Revised Syllabus for Two Years Master's (M.Sc.) Programme in Physics (Materials Science) (2023-2024)

DEPARTMENT OF PHYSICS INSTITUTE OF CHEMICAL TECHNOLOGY (University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

A. Preamble:

Physics is both important and influential because advances in its understanding have often translated into newer technologies, which are of interdisciplinary consequences. Any newer area of research is characterized by a statement of different enforcing conditions; success lies in how correctly the basic physical phenomena are interpreted in these conditions.

In tune with the aforesaid, to make research and development meaningful and effective, a post-graduate (PG) program in Physics with specialization in Materials science was started in 2014. This program is designed to educate students-

- ▶ In basic physics Physics at atomic and molecular level.
- > In various statistical, computational and numerical methods.
- In fundamentals of Materials science-from microscopic understanding to applications
- > In physical and analytical characterization methods used in Materials research.
- In research areas, by introducing electives and assigning result oriented research projects. The research areas will include various aspects of materials science in line with the expertise of faculties in the department.

This course is developed to equip students with a basic understanding of relevant Physics and various analytical tools. Students, hence, can effectively contribute to multiple industries and/or emerging branches of research. This entire approach resonates with the national initiative taken by MHRD, MNRE and Govt. of India to have healthy educational and research culture.

B. Regulations Related to the M. Sc. Physics (Materials Science) Course

• Intake

20 candidates shall be admitted every year. The distribution of seats shall be as per the Institute's norms.

• Admission

The candidate who have taken the post-H.S.C. 3-year degree course of Bachelor of Science with 6 units of Physics at the third year of the course and any two of chemistry, mathematics or statistics as the two other subjects at the first and second years of University of Mumbai or of any other recognized University; and passed the qualifying examination with at least 60% of the marks in aggregate or equivalent grade average. (55% for the backward class candidates only from Maharashtra State are eligible to apply).

The candidates who have cleared the qualifying examination in one sitting will be preferred. The admissions will be done strictly on the basis of merit, based on the marks obtained in the qualifying examination.

• Course structure:

- a. The course is a credit-based 4-semester (2-year) course.
- b. The course has an exit option after one year with a "Diploma" as per the guidelines of NEP 2020.
- c. There will be two semesters in a year:
 - i. Semester I and Semester III (July to December)
 - ii. Semester II and Semester IV (December to May)

- iii. Each semester will consist of 15-16 weeks of instruction, including seminars/projects/assignments.
- d. The On Job Training (OJT) will be at the end of the second semester (during summer vacations) for 8 10 weeks and carries 4 credits.
- e. At the end of each semester, the candidates will be assessed as per the institute's norms.
- f. Semesters will be governed by the institute's academic calendar.
- g. The requirement of attendance of the students shall be as per the norms of the institute.
- h. All the institute's relevant academic regulations shall be applicable to the course.
- i. Students will be assessed as per the institute's norms.
- j. In case of any difficulty regarding any assessment component of the course, the Departmental Committee shall take an appropriate decision, which will be considered final.

k. Evaluation Process:

Evaluation for the courses will be according to the revised document of R.9 credit system and mode of evaluation; the link is provided below, or you can visit the website (ictmumbai.edu.in) for the details.

Link:

https://www.ictmumbai.edu.in/uploaded_files/R_9(Revised)_Credit_system.pdf A general evaluation process for theory and lab courses is given below

Theory Courses

Continuous Assessment Test (CAT): Continuous assessment will vary from course to course; the instructor will decide the evaluation mode. Two to three CATs (Continuous Assessment Tests) will be conducted throughout the course, usually before and after the midsemester examination. These CATs will carry a total weightage of 20%. Depending on the instructor, assignments, case studies, group discussions, and seminars could also form part of the continuous assessment.

Mid-semester exam: Total 30 Marks (theory paper)

End-semester exam: Total 50 Marks (theory paper)

Practical Courses (PYP 2XXX)

Continuous assessment: 50 Marks

Performing given experiments as per the instructions, submission of lab journal on time, viva voce, group/personal discussions, and quizzes can be part of continuous assessment. The course instructor will discuss the composition of marks for these at the beginning of the course.

End Semester: 50 Marks (Lab experiment performance followed by viva-voce examination)

1. Electives:

- i. Elective course will be offered during the each of the semester programme and the list of electives will be made available to the students before commencement of the semester.
- ii. Open electives will also be offered which may be of two types: (a) students may be allowed to take it from well-established MOOC courses with prior approval from the department (b) it may also be proposed by a faculty with detailed syllabus and get prior approval from the department.

m. Research Project:

- i. At the end of the Second semester, the Head of Department in consultation with the Departmental Committee will assign topics for the Research Projects (4 credits) to the students and assign the supervisors.
- ii. The students will do the Research Projects (6 credits) in semester IV on the topics assigned under the supervision of the assigned faculty member.
- iii. The students shall submit the project report before the prescribed date which will be a date before the last date of the semester IV. The report shall be submitted with soft binding.
- iv. The project report will be examined by the supervisor along with one other internal/external referee to be appointed by the Departmental committee. The referees shall give marks to the report as per the norms.
- v. The students will make presentation on the work in front of the Project Evaluation Committee (PEC) appointed by the Departmental Committee, in open defence form. The PEC will give marks to the presentation.

The comments received from the referees as well as given by the PEC need to be incorporated in the final project report in consultation with the supervisor.

Department of Physics A semester-wise pattern of the M.Sc. (Physics) course (As per NEP guidelines)

SUBJECT	SUBIFCT	Credits			eek	Marks distribution			
CODE	SCHILC I	Cituits	L	Т	Р	CA	MS	ES	Total
PYT 2111	Classical Mechanics & Mathematical Physics	4	3	1	-	20	30	50	100
PYT 2112	Quantum Mechanics I	4	3	1	I	20	30	50	100
PYT 2113	Solid State Physics	4	3	1	I	20	30	50	100
PYT 211X	Elective-I	4	3	1	I	20	30	50	100
PYP 2115	General Physics Laboratory	2	-	I	4	50	-	50	100
HUT 21XX	HUT 21XX Research Methodology		3	1	I	20	30	50	100
	Total	22	15	05	04				600

SEMESTER I

SEMESTER II

SUBJECT	SUBIECT		Hrs	s/We	ek	Marks distribution			
CODE	SCDJEC I	Credits	L	Т	Р	CA	MS	ES	Total
PYT 2211	Materials Science & Synthesis	4	3	1	-	20	30	50	100
PYT 2212	Materials Characterisation Techniques	4	3	1	-	20	30	50	100
PYT 2213	Quantum Mechanics II	2	1	1	-	20	30	50	100
PYT 221X	Elective-II	4	3	1	I	20	30	50	100
PYP 2215	Chemical Physics Laboratory	2	-	-	4	50	-	50	100
PYP 2216	Internship (On Job Training)	4	-	-	8	100	-	-	100
	Total	20	10	04	12				600

SEMESTER III

SUBJECT	SUBIFCT	Credits	Hrs	s/We	ek	Marks distribution			
CODE	SUBJECT	Creans	L	Т	Р	CA	MS	ES	Total
PYT 2311	Colour Physics	2	1	1	-	20	30	50	100
PYT 2312	Classical Electrodynamics	4	3	1	-	20	30	50	100
PYT 2313	Introduction to Nanoscience	4	3	1	-	20	30	50	100
PYT 231X	Elective-III	4	3	1	-	20	30	50	100
PYP 2315	Electronics Laboratory	2	-	-	4	50	-	50	100
PYP 2316	16 Research Project-I		-	-	8	100	-	-	100
	Total	20	10	4	12				600

SEMESTER IV

SUBJECT	SUBIECT	Credits	Hr	s/W	eek	Marks distribution			
CODE	SCDJEC I	creatis	L	Т	Р	CA	MS	ES	Total
PYT 2411	Numerical Techniques using Python	4	3	1	-	20	30	50	100
PYT 2412	Molecular Quantum Mechanics	2	1	1	-	20	30	50	100
PYT 2413	Statistical Mechanics	4	3	1	-	20	30	50	100
PYT 241X	Elective-IV	4	3	1	-	20	30	50	100
PYP 2415	Research Project-II	6	-		12	200	-	-	200
	Total	20	10	4	12				600

Program Outcomes (POs) for M.Sc. Physics (Material Science)

PO1	Fundamentals of Physics: A strong grasp of the fundamentals of physics required in solving complex physics problems.
PO2	Experimental Skill set: Expertise in techniques of advanced experimental measurement, and analysis of results to determine physical quantities.
PO3	Foundation of Materials Science: Sound understanding of the physics of materials. Skill to select, design, synthesize, characterize, and thoroughly investigate materials from a fundamental and applied point of view.
PO4	Modern tool usage: Select, modify, and apply appropriate existing techniques, resources, and modern IT tools for the solution of relevant problems.
PO5	Problem analysis: Identify, formulate, review research literature, and analyze complex real-life problems using mathematics, statistics, and computational methods.
PO6	Sustainability: Awareness of the importance of sustainability and environmental impact in the context of using materials for technological applications.
PO7	Research based Teaching Learning: Possess the necessary skills to compete at the national and international level for entrance exams and placements in academia and industry.
PO8	Societal Applications: Apply the knowledge gained to devise solutions that address societally relevant problems.
PO9	Ethics: Strict adherence and commitment to follow ethical principles and norms of the practice of physical and material sciences in all verticals of industry and society.
PO10	Individual and teamwork: Ability to work effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Communication: Communicate effectively on complex industrial/natural problems, understand the functional requirements, identify the gaps, and be able to provide solutions. Possess skills in effective dissemination of information to a diverse audience.
PO12	Life-long learning: Recognize the need for and have the ability to engage in independent and life-long learning.

Program Specific Outcomes (PSOs) for M.Sc. Physics (Material Science)

PSO1	Exposure and ability to use advanced formalism in Physical Sciences to analyze
1501	Exposure and ability to use advanced formatism in thysical Sciences to analyze
	the problems in Materials science from fundamental view point.
PSO2	Students will be equipped with necessary knowledge and expertise to quantum
	mechanically analyze a variety of problem in materials science
PSO3	Competence in handling the necessary numerical techniques required in Materials
	science.
PSO4	Students will have a good grasp over advanced mathematical techniques used for
	analysis of physical problems.
PSO5	Develop a sound understanding of materials properties from the Physico-chemical
	perspective and their dependance on various parameters.
PSO6	Ability to select, design, synthesize, process, characterize, and thoroughly
	investigate materials from a functional viewpoint.

SEMESTER-I

Mathematical PhysicsLSemester: ITotal contact hours: 603	110 -	: 04
Semester: I Total contact hours: 60 3	Т	Р
	1	-

List of pr	erequisite	Courses
------------	------------	---------

Adequate number of Physics courses at undergraduate level

List of Courses where this course will be a prerequisite

PYT2213-Quantum Mechanics-II, PYT2312-Classical Electrodynamics, PYT2414-Molecular Quantum Mechanics

Description of relevance of this course in the M.Sc. Physics Program

This course gives the foundation for most of the advanced topics in Physics. The concepts of Lagrangian, Hamiltonian and other formalisms covered in this course are important to understand introduction course on quantum mechanics. Mathematical methods covered here are essential in covering topics in electrodynamics, thermodynamics/statistical physics.

Course Outcomes (students will be able to.....)

CO1	Understand the Lagrangian formulation of Classical Mechanics as an alternative	K3
	approach to the Newtonian approach and its advantages in solving advanced	
	Classical Mechanics problems.	
CO2	Use the Hamilton's equation to analyze systems and to calculate the Poisson brackets	K4
	and set up the Poisson equation of motion.	
CO3	Apply the above formulations to study small oscillations of mechanical systems and	K5
	to calculate the vibrational frequencies of simple molecules.	
CO4	Use Laplace transforms and the Frobenius method to solve differential equations.	K3
CO5	Calculate contour integrals using algebra of functions of complex variable.	K4
	Comme Contante (Tenice and militaries)	Reqd. hours
	Course Contents (Topics and subtopics)	Ĩ
	Lagrangian Formulation of classical mechanics:	
1	Degrees of freedom, constraints and types of constraints. D' Alembert's principle	10
	and the Lagrange's equations of motion. Velocity dependent potentials and	
	dissipation function.	
	Hamilton's principle, derivation of Lagrange's equations from Hamilton's principle.	
	Some techniques of the calculus of variation, conservation theorems and symmetry	
	properties.	
	The Hamilton equations of motion:	
2	Legendre transformations and the Hamilton equations of motion, cyclic coordinates	
	and constants of motion. The physical significance of the Hamiltonian. Canonical	10
	transformations, the equations of canonical transformation, examples, Poisson	
	brackets and the Poisson equation of motion.	
	Small oscillations:	
3	Formulation of the problem, the eigenvalue equation and the principal axes	10
	transformation, normal coordinates, free vibrations of a triatomic molecule and its	
	eigenfrequencies.	
	Complex Analysis:	
	Functions of a complex variable, analytic functions and the Cauchy -Riemann	
4	conditions. Contour integrals, Cauchy-Goursat theorem, Cauchy integral formula	12
	and its applications. Taylor and Laurent series. Residues and poles, the residue	
	theorem and applications.	
	Integral Transforms:	
5	Laplace Transform, definition and properties. The inverse Laplace transform.	06
	Applications.	_
L		

	Differential Equations:	
6	First and second order differential equations, the Frobenius method of series	12
	solutions. The Bessel, Legendre, Laguerre and Hermite equations and their	
	solutions. Green's function and its applications.	
	List of Textbooks/Reference books	
	References Classical Mechanics:	
	1. Classical Mechanics: H. Goldstein, Poole and Safko 3rd edition, Pearson	
	2. Classical Mechanics: N. C. Rana and P.S. Joag Tata McGraw Hill publication	
	3. Mechanics: Landau and Lifshitz, Butterworth, Heinmann	
	4. Mechanics: K.R. Symon	
	5. Introduction to Classical Mechanics: R. G. Takwale and P. S. Puranik	
	References Mathematical Physics:	
	1. M. L. Boas, Mathematical Methods in the Physical Sciences, Wiley India	
	2. G. Arfken: Mathematical Methods for Physicists, Academic Press	
	3. A.K. Ghatak, I. C. Goyal and S. J Chua, Mathematical Physics, Macmillan	
	4. J. Mathews and R.L. Walker, Mathematical methods of Physics.	
	5. R. V. Churchill and J.W. Brown, Complex Variables and Applications, V.	
	McGraw Hill.	

	Mapping of course outcome (CO) to the program outcome (PO)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	2	2	3	3	3	3	3	3	2	2
CO2	2	2	2	3	2	3	3	3	3	3	2	2
CO3	2	2	2	3	2	3	3	3	3	3	2	2
CO4	2	2	2	2	3	3	3	3	3	3	2	2
CO5	2	2	2	2	2	3	3	3	3	3	2	2

K1-remember; K2-comprehension; K3-application; K4-analysis; K5-synthesis; K6-evaluation

	Mapping of	course outcor	ne (CO) to the	program speci	fic outcome (P	'SO)				
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	CO1 2 2 2 2 3									
CO2 2 2 2 3 2										
CO3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
CO4	CO4 2 2 2 3 3 3									
CO5	CO5 2 2 2 2 3									
Cour	rse Code: PY	Г Cou	rse Title: Qua	ntum Mecha	nics I	C	red	its =	- 04	
2112							L	Т	P	
Seme	ester: I	Tota	l contact hou	rs: 60			3	1	-	
		I	ist of prerequ	uisite Courses						
	Ade	equate number	er of physics c	ourses at unde	rgraduate leve	el				
	Lis	st of Courses	s where this c	ourse will be a	a prerequisite	e				
	PYT2211-Q	uantum Mec	hanics II, PYT	2412-Molecul	lar Quantum M	Mechanics				

	Description of relevance of this course in the M.Sc. Physics Program	
Stude	nts will be equipped with necessary knowledge and expertise to quantum mechanical	lly analyze the
variet	y of problem in physical and Chemical sciences.	
	Course Outcomes (students will be able to)	
CO1	Understand the basic postulates of quantum Mechanics.	K2
CO2	Use quantum mechanical operators and formulate the Schrödinger equation.	K3
CO3	Use the Schrodinger equation to obtain eigenvalues and eigenfunctions for a	K3
004	variety of time independent potentials.	KO.
C04	Understand the concept of commutator of operators and the underlying	K3
005	symmetries the Hamiltonian and the eigenfunctions/eigenvalues.	17.4
COS	(i.e the Dirac formalism)	K4
CO6	Calculate expectation values of observables for a hydrogen atom, by solving the	K4
	Schrodinger equation in three dimensions using polar coordinates.	
	Course Contents (Topics and subtopics)	Reqd. hours
1	Review of concepts:	
	Wave Particle duality and the de Broglie hypothesis, Heisenberg's uncertainty principle: probability waves and Born interpretation. Definition of the probability	06
	current density J and the continuity equation satisfied by J.	
2	Theory: Postulates of QM: Observables and operators, measurement, the state function and expectation values. The time-dependent Schrodinger equation conversion to the steady state equation for time independent potentials. Time development of the state, eigenvalues and eigenfunctions. Properties of well-behaved wave functions. The most general solution to the Schrodinger equation. Expansion of an arbitrary state in an orthonormal eigenbasis. Calculation of the expansion coefficients. Expectation values in mixed states. Definition of commutator and the corresponding commutation relations among various operators. Ehrnfest theorems. Symmetries of the Hamiltonian and associated conserved quantities. Parity operator. Wave packets, definition and relation to the Heisenberg uncertainty principle. Parseval's theorem.	20
3	Schrodinger equation solutions: One-dimensional Problems: Particle in a box, finite potential well, finite barrier, step potential and harmonic oscillator in terms of creation and annihilation operators. General properties of the Hermite polynomials.	13
4	Formalism: Dirac notation, Hilbert space, Hermitian operators and their properties, matrix mechanics, basis and representations, unitary and similarity transformations, Schrodinger, Heisenberg and Dirac pictures of quantum mechanics. The Heisenberg equation of motion.	10
5	Quantum theory of the hydrogen atom	

Schrodinger equation for hydrogen atom, separation of variables, angular equations: spherical harmonics, radial equation: eigenvalues and eigenfunctions, degeneracy. Probability distribution in various states.	11
List of Textbooks/Reference books	
 Introductory Quantum Mechanics – R. Liboff Quantum Mechanics – A. Ghatak and S. Lokanathan Introduction to Quantum Mechanics – D. J. Griffiths Principles of Quantum Mechanics – R. Shankar E. Merzbacher, Quantum Mechanics, 3rd ed., 1998. 	
 6) G. Baym, Lectures on Quantum Mechanics, 1969. 	

	Mapping of course outcome (CO) to the program outcome (PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	2	1	3	1	3	1	2	2	2	3	
CO2	3	1	2	1	3	1	3	1	2	2	2	3	
CO3	3	1	2	1	3	1	3	1	2	2	2	3	
CO4	3	1	2	1	3	1	3	1	2	2	2	3	
CO5	3	1	2	1	3	1	3	1	2	2	2	3	
CO6	3	1	2	1	3	1	3	1	2	2	2	3	

Mapping of course outcome (CO) to the program specific outcome (PSO)											
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6					
CO1	3	3	1	2	1	1					
CO2	3	3	1	2	1	1					
CO3	3	3	1	2	1	1					
CO4	3	3	1	2	1	1					
CO5	3	3	1	2	1	1					
CO6	3	3	1	2	1	1					

Course Code: PYT 2113	Course Title: Solid State Physics	Cree	= 04				
Semester: I	Total contact hours: 60	3	1	-			
	List of prerequisite Courses						
Adequate nu	mber of Physics courses at the undergraduate level						
List of Co	ourses where this course will be a prerequisite						
PYT2214-Introduction to ce	eramics, PYT2312-Introduction to Nanoscience, Materia	uls Sci	ence				
Description of the	relevance of this course in the M.Sc. Physics Program	m					
It forms the foundation for under	standing the physics of materials from a fundamental view	wpoin	t, the	reby			
helping to attain program-specifi	c outcomes.						
Cour	rse Outcomes (students will be able to)						

CO1	Understand the detailed structure of solids and identify symmetry, periodicity in lattices.	K2
CO2	Understand and Interpret results of diffraction experiments for crystal structure determination.	K3
CO3	Understand lattice vibration and their role in determining thermal and optical properties of solids.	K2
CO4	Correlate structural symmetry with dielectric properties by understanding the microscopic origins of polarization.	K4
CO5	Understanding origins of magnetic ordering and classify materials based on their magnetic and/or superconducting properties.	K4
	Course Contents (Topics and subtopics)	Reqd. hours
1	Crystal structure & Crystal Defects: Crystalline Periodicity, Crystal symmetry; position, planes and directions in crystals. Interplanar spacing Point defects, equilibrium concentration of point defects, colour centres, Screw and edge dislocations, stacking faults, grain boundaries; Role of crystal defects in crystal growth.	10
2	Diffraction in crystals: X-rays, electron and neutron: Elastic scattering of waves by a point scatterer, atom and a lattice. Interference of waves & Laue conditions. Reciprocal lattice and X ray diffraction. Ewald construction. Atomic scattering factor and structure factor. Experimental techniques for diffraction.	10
3	Fermi surface, lattice vibrations and thermal physics Fermi surfaces in free electron and nearly free electron approximation, Zone schemes. Lattice vibrations: normal modes in mono and diatomic chain of atoms. Dispersion relations and normal mode frequencies. Quantisation of lattice vibrations, scattering of phonons – normal and Umklapp process, lattice thermal resistivity. Lattice optical properties in Infra Red region.	10
4	Dielectric and Optical Properties: The local field. Sources of polarizability. Dielectric properties, Clausius-Mossoti relation, Ferroelectrics and piezoelectrics. Electronic polarizability, Ionic polarizability.	10
5	Magnetism: Magnetic susceptibility and classification of magnetic materials. Diamagnetism, paramagnetism- free ion, Hund's Rules. Crystal Field splitting, Cooling by Adiabatic demagnetisation of a paramagnetic salt. Magnetic ordering: Spontaneous magnetisation and ferromagnetism, Ferri and Antiferromagnetism. Magnetic domains and hysteresis loop.	10
6	Superconductivity: Classical superconductors; Meissner effect, critical field, Type I & II superconductors. Tunnelling and Josephson effect. Theory of superconductivity (Qualitative only)	10

High Temperature Superconductors (HTSC) Classification and structure, Preparation, Comparison with the properties of classical superconductors. Application of superconductors.							
List of Textbooks/Reference books							
1) l	Introduction to Solid State Physics – C. Kittel						
2) l	Elementary Solid State Physics – M. A. Omar						
3)	Solid State Physics – A. J. Dekker						
4) 3	Solid State Physics- N. Ashcroft and D. Mermin						

	Mapping of course outcome (CO) to the program outcome (PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	3	3	1	2	1	2	1	2	1	2	3	
CO2	3	3	3	1	2	1	2	1	2	1	2	3	
CO3	3	1	3	1	2	1	2	1	2	1	2	3	
CO4	3	1	3	1	2	1	2	1	2	1	2	3	
CO5	3	1	3	1	2	1	2	1	2	1	2	3	

Mapping of course outcome (CO) to the program specific outcome (PSO)										
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	3	2	1	1	3	2				
CO2	3	2	1	1	3	2				
CO3	3	2	1	1	3	2				
CO4	3	2	1	1	3	2				
CO5	3	2	1	1	3	2				

Course Code: PYT 211X	Course Title: Elective-I	Cree	lits =	04
		L	Т	Р
Semester: I	Total contact hours: 60	3	1	-

See the course content from the electives subject section.

Confirm the availability of the course from the given list of electives with the Department office.

Course Contents (Topics and subtopics)	Reqd. hours
List of Textbooks/Reference books	

	Course Code: PYP 2115	Course Title: General Physics Laboratory	Cre	dits =	= 02
			L	Т	P
	Semester: I	Total contact hours: 60	-	-	04
		List of prerequisite Courses			
	Adequate r	number of Physics courses at undergraduate level			
	List of Co	ourses where this course will be a prerequisite			
	PYP2215-Chemi	cal Physics laboratory, PYP2315-Electronics laboratory			
	Description of r	elevance of this course in the M.Sc. Physics Program			
This	laboratory give exposure to	o various established phenomenon in physical sciences, i	mpro	ve sk	ills
	in experi	mental techniques needed in various disciplines.			
	Cour	se Outcomes (students will be able to)	•		
CO1	Independently set up, hand	le and use basic setups to obtain properties and		K3	
	parameters of materials.				
CO2	design measurement proto	cols keeping in mind the dependent variables,		K4	
	independent variables, and	constants involved.			
CO3	correlate and use directly r	neasured quantities to obtain the relevant parameters		K5	
	through appropriate formu	lae, calculations, and/or graphical plotting, thereby			

	enabling them to understand the measurement principle involved in the	
	experimental setups.	
CO4	preliminarily treat the obtained data-sets statistically in order to obtain errors in	K4
	the experiments.	
	Course Contents (Topics and subtopics) (any ten experiments will be allotted)	Reqd. hours
1	Determination of Carrier Concentration: Hall Effect	06
2	Resistivity and Band-gap of a Semiconductor: Four-probe method	06
3	Compressibility of Liquids: Ultrasonic Interferometer	06
4	Photoelectric effect	06
5	Determination of g-factor: Electron Spin Resonance	06
6	Magnetic Susceptibility of a Paramagnetic material: Quincke's method	06
7	Analysis of the Sodium Spectrum	06
8	Determination of wavelength of light: Michelson's Interferometer	06
9	Zeeman effect	06
10	Carrier Lifetime in Diodes: Pulse-reverse method	06
11	Lees disc method for determining thermal conductivity of bad thermal conductors	06

	Mapping of course outcome (CO) to the program outcome (PO)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	3	1	3	1	2	2	2	3
CO2	3	1	2	1	3	1	3	1	2	2	2	3
CO3	3	1	2	1	3	1	3	1	2	2	2	3
CO4	3	1	2	1	3	1	3	1	2	2	2	3

Mapping of course outcome (CO) to the program specific outcome (PSO)											
	PSO1	PSO1 PSO2 PSO3 PSO4 PSO5 PSO6									
CO1	3	3	1	2	1	1					
CO2	3	3	1	2	1	1					
CO3	3	3	1	2	1	1					
CO4	3	3	1	2	1	1					

	Course Code: HUT	Course Title: Research Methodology	Credits = 04		
	21XX		L	Т	P
	Semester: I	Total contact hours: 60	3	1	-
Not	e: MSc Physics students wi	ll be required to take the Research Methodology cour	se of	ffered	1 by
	_	the Department of Chemistry			

	Course Outcomes (students will be able to)						
1							
5							
	Course Contents (Topics and subtopics)	Reqd. hours					
1							
2							
3							
	List of Textbooks/Reference books						

SEMSTER-II

	Course Coder DVT 2211	Course Titles Meterials Science and Meterials	Creat	J:4a _	04		
	Course Code: P 11 2211	Course Thie: Materials Science and Materials	T	$\Pi ts =$	04 D		
				1	r		
	Semester: II Total contact hours: 60						
		List of prerequisite Courses					
PYT	2112 (Solid State Physics);	Basic and advanced undergraduate courses in physics,	12th	stand	lard		
chen	nistry courses						
	List of Co	ourses where this course will be a prerequisite					
DI			1.4 (D				
PY	(12214 (Introduction to Cera	amics); PY12313 (Introduction to Nanoscience); PY123	14 (P	olym	er		
Ph	ysics); Advanced courses in	materials processing, Analytical techniques and Advand	ced m	ateria	ıls		
		characterization lab courses					
	Description of the	relevance of this course in the M.Sc. Physics Program	n				
This	course forms the foundation	n for the more advanced and material-specific courses to	o be c	offere	d in		
the h	igher semesters of this progr	am. This course offers a deep understanding of the proper	rties, s	struct	ure,		
and	behaviour of materials on a	atomic and molecular scales, crucial for progress in n	nultip	le fie	elds.		
Stud	ents gain insights into eme	rging materials, technologies and material synthesis te	chnia	ues.	This		
equi	equips them to tailor materials to desired specifications, addressing real-world challenges and fostering						
inno	nnovation Spanning physics, chemistry engineering and biology, the course fosters interdisciplinary						
think	hinking preparing students for research innovation and diverse career paths within materials-relate						
indu	stries	essenten, mills varion, and arverse career paths wrann m	iu		accu		
muu	5u105.						

	Course Outcomes (students will be able to)	
CO1	Identify and classify different types of materials based on their composition, structure, and properties.	K4
CO2	Understand the underlying principle governing the material properties and select proper materials for their application.	K3
CO3	Analyse the structure-property relationships and microstructural correlations in smart materials.	K4
CO4	Apply principles of materials selection and design to choose appropriate smart materials for specific applications.	K6
CO5	Understand various methods and techniques of materials synthesis in the form of bulk- powder synthesis, thin film deposition, and nanostructure growth.	K5
CO6	Analyse the impact of preparative parameters on the properties of synthesized materials. Envisage the optimal processing to tune the materials properties as per end requirement.	K6
	Course Contents (Topics and subtopics)	Reqd. hours
1	Classification and properties of materials: Classification of materials: metals, intermetallic, metallic alloys, ceramics, polymers, composites, silicates, carbon-based materials. Bonding-structure-property correlations to classify materials. Significant properties of materials: mechanical (defects and their implications to mechanical behaviour), physical (electrical, optical, etc.), chemical, thermal, etc.	13
2	Overview of smart materials and structures: Classification of smart materials, Components of a smart system, Applications of smart material, Piezoelectricity, Piezo-resistivity, Electro-strictive materials, Electro-rheological fluids, Chromic materials, Conductive polymer, Shape memory alloys, Shape memory ceramics, and polymers, Principles of magnetostriction, Magneto rheological fluids, Materials for energy applications: energy harvesting, conversion, and energy storage.	21
3	Synthesis and processing of Materials: Basics of powder processing and heat treatments: production, compaction, annealing, sintering, calcination, vitrification reactions, phenomenon of particle coalescence, concept of quenching, glass formation. Chemical synthesis: principles of chemical synthesis, synthesis of nanoparticles, thin films, and composites, precipitation, sol-gel, hydrothermal method, solvothermal, synthesis from the melt, combustion technique. Vapor based and sputtering techniques: Basic concepts of chemical vapor deposition (case study- growth of carbon nanotubes CNT), Physical vapor deposition (PVD), Sputtering, Pulse laser deposition (PLD), and Molecular beam epitaxy (MBE)	26
	List of Textbooks/Reference books	
	 Materials Science and Engineering: An Introduction by William Callister & David Rethwisch. Wiley Smart Structures and Materials by Brian Culshaw Artech House, 2000 Thin film Technology and Application by K. L. Chopra & L. K. Malhotra. 	

4. The Material Science of thin films by Milton Ohring.	
5. Handbook of thin film Technology by Frey, Hartmut, Khan and Hamid R	
6. Solidification Processing by M.C. Flemmings, McGraw-Hill College, 1974	
7. Fundamentals of Solidification by W. Kurz and D.J. Fisher, CRC Press, 1998.	
8. Ultrasonic methods and application by Jack Blitz Van Nostrand Reinhold	
Company, 2011.	

	Mapping of course outcome (CO) to the program outcome (PO)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	3	2	2	3	2	2	2	2	2	3		
CO2	3	2	3	2	2	3	3	2	2	2	2	3		
CO3	3	2	3	2	3	2	3	2	3	3	3	3		
CO4	3	3	3	2	3	3	3	3	3	3	3	3		
CO5	3	3	3	2	3	3	3	3	2	3	3	3		
CO6	3	3	3	2	3	3	3	3	3	3	3	3		

K1-knowledge;K2-comprehension; K3-application; K4-analysis; K5-synthesis; K6-evaluation

	Mapping of course outcome (CO) to the program-specific outcome (PSO)												
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6							
CO1	3	3	2	2	3	3							
CO2	3	3	2	2	3	3							
CO3	3	3	3	3	3	3							
CO4	3	3	3	3	3	3							
CO5	3	3	2	2	3	3							
CO6	3	3	3	3	3	3							

	Course Code: PYT 2212	Course Title:	Cre	dits =	: 04			
		Materials Characterisation Techniques	L	Т	P			
	Semester: II Total contact hours: 60							
		List of prerequisite Courses						
	PYT 2113 (Solid S	State Physics); PYP 2115 (General Physics Laboratory)						
	List of Co	urses where this course will be a prerequisite						
	PYT 2313 (Intro	duction to Nanoscience); PYT2314 (Polymer Physics)						
	Description of the	relevance of this course in the M.Sc. Physics Program	1					
This	course helps understand diff	erent classes of materials from the atomic level to the bul	k cor	nposi	tion			
level.	During the program, this	course will help distinguish materials characterization	is and	l var	ious			
techn	iques to investigate these di	fferent categories of materials.						
	Cours	se Outcomes (students will be able to)						
CO1	Identify techniques suitable material.	e for quantitative or qualitative analysis of a given		K3				
CO2	CO2 Understand the working principle behind various materials characterization K3							
	techniques.							
CO3	CO3 Analyse the sample's Structure/ micro-structure/ composition/ electronic structure using the appropriate characterization technique.							

CO4	Measure and analyse the mechanical and thermal properties of the material and correlate them to its structural properties.	K4
CO5	Estimate the percentage content of various components in solids, liquids, and gases using chromatographic and spectrometric techniques.	К5
	Course Contants (Torics on Louiss)	Regd. hours
	Melecular Absorption and Emission Spectroscopy	-
1	Review of molecular spectra, electronic, vibrational, and rotational energy levels, theory of molecular absorption, Beer-Lambert's law. UV-visible spectroscopy and electronic energy levels, molecular structure using IR/FTIR and Raman spectroscopy, and photoluminescence.	15
2	Structural, Micro-structural, and Composition Analysis of Solids: X-ray diffraction (XRD), electron and neutron diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning tunneling microscopy (STM), atomic force microscopy (AFM), Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).	15
3	Chromatography Introduction to chromatographic methods, gas chromatography, liquid chromatography, behaviour of solutes, column efficiency and resolution, band broadening, gas chromatographs, stationary phases and column selection, GC detectors, high performance liquid chromatography, HPLC instrumentation, sample introduction, separation columns, detectors.	10
4	Thermal Characterisation: Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), differential thermal analysis (DTA). Mechanical Characterisation Dynamic mechanical analysis (DMA), universal testing machine (UTM).	10
5	Other Techniques Mass Spectroscopy (MS, GC/MS), Light scattering / particle size analysis, Atomic Absorption Spectroscopy (AAS), Two probe and four probe conductivity measurement techniques.	10
	List of Textbooks/Reference books	
	 Fundamentals of Molecular Spectroscopy – C. Banwell and E. McCash Instrumental Methods of Analysis – H. H. Willard, I. I. Merritt and J. A. Dean Dye Lasers – F. P. Schafer Infrared Spectra of Complex Molecules – L. J. Bellamy Fundamentals of Surface and Thin Film Analysis – L. C. Feldman and J. W. Mayer X-ray Structure Determination – G. H. Stout and I. H. Jensen Physical Methods – R. S. Drago Advances in Electrochemical Science and Engineering – I. I. Gerischer and C. W. Tobnia 	

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 P CO1 1 3 2 3 2 1 2 1 2 2 2 2 CO2 1 3 2 3 2 1 2 1 2 2 2 2 CO2 1 3 2 3 2 1 2 1 2 2 2 2 CO3 1 3 2 3 2 1 2 1 2 2 2 2 CO4 1 3 2 3 2 1 2 1 2 2 2 2		Mapping of course outcome (CO) to the program outcome (PO)											
CO1 1 3 2 3 2 1 2 1 2 2 2 2 CO2 1 3 2 3 2 1 2 1 2 2 2 2 CO3 1 3 2 3 2 1 2 1 2 2 2 CO4 1 3 2 3 2 1 2 1 2 2 2		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO2 1 3 2 3 2 1 2 1 2 2 2 CO3 1 3 2 3 2 1 2 1 2 2 2 2 CO4 1 3 2 3 2 1 2 1 2 2 2	CO1	1	3	2	3	2	1	2	1	2	2	2	3
CO3 1 3 2 3 2 1 2 1 2 2 2 CO4 1 3 2 3 2 1 2 1 2 2 2 2	CO2	1	3	2	3	2	1	2	1	2	2	2	3
CO4 1 3 2 3 2 1 2 1 2 2	CO3	1	3	2	3	2	1	2	1	2	2	2	3
	CO4	1	3	2	3	2	1	2	1	2	2	2	3
CO5 1 3 2 3 2 1 2 1 2 2	CO5	1	3	2	3	2	1	2	1	2	2	2	3

K1-knowledge; K2-comprehension; K3-application; K4-analysis; K5-synthesis; K6evaluation

	Mapping of course outcome (CO) to the program-specific outcome (PSO)									
PSO1 PSO2 PSO3 PSO4 PSO5 PSO										
CO1	3	1	3	1	3	3				
CO2	3	1	3	1	3	3				
CO3	3	1	3	1	3	3				
CO4	3	1	3	2	3	3				
CO5	3	1	3	2	3	3				

	Course Code: PYT 2213 Course Title: Quantum Mechanics-II C							
			L	Т	P			
	Semester: II	Total contact hours: 30	01	01	-			
		List of prerequisite Courses						
	Adequate nu	Imber of Physics courses at an undergraduate level						
	List of Co	ourses where this course will be a prerequisite						
	PYT2412-Molecular Quantum Mechanics							
	Description of the	relevance of this course in the M.Sc. Physics Program	n					
S	Students will be equipped with the necessary knowledge and expertise to quantum mechanically							
	analyze the va	riety of problems in physical and chemical sciences.						
	Cour	rse Outcomes (students will be able to)						
CO1	Formulate the angular mor	nentum operators and their resulting commutation		K4				
	relations.							
CO2	Express angular momentum	n of spin half systems using the Pauli spinors and Pauli		K3				
	spin matrices.							
CO3	Calculate the Clebsch-Gor	don coefficients for addition of different spins.		K4				
CO4	Compute the effect of pert	urbing Hamiltonians under various cases on the		K4				
	eigenvalues and the eigenf	unctions.						
CO5	Compute the cross sections	s for various scattering events.		K3				

	Course Contents (Topics and subtopics)	Reqd. hours					
1	Angular momentum Angular momentum operators and ladder operators. Eigen values and eigen functions of L^2 and L_Z , commutator relations. Matrix representation of angular momentum. Addition of angular momenta and Clebsch-Gordan coefficients. Pauli spin matrices and spinors. Identical particles: symmetric/antisymmetric wavefunctions.	10					
2	Approximation methods Time-independent perturbation theory, non-degenerate and degenerate cases, applications. Ritz variational method, applications. Time-dependent perturbation theory, fermi's golden rule, applications	12					
3	3 Scattering theory A brief introduction to scattering theory, differential and total cross sections, and method of partial waves. Simple examples, the Born approximation.						
List of Textbooks/Reference books							
	 Introductory Quantum Mechanics – R. Liboff Quantum Mechanics – A. Ghatak and S. Lokanathan Introduction to Quantum Mechanics – D. J. Griffiths Principles of Quantum Mechanics – R. Shankar E. Merzbacher, Quantum Mechanics, 3rd ed., 1998. G. Baym, Lectures on Quantum Mechanics, 1969 						

	Mapping of course outcome (CO) to the program outcome (PO)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	2	1	3	1	2	1	2	3
CO2	3	1	2	1	2	1	3	1	2	1	2	3
CO3	3	1	2	1	2	1	3	1	2	1	2	3
CO4	3	1	2	1	2	1	3	1	2	1	2	3
CO5	3	1	2	1	2	1	3	1	2	1	2	3

	Mapping of course outcome (CO) to the program specific outcome (PSO)									
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	3	3	1	2	2	1				
CO2	3	3	1	2	2	1				
CO3	3	3	1	2	2	1				
CO4	3	3	1	2	2	1				
CO5	3	3	1	2	2	1				

	Course Code: PYT 221X	se Code: PYT 221X Course Title: Elective-II		Credits = 04				
			L	Т	P			
	Semester: II	Total contact hours: 60	3	1	-			
See the course content from the electives subject section.								
Cor	nfirm the availability of the c	ourse from the given list of electives with the	Department of	ïce.				
	Course Contents (Topics and subtopics)							
		List of Textbooks/Reference books	·					

	Course Code: PYP 2215 Course Title: Chemical Physics Laboratory								
			L	Τ	P				
	Semester: II	Total contact hours: 60	-	-	04				
	List of prerequisite Courses								
	Basic and advanced und	lergraduate courses in physics, 12 th standard chemistry co	ourses	5					
	List of Co	ourses where this course will be a prerequisite							
	Advanced characterizat	ion lab courses and Advanced courses on materials prope	erties						
	Description of the	relevance of this course in the M.Sc. Physics Program	n						
This	course will train the student	s for the use of advanced, research-grade experimental fa	cilitie	es use	ed in				
the c	haracterization of materials	properties, inculcate an ability to correlate experiment	al res	ults	with				
mater	materials characteristics and properties and teach data analysis techniques to obtain relevant quantities								
using	using raw experimental data.								
	Course Outcomes (students will be able to)								
CO1 Independently set up, handle, and use advanced, research-grade experimental									
~ ~ ~ ~	setups used in the analytica	al characterization of various types of materials.							
CO2	Choose appropriate analyti	cal techniques to investigate different aspects of any		K4					
	material of interest through	an understanding of the purpose and working principle							
000	of the instruments.			170					
CO3	Understand how various ad	lvanced characterization instruments are fully		K3					
004	controlled and operated us	ing computers.		17.5					
CO4	Use basic data analysis tec	nniques to obtain relevant quantities using raw		КЭ					
CO5	Experimental data.	wal requirements and the sofety protocols required to		VC					
COS	bouse advanced characteri	rai requirements and the safety protocols required to		K0					
	mouse auvanceu characterr	zauon rachtues ni a research lad/industry.							
	Cours	e Contents (Topics and subtopics)	Req	d. ho	ours				
1	Beer-Lambert's law I: Ver	ification		6					

2	Beer-Lambert's law II: Two-component analysis	6
3	Colour Physics I: Colour specification	6
4	Colour Physics II: Colour Difference	6
5	Thermal Properties of Polymers: Differential Scanning Calorimetry	6
6	Mechanical Properties of Polymers: Universal Testing Machine	6
7	Functional group analysis: Fourier Transform Infrared (FTIR) Spectrometer	6
8	Nuclear Magnetic Resonance (NMR) Spectrometer	6
9	Solar cells: I-V (Current-Voltage) characteristics	6
10	Structural Properties of Materials: Polycrystalline X-ray Diffraction Lab	6

Mapping of course outcome (CO) to the program outcome (PO) PO1 PO2 PO3 PO5 PO6 PO7 PO8 PO9 PO10 PO4 PO11 PO12 CO1 3 2 CO2 CO3 CO4 CO5

K1-knowledge; K2-comprehension; K3-application; K4-analysis; K5-synthesis; K6-evaluation

	Mapping of course outcome (CO) to the program specific outcome (PSO)									
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	2	2	2	2	2	3				
CO2	3	3	2	2	3	3				
CO3	3	3	3	3	3	3				
CO4	3	3	3	3	3	3				
CO5	2	2	2	2	2	3				

	Course Code: PYP 2216	Course Title: On Job Training (Internship)	Credits = 04					
			L	Т	P			
	Semester: II	Total contact hours: 60	0	0	08			
List of prerequisite Courses								
HU	HUT21XX (Research Methodology (offered by dept. of Chemistry))							
	List of Courses where this course will be a prerequisite							
PY	P2316 (Research project-I); I	PYP2415 (Research project-II)						
	Description of the relevance of this course in the M.Sc. Physics Program							
In t	In this, students will join various research institutes/industries and undergo training/research on related							
pro	problems in experimental/computational physics and materials science, which will help them in their							
futu	iture course of study.							

	Students will have to consult the allotted guide for the topic of research.				
Grading at the end of the OJT will be done as per the R.9 document upon submission of internship					
<u>rep</u>	ort and presentation.				

SEMESTER-III

	Course Code: PYT 2311	Course Title: Colour Physics	Cree	dits =	- 02							
	<u> </u>		L	T	P							
	Semester: III	Total contact hours: 30	1	1	-							
	Decie 19t	List of prerequisite Courses										
	List of Courses where this course will be a prerequisite											
Adva their	nced courses in colour scien applications in polymer and	nce and industrial colour technology, courses related to textile technology.	colou	rants	and							
	Description of the	relevance of this course in the M.Sc. Physics Program	n									
a way comr relate This indus	y that it can be unambiguous nunicate colour in the way ed to aspects of measurement course is therefore of high tries from the standpoint of	sly understood and reproduced. The course shall enable it is done in the industrial setting and equip them with t and technology of colour that is needed in various mater n relevance especially to the textiles, paints and dyes standardization and control in production.	the st the kn tals in tuffs/o	uden now- ndust colou	ts to how ries. rant							
	Cours	se Outcomes (students will be able to)										
CO1	Understand the concept of obstween a source, object, and	colour appearance and the physical interactions nd observer that lead to colour.		K2								
CO2	Understand the luminous of	utput of a source and daylight illumination.		K2								
CO3	Understand about colour co	oding process in human observers.		K3								
CO4	Specify a colour stimulus b and colour spaces.	y understanding various colour specification systems		K6								
CO5	Predict recipe formulations	for matching target colours.		K5								
	Course	e Contents (Topics and subtopics)	Req	d. ho	urs							

1	Understanding concept of colour Concept of colour appearance, illumination, sources/ illuminants, lamp efficacy and colour rendering properties of source, interaction of electromagnetic radiation with matter, specular and diffused reflectance, concept of gloss / matt, absorption, Beer-Lambert's Law, Kubelka-Munk theory, Colour perception by human observer, various colour theories, metamerism and colour constancy, standard observer.	14
2	Colour specification and communication Additive and subtractive mixing, real and basic primaries, quantification of colour, various CIE colour spaces & colour specifications, Munsell colour order system, colour measuring instruments: tintometer and spectrophotometers, single constant theory, colourant simulation and recipe match prediction.	16
	List of Textbooks/Reference books	
	 Colour Physics for Industry – R.Mcdonald Color: A Multidisciplinary Approach – H. Zollinger The Colour Science of Dyes and Pigments – K. Mclaren Color in Business, Science and Industry – D.B.Judd The Elements of Colour – J. Itten Industrial Colour Physics- G. A. Klein Measuring Colour- R.W.G. Hunt and M. R. Pointer 	

	Mapping of course outcome (CO) to the program outcome (PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	2	2	2	2	2	3	2	2	3	3	
CO2	3	2	2	2	2	2	2	3	2	2	3	3	
CO3	3	2	2	2	3	2	2	3	2	2	3	3	
CO4	3	3	2	3	3	2	3	3	2	2	3	3	
CO5	3	3	2	3	3	3	3	3	2	2	3	3	

K1-knowledge; K2-comprehension; K3-application; K4-analysis; K5-synthesis; K6-

evaluation

	Mapping of course outcome (CO) to the program specific outcome (PSO)											
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6						
CO1	3	2	2	2	3	2						
CO2	3	2	2	2	3	3						
CO3	3	2	2	2	2	2						
CO4	3	3	3	3	2	3						
CO5	3	3	3	3	3	3						

	Course Code: PYT 2312	Course Title: Classical Electrodynamics	Crea	lits =	= 04
			L	Т	Р
	Semester: III	Total contact hours: 60	3	1	-
		List of proroquisite Courses			
	PYT2111	-Classical Mechanics and Mathematical Physics			
	List of Co	ourses where this course will be a prerequisite			
		Advanced graduate-level courses			
	Description of the	relevance of this course in the M.Sc. Physics Program	a		
Expo	sure and ability to use the a	dvance formalism to analyse problems in various physical	l syste	ems f	rom
a fun	damental point of view. It e	enables students to understand the effect of electric and n	nagne	tic fi	elds
on th	e properties of matter.				
	Cour	rse Outcomes (students will be able to)			
CO1	Apply advanced technique	K4			
CO2		K3			
	Maxwell stress tensor for v	various systems, and understand various conserved			
~ ~ ~ ~	quantities of the electroma	gnetic field.			
CO3	Use Maxwell's equations t	to understand wave propagation in vacuum and in media		K3	
004	and thereby calculate refle	ctance and transmission at conducting surfaces.		T Z 4	
CO4	media.	pendence of various physical quantities in a particular		K4	
CO5	Calculate the radiation from	m point charges in motion and for various extended		K4	
	charge configurations, usir	ng a potential formulation of electrodynamics and gauge			
	transformations.				
	Cours	e Contents (Topics and subtopics)	Req	d. ho	urs
	Vector algebra and calcu	lus:	<u> </u>		
1	Review of differential oper		06		
	Tensors and their transform	nation properties, the Levi- Civita symbol.			
	Review of classical Electr	odynamics:			
2			10		
				10	

	Maxwell's equations, conservation laws of charge, energy. Energy and momentum in Electrodynamics: Newton's third law in electrodynamics, Poynting theorem, Maxwell's stress tensor, conservation of linear and angular momentum.								
3	Electromagnetic Waves in Nonconducting Media: Monochromatic waves in free space, energy and momentum of electromagnetic waves, Polarization. Propagation through linear media, Reflection and transmission at normal incidence (review) and at oblique incidence. Electromagnetic Waves in Conductors: The modified wave equation, Monochromatic plane waves in conducting media. Reflection and transmission at a conducting surface, the frequency dependence of $\epsilon,\mu,\sigma,\alpha$. Dispersion in nonconductors. Wave guides, TE, TM and TEM modes. TE waves in a rectangular wave guide.								
4	 Electromagnetic Radiation: Potential Formulation of Electrodynamics, scalar and vector potentials, Gauge transformations, the Coulomb gauge and the Lorentz gauge. The Lorentz law in potential form. Retarded potentials, Lienard- Wiechert potentials and the fields due to a point charge in motion. Multipole expansion for a charge distribution in free space. Radiation by multipole moments: Radiation from electric dipole and magnetic dipole moment. 								
	List of Textbooks/Reference books								
	 W. Greiner, Classical Electrodynamics, Springer – Verlag ,2000 (WG). M.A. Heald and J. B. Marion, Classical Electromagnetic radiation Saunders (HM). 								
	 J. D Jackson, Classical Electrodynamics, 4th edition, John Wiley and sons. J. Griffith, Introduction to Electrodynamics, 2nd edition, Prentice Hall (India). 								
	5. J. R. Reitz, E. J. Milford and R.W. Christy, Foundation of Electromagnetic Theory, 4th edition Addison- Wesley.								
	6. W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism 2nd edition, Addison – Wesley								
	7. Engineering electromagnetics, Nathan Ida, Springer.								

	Mapping of course outcome (CO) to the program outcome (PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	1	2	1	2	1	3	2	2	1	2	3	
CO2	3	1	2	1	2	1	3	2	2	1	2	3	
CO3	3	1	2	1	2	1	3	2	2	1	2	3	
CO4	3	1	2	1	2	1	3	2	2	1	2	3	
CO5	3	1	2	1	2	1	3	2	2	1	2	3	

	Mapping of c	course outcor	ne (CO) to the	e program spe	cific outcom	e (PSO)
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	3	1	1	2	2	1
CO2	3	1	1	2	2	1
CO3	3	1	1	2	2	1
CO4	3	1	1	2	2	1
CO5	3	1	1	2	2	1

	Course Code: PYT 2313 Course Title: Introduction to Nanoscience										
			L	Τ	P						
	Semester: III	Total contact hours: 60	3	1	-						
		List of prerequisite Courses									
First	years of undergraduate cours	ses in Physics, Chemistry, and Mathematics									
	List of Co	urses where this course will be a prerequisite									
	1. PYP2415: Research Project; 2. PhD programs in Material Science, Physics 3.										
	Graduate-level courses on energy storage devices, sustainability, green chemistry etc.										
T1. 1.	Description of the relevance of this course in the M.Sc. Physics Program										
I his	course gives the flavor of m	aterials at the nano-size regime. It will discuss the juderstand the reasons behind this learning in mind the	property	varia	ition						
nring	iples it follows. This course :	derstand the reasons bennid this, keeping in find the	terials d		ered						
in th	e last century. The charac	erization techniques required to understand the s	ize moi	rnhol	ogy						
struct	ture, bonding, and function	alization groups will be discussed, along with	their co	mme	rcial						
appli	cations.										
	Course Outcomes (students will be able to)										
CO1	Understand the importance	of nanoscience and property variation with size.		K1							
CO2	Know the different methods	of synthesis based on requirements.		K3							
CO3	Understand the Working Pr	inciple and utilization of characterization techniques		K3							
CO4	Know the properties of Spe	cial Nanomaterials and the reason behind them		K3							
CO5	Understand the Applicabilit	y of Nanomaterials for commercial usage		K4							
	1		I								
	~		Rea	d. ho	urs						
	Course	Contents (Topics and subtopics)		<u> </u>							
	Introduction:										
1	Metal Nanoclusters, magic transitions, effect of size rea materials, properties of nan	Numbers, modeling of nanoparticles, bulk to nano luction on the physical and chemical properties of omaterials.		08							
			<u> </u>								

2	Synthesis Techniques: High energy mechanical milling, melt mixing, Evaporation-condensation method, ionized cluster beam deposition, sputter deposition, ALD, PVD, Chemical Vapor Deposition, pulse laser methods, Chemical Reduction Method, microemulsion, sol-gel method,	10							
3	Characterization techniques: Structural and chemical characterization: XRD, UV-visible, near-infrared, SEM, TEM, photoluminescence, XPS, EXAFS, ESR, NMR.								
4	Special Nanomaterials: One-, two- and three-dimensional Nanomaterials, Band structure, property variation, Carbon nanostructures: fullerenes, carbon nanotubes. Bulk nanostructured materials, solid disordered nanostructures, nanostructured multilayers, metal nanoclusters, composite glasses, porous silicon.	15							
5	 Application of Nanomaterials: Nanofabrication, Lithography, Nanoelectronics, quantum dots and quantum well devices, plasmon waveguides (optical devices), Energy sector, automobiles, space, defense, sports, and cosmetics. Commercial Status of Nanomaterials 								
	List of Textbooks/Reference books								
	 Introduction to Nanotechnology – C. P. Poole, Jr. and F.J. Owens Nanotechnology: Principles and Practices – S. K. Kulkarni Nanostructures and Nanomaterials – G. Cao Nanomaterials – A. S. Edelstein, R. C. Cammaratra Nanostructures: Theory and Modeling – C. J. Delerue and M. Lannoo Carbon nanotubes – S. Fiorito 								

	Mapping of course outcome (CO) to the program outcome (PO)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	3	3	2	2	3	2	3	2	2	2	2		
CO2	2	3	2	3	2	2	3	2	2	2	2	2		
CO3	3	2	2	3	2	2	3	2	2	2	2	2		
CO4	3	2	3	2	2	2	2	2	2	2	2	2		
CO5	2	2	2	2	2	3	3	3	3	2	2	2		

K1-knowledge; K2-comprehension; K3-application; K4-analysis; K5-synthesis; K6-evaluation

]	Mapping of course outcome (CO) to the program specific outcome (PSO)											
PSO1 PSO2 PSO3 PSO4 PSO5 PS												
CO1	3	3	2	3	3	3						

CO2	2	2	3	2	3	3
CO3	3	3	3	2	2	3
CO4	2	3	2	2	3	3
CO5	2	2	2	2	3	3

	Course Code: PYT 231X	Course Title: Elective-III	Crea	lits =	04
			L	Т	P
	Semester: III	Total contact hours: 60	3	1	-
	•		•		
	See the course	content from the electives subject section.			
Cor	firm the availability of the co	ourse from the given list of electives with the Department	t offic	æ.	
-	Ι		-		
	Cours	e Contents (Topics and subtopics)	Req	d. ho	urs
		List of Textbooks/Reference books			

	Course Code: PYP 2315	Course Title: Electronics Laboratory	Cree	= 02	
			L	Τ	P
	Semester: III	Total contact hours: 60	-	-	04
-					-4
		List of prerequisite Courses			
		PYT2114 (Electronics)			
	List of Co	ourses where this course will be a prerequisite			
		NA			
	Description of r	elevance of this course in the M.Sc. Physics Program			
This	course enables students to u	inderstand measurement automation and data acquisition	in ins	strum	lents
used	in materials science resear	ch. The course contents also prepare students for variou	is coi	mpet	itive
exam	s and enables them for emp	oloyment in hardware industry.			
	Cour	se Outcomes (students will be able to)			
CO1	Understand basics of electr	rical circuits/components/power supply and		K3	
	microprocessor.				
CO2	Use 8051 microprocessor 1	for basic arithmetic and logical operations.		K4	
CO3	Utilize oscilloscope to test	the electrical signal/functions/circuits and verify/debug		K4	
	the same.				
CO4	Understand and develop tr	ansducers to convert physical input into appropriate		K3	
	electrical signal.				
CO5	Interfacing microprocessor	r with input and output devices, viz. 8051 to LCD, 8051		K5	
	with keyboard etc.				
	Course	a Contents (Tenies and subtenies)	Dec	d ha	
1	Constant Current Source	e Contents (Topics and subtopics)	ĸeq	$\frac{\mathbf{u}}{06}$	Jurs
2	Constant Voltage Source			00	
2	Wayeform generation usin	a On Amn		00	
5 1	Active Filters using On A	g Op-Amp		00	
+ 5	Linear Sween Generator w	np sing 555 timer		00	
5	8-bit DAC			00	
7	Adder / Subtractor			06	
8	Presettable Counters			06	
9	Shift Register			06	
10	Multiplexer / Demultiplexe	er	<u> </u>	06	
11	8051 Microcontroller Prog	ramming	1	06	
12	Port Programming using 8	051 Microcontroller	<u> </u>	06	

Mapping of course outcome (CO) to the program outcome (PO)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	3	1	1	3	2	2	2	1	3
CO2	2	2	1	3	1	1	3	2	2	2	1	3
CO3	2	2	1	3	1	1	3	2	2	2	1	3
CO4	2	2	1	3	1	1	3	2	2	2	1	3
CO5	2	2	1	3	1	1	3	2	2	2	1	3

	Mapping of course outcome (CO) to the program specific outcome (PSO)												
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6							
CO1	1	1	2	2	2	2							
CO2	1	1	2	2	2	2							
CO3	1	1	2	2	2	2							
CO4	1	1	2	2	2	2							
CO5	1	1	2	2	2	2							

Cou	rse Code: PYP 2316	Course Title: Research Project-I	Credits = L T 0 0	: 04	
			L	Т	Р
Sem	ester: III	Total contact hours: 60	0	0	08
		List of prerequisite Courses			
HUT21X	X (Research Methodol	logy (offered by dept. of Chemistry))			
	List of C	ourses where this course will be a prerequisite			
		PYP2415 (Research project-II)			
	Description of the	e relevance of this course in the M.Sc. Physics Program	n		
In this, st	udents will execute the	research project allotted by the guide/department in line w	vith th	ne vis	ion-
mission of	of the physics departm	nent. The students will get hands-on experience in vari	ous a	spect	s of
experime	ntal physics/materials	science, which will help them pursue research as a career			
	Student will have to	consult allotted guide for the topic of research.			
Grading a	at the end of the semest	ter will be done as per the R.9 document upon submissior	n of <u>r</u>	esear	<u>ch</u>
report (tl	his will lead to a resear	ch thesis at the end of semester IV, research project-II PY	(P241	5) ar	ıd

viva-voce.

SEMESTER IV

	Course Code: PYT 2411	Course Title: Numerical Techniques using Python	Crec	lits =	= 04					
			L	Т	P					
	Semester: IV	Total contact hours: 60	3	1	-					
	DVT0111	List of prerequisite Courses								
	PY12111- List of Co	urses where this course will be a prerequisite								
	This course will be	e useful in advanced computational techniques courses.								
	Description of the	relevance of this course in the M.Sc. Physics Program	n							
This metho	course will enable students ods towards solving/simulati	s to select, modify, and apply existing software and ing various physical problems.	comp	utatio	onal					
	Cours	se Outcomes (students will be able to)								
CO1	Learn basic and advanced F	Python programming.		K2						
CO2	O2 Understand how numerical methods are implemented and used for computing.									
CO3	Understand how to improve	e numerical methods for better accuracy.		K4						
CO4	Apply the above methods t	o problems in Physics and related fields.		K5						
CO5	Use various Python librarie	s to perform numerical computing	K5							
			I							
	Course	e Contents (Topics and subtopics)	Req	d. ho	urs					
	Introduction to Linux and	l Python Programming								
1	Basic Linux comma	nds aditing files in Linux								
	Basic Linux commands, editing files in Linux What is programming, programming strategies, algorithms and flow charts,									
	What is programming, prog integer and floating point of	gramming strategies, algorithms and flow charts, perations.		10						
	What is programming, prog integer and floating point of Basics of python programm	perations.		10						
	What is programming, prog integer and floating point of Basics of python programm dictionaries), plotting with environment	gramming strategies, algorithms and flow charts, perations. hing (variables, conditional statements, for loops, lists, MatplotLib all using an integrated development		10						
	What is programming, prog integer and floating point of Basics of python programm dictionaries), plotting with environment	gramming strategies, algorithms and flow charts, perations. hing (variables, conditional statements, for loops, lists, MatplotLib all using an integrated development		10						
2	What is programming, prog integer and floating point of Basics of python programm dictionaries), plotting with environment Advanced Python Program Introduction to NumPy and	ands, eutring mes in Linux gramming strategies, algorithms and flow charts, perations. aning (variables, conditional statements, for loops, lists, MatplotLib all using an integrated development mming		10						
2	What is programming, prog integer and floating point of Basics of python programm dictionaries), plotting with environment Advanced Python Program Introduction to NumPy and Introduction to SciPy and s	ands, eutring mes in Linux gramming strategies, algorithms and flow charts, perations. hing (variables, conditional statements, for loops, lists, MatplotLib all using an integrated development mming I linear algebra olution of ordinary differential equations (initial value		10						
2	What is programming, prog integer and floating point of Basics of python programm dictionaries), plotting with environment Advanced Python Program Introduction to NumPy and Introduction to SciPy and s problems), curve fitting, int	 and s, eutring mes in Linux gramming strategies, algorithms and flow charts, perations. aning (variables, conditional statements, for loops, lists, MatplotLib all using an integrated development mming l linear algebra olution of ordinary differential equations (initial value erpolation, linear and logistic regression 		10						
2	What is programming, prog integer and floating point of Basics of python programm dictionaries), plotting with environment Advanced Python Program Introduction to NumPy and Introduction to SciPy and s problems), curve fitting, int Introduction to the Jupyter	 and s, eutring mes in Linux gramming strategies, algorithms and flow charts, perations. aning (variables, conditional statements, for loops, lists, MatplotLib all using an integrated development mming I linear algebra olution of ordinary differential equations (initial value erpolation, linear and logistic regression notebook for general analysis (including analytical 		10						
2	What is programming, prog integer and floating point of Basics of python programm dictionaries), plotting with environment Advanced Python Program Introduction to NumPy and Introduction to SciPy and s problems), curve fitting, int Introduction to the Jupyter manipulations using Sympy Introduction to ChatCPT a	mus, eutring mes in Linux gramming strategies, algorithms and flow charts, perations. ing (variables, conditional statements, for loops, lists, MatplotLib all using an integrated development mming I linear algebra olution of ordinary differential equations (initial value erpolation, linear and logistic regression notebook for general analysis (including analytical y) and automated code generation from text prompts		10						
2	What is programming, prog integer and floating point of Basics of python programm dictionaries), plotting with environment Advanced Python Program Introduction to NumPy and Introduction to SciPy and s problems), curve fitting, int Introduction to the Jupyter manipulations using Sympy Introduction to ChatGPT a	 and s, eutring mes in Linux gramming strategies, algorithms and flow charts, perations. aning (variables, conditional statements, for loops, lists, MatplotLib all using an integrated development mming I linear algebra olution of ordinary differential equations (initial value erpolation, linear and logistic regression notebook for general analysis (including analytical y) and automated code generation from text prompts. 		10						
2	What is programming, prog integer and floating point of Basics of python programm dictionaries), plotting with environment Advanced Python Program Introduction to NumPy and Introduction to SciPy and s problems), curve fitting, int Introduction to the Jupyter manipulations using Sympy Introduction to ChatGPT a Numerical Methods	 and s, eutring mes in Linux gramming strategies, algorithms and flow charts, perations. aning (variables, conditional statements, for loops, lists, MatplotLib all using an integrated development mming l linear algebra olution of ordinary differential equations (initial value erpolation, linear and logistic regression anotebook for general analysis (including analytical y) and automated code generation from text prompts. 		10						
2	What is programming, prog integer and floating point of Basics of python programm dictionaries), plotting with the environment Advanced Python Program Introduction to NumPy and Introduction to SciPy and s problems), curve fitting, int Introduction to the Jupyter manipulations using Sympy Introduction to ChatGPT and Numerical Methods Algebraic and transcendent	al equations: Iterative, bisection and Newton–Raphson		10 16 20						

	Sim	ultaneous linear equations: Gauss elimination method, Gauss-Jordan matrix	
	Nun	nerical integration: Trapezoidal rule, Simpson and Gaussian quadrature	
	meth	hods	
	Ordi	inary differential equation: Euler and Runge–Kutta methods.	
	Stoc	chastic Methods	
4	_		
	Ran	dom number generators, Monte Carlo Integration, hit and miss, important	14
	sam	pling, Markov chain, Metropolis method, Brownian motion as random walk	
	prob	blems, phase transition in 2d Ising model.	
		List of Textbooks/Reference books	
	1)	Numerical methods for scientific and Engineering Computation, Jain M. K.,	
		Iyengar S. R. K, Jain R. K., New Age International, 1992.	
	2)	Understanding Molecular Simulation, Daan Frenkel and B. Smit, Academic	
		Press, 1996.	
	3)	Computational Physics – S. E. Koonin and D. C. Meredith	
	4)	Computational methods in physics and engineering – S. S. M. Wong	
	5)	A primer to scientific programming in Python- Hans Petter Langtangen	
	6)	Introduction to Computation and Programming using Python-John V. Guttag	
	0)	introduction to computation and riogramming using rython John V. Outlag	

	Mapping of course outcome (CO) to the program outcome (PO)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	2	2	1	3	3	1	3	2	2	1	2	3		
CO2	2	2	1	3	3	1	3	2	2	1	2	3		
CO3	2	2	1	3	3	1	3	2	2	1	2	3		
CO4	2	2	1	3	3	1	3	2	2	1	2	3		
CO5	2	2	1	3	3	1	3	2	2	1	2	3		

	Mapping of course outcome (CO) to the program specific outcome (PSO)												
PSO1 PSO2 PSO3 PSO4 PSO5 PSO6													
CO1	2	1	3	3	3	2							
CO2	2	1	3	3	3	2							
CO3	2	1	3	3	3	2							
CO4	2	1	3	3	3	2							
CO5	2	1	3	3	3	2							

	Course Code: PYT 241	2 Course Title: Molecular Quantum Mechanics	Cre	dits =	= 02				
			L	Τ	Р				
	Semester: IV	Total contact hours: 30	1	1	-				
	DVT2102 (O.	List of prerequisite Courses							
	PY12103 (QU	Courses where this course will be a prorequisite							
	Adv	vanced graduate courses in molecular modeling							
	Description of t	he relevance of this course in the M.Sc. Physics Program	n						
Stu	dents will be equipped with	the necessary knowledge and expertise to quantum mechan	nicall	v ana	lvze				
the	variety of problems in phy	sical and chemical sciences.		5					
	Со	urse Outcomes (students will be able to)							
CC	1 Formulate the Hamiltoni Born-Oppenheimer appr	an for various molecular systems by understanding the oximation.		K3					
CC	2 Calculate the eigenvalue	s and the eigenfunctions of molecules using the LCAO		K3					
	and VB approaches and	the concept of molecular orbitals.							
CC	O3 Understand the concept of Hybridization in polyatomic molecules quantitatively using the LCAO technique and using Huckel's theory to understand simple conjugated systems.								
CC	4 Create the group multip	lication table for discrete groups and to calculate the		K4					
	group characters and for	mulate the group character table.							
			Rea	d. ha	ours				
	Cou	rse Contents (Topics and subtopics)							
1	Quantum Chemistry								
	Molecular Schrodinger e molecular orbital and va systems eigenvalues and of the H ₂ molecule. Spin separation, transitions be	equation, the Born-Oppenheimer approximation, lence bond theory of molecule formation. The H^+ and H_2 eigenfunctions in the BO approximation. Excited states singlet and triplet states in molecules and their etween singlet and triplet states.		15					
2	Hybridisation of orbitals	and molecular structure. Simple Huckel theory of linear		05					
3	Group Theory in Mole	rular Quantum Mechanics							
	Group Theory in Molecular Quantum Mechanics Introduction to group theory, definitions and postulates. Examples of discreate groups and group multiplication tables. Molecular symmetries and point groups, representations of groups, irreducible representations and the great orthogonality theorem. Character tables for point groups.								
		List of Textbooks/Reference books							
	 Chemical Application Introductory Quantum Molecular Quantum M Quantum Chemistry - Introduction to Group 	s of Group Theory – F. A. Cotton n Mechanics – A. K. Chandra Mechanics – Atkins and Friedman - I. Levine Theory – A. W. Joshi							
	Mapping of co	urse outcome (CO) to the program outcome (PO)							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	3	1	2	1	2	2	2	1	2	3
CO2	3	1	3	1	2	1	2	2	2	1	2	3
CO3	3	1	3	1	2	1	2	2	2	1	2	3
CO4	3	1	3	1	2	1	2	2	2	1	2	3

	Mapping of course outcome (CO) to the program-specific outcome (PSO)								
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6			
CO1	3	3	2	2	2	2			
CO2	3	3	2	2	2	2			
CO3	3	3	2	2	2	2			
CO4	3	3	2	2	2	2			

Γ	Course Code: PYT 2413	Course Title: Statistical Mechanics	Cre	dits =	= 04
			L	Т	P
	Semester: IV	Total contact hours: 60	3	1	-

DVT	List of prerequisite Courses	
PYT	2111-Classical Mechanics and Mathematical Physics, PY 12112-Quantum mechanics Ouantum mechanics-II	-I; PY12213-
	List of Courses where this course will be a prerequisite	
Adv	vanced graduate-level courses in statistical mechanics, molecular modeling, and mate	erials science
	Description of the relevance of this course in the M.Sc. Physics Program	l
Expo funda quant	sure and ability to use advance formalism to analyze problems in various physical umental point of view. It enables students to understand the behavior and calcu- tities for a system of large number of particles.	systems from ulate physical
	Course Outcomes (students will be able to)	
CO1	Understand the need for a statistical approach to analyse system containing large number of particles, and capability to use necessary statistical techniques.	К3
CO2	Understand the concept of equilibrium and fluctuations from equilibrium for system with large number of particles.	K3
CO3	Analyse classical statistical systems using concepts of ensemble and using the partition function to compute thermodynamic quantities.	K4
CO4	Ability to analyse quantum statistical systems using techniques of ensemble.	K3
CO5	Ability to analyse non-ideal gases, gain familiarity with Ising (1D-2D) model and its solutions using Monte-Carlo technique.	K4
	Course Contents (Topics and subtopics)	Reqd. hours
1	Course Contents (Topics and subtopics)Review of statistical thermodynamicsThermodynamics and kinetic theory, introduction to probability, binomial, Poisson and Gaussian distributions, specification of the state of a system, concept of statistical ensemble, phase space, Liouville's theorem, equilibrium and fluctuations.	Reqd. hours 10
2	Course Contents (Topics and subtopics) Review of statistical thermodynamics Thermodynamics and kinetic theory, introduction to probability, binomial, Poisson and Gaussian distributions, specification of the state of a system, concept of statistical ensemble, phase space, Liouville's theorem, equilibrium and fluctuations. Ensemble theory Microcanonical ensemble, statistical concept of temperature, canonical ensemble, partition function, calculation of thermodynamic variables from the partition function, ideal monoatomic gas in a canonical ensemble, Gibbs' paradox, equipartition theorem, Maxwell-Boltzmann velocity distribution, grand canonical ensemble, chemical potential and fugacity, grand partition function, applications.	Reqd. hours 10 20
1 2 3	Course Contents (Topics and subtopics)Review of statistical thermodynamicsThermodynamics and kinetic theory, introduction to probability, binomial, Poisson and Gaussian distributions, specification of the state of a system, concept of statistical ensemble, phase space, Liouville's theorem, equilibrium and fluctuations.Ensemble theoryMicrocanonical ensemble, statistical concept of temperature, canonical ensemble, partition function, calculation of thermodynamic variables from the partition function, ideal monoatomic gas in a canonical ensemble, Gibbs' paradox, equipartition theorem, Maxwell-Boltzmann velocity distribution, grand canonical ensemble, chemical potential and fugacity, grand partition function, applications.Quantum statistical mechanics Quantum distribution functions, partition function for ideal quantum gases, thermodynamic quantities and equations of state for ideal Fermi and Bose gases.	Reqd. hours 10 20 15
1 2 3 4	Course Contents (Topics and subtopics)Review of statistical thermodynamicsThermodynamics and kinetic theory, introduction to probability, binomial, Poisson and Gaussian distributions, specification of the state of a system, concept of statistical ensemble, phase space, Liouville's theorem, equilibrium and fluctuations.Ensemble theoryMicrocanonical ensemble, statistical concept of temperature, canonical ensemble, partition function, calculation of thermodynamic variables from the partition function, ideal monoatomic gas in a canonical ensemble, Gibbs' paradox, equipartition theorem, Maxwell-Boltzmann velocity distribution, grand canonical ensemble, chemical potential and fugacity, grand partition function, applications.Quantum statistical mechanics Quantum distribution functions, partition function for ideal quantum gases, thermodynamic quantities and equations of state for ideal Fermi and Bose gases.Interacting Systems Equation of State for non-ideal gas (Van der Waals), hard core interaction, Ising model for ferromagnetism, solution to one dimensional Ising model (using transfer matrix), Monte Carlo Simulations (2D Ising and 2D system of hard rods)	Reqd. hours 10 20 15 15
1 2 3 4	Course Contents (Topics and subtopics)Review of statistical thermodynamicsThermodynamics and kinetic theory, introduction to probability, binomial, Poisson and Gaussian distributions, specification of the state of a system, concept of statistical ensemble, phase space, Liouville's theorem, equilibrium and fluctuations.Ensemble theoryMicrocanonical ensemble, statistical concept of temperature, canonical ensemble, partition function, calculation of thermodynamic variables from the partition function, ideal monoatomic gas in a canonical ensemble, Gibbs' paradox, equipartition theorem, Maxwell-Boltzmann velocity distribution, grand canonical ensemble, chemical potential and fugacity, grand partition function, applications.Quantum statistical mechanics Quantum distribution functions, partition function for ideal quantum gases, thermodynamic quantities and equations of state for ideal Fermi and Bose gases.Interacting SystemsEquation of State for non-ideal gas (Van der Waals), hard core interaction, Ising 	Reqd. hours 10 20 15 15

2)	Statistical Mechnics – R. K. Pathria	
3)	Fundamentals of Statistical and Thermal Physics – F. Reif	
4)	Introduction to Statistical Physics, K. Huang	

	Mapping of course outcome (CO) to the program outcome (PO)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	1	3	1	3	1	2	1	2	3
CO2	3	1	1	1	3	1	3	1	2	1	2	3
CO3	3	1	1	1	3	1	3	1	2	1	2	3
CO4	3	1	1	1	3	1	3	1	2	1	2	3
CO5	3	1	1	1	3	1	3	1	2	1	2	3

Mapping of course outcome (CO) to the program-specific outcome (PSO)									
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6			
CO1	3	3	1	2	2	1			
CO2	3	3	1	2	2	1			
CO3	3	3	1	2	2	1			
CO4	3	3	1	2	2	1			
CO5	3	3	1	2	2	1			

Course Code: PYT 241X	Course Title: Elective-IV	Cree	Credits =	
		L	Т	P
Semester: IV	Total contact hours: 60	3	1	-
	List of prerequisite Courses			
List of C	ourses where this course will be a prerequisite			

	Course Code: PYP 2415	Course Title: Research Project-II	II Cree		: 06
			L	Т	P
	Semester: IV	Total contact hours: 90	0	0	12
		List of prerequisite Courses			
P	YP2316 (Research Project-I)	; HUT21XX (Research Methodology (offered by dept. of	f Chei	nistry	y))
	List of C	ourses where this course will be a prerequisite			
		NA			
	Description of the	e relevance of this course in the M.Sc. Physics Program	n		

In this, students will execute the research project allotted by the guide/department in line with the visionmission of the physics department. The students will get hands-on experience in various aspects of experimental physics/materials science, which will help them pursue research as a career.

Student will have to consult allotted guide for the topic of research.

Grading at the end of the semester will be done as per the R.9 document upon submission of the research thesis and viva voce.

Open electives offered for MSc. Physics (Materials Science) Program

Sr.	Subject	Semester in	Subject title		Credi	ts	ľ	Marks	5
INO.	Code	is offered	Subject title -	L	Т	Р	CA	Μ	ES
1	PYT 2114	First	Electronics	3	1	-	20	30	50
2	PYT 2214	Second	Introduction to Ceramics	3	1	-	20	30	50

3	PYT 2314	Third	Polymer Physics	3	1	-	20	30	50
4	PYT 2414	Fourth	Introduction to Phase transformation	3	1	-	20	30	50
5	PYT 2416	Fourth	Advanced Polymer Physics and Polymer composites	3	1	-	20	30	50
6	PYT 2417	Fourth	Solar Energy and Non-Conventional Energy Sources	3	1	-	20	30	50

L- Lecture, T-Tutorial, P-Practicals; CA-Continuous assessment, M- Mid semister, E- End Semester Examination

Course Code: PYT 2114	Course Title: Electronics	Credits = 04		
		L	Т	Р
Semester: I	Total contact hours: 60	3	1	-
	List of prerequisite Courses			
	N.A.			
List of Co	urses where this course will be a prerequisite			
	PYP2315-Electronics laboratory			
Description of the	relevance of this course in the M.Sc. Physics Program	n		

K2
K4
K4
K5
K6
Reqd. hours
04
04
08
08
04

6	 6 Architectures, Registers in MCS-51, 8051 Pin Description, 8051 Connections, Memory Organization. Programming: MCS-51 using C (Keil µVision) Instructions and Simple programs - I/O Ports, Introduction to R Pi, Aurdino 								
	8051 microcontroller: timer/counters, serial communication, interrupts [9+3T] Programming 8051 timers, counter programming, basics of serial communication, 8051 connection to RS232, 8051 serial port programming in assembly, 8051 interrupts, programming timer interrupts, programming external hardware interrupts								
7	Interfacing with 8051 LCD and keyboard interfacing: LCD interfacing, keyboard interfacing, ADC, DAC and sensor interfacing: interfacing ADC to 8051(only interfacingADC0804 and ADC0808 to 8051), DAC 1408, sensor interfacing and signal conditioning Motor control: relay, opto-isolators, dc and stepper motors, relays and opto-isolators, stepper motor interfacing, dc motor interfacing and PWM	12							
	List of Textbooks/Reference books								
	1. Digital Principles and Applications – D. P. Leach, A. P. Malvino and G. Saha								
	2. 8051 Micro-controller – K. J. Ayala The 8051 Microcontroller and Embedded Systems M. A. Mazidi J. C.								
	Mazidi and R. D. Mckinlay								
	4. Digital Fundamentals – Floyd Thomas L								

	Mapping of course outcome (CO) to the program outcome (PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	1	3	1	1	3	2	2	2	1	3	
CO2	2	2	1	3	1	1	3	2	2	2	1	3	
CO3	2	2	1	3	1	1	3	2	2	2	1	3	
CO4	2	2	1	3	1	1	3	2	2	2	1	3	
CO5	2	2	1	3	1	1	3	2	2	2	1	3	
0 = No	correla	tion; 1=	-Weak	correla	tion; 2	=moder	rate cor	relation	n; 3=stı	ong cor	relation		

Mapping of course outcome (CO) to the program-specific outcome (PSO)											
-	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6					
CO1	1	1	2	2	2	2					
CO2	1	1	2	2	2	2					
CO3	1	1	2	2	2	2					
CO4	1	1	2	2	2	2					
CO5	1	1	2	2	2	2					

Course	Code: PYT 2214	Course Title: Introduction to Ceramics	Cree	dits =	04					
			L	Т	P					
Semest	er: II	Total contact hours: 60	3	1	-					
		List of prerequisite Courses								
PYT2113 (Solid State Physics); PYT2112 (Quantum Mechanics-I)										
	List of Courses where this course will be a prerequisite									
		PYT2314(Polymer Physics)								
	Description of the	relevance of this course in the M.Sc. Physics Program	n							
This course structures and	This course relates the fundamental understanding of solid-state physics/chemistry with ceramic structures and its effect on various physic-chemical properties of ceramic materials. The concepts of									
electrical, me viewpoint wi	chanical, and there l be explored from	mal properties studied in various MSc courses from a material-specific view in this course.	a fun	dame	ntal					

	Course Outcomes (students will be able to)								
CO1	Understanding the various structures of the ceramics, synthesis mechanisms, and structure-property co-relationships	K2							
CO2	Identify various possible defect reactions and write them using Kröger-Vink notations for various ceramics systems and atmospheric conditions.	K3							
CO3	Apply statistical models to understand and estimate the mechanical behavior of the ceramics.	K4							
CO4	4 Understand the electrical behavior of various ceramics families and classify them based on potential applications.								
CO5	Demonstrate preparation of samples for measurement of electrical properties.	K4							
CO6	Analyze the electrical data using various mathematical equations and circuit fitting models.								
	Course Contents (Topics and subtopics)	Reqd. hours							
1	Introduction: Bonding and crystal structure, point defects, Kröger-Vink notations, effects of partial pressure of oxygen and temperature on defect concentration, effect of microstructure on the properties of ceramics	14							
2	Synthesis Synthesis of ceramic powders and nanoparticles, sintering and grain growth mechanisms, solid state sintering, Liquid phase sintering, Hot pressing and hot isostatic pressing	10							
3	Mechanical properties Theoretical fracture strength, Griffith's theory of brittle fracture, fracture toughness, factors affecting mechanical properties of ceramic materials, toughening mechanisms, Transformation toughening, R-curve behaviour and designing with ceramics, Weibull modulus, creep and fatigue in ceramic materials.	12							
4	Electrical and Thermal properties Electronic ceramics, Dielectric properties of ceramics, polarization Mechanisms, Capacitors and insulators, piezoelectric, ferro and anti-ferroelectric ceramics. Thermal expansion, thermal conductivity, thermal stress, and thermal shock resistance, spontaneous microcracking, thermal tempering	16							
5	Introduction to glassy materials Glass formation, Glass structure, Ceramic composites, glass ceramics, measurement of ceramic properties	08							
	List of Textbooks/Reference books								
	 Fundamentals of ceramics – M. W. Barsoum Ceramic science and technology – W. D. Kingery, H. K. Bowen and D. R. Ulman Ceramic fabrication processes – F. F. Y. Wang Better ceramics through chemistry – C. J. Brinker, D. E. Clark and D. R. Ullrich 								

	Mapping of course outcome (CO) to the program outcome (PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	3	1	2	1	1	1	3	2	2	2	
CO2	2	3	3	1	3	1	2	1	3	2	2	2	
CO3	2	3	3	3	2	1	3	2	3	2	2	2	
CO4	3	3	3	3	3	1	2	2	3	2	2	2	
CO5	2	3	3	3	3	1	3	3	3	2	2	2	
CO6	3	3	3	3	3	1	3	3	3	2	2	2	

I	Mapping of course outcomes (CO) to the program-specific outcome (PSO)											
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6						
CO1	1	1	1	1	1	2						
CO2	1	1	1	1	1	2						
CO3	3	1	3	3	3	3						
CO4	2	1	3	2	3	3						
CO5	3	1	3	2	3	3						
CO6	3	1	3	2	3	3						

	Course Code: PYT 2314	Course Title: Polymer Physics	Crea	lits =	= 04						
			L	Т	P						
	Semester: III	Total contact hours: 60	3	1	-						
		List of prerequisite Courses									
	PYT2113 (Sol:	id State Physics); PYT2112 (Quantum Mechanics-I)									
	List of Co	urses where this course will be a prerequisite									
	PYT2416 (Ad	vanced Polymer Physics and Polymer Composites)									
	Description of the	relevance of this course in the M.Sc. Physics Progran	a								
This	course forms the core of the	specialization offered in the MSc Physics program. W	ith thi	s cou	ırse,						
stude	nts will explore the world	of polymers and apply the basic knowledge gained in	their	r phy	sics						
cours	es to understand polymer sy	nthesis via the kinetics of reactions, mechanical propertie	es, and	d var	ious						
other	physical properties.										
	Course Outcomes (students will be able to)										
CO1	Classify the polymers based	l on structure, synthesis mechanism, and applications.		K2							

CO2	Understand the concept of Molecular weight and polydispersity and calculate the	K2							
	same for any given polymer.								
CO3	Examine the polymers that can be synthesized by step and/or chain polymerization techniques and assess the feasibility/rate and other factors for the chosen method.	К3							
CO4	Understand the concept of glass transition temperature (T_g) , and design the polymer/composite suitable for particular applications based on the T_g (or changing the T_g).	К3							
CO5	Students should distinguish between the applicability of viscoelastic models for polymers and create/modify various model elements to satisfy the given viscoelastic behaviour.	K4							
	Course Contents (Topics and subtopics)	Reqd. hours							
	Introduction								
1	General introduction. General introduction to macromolecules, classification of polymers, structure of crystalline and amorphous polymers, lamellar, fibrillar, globular and spherulitic structures, domain structure of amorphous polymers, Molecular weight of Polymers, polydispersity, and their determination. Effect of chain entanglement, Chain conformation in polymers.	10							
2	Synthesis of polymers: Classification of polymerization reactions. Step Polymerization: polycondensation, polyaddition polymerization. Radical polymerization, ionic polymerization, coordination polymerization, co-polymerization: Step, Chain, Block copolymerization. Kinetics of various polymerization processes.	14							
3	Thermal behaviour: Glass transition temperature, melting temperature, heat distortion temperature, factors affecting Tg and its relationship with various properties, Thermal transitions, melting of crystalline polymers, thermal degradation, thermal expansion in polymers, thermogravimetry, differential scanning calorimetry. Effect of structure on thermal properties of polymers.	12							
	Mechanical behaviour:								
4	Fundamental concepts of rheology, elastic deformation in polymers, theory of linear viscoelasticity, concept of relaxation, stress-strain behaviour, its dependence on internal and external factors, fatigue and lifetime of polymers, viscoelastic mechanical models. Polymer structure and mechanical properties.	16							
5	Electrical behaviour: Diffusion of fluids through polymeric surfaces, barrier properties. Dielectric properties: dielectric measurements and its use, dielectric relaxation, dielectric breakdown. Conduction in polymers: conducting, composites, ionic conduction, inherently conducting polymers; polymer electronics: LED, solar cells transistors etc. Gel electrolytes for batteries.	08							
	List of Textbooks/Reference books								
	 Textbook of Polymer Science – F. W. Billmeyer Introduction to polymers- Robert J. Young and Peter A. Lovell Polymer Science: V. R. Gowariker, N. V. Viswaanathan Polymer Physics – U. W. Gedde Macromolecular Physics: Part II and Part III – B. Wunderlich 								

6.	Principles of Polymer Morphology – D. C. Bassett	

	Mapping of course outcome (CO) to the program outcome (PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	2	3	2	2	2	2	2	2	2	2	3	
CO2	2	2	3	2	3	2	2	2	2	2	2	3	
CO3	2	2	2	2	3	2	2	2	2	2	2	3	
CO4	2	2	2	3	3	2	2	2	2	2	2	3	
CO5	2	2	2	3	3	2	2	2	2	2	2	3	

Mapping of course outcome (CO) to the program-specific outcome (PSO)											
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6					
CO1	1	1	2	2	2	2					
CO2	1	1	3	2	3	3					
CO3	1	1	2	2	3	2					
CO4	1	1	2	2	2	3					
CO5	1	1	3	2	3	2					

	Course Code: PYT 2414	Course Title:	Credits = 04						
		Introduction to Phase Transformations	L	Т	P				
	Semester: IV	Total contact hours: 60	3	1	-				
	List of prerequisite Courses								
	PYT2211-Materia	als science and synthesis, PYT2113-Solid State Physics							
	List of Co	urses where this course will be a prerequisite							
	Advance	es courses in materials science and metallurgy							
	Description of the	relevance of this course in the M.Sc. Physics Program	n						
This	course enables students to u	inderstand the thermodynamics behind the formation of	mate	erials	and				
phase	e transformations and correla	ate this with materials applications.							
	Cour	se Outcomes (students will be able to)							
CO1	Understand the fundamenta	I thermodynamics and the process of diffusion in		K2					
	solids and kinetics.								
CO2	Estimate the eutectic tempe	erature, phase formation/identification from		K3					
	binary/ternary phase diagra	ms.							

CO3	Analyse the Fe-C phase diagrams for various possible phases with temperature and Carbon content.	К3						
CO4	Apply precipitation hardening/dispersion strengthening/transformation strengthening mechanisms for toughening metals/ceramics.	K4						
CO5	Explore various techniques to strengthen metals and ceramics.	K4						
	Course Contents (Topics and subtopics)	Reqd. hours						
1	Interatomic bonding, structure of materials, crystal defects and deformation. Diffusion. Interface-structure and energies, migration of interfaces and diffusion- controlled growth.	14						
2	Laws of thermodynamics, Gibbs equation, Free energy-composition diagrams, Formation and analysis of binary and ternary phase diagrams. Solidification, solid to solid nucleation theory, thermodynamics and kinetics of phase transformations, precipitation, diffusive and displacive transformations, order-disorder transformations.	20						
3	26							
	List of Textbooks/Reference books							
	 Phase transformations in Metals and Alloys – D A Porter and Easterling Materials Science and Engineering -William D. Callister, Jr. Theory of structural transformations in solids – A. G. Khachaturyan Phase diagrams: Materials science and technology, vol. 6 – A. M. Alper 							

	Mapping of course outcome (CO) to the program outcome (PO)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	1	1	2	3	3	2	1	2	3
CO2	2	1	3	1	1	2	3	3	2	1	2	3
CO3	2	1	3	1	1	2	3	3	2	1	2	3
CO4	2	1	3	1	1	2	3	3	2	1	2	3
CO5	2	1	3	1	1	2	3	3	2	1	2	3

Mapping of course outcome (CO) to the program-specific outcome (PSO)										
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	3	1	1	1	3	3				

CO2	3	1	1	1	3	3
CO3	3	1	1	1	3	3
CO4	3	1	1	1	3	3
CO5	3	1	1	1	3	3

	Course Code: PYT 2416	Course	Title:	Advanced	Polyme	r Physics	and	Crea	lits =	: 04
		Polymer	r Comp	osites				L	Т	P
	Semester: IV	Total co	ntact h	ours: 60				3	1	-
	List of prerequisite Courses									
	PYT2314 (Polymer Physics)									
	List of Co	urses wh	ere this	course will	l be a prei	requisite				
		Highe	er-level g	graduate cou	urses					
	Description of the	relevance	e of this	course in t	he M.Sc.	Physics Prog	gram	<u> </u>		
This	This course complements the other elective courses offered in earlier semesters in the MSc Physics									
progr	am. With this course, stud	ents will	underst	and the nu	ances of p	olymer mix	ing,	rheol	logy	and
nanoo	composites.									
	Cours	e Outcor	mes (stu	dents will	be able to.)				
CO1	Understand the importance	of compo	site mat	erials from a	a mechanic	al strength p	oint		K2	
	of view.									
CO2	Calculate the weight frac	tions of	reinford	cement and	matrix a	and estimate	its		K4	
	performance.									
CO3	O3 Apply the concepts of rheology to various manufacturing processes. K4									
CO4	CO4Learn to blend and mix various polymers for desired results.K3									

	Course Contents (Topics and subtopics)	Reqd. hours
1	Importance of polymer blends/composites, concept of polymer miscibility, interchange forces in polymer blends, phase equilibria and transitions, phase separation, behaviour of polymer mixtures: upper and lower critical solution temperatures, polymer-polymer compatibility, role of additives	15
2	Dispersion of nanomaterials (layered silicates, carbon nanotubes) in host materials, preparation of nanocomposites: intercalation, exfoliation, common solvent, polymer melt intercalation methods, in-situ polymerisation method, crystallization of nanocomposites, various properties of nanocomposites	15
3	Polymer rheology [8+4T] Concept of stress and strain tensors, constitutional equations of rheology, shear and extensional viscosities, dependence of viscosity on temperature, pressure and molecular weight, flow curve, flow of Newtonian and non-Newtonian liquids, rheology of extrusion and calendaring	15
4	Polymer mixing [6+3T] Theory of mixing, macro- and micro-mixing, distributive and dispersive mixing, polymerpolymer mixing, melt mixing, solution blending, mixing by reaction	15
	List of Textbooks/Reference books	
	 Structure and properties of oriented polymers – I. M. Ward Polymer-clay nanocomposites – T. J. Pinnavaia and G. W. Beall Principles of polymer morphology – D. C. Bassett Polymer alloys and blends – L.A. Utracki Thermal characterization of polymeric materials – E. A. Turi Polymer Characterisation: Physical Techniques – D. Cambell and J. R. White Introduction to Polymer Spectroscopy – W. Klopffer 	

	Mapping of course outcome (CO) to the program outcome (PO)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	2	2	2	1	2	1	2	1	2	3
CO2	1	3	2	2	3	1	3	1	2	1	2	3
CO3	1	2	2	2	3	1	3	1	2	1	2	3
CO4	1	2	2	3	2	1	3	1	2	1	2	3

Mapping of course outcome (CO) to the program-specific outcome (PSO)										
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	2	1	1	1	3	3				
CO2	2 2 1 1 3 3 3									

CO3	2	1	1	1	3	3
CO4	2	1	1	1	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0– No Contribution K, knowledge level from the cognitive domain

	Course Code: PYT 2417	1 Credits = 04								
		Energy Sources	L	Т	P					
	Semester: IV	Total contact hours: 60	3	1	-					
		List of prerequisite Courses								
	PYT2211 (Materials sci	ence and synthesis); PYT2313 (Introduction to Nanoscie	ence)							
	List of Courses where this course will be a prerequisite									
		Higher-level graduate courses.								
	Description of the relevance of this course in the M.Sc. Physics Program									
This under	This course will introduce students to energy storage and conversion materials. Students will learn the underlying mechanism behind these storage techniques.									
	Course Outcomes (students will be able to)									
CO1	Understand the importance	of various renewable energy sources.		K2						
CO2	Calculate the energy require	ement and output of a renewable energy device/source.		K4						
CO3	Use the knowledge of solar	photovoltaics for efficient energy generation.		K3						
CO4	Apply proper utilization of energy sources and extract better efficiency from the energy sources.									
	Course	e Contents (Topics and subtopics)	Req	l. ho	urs					
	Conventional energy reso	urces								

1	Conventional energy sources, energy conservation and efficiency in production transfer and utilization (potential and limitations), climate changes and environmental pollution, measurement of pollution, pollution management	15
2	Renewable energy resources Renewable energy sources, advantages of renewable energy utilisation Solar energy: solar radiation, availability, measurement and estimation, solar thermal conversion device and storage application	15
3	Solar photovoltaics: fundamentals of photo voltaic energy, conversion physics and material properties, basics to photovoltaic conversions, different types of solar cells	15
4	Tidal energy, wind energy, bioenergy as renewable energy sources	15
5	Harnessing energy for utilisation, product design, and development of newer ways, their management	15
	List of Textbooks/Reference books	
	 Fundamentals of Solar Cells – A. L. Fahrenbruch and R. H. Bube Solar Cell Device Physics – S. Fonash Solar energy: principles of thermal collection and storage – S. P. Sukhatame Solar engineering of thermal process – J. A. Duffie and W. A. Beckman Renewable energy resources – T. Twidell and A. D. Weir Principles of Solar energy – D. Y. Goswami, F. Kreith and J.F Kreider 	

Mapping of course outcome (CO) to the program outcome (PO)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	2	2	2	2	2	3	2	2	3
CO2	1	1	2	2	2	2	2	2	3	2	2	3
CO3	1	1	2	2	2	2	2	2	3	2	2	3
CO4	1	1	2	2	2	2	2	2	3	2	2	3

Mapping of course outcome (CO) to the program-specific outcome (PSO)									
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6			
CO1	2	1	1	1	3	3			
CO2	2	1	1	1	3	3			
CO3	2	1	1	1	3	3			
CO4	2	1	1	1	3	3			

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0– No Contribution K, knowledge level from the cognitive domain