants, sources and impacts, methods for prevention of air pollution, behavior, emergency response to sudden leaks memical industry, waste valorization		10 6	
5 7	Air pollution – types of polluta dispersion and sampling, plume	ants, sources and impacts, methods for prevention of air pollution, behavior, emergency response to sudden leaks memical industry, waste valorization		10	
5 5 7 8	Air pollution – types of polluta dispersion and sampling, plume Prevention of pollution in the ch	ants, sources and impacts, methods for prevention of air pollution, behavior, emergency response to sudden leaks nemical industry, waste valorization remedial measures		10 6	
5 7 3	Air pollution – types of polluta dispersion and sampling, plume Prevention of pollution in the ch Major environmental disasters, r	ants, sources and impacts, methods for prevention of air pollution, behavior, emergency response to sudden leaks memical industry, waste valorization remedial measures List of Text Books		10 6	
5 7 3	Air pollution – types of polluta dispersion and sampling, plume Prevention of pollution in the ch Major environmental disasters, r Environmental Pollution Contro	ants, sources and impacts, methods for prevention of air pollution, behavior, emergency response to sudden leaks nemical industry, waste valorization remedial measures List of Text Books ol Engineering – C. S. Rao, New Age International Publishers		10 6	
5 7	Air pollution – types of polluta dispersion and sampling, plume Prevention of pollution in the ch Major environmental disasters, r Environmental Pollution Contro	ants, sources and impacts, methods for prevention of air pollution, behavior, emergency response to sudden leaks memical industry, waste valorization remedial measures List of Text Books		10 6	
5 7 8	Air pollution – types of polluta dispersion and sampling, plume Prevention of pollution in the ch Major environmental disasters, n Environmental Pollution Contro Environmental and Pollution Sc	ants, sources and impacts, methods for prevention of air pollution, behavior, emergency response to sudden leaks nemical industry, waste valorization remedial measures List of Text Books ol Engineering – C. S. Rao, New Age International Publishers		10 6	

Course Code:	Course Title: Elective II	Cre	edits =	= 3
		L	Т	P
Semester: II	Total contact hours: 45	2	1	0
didate will have to choose one ele n at the end.	ective subject offered for that semester. A consolidated list of all the e	lectiv	e subje	cts is

Course Code:	Course Title: Elective III	Cre	edits =	= 3
		L	Т	P
Semester: II	Total contact hours: 45	2	1	0
didate will have to choose one ele n at the end.	ective subject offered for that semester. A consolidated list of all the e	lectiv	e subje	cts is

Course Code:	Course Title: Elective IV	Cre	dits =	= 3
		L	Τ	P
Semester: II	Total contact hours: 45	2	1	0
didate will have to choose one ele n at the end.	ctive subject offered for that semester. A consolidated list of all the e	lective	e subje	cts is

Course Code: GTP21	03 Course Titl	Research Project IICu	redits :	= 6
		L	Т	P
Semester: II	Total conta	hours: 180 0	0	12
Additional experiments will now per the guidelines provided in R an external examiner from the D	be performed. Base esearch Project I) an epartment/Industry.	the 1 st semester as Research Project I, will be conti on the results obtained thus far, the candidate shall subm make a presentation on the work done to the research s suitable combination of the marks for report and preser lso submit attendance record and laboratory journal (b	nit a repo uperviso ntation v	ort (as or and will be

Semester III & IV

	Course Code: GTPXX	Course Title: Research Project III	Cre	edits =	= 24
			L	Т	P
	Semester: III	Total contact hours: 360	0	0	24
repo supe prese	rt (as per the guidelines provide rvisor and an external examiner	ed further. Based on the work done during this semester, the candid ed in Research Project I) and make a presentation on the work dor from the Department/Industry. A suitable combination of the mar final evaluation. Candidate should also submit attendance record and or).	ne to 'ks fo	the res	search rt and

	Course Code: GTP2105	Course Title: Research, Thesis and Open Defence	Cre	dits =	= 24
			L	Т	P
	Semester: IV	Total contact hours: 360	0	0	24
Th	e research project will be continued	I further. At the end of this semester, the candidate shall write thesis (a	as per	Institu	tional

guidelines) and defend the work done in this thesis (Open Defence) by making a presentation to a Committee comprising the research supervisor, an external examiner from the Academia/Industry and another faculty member from the Department (as per Institutional guidelines). A suitable combination of the marks for thesis and presentation will be considered for the final evaluation. Candidate should also submit attendance record and laboratory journal (both signed by the research supervisor).

Electives

Course Code: GTT2101	Course Title: Cavitation for Green Processes	Cre	edits	= 3
		L	Т	P
Semester:	Total contact hours: 45	2	1	0
Cou	rse Outcomes (students will be able to)			
	cation aspects for cavitational reactors		K1, K	2
Predict cavitational intensities re			K4	
Apply the ultrasound reactors to	greener processing		K3, K	
Understand the scale-up aspects			K2, K	[4
Design cavitational reactors for	specific applications		K6	
	List of Prerequisite Courses			
 List of	courses where this course will be prerequisite			
Description of relev	ance of this course in the M. Tech. (Green Tech.) Prog	ram		
	se Contents (Topics and subtopics)			
		Ree	q d. h o	our
	of cavitation, sonochemistry, mechanisms of intensification	Red	3	our
		Red	-	our
Theoretical aspects in terms of l reactions inside the bubbles Cavitational reactor designs and	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters	Reo	3	our
Theoretical aspects in terms of l reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc.	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment,	Red	3	our
Theoretical aspects in terms of l reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc. Applications of cavitational re emulsification, extraction, distil	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment, actors in physical processing such as crystallization, atomization, lation	Red	3 3 3	<u>our</u>
Theoretical aspects in terms of l reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc. Applications of cavitational re emulsification, extraction, distil Applications of cavitational reac	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment, actors in physical processing such as crystallization, atomization, lation ctors in food processing applications		3 3 3 6 6 3	
Theoretical aspects in terms of 1 reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc. Applications of cavitational re emulsification, extraction, distil Applications of cavitational reac Possible combined routes for sy	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment, actors in physical processing such as crystallization, atomization, lation ctors in food processing applications		$\begin{array}{c} 3\\ 3\\ 3\\ \hline \\ 6\\ \hline \\ 6\\ \hline \\ 3\\ \hline \\ 3\\ \end{array}$	our
Theoretical aspects in terms of 1 reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc. Applications of cavitational re emulsification, extraction, distil Applications of cavitational reac Possible combined routes for sy Scale-up aspects	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment, actors in physical processing such as crystallization, atomization, lation etors in food processing applications nergistic effects		$\begin{array}{c} 3\\ 3\\ \hline 3\\ \hline 6\\ \hline 6\\ \hline \\ \hline 3\\ \hline 3\\ \hline 3\\$	<u>our</u>
Theoretical aspects in terms of 1 reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc. Applications of cavitational re emulsification, extraction, distil Applications of cavitational reac Possible combined routes for sy Scale-up aspects	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment, actors in physical processing such as crystallization, atomization, lation ctors in food processing applications		$\begin{array}{c} 3\\ 3\\ 3\\ \hline \\ 6\\ \hline \\ 6\\ \hline \\ 3\\ \hline \\ 3\\ \end{array}$	our
Theoretical aspects in terms of 1 reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc. Applications of cavitational re emulsification, extraction, distil Applications of cavitational reac Possible combined routes for sy Scale-up aspects	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment, actors in physical processing such as crystallization, atomization, lation ctors in food processing applications nergistic effects s related to the above topics will be given in the tutorial hours		$\begin{array}{c} 3\\ 3\\ \hline 3\\ \hline 6\\ \hline 6\\ \hline \\ 3\\ \hline 3\\ \hline 3\\ \hline$	our
Theoretical aspects in terms of 1 reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc. Applications of cavitational reac emulsification, extraction, distil Applications of cavitational reac Possible combined routes for sy Scale-up aspects Case study, short review project	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment, actors in physical processing such as crystallization, atomization, lation ctors in food processing applications nergistic effects s related to the above topics will be given in the tutorial hours List of Text Books		$\begin{array}{c} 3\\ 3\\ \hline 3\\ \hline 6\\ \hline 6\\ \hline \\ 3\\ \hline 3\\ \hline 3\\ \hline$	our
Theoretical aspects in terms of I reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc. Applications of cavitational reac emulsification, extraction, distil Applications of cavitational reac Possible combined routes for sy Scale-up aspects Case study, short review project Applied Sonochemistry – T. J. N	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment, actors in physical processing such as crystallization, atomization, lation ctors in food processing applications nergistic effects s related to the above topics will be given in the tutorial hours List of Text Books Mason, J. P. Lorimer, Wiley VCH Itrasound – Sonochemistry for Sustainability – Dong Chen, Sanjay K		$\begin{array}{c} 3\\ 3\\ \hline 3\\ \hline 6\\ \hline 6\\ \hline \\ 3\\ \hline 3\\ \hline 3\\ \hline$	our
Theoretical aspects in terms of l reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc. Applications of cavitational reac emulsification, extraction, distil Applications of cavitational reac Possible combined routes for sy Scale-up aspects Case study, short review project Applied Sonochemistry – T. J. M Handbook on Applications of U Sharma, Ackmez Mudhoo, CRC	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment, actors in physical processing such as crystallization, atomization, lation ctors in food processing applications nergistic effects s related to the above topics will be given in the tutorial hours List of Text Books Mason, J. P. Lorimer, Wiley VCH Itrasound – Sonochemistry for Sustainability – Dong Chen, Sanjay K C Press		$\begin{array}{c} 3\\ 3\\ \hline 3\\ \hline 6\\ \hline 6\\ \hline \\ 3\\ \hline 3\\ \hline 3\\ \hline$	
Theoretical aspects in terms of l reactions inside the bubbles Cavitational reactor designs and Applications of cavitational reac enzymatic reactions etc. Applications of cavitational reac emulsification, extraction, distil Applications of cavitational reac Possible combined routes for sy Scale-up aspects Case study, short review project Applied Sonochemistry – T. J. M Handbook on Applications of U Sharma, Ackmez Mudhoo, CRC	of cavitation, sonochemistry, mechanisms of intensification bubble dynamics, design aspects, prediction of cavitational intensity, effects of operating parameters ctors in chemical processing such as synthesis, wastewater treatment, actors in physical processing such as crystallization, atomization, lation etors in food processing applications nergistic effects s related to the above topics will be given in the tutorial hours List of Text Books Mason, J. P. Lorimer, Wiley VCH Itrasound – Sonochemistry for Sustainability – Dong Chen, Sanjay K C Press		$\begin{array}{c} 3\\ 3\\ \hline 3\\ \hline 6\\ \hline 6\\ \hline \\ 3\\ \hline 3\\ \hline 3\\ \hline$	

	Course Code: GTT2102	Course Title: Fuels Engineering	Cre	edits :	= 45
			L	Т	P
	Semester:	Total contact hours: 45	2	1	0
	Cou	rse Outcomes (students will be able to)			
		een fossil-derived and alternative fuels		K2	
2	Analyze the national and interna			K4	
3	Evaluate various options in the			K5	
ŀ	Formulate strategies to integrate	alternative fuels in the national energy basket		K6	
		List of Prerequisite Courses			
	Chemical Processes				
	List of	courses where this course will be prerequisite			
		vanced courses on clean energy transition in future.			
	Description of relev	ance of this course in the M. Tech. (Green Tech.) Prog	ram		
uu		ning hydrogen economy and methanol economy will also be discussed			
	Cours	se Contents (Topics and subtopics)		qd. ho	our
1	Cours Energy sources; classification of	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels		2	our
	Cours Energy sources; classification of	se Contents (Topics and subtopics)		1d. h o 2 8	our
1	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels		2	our
1 2 3	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed pl, biobutanol, biodiesel, green diesel, methanol and comparison with		2 8 8	bur
1 2 3	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal		2 8 8 8	bur
1 2 3 4 5	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal cation; examples; comparison with petroleum refineries		2 8 8	our
1 2 3 4 5	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal		2 8 8 8 8 6	bur
1 2 3 4 5 5	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc.	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal facation; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to-		2 8 8 8 8 6	bur
1 2 3 4 5 5 7	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc. Hydrogen economy; Methanol e	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal fecation; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- economy		2 8 8 8 6 5	
1 2 3 3 4 5 5 7 3	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc.	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal fecation; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- economy		2 8 8 8 6 5 2	
1 22 33 4 5 5 7 7 33	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc. Hydrogen economy; Methanol e Carbon credit; Cogeneration; Fu	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal ication; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- economy tel cells		2 8 8 8 6 5 2 2 2	<u>)ur</u>
1 22 33 4 5 5 7 7 33	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc. Hydrogen economy; Methanol e Carbon credit; Cogeneration; Fu Combustion of fuels	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal facation; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- economy hel cells newable resources		2 8 8 8 6 5 2 2 2 2 2)ur
1 2 3 4 5 5 7 7 3 9 10	Course Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc. Hydrogen economy; Methanol e Carbon credit; Cogeneration; Fu Combustion of fuels Fuels and fuel additives from ref	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal fication; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- conomy tel cells newable resources List of Text Books		2 8 8 8 6 5 2 2 2 2 2	
1 2 3 4 5 5 7 7 3 9 10	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc. Hydrogen economy; Methanol e Carbon credit; Cogeneration; Fu Combustion of fuels Fuels and fuel additives from ref	se Contents (Topics and subtopics) If fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal ication; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- economy tel cells newable resources List of Text Books ining – Mohamed A. Fahim, Taher A. Alsahhaf and Amal Elkilani		2 8 8 8 6 5 2 2 2 2 2	
1	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc. Hydrogen economy; Methanol e Carbon credit; Cogeneration; Fu Combustion of fuels Fuels and fuel additives from ref Fundamentals of Petroleum Reff Biomass for Renewable Energy,	se Contents (Topics and subtopics) If fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal fication; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- economy lel cells newable resources <u>List of Text Books</u> ining – Mohamed A. Fahim, Taher A. Alsahhaf and Amal Elkilani , Fuels, and Chemicals – Donald L. Klass		2 8 8 8 6 5 2 2 2 2 2	
1 22 3 4 5 5 5 7 7 3 9 10 10 1 2 3	Course Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc. Hydrogen economy; Methanol e Carbon credit; Cogeneration; Fu Combustion of fuels Fuels and fuel additives from ref Biomass for Renewable Energy, Chemistry of Fossil Fuels and B	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal facation; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- economy tel cells newable resources <u>List of Text Books</u> ining – Mohamed A. Fahim, Taher A. Alsahhaf and Amal Elkilani , Fuels, and Chemicals – Donald L. Klass iofuels – Harold H. Schobert		2 8 8 8 6 5 2 2 2 2 2	
$\frac{1}{2}$	Cours Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc. Hydrogen economy; Methanol e Carbon credit; Cogeneration; Fu Combustion of fuels Fuels and fuel additives from ref Fundamentals of Petroleum Reff Biomass for Renewable Energy,	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal facation; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- economy tel cells ining – Mohamed A. Fahim, Taher A. Alsahhaf and Amal Elkilani . Fuels, and Chemicals – Donald L. Klass iofuels – Harold H. Schobert : Sarkar - University Press		2 8 8 8 6 5 2 2 2 2 2	
$\frac{1}{2}$	Course Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc. Hydrogen economy; Methanol e Carbon credit; Cogeneration; Fu Combustion of fuels Fuels and fuel additives from refine Biomass for Renewable Energy, Chemistry of Fossil Fuels and B Fuels and Combustion – Sameer	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal facation; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- economy tel cells ining – Mohamed A. Fahim, Taher A. Alsahhaf and Amal Elkilani . Fuels, and Chemicals – Donald L. Klass iofuels – Harold H. Schobert : Sarkar - University Press		2 8 8 8 6 5 2 2 2 2 2	
2 3 5 5 7 3 3 9 10	Course Energy sources; classification of Gaseous fuels: Biogas, landfill g methane and shale gas Liquid fuels: Biofuels, bioethand petroleum-derived fuels Solid fuels: Biomass, plastic wa Bio-refineries; types and classifi Carbon capture and utilization/s liquids etc. Hydrogen economy; Methanol e Carbon credit; Cogeneration; Fu Combustion of fuels Fuels and fuel additives from ref Biomass for Renewable Energy, Chemistry of Fossil Fuels and B Fuels and Combustion – Sameer Alternative Fuels - S. S. Thipse	se Contents (Topics and subtopics) f fuels; traditional and alternate fuels; properties of fuels gas, hydrogen, LPG, natural gas, CNG, LNG, gas hydrates, coal-bed ol, biobutanol, biodiesel, green diesel, methanol and comparison with ste, municipal solid waste and comparison with coal facation; examples; comparison with petroleum refineries storage; IGCC; Fisher-Tropsch synthesis; gas-to-liquids and coal-to- economy tel cells ining – Mohamed A. Fahim, Taher A. Alsahhaf and Amal Elkilani . Fuels, and Chemicals – Donald L. Klass iofuels – Harold H. Schobert : Sarkar - University Press		2 8 8 8 6 5 2 2 2 2 2	

	Course Code: GTT2103	Course Title: Nano-materials: Fundamentals and	Cre	dits =	= 3
		Applications	L	Т	P
	Semester:	Total contact hours: 45	2	1	0
	Cou	rse Outcomes (students will be able to)			
		y and applications of nanomaterials		K1	
r	Understand properties and featu			K2	
	Understand methods for the ana			K2	
	Evaluate techniques for the synt	hesis of nanomaterials		K5	
		List of Prerequisite Courses			
	Fundamentals of Green Chemis	try and Technology			
	List of	courses where this course will be prerequisite			
	Research Project III and Research				
	×	•			
	Description of relev	ance of this course in the M. Tech. (Green Tech.) Prog	ram		
his	s course will enable the students r	ealize the importance of nanotechnology and its applications.			
		se Contents (Topics and subtopics)	Req	[d. h o	our
		historical development and scope		3	
		materials - micro structures, defects and dislocations, nano devices		6	
	Synthesis of nano materials – b chemical methods – sol gel proc	ottom up and top down approaches – vapor deposition methods, wet esses, mechanical methods		6	
		icles – synthesis and stabilization - chemical methods, green synthesis		6	
i		ano particles stabilized by framework materials		4	
	Nano materials in catalysis and	applications – quantum dots, nano tubes, nano wires, nano crystals		4	
				4	
	Nano composites- polymer and	rials – Structural, microstructural and micro-chemical analysis of		4	
				4	
	nanomaterials using X-ray diffra	action and electron microscopy			
	Nano structured materials with s	special applications		4	
)	Nano structured materials with s	special applications no materials – Environmental, ecological and health hazards of		4	
	Nano structured materials with s Toxicology and safety of nar	special applications no materials – Environmental, ecological and health hazards of and its impact on environment			
0	Nano structured materials with s Toxicology and safety of nar nanoparticles, nano-toxicology a	special applications no materials – Environmental, ecological and health hazards of and its impact on environment List of Text Books			
0	Nano structured materials with s Toxicology and safety of nan nanoparticles, nano-toxicology a Textbook of Nanoscience and N	special applications no materials – Environmental, ecological and health hazards of and its impact on environment List of Text Books Nanotechnology – B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath,			
0	Nano structured materials with s Toxicology and safety of nar nanoparticles, nano-toxicology a Textbook of Nanoscience and M James Murday – Springer Univer	special applications no materials – Environmental, ecological and health hazards of and its impact on environment List of Text Books Nanotechnology – B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath, ersity Press			
0	Nano structured materials with s Toxicology and safety of nar nanoparticles, nano-toxicology a Textbook of Nanoscience and N James Murday – Springer Unive Nanoscale Materials in Chemist Nanomaterials Chemistry – Rec	special applications no materials – Environmental, ecological and health hazards of and its impact on environment List of Text Books Nanotechnology – B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath, ersity Press ry – Kenneth J. Klabunde, Wiley and Sons ent Developments and New Directions – C.N.R. Rao, A. Muller and			
	Nano structured materials with s Toxicology and safety of nar nanoparticles, nano-toxicology a Textbook of Nanoscience and N James Murday – Springer Unive Nanoscale Materials in Chemist Nanomaterials Chemistry – Rec A.K. Cheetham (Eds.) – Wiley	special applications no materials – Environmental, ecological and health hazards of and its impact on environment List of Text Books Nanotechnology – B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath, ersity Press ry – Kenneth J. Klabunde, Wiley and Sons ent Developments and New Directions – C.N.R. Rao, A. Muller and			
0	Nano structured materials with s Toxicology and safety of nar nanoparticles, nano-toxicology a Textbook of Nanoscience and N James Murday – Springer Unive Nanoscale Materials in Chemist Nanomaterials Chemistry – Rec A.K. Cheetham (Eds.) – Wiley Nanotechnology: Fundamentals	special applications no materials – Environmental, ecological and health hazards of and its impact on environment List of Text Books Nanotechnology – B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath, ersity Press ry – Kenneth J. Klabunde, Wiley and Sons ent Developments and New Directions – C.N.R. Rao, A. Muller and VCH and Applications – Manasi Karkare			
0	Nano structured materials with s Toxicology and safety of nar nanoparticles, nano-toxicology a Textbook of Nanoscience and N James Murday – Springer Unive Nanoscale Materials in Chemist Nanomaterials Chemistry – Rec A.K. Cheetham (Eds.) – Wiley Nanotechnology: Fundamentals List of A	special applications no materials – Environmental, ecological and health hazards of and its impact on environment List of Text Books Nanotechnology – B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath, ersity Press ry – Kenneth J. Klabunde, Wiley and Sons ent Developments and New Directions – C.N.R. Rao, A. Muller and VCH and Applications – Manasi Karkare			
	Nano structured materials with s Toxicology and safety of nar nanoparticles, nano-toxicology a Textbook of Nanoscience and N James Murday – Springer Unive Nanoscale Materials in Chemist Nanomaterials Chemistry – Rec A.K. Cheetham (Eds.) – Wiley Nanotechnology: Fundamentals List of A	special applications no materials – Environmental, ecological and health hazards of and its impact on environment List of Text Books Nanotechnology – B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath, ersity Press ry – Kenneth J. Klabunde, Wiley and Sons ent Developments and New Directions – C.N.R. Rao, A. Muller and VCH and Applications – Manasi Karkare Additional Reading Material / Reference Books als: Synthesis, Properties and Applications – G. Cao, Y. Wang			

	Course Code: GTTXX	Course Title: Intensification of Chemical Processes	Cre	edits	= 3
			L	Т	P
	Semester:	Total contact hours: 45	2	1	0
	~				
		urse Outcomes (students will be able to)	1		
		tensification in chemical engineering and green chemistry		K1	
2		uch as principles, domain, tools etc.		K2	
3	Classify equipment and method			K4	
ŀ	Choose the best among separat	ion process intensification technologies		K5	
		List of Prerequisite Courses			
	Chemical Technology; Separat	ion Processes			
	List of	courses where this course will be prerequisite			
1	Process Optimization				
	Description of relev	vance of this course in the M. Tech. (Green Tech.) Prog	ram		
Thi	s course will provide in-depth ins	ight into intensification of chemical processes and separation technique	es.		
Гhi		ight into intensification of chemical processes and separation techniquerse Contents (Topics and subtopics)	1	qd. he	ours
Гhi		rse Contents (Topics and subtopics)	1	<u>q</u>d. h o 3	ours
	Cour Process Intensification (PI) – W Principles of PI; Domains of PI	rse Contents (Topics and subtopics) Why? (; Toolbox for PI	1	-	our
	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations	rse Contents (Topics and subtopics) Why? (; Toolbox for PI with / without chemical reactions:	1	3	ours
- 2. 3	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations Static mixers, Rotating packed	rse Contents (Topics and subtopics) Vhy? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc.	Red	3 6 12	our
- 2. 3	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations Static mixers, Rotating packed	rse Contents (Topics and subtopics) Why? (; Toolbox for PI with / without chemical reactions:	Red	3 6	our
	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations Static mixers, Rotating packed Methods for PI – Multifunction	rse Contents (Topics and subtopics) /hy? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc. onal reactors, Hybrid separations, Alternative energy sources, Other	Red	3 6 12	our
	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations Static mixers, Rotating packed Methods for PI – Multifunction methods Reactive distillation, Reactive of	rse Contents (Topics and subtopics) /hy? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc. onal reactors, Hybrid separations, Alternative energy sources, Other	Red	3 6 12	our
-	CourProcess Intensification (PI) – WPrinciples of PI; Domains of PIEquipment for PI – OperationsStatic mixers, Rotating packedMethods for PI – MultifunctionmethodsReactive distillation, Reactive ofFuel cells, Ultrasound and MiccoSeparation Process Intensification	rse Contents (Topics and subtopics) Why? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc. onal reactors, Hybrid separations, Alternative energy sources, Other extraction, Membrane reactors rowave, Supercritical fluids etc. ion Technologies – Examples and Applications	Red	3 6 12	
<u> </u>	CourProcess Intensification (PI) – WPrinciples of PI; Domains of PIEquipment for PI – OperationsStatic mixers, Rotating packedMethods for PI – MultifunctionmethodsReactive distillation, Reactive ofFuel cells, Ultrasound and MiccoSeparation Process Intensification	rse Contents (Topics and subtopics) Why? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc. onal reactors, Hybrid separations, Alternative energy sources, Other extraction, Membrane reactors rowave, Supercritical fluids etc.	Red	3 6 12 12	our;
2	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations Static mixers, Rotating packed Methods for PI – Multifunction methods Reactive distillation, Reactive of Fuel cells, Ultrasound and Mich Separation Process Intensification Internally heat-integrated distil	rse Contents (Topics and subtopics) /hy? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc. onal reactors, Hybrid separations, Alternative energy sources, Other extraction, Membrane reactors rowave, Supercritical fluids etc. ion Technologies – Examples and Applications lation, Dividing wall column, Cyclic distillation List of Text Books		3 6 12 12	ours
<u> </u>	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations Static mixers, Rotating packed Methods for PI – Multifunction methods Reactive distillation, Reactive of Fuel cells, Ultrasound and Mich Separation Process Intensification Internally heat-integrated distil	rse Contents (Topics and subtopics) /hy? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc. onal reactors, Hybrid separations, Alternative energy sources, Other extraction, Membrane reactors rowave, Supercritical fluids etc. ion Technologies – Examples and Applications lation, Dividing wall column, Cyclic distillation List of Text Books		3 6 12 12	
	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations Static mixers, Rotating packed Methods for PI – Multifunction methods Reactive distillation, Reactive of Fuel cells, Ultrasound and Micro Separation Process Intensification Internally heat-integrated distil Process Intensification Technol	rse Contents (Topics and subtopics) Vhy? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc. onal reactors, Hybrid separations, Alternative energy sources, Other extraction, Membrane reactors rowave, Supercritical fluids etc. ion Technologies – Examples and Applications lation, Dividing wall column, Cyclic distillation		3 6 12 12	
-	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations Static mixers, Rotating packed Methods for PI – Multifunction methods Reactive distillation, Reactive of Fuel cells, Ultrasound and Micro Separation Process Intensification Internally heat-integrated distil Process Intensification Technol	rse Contents (Topics and subtopics) Why? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc. onal reactors, Hybrid separations, Alternative energy sources, Other extraction, Membrane reactors rowave, Supercritical fluids etc. ion Technologies – Examples and Applications lation, Dividing wall column, Cyclic distillation List of Text Books ogies For Green Chemistry – Kamelia Boodhoo, Adam Harvey, Wiley		3 6 12 12	our
-	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations Static mixers, Rotating packed Methods for PI – Multifunction methods Reactive distillation, Reactive of Fuel cells, Ultrasound and Micro Separation Process Intensification Internally heat-integrated distil Process Intensification Technol The Fundamentals of Process Stefanidis, John Wiley & Sons	rse Contents (Topics and subtopics) /hy? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc. onal reactors, Hybrid separations, Alternative energy sources, Other extraction, Membrane reactors rowave, Supercritical fluids etc. ion Technologies – Examples and Applications lation, Dividing wall column, Cyclic distillation List of Text Books ogies For Green Chemistry – Kamelia Boodhoo, Adam Harvey, Wiley Intensification - Andrzej Stankiewicz, Tom Van Gerven, Georgios		3 6 12 12	
-	Cour Process Intensification (PI) – W Principles of PI; Domains of PI Equipment for PI – Operations Static mixers, Rotating packed Methods for PI – Multifunction methods Reactive distillation, Reactive a Fuel cells, Ultrasound and Mich Separation Process Intensification Internally heat-integrated distil Process Intensification Technol The Fundamentals of Process Stefanidis, John Wiley & Sons	rse Contents (Topics and subtopics) Why? (; Toolbox for PI with / without chemical reactions: beds, Heat exchange reactors etc. onal reactors, Hybrid separations, Alternative energy sources, Other extraction, Membrane reactors rowave, Supercritical fluids etc. ion Technologies – Examples and Applications lation, Dividing wall column, Cyclic distillation List of Text Books ogies For Green Chemistry – Kamelia Boodhoo, Adam Harvey, Wiley		3 6 12 12	

	Course Code: GTT2105	Course Title: Renewable Energy Resources	Cre	edits	= 3
			L	Т	P
	Semester:	Total contact hours: 45	2	1	0
	Cou	rse Outcomes (students will be able to)			
		ewable energy resources and their relevance	T	K2	
,		llenges in the renewable energy sector		K2 K4	
	Evaluate various options in the			K5	
		renewables in the national energy basket		K6	
				110	
	Industrial & Engineering Chami	List of Prerequisite Courses	1		
	Industrial & Engineering Chemi	suy			
	List of	courses where this course will be prerequisite			
		vanced course on any renewable resources, viz. solar or wind etc.			
	Description of rolay	ance of this course in the M. Tech. (Green Tech.) Prog	rom		
	Description of relev	ance of this course in the Mr. Tech. (Green Tech.) Trog	1 аш		
eve	eral aspects of renewable energy	resources, such as solar, wind, hydro-power, biomass etc. will be	intro	duced	to 1
ud	ents. Besides, the challenges ahea	d along the clean energy transition will be discussed.			
	Cours	se Contents (Topics and subtopics)	Ree	qd. h	oul
		energy, environment and sustainable development; Energy sources,		6	
	sun as the source of energy; pho	tosynthesis; classification of energy sources, fossil fuel reserves and			
	resources - overview of global/I				
	Energy, ecology and environm	nent: concept and theories of ecosystems; energy flow in major		8	
		al, industrial and urban ecosystems; sources of pollution from energy			
	technologies and the impact on a	tmosphere - air, water, soil, and environment; environmental laws on			
		l sustainability; eco-restoration/phyto-remediation; renewable energy			
	technologies, industrial ecology	agro-ecology and other appropriate green technologies			
	Solar Energy: solar radiation -	measurements and prediction; India's solar energy potential and		8	
	challenges; solar thermal energy	v conversions systems - flat-plate collectors, solar concentrators and			
	other applications; Solar Photow	oltaic: principle of photovoltaic conversion of solar energy, types of			
	solar cells and fabrication				
	Wind Energy: Wind Resource;	Meteorology of wind; India's wind energy potential and challenges;		8	
	distribution across the world; E	olian features; Biological indicators; Wind measurement systems -			
	anemometers, wind velocity dis	tributions, wind shear, turbulence, Betz limit and energy potentials;			
	Wind Energy Conversion System	ns - Classifications and applications			
		resource; bio-energy potential and challenges - classification and		8	
		and characteristics of biofuels: Biodiesel, Bio-ethanol, Biogas; Types			
	÷, ,	stems; waste to energy conversions			
	Other renewable resources: Hyd	ro-electricity; Geothermal; Tidal energy etc.		7	
	1	List of Text Books	1		
	Renewable Energy Sources and	Emerging Technologies – D. P. Kothari, K. C. Singal, Rakesh Ranjan			
	Non-Conventional Energy Sour				
	Textbook of Renewable Energy	(Woodhead Publishing India in Energy) – S. C. Bhatia, R. K. Gupta			
	List of A	Additional Reading Material / Reference Books			
		al Applications and Technologies – C. S. Solanki, Prentice-Hall	T		
	Solar i notovoltales. Fundament	מו הקרות מותו דת וווחסוטצולא – ל. ג. גטומווגו, דופותולפ-רומוו			
	1		1		

	Course Code: GTT2106 Semester:	Course Title: Green Biotechnology	Cre	edits	= 3
			L	Т	Р
	Semester:	Total contact hours: 45	2	1	0
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		rse Outcomes (students will be able to)		***	
1	Identify green concepts in biotec			K1	
2 3	Understand the scope of green b	notechnology en biotechnology in fermentation industry		K2	
5 4	Evaluate methods for the design			K2 K5	
+	Evaluate methods for the design			КJ	
		List of Prerequisite Courses			
	Biochemical Engineering				
	List of	courses where this course will be prerequisite	L		
	Advanced courses in application	· · ·			
	Description of relev	ance of this course in the M. Tech. (Green Tech.) Prog	ram		
	llenges will be elucidated.				
	Cours	se Contents (Topics and subtopics)	Rec	qd. he	ours
1	Cours Biotechnology, applications of g	reen concepts in biotechnology	Rec	6	ours
1	Cours Biotechnology, applications of g Genetic engineering, DNA reco manufacturing	preen concepts in biotechnology pombinant technology, hybrid technology, single cell proteins, gene	Rec	-	ours
1 2	Course Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment	reen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms		6	ours
1 2	Course Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment Bioprocess simulations, molec	preen concepts in biotechnology pombinant technology, hybrid technology, single cell proteins, gene		6 9	Durs
1 2	Course Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment Bioprocess simulations, molect engineering	reen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms cular modelling for protein synthesis and drug design, protein		6 9	ours
1 2	Course Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment Bioprocess simulations, molec engineering Applications in fermentation inc	preen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms cular modelling for protein synthesis and drug design, protein dustry, pharmaceutical industry, medical field such as gene therapy,		6 9	DURS
1 2 3	Cours Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment Bioprocess simulations, molec engineering Applications in fermentation into biomedical engineering, case stu	preen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms cular modelling for protein synthesis and drug design, protein dustry, pharmaceutical industry, medical field such as gene therapy, idies		6 9 12	DUITS
1 2 3	Cours Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment Bioprocess simulations, molec engineering Applications in fermentation into biomedical engineering, case stu Bioreactor design, scale-up of b	preen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms cular modelling for protein synthesis and drug design, protein dustry, pharmaceutical industry, medical field such as gene therapy, idies io-reactors, downstream processing in the biochemical industry		6 9	DUR
1 2 3	Cours Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment Bioprocess simulations, molec engineering Applications in fermentation in biomedical engineering, case stu Bioreactor design, scale-up of b Organic synthesis using support	preen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms cular modelling for protein synthesis and drug design, protein dustry, pharmaceutical industry, medical field such as gene therapy, idies io-reactors, downstream processing in the biochemical industry		6 9 12 9	
1 2 3	Cours Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment Bioprocess simulations, molec engineering Applications in fermentation in biomedical engineering, case stu Bioreactor design, scale-up of b Organic synthesis using support	preen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms cular modelling for protein synthesis and drug design, protein dustry, pharmaceutical industry, medical field such as gene therapy, adies io-reactors, downstream processing in the biochemical industry ed microbes and enzymes ies and biotechnologies; Bio-inorganics		6 9 12 9	
	Cours Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment Bioprocess simulations, molec engineering Applications in fermentation in biomedical engineering, case stu Bioreactor design, scale-up of b Organic synthesis using support Biopharmaceuticals; Bio-refiner	preen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms cular modelling for protein synthesis and drug design, protein dustry, pharmaceutical industry, medical field such as gene therapy, idies io-reactors, downstream processing in the biochemical industry ed microbes and enzymes		6 9 12 9	
1 2 3 4 5	Cours Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment Bioprocess simulations, molec engineering Applications in fermentation in biomedical engineering, case stu Bioreactor design, scale-up of b Organic synthesis using support Biopharmaceuticals; Bio-refiner Industrial Biotechnology – Sus Wandamme – Wiley VCH	reen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms cular modelling for protein synthesis and drug design, protein dustry, pharmaceutical industry, medical field such as gene therapy, idies io-reactors, downstream processing in the biochemical industry ed microbes and enzymes ies and biotechnologies; Bio-inorganics <u>List of Text Books</u> tainable Growth and Economic Success – Wilm Soetaert, Reic J.		6 9 12 9	
1 2 3 4 5	Cours Biotechnology, applications of g Genetic engineering, DNA reco manufacturing Fermentation, design of ferment Bioprocess simulations, molec engineering Applications in fermentation in biomedical engineering, case stu Bioreactor design, scale-up of b Organic synthesis using support Biopharmaceuticals; Bio-refiner Industrial Biotechnology – Sus Wandamme – Wiley VCH	reen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms cular modelling for protein synthesis and drug design, protein dustry, pharmaceutical industry, medical field such as gene therapy, idies io-reactors, downstream processing in the biochemical industry ed microbes and enzymes ies and biotechnologies; Bio-inorganics List of Text Books		6 9 12 9	
1 2 3 4 5	Course           Biotechnology, applications of g           Genetic engineering, DNA recommanufacturing           Fermentation, design of ferment           Bioprocess simulations, molectering           Applications in fermentation intermedical engineering, case stt           Bioreactor design, scale-up of b           Organic synthesis using support           Biopharmaceuticals; Bio-refiner           Industrial Biotechnology – Sus           Wandamme – Wiley VCH           Concepts in Biotechnology – Hit           VCH	reen concepts in biotechnology ombinant technology, hybrid technology, single cell proteins, gene ers with modified organisms cular modelling for protein synthesis and drug design, protein dustry, pharmaceutical industry, medical field such as gene therapy, idies io-reactors, downstream processing in the biochemical industry ed microbes and enzymes ies and biotechnologies; Bio-inorganics <u>List of Text Books</u> tainable Growth and Economic Success – Wilm Soetaert, Reic J.		6 9 12 9	

	Course Code: GTTXX	Course Title: Life Cycle Assessment	Cr	edits	= 3
			L	Т	P
	Semester:	Total contact hours: 45	2	1	0
	Co	urse Outcomes (students will be able to)			
	Understand the basic concept o			K2	
2	Apply LCA to process selection			K3	
3	Analyze environmental system			K4	
ļ	Develop methodological frame	work for life cycle process design		K6	
		List of Prerequisite Courses			
Ĺ	Fundamentals of Green Chemis	stry and Technology			
	List of	f courses where this course will be prerequisite			
	Research Project III and Research	· · ·			
	Description of roles		Program	l	
Life	-	vance of this course in the M. Tech. (Green Tech.) attion to process selection, design and optimization will be taught			
Life	e cycle assessment and its applica	tion to process selection, design and optimization will be taught rse Contents (Topics and subtopics)	t in this cou		ours
1	e cycle assessment and its applica Cour Introduction to Life Cycle Asse	tion to process selection, design and optimization will be taught rse Contents (Topics and subtopics) essment (LCA)	t in this cou	rse. <b>qd. h</b> 4	ours
l 2	e cycle assessment and its applica Cour Introduction to Life Cycle Asse Methodological framework for	tion to process selection, design and optimization will be taught rse Contents (Topics and subtopics) essment (LCA) LCA	t in this cou	rse. <b>qd. h</b> 4 4	ours
2	e cycle assessment and its applica Com Introduction to Life Cycle Asse Methodological framework for Stages in the life cycle of a pro	tion to process selection, design and optimization will be taught <b>rse Contents (Topics and subtopics)</b> essment (LCA) LCA duct; Interactions between LCA stages	t in this cou	rse.	ours
2	e cycle assessment and its applica Cour Introduction to Life Cycle Asse Methodological framework for Stages in the life cycle of a pro Environmental system analysis	tion to process selection, design and optimization will be taught <b>rse Contents (Topics and subtopics)</b> essment (LCA) LCA duct; Interactions between LCA stages	t in this cou	rse. <b>qd. h</b> 4 4 4 5	ours
2	e cycle assessment and its applica Cour Introduction to Life Cycle Asse Methodological framework for Stages in the life cycle of a pro Environmental system analysis Applications of LCA; Uses of I	tion to process selection, design and optimization will be taught <b>rse Contents (Topics and subtopics)</b> essment (LCA) LCA duct; Interactions between LCA stages LCA by the industry	t in this cou	rse.	ours
2 3 4 5	e cycle assessment and its applica Cour Introduction to Life Cycle Asse Methodological framework for Stages in the life cycle of a pro Environmental system analysis Applications of LCA; Uses of I LCA for process selection, desi	tion to process selection, design and optimization will be taught <b>rse Contents (Topics and subtopics)</b> essment (LCA) LCA duct; Interactions between LCA stages LCA by the industry ign and optimization	t in this cou	rse.	ours
2 3 4 5 7	e cycle assessment and its applica Coun Introduction to Life Cycle Asse Methodological framework for Stages in the life cycle of a pro Environmental system analysis Applications of LCA; Uses of I LCA for process selection, desi Examples and case studies; LC	tion to process selection, design and optimization will be taught rse Contents (Topics and subtopics) essment (LCA) LCA duct; Interactions between LCA stages LCA by the industry ign and optimization A flow diagrams	t in this cou	rse. <b>qd. h</b> 4 4 4 5 6 8 8 8	ours
	e cycle assessment and its applica Coun Introduction to Life Cycle Asse Methodological framework for Stages in the life cycle of a pro Environmental system analysis Applications of LCA; Uses of I LCA for process selection, desi Examples and case studies; LC	tion to process selection, design and optimization will be taught <b>rse Contents (Topics and subtopics)</b> essment (LCA) LCA duct; Interactions between LCA stages LCA by the industry ign and optimization	t in this cou	rse.	ours
2 3 4 5 7	e cycle assessment and its applica Coun Introduction to Life Cycle Asse Methodological framework for Stages in the life cycle of a pro Environmental system analysis Applications of LCA; Uses of I LCA for process selection, desi Examples and case studies; LC	tion to process selection, design and optimization will be taught rse Contents (Topics and subtopics) essment (LCA) LCA duct; Interactions between LCA stages LCA by the industry ign and optimization A flow diagrams	t in this cou	rse. <b>qd. h</b> 4 4 4 5 6 8 8 8	
	e cycle assessment and its applica Coun Introduction to Life Cycle Asse Methodological framework for Stages in the life cycle of a pro Environmental system analysis Applications of LCA; Uses of I LCA for process selection, desi Examples and case studies; LC General methodological framework Life Cycle Sustainability Assess by: Jingzheng Ren and Sara To	tion to process selection, design and optimization will be taught rse Contents (Topics and subtopics) essment (LCA) LCA duct; Interactions between LCA stages LCA by the industry ign and optimization A flow diagrams work for Life Cycle Process Design List of Text Books ssment for Decision-Making Methodologies and Case Studies - I oniolo	Ree Ree Edited	rse. <b>qd. h</b> 4 4 4 5 6 8 8 8	
	e cycle assessment and its applica Coun Introduction to Life Cycle Asse Methodological framework for Stages in the life cycle of a pro Environmental system analysis Applications of LCA; Uses of I LCA for process selection, desi Examples and case studies; LC General methodological framework Life Cycle Sustainability Assess by: Jingzheng Ren and Sara To	tion to process selection, design and optimization will be taught rse Contents (Topics and subtopics) essment (LCA) LCA duct; Interactions between LCA stages LCA by the industry ign and optimization A flow diagrams work for Life Cycle Process Design List of Text Books ssment for Decision-Making Methodologies and Case Studies - I	Ree Ree Edited	rse. <b>qd. h</b> 4 4 4 5 6 8 8 8	
	e cycle assessment and its applica Coun Introduction to Life Cycle Asse Methodological framework for Stages in the life cycle of a pro Environmental system analysis Applications of LCA; Uses of I LCA for process selection, desi Examples and case studies; LC General methodological framework Life Cycle Sustainability Assess by: Jingzheng Ren and Sara To New Frontiers on Life Cycle A	tion to process selection, design and optimization will be taught rse Contents (Topics and subtopics) essment (LCA) LCA duct; Interactions between LCA stages LCA by the industry ign and optimization A flow diagrams work for Life Cycle Process Design List of Text Books ssment for Decision-Making Methodologies and Case Studies - I oniolo	t in this courses and the second seco	rse. <b>qd. h</b> 4 4 4 5 6 8 8 8	
2 3 4 5 7	e cycle assessment and its applica Coun Introduction to Life Cycle Asses Methodological framework for Stages in the life cycle of a pro Environmental system analysis Applications of LCA; Uses of 1 LCA for process selection, desi Examples and case studies; LC General methodological framework Life Cycle Sustainability Assess by: Jingzheng Ren and Sara Too New Frontiers on Life Cycle A Life Cycle Assessment Theory Irving Olsen	tion to process selection, design and optimization will be taught rse Contents (Topics and subtopics) essment (LCA) LCA duct; Interactions between LCA stages LCA by the industry ign and optimization A flow diagrams work for Life Cycle Process Design List of Text Books ssment for Decision-Making Methodologies and Case Studies - I niolo ssessment Theory and Application - Edited by Antonella Petrillo	t in this courses and the second seco	rse. <b>qd. h</b> 4 4 4 5 6 8 8 8	

	Course Code: GTTXX	Course Title: Membrane Technology	Cre	edits :	= 3
			L	Т	Р
	Semester:	Total contact hours: 45	2	1	0
	·				
	Co	urse Outcomes (students will be able to)			
1	Differentiate between several n	6		K2	
2	Apply basic principles to detern			K3	
3		hniques and choose the best option for a given application		K5	
1	Formulate an appropriate desig	n strategy		K6	
		List of Prerequisite Courses			
1	Basic course on separation tech	niques			
		f courses where this course will be prerequisite	1		
	Advanced course on the applica	ations of membrane separations in the chemical industry			
	Description of relev	vance of this course in the M. Tech. (Green Tech.) Prog	ram		
Juc		membrane technologies, industrial applications and design consideration	JIIS.		
<u></u>		rse Contents (Topics and subtopics)	1	qd. he	ours
1	Cour Membrane separation processes	rse Contents (Topics and subtopics) s, preparation and characterization of membranes	1	<b><u>q</u>d. h</b> o	ours
1	Cour Membrane separation processes Principles of reverse osmosis, r	rse Contents (Topics and subtopics) s, preparation and characterization of membranes hanofiltration, ultrafiltration, microfiltration	1	-	ours
l 2 3	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes,	rse Contents (Topics and subtopics) s, preparation and characterization of membranes hanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling	1	4	ours
1 2 3 4	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme	rse Contents (Topics and subtopics) s, preparation and characterization of membranes nanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades	1	4 4 4 4	ours
1 2 3 4 5	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design	rse Contents (Topics and subtopics) s, preparation and characterization of membranes nanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades n considerations	1	4 4 4 4 6	ours
1 2 3 4 5 5	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati	rse Contents (Topics and subtopics) s, preparation and characterization of membranes nanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades	1	4 4 4 4 6 4	ours
2 3 4 5 7	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors	rse Contents (Topics and subtopics) s, preparation and characterization of membranes hanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades in considerations on, Pervaporation, Dialysis, Electrodialysis	1		ours
1 2 3 4 5 5 5 7 3	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors Emulsion liquid membranes, St	rse Contents (Topics and subtopics) s, preparation and characterization of membranes hanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades n considerations on, Pervaporation, Dialysis, Electrodialysis	1		ours
1 2 3 4 5 5 5 7 3	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors Emulsion liquid membranes, So Examples of applications: Desa	rse Contents (Topics and subtopics) s, preparation and characterization of membranes hanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades in considerations on, Pervaporation, Dialysis, Electrodialysis	1		ours
1 2 3 3 4 5 5 7 3 3	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors Emulsion liquid membranes, So Examples of applications: Desa treatment	rse Contents (Topics and subtopics) s, preparation and characterization of membranes nanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades n considerations on, Pervaporation, Dialysis, Electrodialysis upported liquid membranes dination, CO ₂ separation using membranes, Membranes in wastewater	1		
1 2 3 3 4 5 5 7 3 3	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors Emulsion liquid membranes, So Examples of applications: Desa	rse Contents (Topics and subtopics) s, preparation and characterization of membranes hanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades in considerations on, Pervaporation, Dialysis, Electrodialysis upported liquid membranes dination, CO ₂ separation using membranes, Membranes in wastewater technology	1	$     \begin{array}{r}       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       8 \\       5   \end{array} $	
1 2 3 3 4 5 5 5 7 7 3 3	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors Emulsion liquid membranes, St Examples of applications: Desa treatment Recent advances in membrane	rse Contents (Topics and subtopics) s, preparation and characterization of membranes hanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades n considerations on, Pervaporation, Dialysis, Electrodialysis upported liquid membranes dination, CO ₂ separation using membranes, Membranes in wastewater technology List of Text Books	1	$     \begin{array}{r}       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       8 \\       5   \end{array} $	0 <b>U</b> TS
1 2 3 3 4 5 5 5 7 7 3 3 9 10	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors Emulsion liquid membranes, So Examples of applications: Desa treatment Recent advances in membrane Membrane Technology and Ap	rse Contents (Topics and subtopics) s, preparation and characterization of membranes nanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades n considerations on, Pervaporation, Dialysis, Electrodialysis upported liquid membranes ulination, CO ₂ separation using membranes, Membranes in wastewater technology List of Text Books plications – R. W. Baker, John Wiley and Sons	r	$     \begin{array}{r}       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       8 \\       5   \end{array} $	
1 2 3 3 4 5 5 5 7 7 3 3 9 10	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors Emulsion liquid membranes, So Examples of applications: Desa treatment Recent advances in membrane Membrane Technology and Ap Basic Principles of Membrane	rse Contents (Topics and subtopics) s, preparation and characterization of membranes nanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades n considerations on, Pervaporation, Dialysis, Electrodialysis upported liquid membranes ilination, CO ₂ separation using membranes, Membranes in wastewater technology <u>List of Text Books</u> plications – R. W. Baker, John Wiley and Sons Technology – M. Mulder, Springer	r	$     \begin{array}{r}       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       8 \\       5   \end{array} $	
1 2 3 3 4 5 5 5 7 7 3 3 9 10	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors Emulsion liquid membranes, Su Examples of applications: Desa treatment Recent advances in membrane Membrane Technology and Ap Basic Principles of Membrane	rse Contents (Topics and subtopics) s, preparation and characterization of membranes hanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades in considerations on, Pervaporation, Dialysis, Electrodialysis upported liquid membranes ilination, CO ₂ separation using membranes, Membranes in wastewater technology <u>List of Text Books</u> plications – R. W. Baker, John Wiley and Sons Technology – M. Mulder, Springer bechnologies – Lawrence K. Wang, Jiaping Paul Chen, Yung-Tse Hung,	r	$     \begin{array}{r}       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       8 \\       5   \end{array} $	
1 2 3 3 4 4 5 5 5 7 7 8 9 10 1 2	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors Emulsion liquid membranes, So Examples of applications: Desa treatment Recent advances in membrane Membrane Technology and Ap Basic Principles of Membrane	rse Contents (Topics and subtopics) s, preparation and characterization of membranes hanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades in considerations on, Pervaporation, Dialysis, Electrodialysis upported liquid membranes ilination, CO ₂ separation using membranes, Membranes in wastewater technology <u>List of Text Books</u> plications – R. W. Baker, John Wiley and Sons Technology – M. Mulder, Springer bechnologies – Lawrence K. Wang, Jiaping Paul Chen, Yung-Tse Hung,	r	$     \begin{array}{r}       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       8 \\       5   \end{array} $	
1 2 3 4 5 6 7 8 9 10 10 1 2 3	Cour Membrane separation processes Principles of reverse osmosis, r Transport through membranes, Membrane modules, arrangeme Performance criteria and design Forward Osmosis, Gas separati Membrane reactors Emulsion liquid membranes, St Examples of applications: Desa treatment Recent advances in membrane Membrane Technology and Ap Basic Principles of Membrane Membrane and Desalination Te Nazih K. Shammas, SpringerLi	rse Contents (Topics and subtopics) s, preparation and characterization of membranes hanofiltration, ultrafiltration, microfiltration resistance models, concentration polarization and fouling ent of modules in cascades in considerations on, Pervaporation, Dialysis, Electrodialysis upported liquid membranes ilination, CO ₂ separation using membranes, Membranes in wastewater technology <u>List of Text Books</u> plications – R. W. Baker, John Wiley and Sons Technology – M. Mulder, Springer bechnologies – Lawrence K. Wang, Jiaping Paul Chen, Yung-Tse Hung,	r	$     \begin{array}{r}       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       4 \\       8 \\       5   \end{array} $	

	Course Code: GTT2109	Course Title: Instrumental Methods of Analysis	Credits =		= 3	
			L	Т	P	
	Semester:	Total contact hours: 45	2	1	0	
	•					
	Cou	rse Outcomes (students will be able to)				
	Understand the basic principles	of instrumental methods of analysis		K2		
2	Determine the error in analytica	1 measurements		K3		
5	Assess various options for analy			K5		
ŀ	Apply analytical procedures for	specific applications		K3		
		List of Prerequisite Courses				
	Any basic course on analytical c	chemistry				
	List of	courses where this course will be prerequisite				
	Research Project III and Research	· · ·				
	Description of relev	ance of this course in the M. Tech. (Green Tech.) Prog	ram			
Гhi	s course will ensure that students u	understand theory and operating principles of analytical instruments.				
Гhi	Cours	se Contents (Topics and subtopics)	Ree	q <b>d. h</b> o	ours	
[	Cours Analytical procedures; Good lab	se Contents (Topics and subtopics)	Red	5	ours	
	Cours Analytical procedures; Good lat Errors in analysis - systematic a	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least	Rec	•	ours	
	Cours Analytical procedures; Good lab Errors in analysis - systematic a square method, correlation coeff	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least ficients	Rec	5	our	
	Cours Analytical procedures; Good lat Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis,	Red	5	ours	
	Cours Analytical procedures; Good lab Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials	Red	55	our	
	Cours Analytical procedures; Good lat Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis,	Rec	5	<u>our</u>	
2	Cours Analytical procedures; Good lat Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p BOD and COD determination	se Contents (Topics and subtopics) boratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality;	Rec	5 5 7	ours	
2	Cours Analytical procedures; Good lat Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p BOD and COD determination Instrumental methods – Criteria	se Contents (Topics and subtopics) boratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality; for selecting instrumental methods - precision, sensitivity, selectivity,	Rec	55	our	
	Cours Analytical procedures; Good lat Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p BOD and COD determination Instrumental methods – Criteria and detection limit, transducers,	se Contents (Topics and subtopics) boratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality; for selecting instrumental methods - precision, sensitivity, selectivity, sensors and detectors, signals and noise	Red	5 5 7	our	
	Cours Analytical procedures; Good lat Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p BOD and COD determination Instrumental methods – Criteria and detection limit, transducers,	se Contents (Topics and subtopics) boratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality; for selecting instrumental methods - precision, sensitivity, selectivity,	Rec	5 5 7 8	<u>our</u>	
	Cours Analytical procedures; Good lat Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p BOD and COD determination Instrumental methods – Criteria and detection limit, transducers, Chromatographic methods of a columns, detectors.	se Contents (Topics and subtopics) boratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality; for selecting instrumental methods - precision, sensitivity, selectivity, sensors and detectors, signals and noise		5 5 7 8	our	
-	Cours Analytical procedures; Good lab Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p BOD and COD determination Instrumental methods – Criteria and detection limit, transducers, Chromatographic methods of a columns, detectors. Ion exchange chromatography, of Atomic and molecular spectros	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality; for selecting instrumental methods - precision, sensitivity, selectivity, sensors and detectors, signals and noise analysis – GC and HPLC – Principles, columns including chiral exclusion chromatography, gel permeation chromatography, HP-TLC copic methods – AES, ICP-AES, flame photometry UV-Vis, FT-IR		5 5 7 8	our:	
	Cours Analytical procedures; Good lab Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p BOD and COD determination Instrumental methods – Criteria and detection limit, transducers, Chromatographic methods of a columns, detectors. Ion exchange chromatography, e	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality; for selecting instrumental methods - precision, sensitivity, selectivity, sensors and detectors, signals and noise analysis – GC and HPLC – Principles, columns including chiral exclusion chromatography, gel permeation chromatography, HP-TLC copic methods – AES, ICP-AES, flame photometry UV-Vis, FT-IR		5 5 7 8 10		
	Cours Analytical procedures; Good lab Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p BOD and COD determination Instrumental methods – Criteria and detection limit, transducers, Chromatographic methods of a columns, detectors. Ion exchange chromatography, of Atomic and molecular spectros	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality; for selecting instrumental methods - precision, sensitivity, selectivity, sensors and detectors, signals and noise analysis – GC and HPLC – Principles, columns including chiral exclusion chromatography, gel permeation chromatography, HP-TLC copic methods – AES, ICP-AES, flame photometry UV-Vis, FT-IR ative and qualitative analysis		5 5 7 8 10	<u>our</u>	
-	Cours Analytical procedures; Good lat Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p BOD and COD determination Instrumental methods – Criteria and detection limit, transducers, Chromatographic methods of columns, detectors. Ion exchange chromatography, of Atomic and molecular spectross and NMR techniques in quantita	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality; for selecting instrumental methods - precision, sensitivity, selectivity, sensors and detectors, signals and noise analysis – GC and HPLC – Principles, columns including chiral exclusion chromatography, gel permeation chromatography, HP-TLC copic methods – AES, ICP-AES, flame photometry UV-Vis, FT-IR ative and qualitative analysis List of Text Books		5 5 7 8 10		
-	Cours Analytical procedures; Good lat Errors in analysis - systematic a square method, correlation coeff Sampling – basics and procedure instrument calibration and valid Applied analysis – analytical p BOD and COD determination Instrumental methods – Criteria and detection limit, transducers, Chromatographic methods of columns, detectors. Ion exchange chromatography, of Atomic and molecular spectross and NMR techniques in quantita	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality; for selecting instrumental methods - precision, sensitivity, selectivity, sensors and detectors, signals and noise analysis – GC and HPLC – Principles, columns including chiral exclusion chromatography, gel permeation chromatography, HP-TLC copic methods – AES, ICP-AES, flame photometry UV-Vis, FT-IR ative and qualitative analysis		5 5 7 8 10		
	Cours         Analytical procedures; Good lab         Errors in analysis - systematic a         square method, correlation coeff         Sampling – basics and procedure         instrument calibration and valid         Applied analysis – analytical p         BOD and COD determination         Instrumental methods – Criteria         and detection limit, transducers,         Chromatographic methods of a         columns, detectors.         Ion exchange chromatography, e         Atomic and molecular spectrose         and NMR techniques in quantita         Vogel's Textbook of Quantitative	se Contents (Topics and subtopics) poratory practices and random errors, statistical treatment of experimental results, least ficients es, preparation of laboratory samples, t and F tests, regression analysis, ation, certified reference materials rocedures in environmental monitoring; water, soil and air quality; for selecting instrumental methods - precision, sensitivity, selectivity, sensors and detectors, signals and noise analysis – GC and HPLC – Principles, columns including chiral exclusion chromatography, gel permeation chromatography, HP-TLC copic methods – AES, ICP-AES, flame photometry UV-Vis, FT-IR ative and qualitative analysis List of Text Books		5 5 7 8 10		

I D 2 D 3 U 4 A I A I A Гhis сс	Describe basics of colloids and i Discuss the characteristics of surfactoristics of a surfactoristic of surfactoristics of a surfactoristic of surfactoristics of a surfactoristic of a surfacto	rfactants ce thermodynamics factants and disperse systems List of Prerequisite Courses d surface phenomena courses where this course will be prerequisite	L 2	T 1 K1 K2 K2 K4	
D           2         D           3         U           4         A           1         A           1         A           1         A           1         A           1         Chis color           1         C	Cou Describe basics of colloids and i Discuss the characteristics of sur Juderstand the features of surface Analyze the performance of surf A basic course on adsorption and List of Advanced course on interfacial se Description of relevant Durse will introduce the students	Interfacial phenomena rfactants ce thermodynamics factants and disperse systems List of Prerequisite Courses d surface phenomena courses where this course will be prerequisite science ance of this course in the M. Tech. (Green Tech.) Programmers s to colloids, interfacial phenomena and surfactants.		K1 K2 K2 K4	
P D A U A A A A Chis co	Describe basics of colloids and i Discuss the characteristics of surfactoristics of a surfactoristic of surfactoristics of a surfactoristic of surfactoristics of a surfactoristic of a surfacto	interfacial phenomena rfactants ce thermodynamics factants and disperse systems List of Prerequisite Courses d surface phenomena courses where this course will be prerequisite science ance of this course in the M. Tech. (Green Tech.) Programmers s to colloids, interfacial phenomena and surfactants.		K2 K2 K4	
A A A	Describe basics of colloids and i Discuss the characteristics of surfactoristics of a surfactoristic of surfactoristics of a surfactoristic of surfactoristics of a surfactoristic of a surfacto	interfacial phenomena rfactants ce thermodynamics factants and disperse systems List of Prerequisite Courses d surface phenomena courses where this course will be prerequisite science ance of this course in the M. Tech. (Green Tech.) Programmers s to colloids, interfacial phenomena and surfactants.	ram	K2 K2 K4	
A A A A A A C	Discuss the characteristics of surface Juderstand the features of surface Analyze the performance of surface A basic course on adsorption and List of Advanced course on interfacial se Description of relevant burse will introduce the students	rfactants ce thermodynamics factants and disperse systems List of Prerequisite Courses d surface phenomena courses where this course will be prerequisite science ance of this course in the M. Tech. (Green Tech.) Programmers s to colloids, interfacial phenomena and surfactants.	ram	K2 K2 K4	
A A A A A A A A A A A A A A A A A A A	Understand the features of surface Analyze the performance of surface A basic course on adsorption and List of Advanced course on interfacial s Description of relevant ourse will introduce the students	ce thermodynamics factants and disperse systems List of Prerequisite Courses d surface phenomena courses where this course will be prerequisite science ance of this course in the M. Tech. (Green Tech.) Programmers s to colloids, interfacial phenomena and surfactants.		<u>K2</u> K4	
	Analyze the performance of surf A basic course on adsorption and List of Advanced course on interfacial s Description of relevance ourse will introduce the students	factants and disperse systems          List of Prerequisite Courses         d surface phenomena         courses where this course will be prerequisite         science         ance of this course in the M. Tech. (Green Tech.) Programmers         s to colloids, interfacial phenomena and surfactants.		K4	
A A This co	A basic course on adsorption and List of Advanced course on interfacial s Description of releven ourse will introduce the students	List of Prerequisite Courses d surface phenomena courses where this course will be prerequisite science ance of this course in the M. Tech. (Green Tech.) Programs s to colloids, interfacial phenomena and surfactants.			
A This co	List of Advanced course on interfacial s Description of relevant ourse will introduce the students	d surface phenomena courses where this course will be prerequisite science ance of this course in the M. Tech. (Green Tech.) Programmers s to colloids, interfacial phenomena and surfactants.	ram		
A Chis cc	List of Advanced course on interfacial s Description of relevant ourse will introduce the students	d surface phenomena courses where this course will be prerequisite science ance of this course in the M. Tech. (Green Tech.) Programmers s to colloids, interfacial phenomena and surfactants.	ram		
This co	Advanced course on interfacial s <b>Description of relev</b> ourse will introduce the students	science ance of this course in the M. Tech. (Green Tech.) Progress to colloids, interfacial phenomena and surfactants.	ram		
This co	Advanced course on interfacial s <b>Description of relev</b> ourse will introduce the students	science ance of this course in the M. Tech. (Green Tech.) Progress to colloids, interfacial phenomena and surfactants.	ram		
This co	<b>Description of releva</b>	ance of this course in the M. Tech. (Green Tech.) Progress to colloids, interfacial phenomena and surfactants.	ram	<u> </u>	
C	ourse will introduce the students	s to colloids, interfacial phenomena and surfactants.	<u>ram</u>	l	
C	ourse will introduce the students	s to colloids, interfacial phenomena and surfactants.	<u>ram</u>	<u> </u>	
C		- -			
			Re	qd. ho	<u></u>
		ce of surface tension/surface free energy, Laplace equation, Young		<b>qu. m</b> 6	Jui
		nomena, Measurement of surface tension, Contact angle wetting		0	
	Surface Thermodynamics: Surf sotherm and surface excess qua	ace thermodynamic properties, Kelvin equation, Gibbs adsorption ntities, insoluble monolayers		8	
		e adsorption, Adsorption isotherms – Langmuir, Freundlich, BET etc. rical double layer models, adsorption at s/l and l/l interfaces)		8	
S Su an h	Surfactants and surfactant aggre urfactant biodegradability, surfa nd size of aggregates, determ	egates - classification and synthesis of surfactants, bio-surfactants, actant aggregates – CMC – determination and factors affecting shape lination of HLB, models for micelle formation, swollen micelles, micelles: location of solubilizate in micelles, measurement of		9	
	Detergency and selective solubil			6	
er H	mulsions, stability of emulsion	nd emulsions, stability of colloids, emulsions: micro and macro s (mechanical vs. thermodynamic), Bancroft rule, de-emulsification, ulsions, applications, Foams: Gibbs triangle, film elasticity, drainage ications of foam		8	
		List of Toyt Dools			
E	Foundations of Colloid Science	List of Text Books – Robert J Hunter – Oxford University Press	<u> </u>		
		- Robert J Hunter - Oxford University Press omena - Milton J Rosen, Joy T. Kunjappu, Wiley Interscience	+		
		s: Principles and Applications – Drew Myers, John Wiley and Sons	+		
	strates, morrades and conord		+		
	List of A	Additional Reading Material / Reference Books			