Students' Awareness about the MDM Degree And Open Electives

Orientation in a Phased manner between 22nd Feb – 22nd March 2024 Number of Orientation Programmes: **8**

MDM and OE Orientation

MDM and OE Orientation

ICT Jalna Campus: 23rd March 2024

ICT Off Campuses Activities Jalna and Bhubaneshwar

Sr. No.	MDM Program	Time	Coordinator/Instructors	Venue
1	Food Technology	<u>10:30 – 11:00 am</u>	Dr. Ramesh Chavan	Auditorium
2	Pharma Technology	<u>11:00 – 11:30 am</u>	Dr. Navnath Hatvate	Auditorium
3	Lipids Technology	<u>11:30 am - 12:00 pm</u>	Dr. Parag Nemade	Auditorium
4	Materials and Polymers Technology	<u> 12:00 – 12:30 pm</u>	Dr. Girish Joshi	Auditorium
5	Energy Technology	<u>01:35 – 02:00 pm</u>	Dr. Supriyo Kumar Mondal	Auditorium
6	Petro Technology	02:00-02:30 pm	Dr. Atul Bari	Auditorium
7	Chemical Sciences	<u>02:30 – 03:00 pm</u>	Dr. Manoj Gawande	Auditorium
8	Physical Sciences	<u>03:00 – 03:30 pm</u>	Dr. Girish Joshi	Auditorium

ICT Bhubaneshwar Campus: 2nd and 6th March 2024

Multi-Disciplinary Minor (MDM) Degree In Biotechnology and Bioengineering

Under the National Education Policy (NEP 2020)

(2023-2024)

Offered by

DEPARTMENT OF BIOLOGICAL SCIENCES AND BIOTECHNOLOGY

INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

Department of Biological Sciences and Biotechnology (DBSBT)

Genesis

DBT-ICT Centre for Energy Biosciences: India's first Bioenergy Centre, established in 2009 **DBSBT:** An extension, evolution of the DBT-ICT Center to develop the research, training and education and outreach programs in subject of Biotechnology

MDM Degree overview & Structure of the MDM Course

Sr No	Semester	Course Credits	Name of the course
1	III	2	Introduction to Biological Science
2	IV	2	Fundamental of Applied Biotechnology
3	v	4	Lab Techniques in Biotechnology
4	VI	2	Genetic Engineering and Bioinformatics
5	VII	2	Bioprocess Technology
6	VIII	2	Industrial Biotechnology

Subject Code	de Semester Subject Credits Hrs/Week		ek	Marks for various Exams						
				L	Т	P	CA	MS	ES	Total
BBT1201	ш	Introduction to Biological Science	2	2	0	0	20	30	50	100
BBT1202	IV	Fundamental of Applied Biotechnology	2	1	1	0	20	30	50	100
BBP1303	v	Lab Techniques in Biotechnology	4	8	0	0	50		50	100
BBT1304	VI	Genetic Engineering and Bioinformatics	2	1	1	0	20	30	50	100
BBT1405	VII	Bioprocess Technology	2	2	0	0	20	30	50	100
BBT1406	VIII	Industrial Biotechnology	2	1	1	0	20	30	50	100
		Total	14	16						600

Recommended batch size Minimum 15; Maximum 35

Eligibility criteria

1. CGPA of the first two semesters.

2. In case the results of the

IInd semester are not available, eligibility will be based on CGPA of

 1^{st} Semester (50% weightage) and

CET/JEE score

(50% weightage)

Prerequisites: None

 $^{\ast}5$ Theory and 1 Lab course

Open Elective offered by DBSBT

Subject Code	Semester	Subject	Credit]	Hour Weel	rs/ K	Marks for various Exams			
				L	Т	Р	CA	MS	ES	Total
BBT1203	III	Introduction to Biological Science	2	2	0	0	20	30	50	100
BBT1204	IV	Fundamental of Applied Biotechnology	2	2	0	0	20	30	50	100

Why Biotechnology? Money Money.... (\$1.4Tn Economy)

The thrust on Bio-economy is likely to provide newer job and entrepreneurship avenues to trained and skilled manpower in these domains

SDG & Biotechnology correlation

Ensure sustainable consumption and production patterns

MDM course progression

Course Significance & Objective

The Minor degree Course in "Biotechnology and Bioengineering" has been designed **To Encompass Diverse Domains of Biotechnology and Bioengineering**

• Introduction to Biological Science Semester

- Fundamental of Applied Biotechnology Semester
- Lab Techniques in Biotechnology (Practical) Semester
- Genetic Engineering and Bioinformatics Semester VI
 - Bioprocess Technology
- Industrial Biotechnology Semester

The MDM Degree Will Provide the Opportunity to **Explore Wide Spectrum of Biotechnology And Understand Its POTENTIAL and OPPORTUNITIES in Bio-Economy** and Overall Sustainable Development.

ш

IV

v

Semeste VII

VIII

Know your Faculty

Prof. Samir Kulkarni PhD: ICT Mumbai **Head**

Dr. Ratnesh Jain PhD: ICT Mumbai

Dr. Gunjan Prakash Dr. Aniket Gade PhD: IIT Delhi PhD: SGB, Amravati University

Dr. Manju Sharma PhD: G.N.D University Amritsar

Dr. Shamlan Reshamwala PhD: IIT Bombay

Dr. Hitesh PawarDr. Mayur LadolePhD: ICT MumbaiPhD: ICT Mumbai

Dr. Chandrakant Holkar PhD: ICT Mumbai

Dr. Anand Jadhav PhD: ICT Mumbai

Dr. Rohit Sathe PhD: **IIT** Ropar

Laboratories and R&D Facilities at the DBSBT

Liquid Handling System

Biogas fermentation

Algal Biotechnology Lab

What do you Acquire...

Scope & Opportunities

- Exposure to the exciting field of Biotechnology with real life applications
- Development of Technical Know how and Practical Exposure in the field of Applied Biotechnology
- iGEM participation opportunities
- Mentorship from Faculty for skill development possibilities in the field of Biotechnology

- Higher Studies in India or abroad
- Ample Entrepreneurship Possibilities In Bio-based Domain.
- Opportunities to align to SDGs for sustainability for our own living and existence.

Thank you

For any further queries Please Contact or Write to

Head, DBSBT: Prof Samir Kulkarni (sr.kulkarni@ictmumbai.edu.in) Departmental MDM Coordinator: Dr Gunjan Prakash g.prakash@ictmumbai.edu.in

Multi-Disciplinary Minor (MDM) Degree In Pharmaceutical Chemistry and Technology

Under the National Education Policy (NEP 2020)

(2023-2024)

Offered by

Department of Pharmaceutical Sciences and Technology, ICT Mumbai

Salient Features:

- Pharmaceutical science and technology have played a crucial role in this evolution, shaping the manufacturing/preparations/ formulations / extractions, and distributed of drug substances, drug products, biological, phyto-constituents, fermented bioactive molecules etc.
- The commitment of professionals in these fields has been instrumental in ensuring a safe, abundant, and diverse pharmaceutical products supply for an increasingly global population.
- Department of Pharmaceutical Sciences and Technology has vision to provide demand-driven, value-based and quality technical education to make India a developed country through socio-economic transformation.
- In tune of this, the minor degree course in "Pharmaceutical Chemistry and Technology" has been designed to encompass different domains of pharmaceutical science and technology from fundamental knowledge to scientific and technological advancement.

Program Specific Outcomes(PSO's) Key areas: Students will develop their core expertise

- Pharmaceutical Products Development and analysis: Able to translate emerging sciences in developing innovative pharmaceutical products. Able to apply analytical techniques for pharmaceuticals safety, quality assurance & regulations.
- Pharmaceutical Technology Knowledge: Apply the knowledge of mathematics, science, chemical engineering and pharmaceutical technology fundamentals, and pharmaceutical technology specialization to the solution of complex problems in pharmaceutical formulation technology, Pharmaceutical Chemistry and phytochemical extraction or Herbal technology.
- Design & Development of innovative Solutions: Design solutions for complex pharmaceutical technology problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
- Fermentative Biotechnology: Able to translate emerging science in developing innovative Fermentative/Biological products.

Important Details

Intake: Minimum 15; Maximum 35

Eligibility Criteria:

- a. CGPA of the first two semesters.
- b. In case the results of the 2nd semester are not available, eligibility will be based on CGPA of the 1st Semester (50% weightage) and CET/JEE score (converted into percentile based on admitted students, 50% weightage).
- c. The allotment to the multidisciplinary minor degree programme will be as per the policy of the Institute.
- **Prerequisites:** 12th Standards subjects and First year B. Tech/B.Chem courses.

Pedagogy/Teaching Methods:

- ✓ Lecture/Discussions: These sessions will discuss the subject matters of the course
- ✓ **Experiential Learning**: The sessions will involve hands on training.
- Tutorials: Problem solving / case studies / relevant real-life applications / student presentations / home assignments / individual or group projects
- Hands on Experience: Few topics will be demonstrated followed by hands on experience.

Summary of Subjects

Semester	Subject	Credit	Faculty Members
III	Introduction to Technology of Pharmaceuticals and Fine chemicals	02	Prof. Shreerang V. Joshi/ Dr. Nitin Arote
IV	Pharmaceutical Analysis	02	Prof. Ganesh U. Chaturbhuj
V	Phytochemicals-Extraction and Isolation	04	Prof. K.S. Laddha/ Dr Galvina Pereira
VI	Introduction to Formulation Technology	02	Prof. Vandana Patravale/Dr. Sathish Dyawanapelly
VII	Introduction to Fermentative Biotechnology	02	Dr. Prajakta Dandekar Jain /Visiting Faculty
VIII	Pharmaceutical Chemistry and Technology	02	Prof. Shreerang V. Joshi/ Dr. Nitin Arote

Course title Highlights of syllabus

	\checkmark	Students are required to know various aspects of the Technology of
Introduction to		Pharmaceuticals and Fine Chemicals. This subject will fulfill the need
Technology of		to build the professional career additional in Pharmaceutical Sectors
Pharmaceuticals	✓	General Aspects, Medicinal Chemistry and Process Chemistry,
and Fine		Pharmacology and Pharmacognosy, Dosage forms of the drugs,
cnemicals		Drug administration, Overview of drug development and
		Introduction to biological therapeutics.
	\checkmark	The course is designed to acquaint the students with the basics of
		Pharmaceutical Analysis.
Pharmaceutical	\checkmark	This includes Pharmacopeial monographs, analytical method
Analysis		validation, spectroscopic and spectrometric techniques such as
		Fourier Transform Infra-Red (FT-IR), Nuclear Magnetic Resonance
		(NMR), Mass Spectrometry and Hyphenated Techniques.

Course title		Highlights of syllabus						
	\checkmark	The course is designed to train the students with the bas						
Phytochemicals		and application of technology in Separation, Preparation,						
-Extraction and		Isolation, evaluation and detection of phyto-constituents						
Isolation		from drugs of natural origin. Hands on experience on herbal						
		extraction technology.						
	\checkmark	The course is designed for basic and practical understanding						
		on various dosages form.						
Introduction to	\checkmark	Overview of Pharmaceutical formulation Industry,						
Formulation		Development in Large-scale Manufacturing of Monophasic						
Technology		(Oral and Topical), Biphasic – Suspension and Emulsions,						
		Topical Dosage Forms such as Ointments, Creams, Gels, and						
		Suppositories.						

Course title	Highlights of Syllabus
Introduction to Fermentative Biotechnology	 ✓ To assess the application of biological and engineering principles to problems involving microbial, mammalian, and biological/biochemical systems. ✓ To understand the fundamentals of fermentation technology to know the basics in mammalian cell culture and genetic engineering and Recombinant microorganisms in fermentation ✓ To understand the current concepts in fermentative biotechnology, with a focus on industrial practices
Pharmaceutical Chemistry and Technology	 ✓ Introduction to various drug classes with emphasis on synthesis and technology Developments. ✓ Industrial Synthetic strategies for implantation of technology in manufacturing of Drug and Drug Intermediates. ✓ Understanding of industrial practices.

Laboratories and R&D Facilities at the DPST

- ✓ Nuclear Magnetic Resonance
- ✓ FTIR
- ✓ Spray Dryers
- ✓ High performance liquid chromatography
- ✓ Gas chromatography
- ✓ Glass reactor assembly
- ✓ Pressure Reactors (Hydrogenators)
- ✓ Flow reactor
- ✓ Herbal Product-Extractors.
- ✓ All formulation equipment's
- ✓ Well equipped biotech facility

DPST Faculty

Detailed syllabus uploaded on ICT website. Please feel free to reach out for any further queries.

For any further queries Please Contact or Write to

Head, DPST: **Prof Shreerang V. Joshi** (sv.joshi@ictmumbai.edu.in) Departmental MDM Coordinator: **Dr Nitin Arote** nd.arote@ictmumbai.edu.in

Chemical Sciences

Multi-Disciplinary Minor Degree

Department of Chemistry, ICT Mumbai

Salient features:

- Industry relevance: Equip students for diverse roles in numerous industries such as pharmaceuticals, polymers, dyes, and textile industries
- Innovation and Entrepreneurship: Mentor students to successfully combine the expertise in Chemistry and technology to address this expanding market for locally manufactured chemicals
- Research and Development: Students will comprehend and combine both aspects research and development through their training to be competent researchers on a global level
- Sustainable development: Sensitize and train students to address global problems through development of clean technologies for energy-efficient transportation, food security and access to health care

Program Specific Outcomes

Following are the key areas in which the students will develop their core expertise:

Summary of Courses offered

Semester	er Subject		Faculty Members
III	Chemical Kinetics	02	Prof. R. V. Jayaram
IV	Interfacial Chemistry	02	Prof. R. V. Jayaram
V	Organic Synthesis	04	Dr. A. R. Kapdi
VI	Organic Spectroscopy	02	Prof. A Chaskar / Visiting faculty
VII	Computational Chemistry	02	Dr. R. V. Pinjari
VIII	Organometallic Chemistry & Catalysis	02	Prof. B. M. Bhanage / Dr. A. Kapdi

Course title

Highlights of syllabus

Chemical

Kinetics

- Study of industrially relevant reactions for example polymerization reactions, homogenous catalysis, enzyme catalysis, interfacial processes
 - Experimental techniques and theory of kinetic models
 - Applications in food industry, pharmaceutics, industrial synthesis
- Interfacial Chemistry
- Physical and chemical characteristics of surfactants, micelles,
 colloids (gels, emulsions, foams) and their stability
 - Applications in heterogeneous catalysis, electrochemistry, separation processes and allied technology fields such as paints, dyes, drug formulations, food industry, textiles

Course title	Highlights of syllabus
Organic Synthesis	 Functional group transformations (example – carbonyl chemistry), stereochemistry, heteroaromatic compounds, chemistry of natural products Applications in speciality chemicals industry, bulk chemicals manufacturing, pharmaceutical manufacturing industry, polymer
Organic	Various spectroscopic techniques used for the structural

Spectroscopy

- Various spectroscopic techniques used for the structural elucidation of organic molecules
- UV-visible spectroscopy, Infrared spectroscopy, 1H and 13C NMR, mass spectrometry
- Key aspects related to speciality chemicals, research and development

Course title	Highlights of syllabus					
Computational	Introductory course on computational studies of molecules,					
Chemistry	supramolecular assemblies and biomolecules					
·	Molecules mechanics, quantum mechanics, molecular dynamics					
·	• Applications in research and development, pharma industry,					
	designing of molecules and materials					
Organometallic	 Introduction to organometallic chemistry and its contemporary 					
Chemistry and	applications in industrial catalysis					
Catalysis	Important reactions include hydrogenation, formylation,					
	hydroformylation, polymerization, CO2 fixation					

 Applications in research and development, pharma industry, speciality chemicals industry, green technology

Open Electives (Sem 3 to 5)

All courses offered for MDM are open electives – meaning students who have opted for MDM other than Chemical Sciences can enroll under open electives

Sem	Subject	Credits
III	Analytical Chemistry	04
III	Organic Synthesis	04
IV	Advanced Analytical Chemistry	02
IV	Interfacial Chemistry	02
IV	Organic Spectroscopy	02
V	Computational Chemistry	02
V	Chemical Kinetics	02
V	Organometallic Chemistry and Catalysis	02

Course title Highlights of syllabus Analytical Combination of lectures and laboratory sessions techniques, Chemistry Spectroscopic techniques, electroanalytical chromatographic techniques, AAS • Experiments will be based on applications of the above techniques for chemical analysis Advanced • Thermal methods (DSC / TGA), XRD, surface analysis – SEM /

Analytical Chemistry Thermal methods (DSC / TGA), XRD, surface analysis – SEM / TEM, advanced electrochemical methods (coulometry, amperometry, cyclic voltammetry)

• Applications in materials science, QC and QA in industries

Detailed syllabus uploaded on ICT website. Please feel free to reach out for any further queries.

Minor degree in "Materials Science" Offered by the Department of Physics

Why?

- We live in Materials age, drives the **progress of a country/region**
- Material are crucial to many emerging areas for advancing technology
- Semiconductor industry, solar cells manufacturing, renewable energy, automotive and aerospace industry, biomaterials, to name a few.
- Materials selection and design as per applications: economic and performance optimization
- Abundance of critical materials is an issue, finding suitable alternatives is needed.
- This program will help understand materials from microscopic viewpoint, their processing and materials selection and design for applications

Structure of Minor degree in Materials Science (Department of Physics)

	Structure of Minor degree in Materials Science												
Sr. No.	Course Code	Course	Semester	Credits	Ho	urs/	week	Marks distribution					
					L	Τ	P	CA	MS	ES	Total		
1.	PYT1301	Solid state Physics	III	2	1	1	-	20	30	50	100		
2.	PYT1401	Introduction to Materials Science	IV	2	1	1	-	20	30	50	100		
3.	PYT1501	Introduction to Nanophysics and Applications	V	4	3	1	-	20	30	50	100		
4.	PYP1601	Materials Characterization Laboratory	VI	2	-	-	4	50	-	50	100		
5.	PYT1701	Introduction to Polymer Physics	VII	2	2	-	-	20	30	50	100		
6.	PYT1801	Ceramic Science and Technology	VIII	2	2	-	-	20	30	50	100		

What we do in Materials Science?

Understand materials behaviour from Atomic to Bulk

Develop strategies for processing and functionalize materials for various applications.

How are courses aligned to the Philosophy of Materials science?

Materials journey from atom to the bulk

Materials journey from atom to the bulk

Faculties involved in MDM

Prof. Mohan Narayan Head, Department of Physics

Prof. R. R. Deshmukh Sr. Professor

Dr. Neetu Jha UGC Assistant Professor

Dr. Ashwin Mohan Assistant Professor

Dr. Archana Kalekar Assistant Professor

Assistant Professor

Dr. Shraddha Shirbhate Assistant Professor

	_	_	Research/Expertise	_	_	_
Chemical	• Plasma	Carbon	Materials Physics	•Energy	Sodium-ion	• SOFC
Engineering Ther	Technology	Nanomaterials		conversion: Solar	batteries	Technology, PEM
mo-dynamics	Polymer Physics		• Thermal transport	cells		FC
		• Fuel Cell		Photocatalysis.	 Supercapacitors 	
	•		 Magnetism, low 			• Solid electrolyte
• Statistical	Functionalization		temperature	• Energy storage:	• Multiferroics	
mechanics	of nano-particles	 Supercapacitors 	physics	Supercapacitor,		• Defect
				Batteries		chemistry in
	• Plasma for	• Zn-ion Batteries	 Low-dimensional 		 Colossal 	Solid
• Theoretical High	biomedical		quantum magnets	•Sensors	Dielectric	• Piezoelectric
Energy Physics	applications	 Nano fluids 			Materials	Materials

Department's contribution from basic to applied field

How the courses are shaped?

1.	2.	3.	4.	5.	6.
Solid state Physics	Introduction to Materials Science	Introduction to Nanophysics and Applications	Materials Characterization Laboratory	Ceramic Science and Technology	Introduction to Polymer Physics
 Understanding the origin of macroscopic materials properties from the microscopic (atomistic) viewpoint. Theoretical basis of how technologically relevant materials properties arise due to the collective behaviour of building blocks of materials: electrons/atoms/ molecules Very useful for materials engineering. 	 Will introduce to majority of materials category Materials dependent properties will be explored For each category, materials function, from microscopic point will be introduced Will form the base for more detailed courses in materials science 	 •Understanding of property variation with size and its optimization for application. •Understanding of the synthesis mechanisms and its characterization. •Industrial Applications of Nanotechnology- Present and future. •Smaller, faster, and more economical 	 Use of advanced, research-grade experimental facilities used in the characterization of materials properties Ability to correlate experimental results with materials characteristics and properties Data analysis techniques to obtain relevant quantities using raw experimental data 	 Understanding the structure property correlations in the ceramics Estimating the toughness and other mechanical properties of the ceramics Measure and understand the electrical behaviour of the ceramics Useful for making polymer, metal matrix composites, ceramic membrane, fuel cells, solid electrolytes for batteries. 	 There's a certain overlap between polymer chemistry, polymer physics and polymer engineering, combining all these will help understand the polymer science. Focus will be on structure-property correlationship in polymers, bonding Emphasis will be on Mechanical properties, rheological studies, kinetics of reactions
]				

Foundation

Materials Specific Knowledge and Applications

Research facilities student will explore

- •X-ray diffractometer (XRD)
- •Differential Scanning calorimetry (DSC)
- Fourier Transformed Infrared Spectroscopy (FTIR)
- •UV Visible Spectrophotometer
- Colour spectrophotometer
- •Electrochemical Workstation
- •Universal Testing Machine (UTM)
- •Rheometer
- •Twin screw Extruder
- •Hot stage polarising microscope

Smartint

(XRD)

Prospects for students opting for this Minor

- MS
- PhD
- Industrial R&D

• Understand materials from microscopic perspective

• Selecting materials for various applications, understand alternative to existing materials for a particular applications

What you will ultimately achieve through combining this Minor with major

- Corelate fundamental understanding of various materials through atomic arrangement bonding, structure, microstructure to selecting materials for a particular applications.
- Advance to Functional Materials, witness their applications

Anyone who's interested in learning basic of materials science from fundamental point of view to exploring them from application point of view will find this minor degree in Materials science useful and in tandem with their major program.

and for those who don't find direct co-relation with this program...join, enjoy and explore fascinating world of materials...

Material's Journey...

Thank You!

MANAGEMENT SCIENCE

MDM MINOR SEMIII-SEMVIII

ENGINEERS AS PROBLEM SOLVERS

(and that is where the problem begins!)

Dr Rama lyer_ICT_ MGMT Minor

Management Teaches Engineers to be More Collaborative

- Engineering Problems Are Multifaceted
- Tap into Diverse Perspectives and Skills
- Achieve Better Solutions Together
- Foster innovation and creativity

Subject Code	Se m	Subject	Credi ts	Hrs	s/We	eek	Marks for various Exams				
				L	Т	Р	C A	M S	E S	Tota 1	
MGT110 1	III	Organizational Behaviour	2	2	0		20	30	50	100	
MGT110 2	IV	Principles of management and Organization structures	2	2	0		20	30	50	100	
MGT110 3	V	Interpersonal processes and Human Resource Management	4	3	1		20	30	50	100	
MGT110 4	VI	Fundamentals of marketing management and Market research	2	2	0		20	15	25	100	
MGT110 5	VII	Professional ethics	2	2	0		10	15	25	100	
MGT110 6	VII I	Operations and Supply Chain management	2	2	0		10	15	25	100	
		Total	14								

Management Teaches Engineers to Speak Business

Profits----Markets---Product---Engg

CASH-----KASH

Language 'Architecture' understood globally

(Fin mgmt/economics/production mgmt/ covered in major)

Subject Code	Se m	Subject	Credi ts	li Hrs/We		eek	Ma	rks fo Ex	or va ams	rious
				L	Т	Р	C A	M S	E S	Tota l
MGT1101	Ш	Organizational Behaviour	2	2	0		20	30	50	100
MGT1102	IV	Principles of management and Organization structures	2	2	0		20	30	50	100
MGT1103	V	Interpersonal processes and Human Resource Management	4	3	1		20	30	50	100
MGT1104	VI	Fundamentals of marketing management and Market research	2	2	0		20	30	50	100
MGT1105	VII	Professional ethics	2	2	0		20	30	50	100
MGT1106	VII I	Operations and Supply Chain management	2	2	0		20	30	50	100
		Total	14							

Management Teaches Engineers to Be Ethical Business Leaders

- Engineering-Organization role fit
- Understand hierarchy, managing engineers and non engineers
- Communicate effectively across the entire organization

Subject Code	Sem	Subject	Credit s	Hrs	s/We	ek	Ma	arks f Ex	for various xams		
				L	Т	Р	CA	M S	E S	Total	
MGT110 1	III	Organizational Behaviour	2	2	0		20	30	50	100	
MGT110 2	IV	Principles of management and Organization structures	2	2	0		20	30	50	100	
MGT110 3	V	Interpersonal processes and Human Resource Management	4	3	1		20	30	50	100	
MGT110 4	VI	Fundamentals of marketing management and Market research	2	2	0		20	30	50	100	
MGT110 5	VII	Professional ethics	2	2	0		20	30	50	100	
MGT110 6	VIII	Operations and Supply Chain management	2	2	0		20	30	50	100	
		Total	14								

Management Creates New Career Opportunities

 Roles in project management, engineering sales and marketing, and senior management positions across many different types of organizations and industries

Technical expertise+ People Understanding

Management Strengthens the Skills of Entrepreneurial Engineers

Launch own enterprise

Subject Code	Sem	Subject	Credit s	Hr	Hrs/Week		M	arks f Ex	or va ams	rious
				L	T	Р	CA	M S	ES	Total
MGT110 1	III	Organizational Behaviour	2	2	0		20	30	50	100
MGT110 2	IV	Principles of management and Organization structures	2	2	0		20	30	50	100
MGT110 3	v	Interpersonal processes and Human Resource Management	4	3	1		20	30	50	100
MGT110 4	VI	Fundamentals of marketing management and Market research	2	2	0		20	30	50	100
MGT110 5	VII	Professional ethics	2	2	0		20	30	50	100
MGT110 6	VIII	Operations and Supply Chain management	2	2	0		20	30	50	100
		Total	14							

Department of Mathematics 22nd February 2024

THE DEPARTMENT OF MATHEMATICS

Established in the year 1944.

Vision

• The Department of Mathematics, Institute of Chemical Technology, Mumbai, aims to be an internationally leading mathematics department that will offer innovative educational and research programmes in mathematical sciences and their applications in science and technology

Mission

- Offer courses and programs that will ensure that the student get practical knowledge in mathematics which will be relevant to the society
- Provide a modern educational environment for instruction and research
- Create an environment for the learner to engage in solving real-world problems
- Contribute to the understanding of complex mathematical structures and their applications.

FACULTY MEMBERS

Head Dr. Ajit Kumar M.Sc. And Ph.D. Mumbai University (Optimization, Machine Learning, Mathematical Pedagogy)

(A) Dr. Amiya Ranjan Bhowmick

- I. M.Sc. IIT Bombay, Ph.D. University of Calcutta
- II. Mathematical Modelling and Data Science
- (B) Dr. Akshay S. Rane
 - I. M.Sc. Mumbai University, Ph.D. IIT Bombay
 - II. Functional Analysis
- (C) Dr. Vikram Aithal
 - I. M.Sc. Mumbai University, Ph.D. IIT Bombay
 - II. Differential Geometry
- (D) Dr. Gunvant A. Birajdar,
 - I. M.Sc. And Ph.D. University of Aurangabad
 - II. Fractional Differential Equations

PROGRAMMES OFFERED

- M.Sc. in Engg. Mathematics
 - UGC Innovative Scheme (2011)
- Ph.D. in Mathematics
 - Several students are pursuing their Ph.D. in Mathematics
 - CSIR JRF, DST-Inspire
 - College Teachers
 - Collaboration with other institutes
- MDM in ML-AI

COMPUTATIONAL FACILITY

- Modern and high-level computational facilities
- 50 All-In-One Computers,
- Two Servers, one workstation,
- High-Performance Computing (HPC) cluster.
- All computers are installed with software such as MATLAB (Campus License) Mathematica, R, Python and Sagemath etc.

		Foundation of Mathematics: Strong foundation of Applied Mathematics							
	PSO1	which is directly connected to solving real life problems in different domains							
		by means of mathematical modelling and analysis.							
		Foundation of Statistics and Data Science: Strong foundation of							
	DSOJ	Mathematics and Statistics of Data science and good hold on various statistical							
	F302	methodologies including probability theory, estimation, and testing of							
		hypothesis etc.							
105		Foundation of Computer Programming: Understand and employ modern							
	PSO3	computational methods of Machine Learning, Deep Learning and Artificial							
		Intelligence and use them effectively using free and proprietary advanced							
		computational platforms for solving large scale problems arising from							
		different research areas.							
1110		Conduct investigations of complex problems using AI: Use research-based							
11/2		knowledge in machine learning and artificial intelligence and research							
	PSO4	methods including design of experiments, analysis, and interpretation of data							
di man		to unfold complex problems from industry and academia and provide							
		intelligent solutions.							
100		Project based Teaching Learning: Function effectively as an individual and							
10	PSO5	as a member in large scale data science projects in multidisciplinary settings							
	1505	involving both academic and industrial research							
		Societal Applications of AI and ML: Apply reasoning informed by the							
	PSO6	existing knowledge pool and address various societal issues using Machine							
		Learning and AI tools.							

SALIENT FEATURES OF THE PROGRAMME

- Industry Relevance: Students develop the skills and knowledge in Machine Learning and Artificial Intelligence which are relevant to the different industry verticals including Finance, Healthcare, Marketing, Chemical Industry, etc.
- Enhancing Data-driven Problem-Solving abilities: By integrating data-driven modeling in engineering curriculums, students will be able to overcome intricate engineering challenges more efficiently and effectively.
- Innovation and Design: The use of AI and ML enables engineering students to create innovative solutions and optimize designs in analysis of complex systems.
- Fostering Interdisciplinary Collaboration: AI and ML intersect with other disciplines, including mathematics, statistics, and computer science. Use of AI and ML in engineering education encourages interdisciplinary collaboration, fostering a comprehensive approach to problem-solving and opening doors to new possibilities.
- Addressing Ethical and Societal Implications: Students develop a comprehensive understanding of the ethical implications of AI and ML technologies and learn how to design and deploy them responsibly.

STRUCTURE OF THE MDM

Subject Code	Semester	Subject	Credits	Hours/Week			Marks for various Exam				
				L	т	Р	CA	MS	ES	Total	
MAT 1501	III	Statistical Computing	2	2	0	0	20	30	50	100	
MAP 1601	IV	Data Analytics with R/Python	2	0	0	4	20	30	50	100	
MAT 1502	V	Mathematical Methods in AI and ML	4	4	0	0	0	50	50	100	
MAP 1602	VI	Machine Learning	2	0	0	4	20	30	50	100	
MAP 1603	VII	Deep Learning	2	0	0	4	20	30	50	100	
MAP 1604	VIII	AI Project	2	0	0	4	0	50	50	100	
		Total	14							600	

CA: Continuous Assessment; MS: MID Semester; ES: End Semester

A TRANSFORMATIVE JOURNEY

WHAT THE DEPARTMENT OF MATHEMATICS CAN OFFER!

OPPORTUNITIES

- MS and Ph.D. opportunities
- Data Scientist
- Business Analyst
- AI-ML Researcher in various industry verticals
- AI Engineer in chemical and allied industries
- Finance
- Market Research

MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE A UNIQUE MULTIDISCIPLINARY FRAMEWORK

LIST OF OPEN ELECTIVES

Subject Code	Semester	Subject	Credit	Hours/Week			Marks for various Exams					
				L	Т	Р	CA	MS	ES	Total		
MAT1302	III	Differential Equations and Numerical Methods	4	4	0	0	20	30	50	100		
MAT2232	III	Optimization Techniques	4	4	0	0	20	30	50	100		
MATXXXX	IV	Discrete Mathematics	2	2	0	0	20	30	50	100		
MATXXXX	IV	Statistical Inference	2	2	0	0	20	30	50	100		
MATXXXX	V	Machine Learning	2	2	0	0	20	30	50	100		
MATXXXX	v	Mathematical Modelling	2	2	0	0	20	30	50	100		

ELIGIBILITY CRITERIA: OPEN ELECTIVES

Subject Code	Semester	Subject	Open for	Comment
MAT1302	III	Differential Equations and Numerical Methods	Bachelor of Technology	
MAT2232	III	Optimization Techniques	Bachelor of Chemical Engineering	
MATXXXX	IV	Discrete Mathematics	Bachelor of Technology Bachelor of Chemical Engineering	
MATXXXX	IV	Statistical Inference	Bachelor of Technology Bachelor of Chemical Engineering	Not available for students enrolled in MDM in Machine Learning and Artificial Intelligence
MATXXXX	v	Machine Learning	Bachelor of Technology Bachelor of Chemical Engineering	Not available for students enrolled in MDM in Machine Learning and Artificial Intelligence
MATXXXX	v	Mathematical Modelling	Bachelor of Technology Bachelor of Chemical Engineering	

Why Joining Mathematics

Multidisciplinary Educational Environment

 Applied Research with Strong foundation on Fundamentals of Mathematics, Statistics and Programming

Home About Data Submit data Projects Publications Citation Contact

https://ilora2020.wixsite.com/ilora2020 ILORA

Indian Alien Flora Information Database

ILORA) database has ecological, socio-economic, and geographic attributes for more than 1700 alien plant species ever reported from India.

 NPTEL lectures by Prof. Ajit Kumar on SageMath is training thousands of students, researchers and professionals across the globe.

14

THANK YOU

CONTACTS

Head of the Department

- Ajit Kumar, Ph.D.
- Professor and Head
- Email: <u>a.kumar@ictmumbai.edu.in</u>

Department MDM Coordinator

- Amiya Ranjan Bhowmick, Ph.D.
- Assistant Professor
- Email: <u>ar.bhowmick@ictmumbai.edu.in</u>

INSTITUTE OF CHEMICAL TECHNOLOGY, MUMBAI

(Deemed University under Section 3 of UGC Act 1956; Elite Status and Centre of Excellence – Govt. of Maharashtra)

WELCOMES

INSTITUTE OF CHEMICAL TECHNOLOGY, MUMBAI

(Deemed University under Section 3 of UGC Act 1956; Elite Status and Centre of Excellence – Govt. of Maharashtra)

DEPARTMENT OF SPECIALITY CHEMICALS TECHNOLOGY (ESTABLISHED IN 1944)

By: Prof. N. Sekar (Head of Department)

About the department ..

History

- * Established 1944 under the stewardship of Prof. K. Venkatraman
- Inaugurated and renamed 1st October 2021, Department of Speciality Chemicals Technology

Courses Offered in the Department

Courses offered B. Tech. (Dyes)

M. Tech. (Perfumery)

M. Tech. (Dyes)

Ph. D. (Tech/Science)

Outputs Trained more than 1000 under graduate students Trained more than 500 PG/Ph. D. students

Late Prof. K. Venkataraman (Head 1943-1957)

His books, "The Chemistry of Synthetic Dyes" in eight volumes are treated as Bible for dyestuff chemists and technologists

Late Prof. B. D. Tilak (1957-1966)

Extensive work in the field of vat dyes, anthraquinone, and naphthoquinone moieties and on azide chemistry

Prof. S. V. Sunthankar (1966-1979)

Synthesis of macro-cyclic compounds involving fragmentation of steroids

Prof. S. Seshadri (1979-1996)

His enormous contribution to Vilsmeier-Haack reaction and extensive work on coumarin synthesis

Prof. D. W. Rangnekar (1996-2000)

His work on Gewald reaction for disperse dyes is well appreciated

Prof. V. R. Kanetkar (2000-2008)

His enormous contribution to pigment and process development intermediates

Prof. P. M. Bhate (2008-2013)

His work on Carbohydrate chemistry and dyestuff chemicals

VVV Our Successful Entrepreneur **VVV**

Sr. No.	Our Renowned Alumni	Company Name
1.	Dr. Murzban Karai	Jenrashid Consultants
2	Mr. Jayesh Shewale	Swadeshi Food And Beverages Pvt Ltd
3	Mr. Vimal Dosi	Vaibhav Agency
4	Mr. Shivanand Patil	Indu Dyes
5	Mr. Kisan Chavan	Deepak Colour Chem
6	Mr. Siddharth Sikchi	Clean Science and Technology Ltd
7	Shri. N. K. Parikh	Pidilite Industries Ltd
8	Dr. Jayesh Malankar	Six Sigma Projects
9	Mr. K. L. Rathi	Sudarshan Chemical Industries Ltd SUDARSHAN
10	Mr. Parag Zaveri	Yasho Industries Ltd
11	Mr. Dishit Zaveri	Yasho Industries Ltd
12	Mr. Aman Desai	Aether Industries Ltd
13	Dr. Rajagopal	Know Genix ⁷

Sr. No.	Our Renowned Alumni	Company Name		
14	Mr. Savinder Sarna	Sarna Chemicals Pvt. Ltd		
15	Ms. Gauri Bhave	Gauri Fine Chemicals		
16	Dr. N. Chodankar	Asolutions Pharmaceuticals Pvt. Ltd.		
17	Dr. Kishore M. Shah	Sauradip Chemical Industries Pvt. Ltd		
18	Mr. R. T. Shah	Techno Colour Corporation		
19	Mr. Sohan Taware	Sohan Industries Pvt		
20	Mr. Swapneel Nerkar	Shubham Speciality Products Pvt. Ltd.		
21	Mr. Vijay Bujle	GVC Ciba Tech Pvt Ltd		
22	Mr. K. R. Datar	Puraj & Sitaram Chemicals		
23	Mr. D. G. Udas	Ultraconserve Pvt. Ltd.		
24	Mr. Chetan Patel	Casilla Foods		
25	Dr. D. R. Tatke	Synthone Laboratories & Consultants Pvt. Ltd.		
26	Mr. Mukund Turakia	Neelikon Food Dyes and Chemicals Ltd		

Achievements/ Recognitions

Departmental Achievements

- Placement of students in renowned industries
- Produced 26 class entrepreneurs
- Received DST-PURSE 2020-21 & DST-FIST 2018-19
- More than 200 international publications in the past three years
- Received more than 5 crore from various industries and Colourtex Industries Pvt. Ltd.
- Industry sponsored felicitation to renowned persons
- Endowment lectures

Faculty level Achievement

EDTICICATE OF FLADI OVALENIT Dat Name i Date of Career Proviti Depa This is to c tute of Science

Prof. N. Sekar (Faculty ranked as top 2% Global scientists – Stanford **University's Precious list**)

Dr. S. Some (Research Assistant **Professor for 2 years at Gwangju Institute of Science and Technology**, South Korea)

Twelve professors

make their way to Stanford University's precious list.

Dr. S. Saha (Associate **Editor of Organocatalysis** (Specialty section of **Frontiers in Catalysis**)

Prof. G. S. Shankarling

- Welch Award in Technology
- >30 consultancy projects in industry
- Filed 25 patents- 5 accepted

Dr. Nabanita Sadhukhan (Convener for Webinar series on women in STEM)

FEBINAR SERIES ON WOMEN IN STEM Organized by

JGC-FRP'S UNIVERSITY FACULTY ASSOCIATION CERTIFICATE OF PARTICIPATION This is to certify that Aniani Kumar Sharma from from Government Polytechnic

Chandausi Sambhal

ttended the webinar on 7th November 2020, entitled 'Collaboration between Academia and Industry - Opportunities and Challenges'

> Supriyo Das Dr. Harish Gupta Prosident UEA

Student Achievements

- 1. Graduate as well as post graduate students are severing in various industrial sectors such as colorants, perfumery, pharmaceutical, agrochemical, specialty, chemicals, IPR, etc.
- 2. For the year 2021, the average graduate student package is 5.85 lac, with the highest package being 8.5 lac.
- 3. 4th International Conference on Desalination using Membrane Technology, Perth, Australia, Oceania, 2019 presented by Krusha Patel and Harsh Patel
- 4. Poster selected for presentation in **International Conference (SMST-2020)** by Praful Patil and Gauri Ingole
- 5. Best Thesis Award Ph.D. (Dr. Pravin Wadekar)

Content delivery and Teaching methodology

Chalk-board

* Audio-visual from YouTube and JoVe Scientific Journal

Practical experience from Practical subject
Live demo of analytical instrument and Hand-on experience

In-plant trainingIndustry Visit

Workshop on literature survey

Training on manuscript and scientific report writing

Continuous Evaluation Process

- ***** Quiz competition
- Project Report
- ***** Assignments
- Mid-semester, End-semester, Continuous assessment test
- * Seminar

Contents Beyond Syllabus

15

Companies	Logo	2019-21	2018-20
Jay chemicals	Chemical Industries Limited	1	0
Deepak Nitrite	DEEPAK	4	0
UPL	UPL OpenAg ^w	1	0
Marico	marico	1	0
SRL	SISCO RESEARCH LABORATORIES PVT. LTD.	1	0
For Academics	Logo	2019-21	2018-20
Institute of Chemica Technology		0	1 (Ph. D.)

Student Co-Curricular Activities

International Conference (SMST-2020) attended by 1. Praful Patil

2. Gauri Ingole

4th International Conference on Desalination using Membrane Technology, Perth, Australia, Oceania, 2019 1. Krusha Patel

2. Harsh Patel

Industrial Training and Internship

Sr. No.	Student Name	Roll No.	Organization
1	Aadeshkumar L. Chordiya	18DYE201	Tata chemicals limited innovation centre, Pune (2019)
2	Praful Suresh Patil	18DYE203	Gopinath Chem-Tech Ltd. Ahmedabad (2019)
3	Aditi Vilas Mate	18DYE204	Tata chemicals limited innovation centre, Pune (2019)

Student extracurricular activities

> Publication in Technical Magazine & Newsletter

Bombay Technologist Journal :

- ✓ It is the in-house peer reviewed research
- ✓ Journal of the Institute of Chemical Technology
- ✓ Published semi-annually.

Professional societies/chapters and organizing engineering events, Extracurricular Activities

Vortex :

- Industry Defined Problems
- Master Class- Lecture Series
- Papyrus : Oral Presentations
- Manifesto : Poster Presentations
- PharmWiz (Quiz Competition)
- Quantity Sufficient (QS)

Participation in Vortex by 2-4 students

Student Extra- Curricular Activity

- 1. Art Club of ICT
- 2. Music Club of ICT
- 3. Literary Club of ICT
- 4. Manthan(Marathi Club)
- 5. Manzar(Cultural Festival)
- 6. SPORT-saga
- 7. Nature Trek
- 8. Hostel Day Celebration

- 9. All Religious Festivals
- 10. Clean Up Drive
- 11. TEDx ICT Mumbai ()
- 12. Jazbaa (Story tellor)
- 13. Cinergy (Cinamography)
- 14. Christmas photography challenge
- 15. In a nut shell (Short Film)
- 16. Fun Tech
- Participation in YUVAM by 2-4 students

5

Joy

Time

Time

10 Marat

₹ is 5}

₹2

2 40

10

Research Scholars participation in

Workshops/conferences/seminars Funded by TEQIP-III

Sr. No.	Period of Activity	Activity	Name Of the Student	Location
1.	27 th to 30 th Dec. 2018	CHEMCON - 2018	Miss Khushbu Patel	Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
2.	14 th to 18 th Jan 2019		Miss Vandana Kumari	
3.		th to 19th Ion Coussian	Mr. Suryapratap J.	
		Gaussian	Sharma	Kolkata
4.		Workshop	Mr. Sumeet S. Sonvane	
5.			Miss. Zeba Khan	
			52 participants from the	
6	28th Feb and 1st	COC 10	Dyes department	Mumhoi
0.	March	000-19	(UG,PG, Research	Iviumbai
			scholars)	

Departmental Seminars Alumni Contribution

Topic: Job scenario of for dyes and allied industries in US Speaker: **Dr. Ram Sabnis**

Date: 1st Jan 2019 Venue: Dyes department Participants: Researchers, Students (UG/PG)

Department of Dyestuff Technology Lecture under "Sauradip Chemical Industries Pvt. Ltd. Visiting Fellow in the areas of Dyestuff Technology and Textiles Processing Technology" **Topic: Challenges of Dyestuff Industry** Speaker: **Dr. Nilesh Mistry** Date: Monday, 15th April, 2019 Venue: K. V. Auditorium, ICT, Matunga. Participants: Faculties, Researchers, Students (UG/PG)

Topic: Discussion on Management studies Speaker: **Sohom D'souza** Date: 22nd March 2019 Venue: Department of Dyestuff Technology, ICT Mumbai₂₄

Funding Agencies

Departmental Level

DST-FIST
DST-PURSE
TEQIP

TECHNICAL Education Quality Improvement

Faculty Level

CSIR
DST-SERB
BRNS
WOOL
ONGC

Industry Supported Laboratories

Sr.	Industrial Support
INO.	
1	Colourtex Industries Pvt. Ltd.
2	Astik Dyestuff Pvt. Ltd.
3	Lakhani Dyestuff Pvt. Ltd.
4	Bharat Organics
5	Gauri Fine Chemicals
6	Dhiren Chemical Industries
7	S.K Dyestuff & Organic Chemicals Pvt. Ltd.
8	Vasant Chemicals Pvt. Ltd.
9	Diamond Dyechem Ltd.
10	Neelikon Food, Dyes & Chemicals
11	Gopinath Chemtech
12	QV labs, Ankleshwar

Departmental View

Department of Speciality Chemicals Front View

Department of Speciality Chemicals Back View

Lab Capacity : 48 students

Analytical Laboratory Working Area

Lab Capacity : 16 Fume Hoods 3 Students per Fume Hood

Chemical Storage Room With Fireproof Cabinet

Instrument Laboratory

Major Instruments

500 MHz NMR with Autosampler Facility Grant: 3047/CREATION OF CAPITAL ASSETS/PSA Year: 2012 Make: Agilent Technologies
TLC-Mass Analyser

Grant/Purchase year: DST-FIST/2020 Instrument Make: Advion Component: Plate Extractor ; Sprayer with detector ; Vacuum pump ; Computer Grant/Purchase year: DST-FIST/2020 Instrument Make: Bruker Component: FTIR with Aattenuated Total Reflectance (ATR) ; Computer

Gas Chromatography (GC)

Grant/Purchase year: TEQIP-II/2013 Instrument Make: Thermo-Fischer Component: GC with Auto sampler ; Computer

HPLC HPLC

Grant/Purchase year: CSIR/2016 Instrument Make: Analytical Technologies Component: Column ; Detector ; Solvent System ; Computer ; Printer

Instruments for Photo-Physical Study

UV-Visible Spectrophotometer

Grant/Purchase TEQIP-II/2014 Instrument Make: Labindia

year:

Grant/Purchase year: DST-SERB /2016 Instrument Make: Jasco Grant/Purchase 3047/PSA-1 /2011 Instrument Make: Perkin-Elmer

vear:

Component:

Light source ; Monochromator ; Sample holder ; Detector ; Interpreter ; Computer

Spectrofluorometer (Solid state / Solution State)

Grant/Purchase year: CSIR /2019 Instrument Make: Jasco Component: Light source ; Sample holder ; Detector ; Cuvettes ; Computer Specification High sensitivity S/N > 4,500 (RMS) Dynamic range up to six digits High speed scanning up to 20,000 nm/min Wavelength range: 200 to 750 nm Higher order diffraction band-pass3filter

Lab Specific Instruments

Lab Weighing Balance

To weigh the chemicals accurately. Grant/Purchase year: UGC start-up grant Instrument Make: Winsar Total No. of Weighing balance: 5 Weighing balance capacity: 220g Least count: 0.1mg

ICE Machine

Generating Capacity: 100 Kg/ 24 Hrs. Storing Capacity: 50 Kg No. of ice machine: 2

Rotary Evaporator

Grant/Purchase year: DST-SERB/2016 Instrument Make: Heidolph / IKA Total No. of Rotary Evaporator: 6 Component: Water chiller ; Vacuum pump

Flash Chromatography

Grant/Purchase year: TEQIP / 2014 Instrument Make: Yamazen Total No. of Flash Chromatogram: 2 Component: Pump System ; Pump Control ; Glass columns ; Pre Columns ; Fraction Collector ; Detectors

Probe Sonicator

Grant/Purchase year: TEQIP/2016 Instrument Make: Electro Sonics Ind. Component: Generator ; Converter ; Horn ; Probe

Centrifuge Machine

Grant/Purchase year: UGC star- up grant/2015 Instrument Make: Remi Component: Lid ; Motor ; Rotor

Program Specific Instruments Dye Sensitized Solar Cell (DSSC) Fabrication System

Fabrication System

Glass Cutter

FIST / 2020

Instrument

Technologies

Make:

TiO₂ Coater

Solar Simulator 42

Annealer

Se V

DSC-TGA

Grant/Purchase year: TEQIP/2020 Instrument Make: Hitachi Component: Ultra-micro balance ; DSC heat flow measurement ; Computer

Micro-Reactor

Grant/Purchase year: DST-FIST/2020 Instrument Make: Vapourtec Ltd. Component: Monitor ; Reactor Column ; Vacuum pump

Grant/Purchase year: SERB & BRNS /2016

Instrument Make: VB ceramic solutions

Component:

Furnace ; Gas Controller; Quartz glass tube ; Vacuum Pump

Muffle Furnace

Grant/Purchase year: ICT/Alumni Association / 2019 Instrument Make: Labaiders Component: ¹/₂ Quartz window ; PC communication port ; Temperature Controller ; Protection Latch

Vacuum Oven

Grant/Purchase year: DAE/BRNS /2015 Instrument Make: Labline Component: Vacuum Pump

Freeze Dryer

Grant/Purchase year: TEQIP-II /2016 Instrument Make: Sub-zero Component: Freeze Tubes ; Bent Tubes ; Rubbers

EL & PL

Water Contact Angle

Grant/Purchase year: DST-FIST /2020 Instrument Make: Sinsil International Component:

Light source ; Light-pass filter ; link cable ; Monochromator Grant/Purchase year: ONGC /2019 Instrument Make: Apex instrument Pvt. Ltd. Component: Camera ; Computer ; Water Contact Angle Assembly

Cyclic Voltametry (CV aqueous)

Grant/Purchase year: UGC start-up /2015

Instrument Make: Sinsil International Component: CH-Instrument ; Electrode

Oxidation-reduction reaction

Grant/Purchase year: ONGC /2019 Instrument Make: Sinsil international Component: ORR Assembly ; Computer ; Printer

Four Point Probe Resistivity Measurement

Grant/Purchase year: TEQIP-III/2018 Instrument Make: ISO9001:2008 Component: Four Probe ; Oven ; Resistivity meter

De-ionised Water Unit

Grant/Purchase year: UGC start-up / 2015 Instrument Make: Komal Enterprises Component: Ion Exchange Resin ; Conductivity meter

Improvement in Laboratories

- 1. A **new laboratory** building constructed
- 2. Built up a state-of the art facility for research laboratory
- Laboratory equipped with 16 fume hoods, all connected with centralised high vacuum pump, water supply and inert gas line(N₂).
- 4. Designed with international safety standards
- 5. Maintain **pollution and environmental regulations** with **powerful exhaust**.
- 6. Laboratory has been equipped with various major and minor instruments required for the research and learning the subject.
- 7. 11 new major equipment has been procured / sectioned by DST-FIST

Student Publication

Year	No. of Publications	Communicated	Total No. of Publication
2022	2	4	6
2021	2	0	2
2020	1	0	1
2019	0	0	0
2018	1	0	1

No. of Student Publication

Faculty Publication

Year	2018	2019	2020	2021	2022
Publications	68	68	49	27	24

Publications

Multidisciplinary Minor Degree in Food Science and Technology

Professor Rekha S. Singhal

Head, Department of Food Engineering and Technology

"There are people in the world today so hungry, that God cannot appear to them except in the form of bread."

MAHATMA GANDHI

Genesis of the department

Department of Food Engineering & Technology (FETD)

Establishing a center of excellence to provide demand driven, value-based and quality technical education to make India a developed country through socio-economic transformation

To improve food especially Indian traditional food in terms of nutrition, safety and functionality employing fundamental and applied sciences. To produce trained personnel of highest standards for the benefit of the industry & society in the field of Food Engineering & Technology & Food Biotechnology. To provide leadership qualities in areas of education, research, innovations & solutions in food & biotech sciences, technology & engineering in order to direct overall activity towards economic growth of India.

Courses offered by the department

Sr. No.	Degree	Comments	Intake
1	B.Tech. (Food Engineering & Technology)	 AICTE Approval in 1993 AICTE approval for (12 + 4) Pattern in 2008 NBA accredited for 6 years till 2028 	16
2	M. Tech. (Food Engineering & Technology)	AICTE Approval in 2008NBA accredited for 6 years till June 2026	18
3	M. Tech. (Food Biotechnology)	AICTE Approval in 2008NBA accredited in 2021 till 2027	10
4	Ph. D. (Tech.) (Food Engg. & Tech) Ph. D (Tech) (Food Biotechnology) Ph. D (Tech) (Bioprocess Technology) Ph. D (Biotechnology) Ph. D (Biotechnology) Ph. D (Biochemistry) Ph. D (Food Science) Ph. D (Microbiology)	 10 UGC-SAP fellowships from 2007 to 2014. 15 UGC-SAP fellowships (Food 10 + 5 BPT) from 2009 to 2014. AICTE NDF 	15
	Ph. D (Microbiology)		

Eminent adjunct faculty of the department

Dept of Food Science, Rutgers University, USA Editor, Journal of Food Engineering Engineering & Director for Education by Non-Traditional Delivery

Penn State University, USA

Editor, International Food Research Journal Prof. K. Niranjan Professor of Food Bioprocessing University of Reading, UK Editor, Journal of Food Engineering

Prof. Shyam S. Sablani Associate Department Chair Biological Systems Engineering, Washington State University, USA Editor, Journal of Food Science

Prof. Kalidas Shetty

Associate Vice President for International Partnerships Plant Metabolism & Food Security

> North Dakota State University, USA

Editor Journal Food Science and Technology

Department facilities

DVR-CAFT Lab

Food Processing Lab

Twin Screw Extruder

Atmospheric Plasma

HPLC

Pulsed Light Treatment

Rheometer

Texture analyzer

MDM in FST: Programme Specific Outcomes

Food Analysis	• Able to apply analytical techniques for food safety, quality assurance
Innovations in Food Products Development	Able to translate emerging science in developing innovative food products.
Food Preservation	• Able to apply principles of food preservation techniques in processed foods
Food Biotechnology	• Able to apply biological sciences in food processing and preservation
Fostering collaboration	Facilitating understanding and working in interdisciplinary areas
Food sustainability	Ability to work for food and nutritional security

Semester	Course Code	Subjects	Faculty
III	FDT1071	Principles of Food Microbiology	VF
IV	FDP1013	Food Microbiology Lab	BSBT Faculty
V	FDT1072	Fundamentals of Food Science and Technology	SSA/ YSG
VI	FDT1073	Food Preservation Technology	USA/ SC
VII	FDP1018	Food Analysis Lab	JSG/ NJD
VIII	FDT1074	Food Quality and Regulations	RBW

Introduction to Food Science & Technology

THE SYMPTOMS of metabolic syndrome

Food Quality and Regulations

Do join Department of Food Engineering and Technology to know "Science & Technology behind your favourite foods"

Thank you!!!

For any further queries Please contact or write to Head, FETD: **Prof Rekha Singhal** rs.singhal@ictmumbai.edu.in)

Departmental MDM Coordinator: Dr Jyoti Gokhale js.gokhale@ictmumbai.edu.in

Fibres and Textile

Processing Technology

Global Textile Market

US\$ bn

Global Textile & Apparel Trade

Global Textile and Apparel trade for 2025 estimated to be \$1500 bn

Category-wise share

Textile Segments

• Apparel Wear

- intimates, casual, formal, outerwear, occasional, festive

• Home Decor

- carpets, curtains, mats, seat covers, towels, bed covers

• Outdoor Coverage

- tarpaulins, tents, awnings, umbrella, canopy

• Specialised Function

- tyre, belt, parachute, sail, ropes, flags

Changing trend of Consumer's Wardrobe

10 years ago	Current	After 10 years			
Need-Based Clothing	Occasion Specific Clothing	Detail Oriented			
Shirts Trousers Jackets Sarees Salwar Kameez	Sports Gym wear Specific ethnic wear Casual wear Office wear Night wear Party wear Work wear	Design-based assortments occasion wear Fast fashion Eco-friendly apparel Technical Garments (Temperature controlled IT embedded)			
Basic function + Comfort + Price	Look + Trend	Fashion + Exclusivity + Technical function			

Types of Textile Substrates

Textile Industry in India

- **No 1** producer of Cotton & Jute
- **No 2** producer of Polyester & Silk
- **No 3** producer of Viscose Rayon
- **No 4** producer of Nylon & Acrylic
- **About 5 cr** people employed in the value chain
- **Earn 15 %** of export revenue
- **Consume 5.2 kg** per person & growing fast

Desired Effects

Casual wear

- Easy care
- Shape retention
- Comfort feel

Denim

- Fading effects
- Shape fitness
- Soil release

Corporate Wear

- Wrinkle
 - resistance
- Dimensional Stability
 - Stain release

Work wear

- Flame Retardency
- Water & Oil Repellent
- Anti microbial
- Moisture

management

Textile 4.0

What is it and how it is applicable to textile industry globally

Performance Enhancement

- Nano Technology
- Bio Technology
- Information Technology

Converging these technologies in a textile material to develop

- Smart components
- Specialty effects
- Synergistic improvement
- Engineered marvel

Technical Textile

TEXTILE PRODUCTION FLOWCHART

Forms of Textile Processing

• Fiber - loose stock, tops

• Yarn - hank, package, beam

• Fabric - woven, knit, terry

• Made up - garment

Popular blends

Textile Manufacturing - Overview

(Cotton: Yarn Manufacturing)

Spinning

Dyestuffs & Substrates

Class of Dyestuff	Principal Substrates
Vat	Cellulosic fibre (Cotton Rayon Linen)
Sulphur	Cellulosic fibre (Cotton Rayon)
Reactive	Cotton Rayon Linen Wool Silk
Disperse	Polyester Nylon Cellulose Acetate Acrylic Plastics
Direct	Cellulosic fibre (Cotton Rayon Linen) Paper Leather
Acid	Nylon Wool Silk Paper Leather Inks
Basic	Acrylic Cationic Dyeable Polyester Modified Nylon
Azoic	Cotton Rayon Cellulose acetate

PRINTING

• Special Styles of Printing

Crimp/Crepon

Carbonized/Burnt-out

Brasso

Batik

Damask effect

Kalamkari

Marble effect

Tie & Dye

Methods of Printing

- Direct
- Discharge
- Resist
- Camouflage
- Transfer
- Inkjet

Value Addition

Fashion Design, Print, Colour, Fit, Accessories

Skincare

Aloe vera, Vitamins, Aromatherapy, Anti allergy, Medicinal

Comfort

Comfort, Skin friendly, Breathable, Moisture transport, Stretch

Sustainability

Eco-friendly Non toxic chemicals

Protection/Safety

UV absorbent, Anti allergy, Protection from wind, cold and adverse weather conditions

Freshness & Hygiene

Fragrance, Antiodour, Antimicrobial

Special Finishes

Mosquito/ Insect repellent, Antistatic, Soil repellent

Strength

Fabric construction, Dimension stability

Perceptive & Protective

- **Eye** Color enhancement
- **Ear** Rustling/scrooping sound
- Nose Aroma/fragrance, feel good factor
- Skin Feel & Comfort wear
- **Taste** Baby wear, bitter/sour
- **Skin care** –anti-ageing/rejuvenating
- Health care –antimicrobial
- Fire protective flame retardant
- Sun protection UV absorbers
- Soil free antistatic
- Stain free- oil & water repellent
- Quick dry moisture management

Fastness properties

Popular Test methods:

- **International Organisation for Standardisation**
- AATCC •

ISO

٠

American Association of Textile Chemists and Colorists

Wash **Fastness tester**

Perspiration | Water Fastness tester

Rub **Fastness tester**

Sublimation Fastness tester

Light **Fastness tester**

Sustainability - Challenges

Synthetic fibres

- Non bio-degradable
- Higher carbon footprint

Natural fibres

- ✤ High water footprint
- Heavily pesticides dependent

Circularity

'Disposable' products are Unsustainable

Opportunities & Prospects

- **Farming** Organic, sericulture, rearing
- **Manufacturing** -Fibre production Nylon, PES, Rayon,
- **Engineering** Spinning, Weaving, Knitting, Garmenting
- **Machinery** Preparatory, Colouration, Finishing
- **Processing** Apparels, home furnishing, technical textiles
- **Instruments** Computer color matching and lab equipments
- **Fashion** Designing, garmenting
- **Merchandising** Retail and Brands
- Laboratory Academy | Independent testing | R & D | QC labs | IP
- **Government** Textile Ministry departments, Pollution control board
- **Marketing** Dyes, chemicals, machinery and accessories

Multi-Disciplinary Minor (MDM) Degree in Mechanical Engineering

Under the National Education Policy-NEP 2020 in

(2023-2024)

Offered by

DEPARTMENT OF GENERAL ENGINEERING

INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

Preamble:

The mechanical engineering minor is tailored to students who want to understand the fundamentals of mechanical engineering other than courses covered in engineering sciences. The students will develop abilities in design, analysis and experimentation through foundation of math, physics, chemistry including modelling, energy engineering, mechanics of materials, product design and hydraulics.

The students can combine the skills and technological expertise of this minor with a major in technology of aligned branch and chemical engineering to prepare for a wide variety of opportunities in industrial fields and in demand careers.

Programme Specific Outcomes of MDM:

PSO1	Use of Mechanical engineering knowledge in the design of chemical process equipment's, energy conservation systems.
PSO2	To provide specialized aspects of mechanical engineering to enhance their skill set and capabilities within their discipline specific field.
PSO3	To expand the working knowledge of Mechanical engineering principles to broader engineering activities.

Details of Programs offered by the department

Master of Engineering (Plastic Engineering) : Programme started in 1972

Sr. No.	PG Program Name	Corresponding UG Program/Department Name	Current Year Sanctioned Intake
1	M.E. (Plastic Engineering)	N.A.	18
		Plastic Engineering	9

- Mechanical Engineering
 - Civil Engineering
 - Electrical Engineering
 - **Electronics Engineering**

Department of General Engineering (M.E. Plastic Engineering) : ICT Mumbai : October 2729, 2023

Faculties in the Department:

Ph.D.

Name of Faculty	Specialization / Research Area
Prof. D. D. Sarode	Concrete Technology – Performance Enhancing Construction Chemicals Plasticizers, Superplasticizers, VMA. Risk Analysis and its mitigation. Recycling of wastes. Recycling of agricultural waste and improving soil fertility
Prof. S.P. Deshmukh	Polymeric Composites, Engineering Materials, Plastic Processing, Design of Molds, Analysis of Plastic component using CAD, CAE tools. Solar Hybrid Energy,

	Refrigeration Air Conditioning, Heat Transfer through the microchannel.
Prof. V. R. Gaval	Particulate filled polymer composites, conversion of Metal parts into plastic using design software's, Tribology, Mold flow analysis
Dr. R.S.N. Sahai	Polymer Composites, Nanocomposites and its applications in Mechanical Engineering, Mould design, Energy Engineering.
Dr. Prerna Goswami	Sustainable Energy, MATLAB simulations, Electrical Engineering
Dr. Sachin G. Solanke	Materials engineering, Composite materials, Tribology, Plasma coating, Load bearing biomaterials and Electrospinning
Dr. V. S. Korpale	Plastic products design and analysis, computational fluid dynamics, Equipment design and analysis, powder-flow equipment designs.
Dr. D. Biswas	Renewable energy, Solar Thermal, Heat Exchanger, Heat Transfer, Polymer composites

Laboratories Facility:

Plastic Processing and Testing laboratory:

The laboratories of the department

GEP 2104 Plastic Processing and Testing laboratory:

Department of General Engineering (M.E. Plastic Engineering) : ICT Mumbai : October 2729, 2023

Plastic Testing laboratory:

Department of General Engineering (M.E. Plastic Engineering) : ICT Mumbai : October 2729, 2023

CAD/CAM/CAE Laboratory

GET 2110 Design of molds and CAD/CAM/CAE laboratory:

Department of General Engineering (M.E. Plastic Engineering) : ICT Mumbai : October 2729, 2023

Research Facilities

Sr. No.	Name of Facility	Specialized Equipment Name	Equipment details
1.	3D Printing	3D Printer	3D Prototype Printer, FDM/ FFF Wanhao Duplicator-6 Plus; DLP Resin Wanhao Duplicator-7
2.	Optimization Software	Optimization Software	Statistical Module
3.	Altair HyperWorks CAE	Altair HyperWorks CAE	125 Units Research Bundle with Unlimited Nodes
4.	Workstation Computer	Workstation Computer	Intel i7-8 th Gen, 16GB RAM, 250GB SSD, 1TB HDD, 2GB Graphics, Win10
5.	Minitab 18	Minitab 18	Statistical Module
6.	NX-Unigraphics	NX-Unigraphics	CAD CAM software by SIEMENS for CAD Design, NX Tooling, Mold wizard
7.	Moldex3D	Moldex3D	Mold Design Software, Educational Perpetuity: Professional – Generic Solution/ Project/ Designer/ Designer BLM/ MDE/ MFE/ Flow/ Pack/ Cool/ Warp/ 3D Coolant CFD

A. Structure of the MDM course:

Subject Code	Semester Subject		Credits	Hrs./Week		Marks various		for		
							Exams			
				L	Т	P	CA	MS	ES	Total
GEP1132	III	Workshop Practice	2	0	0	4	50	-	50	100
GET1133	IV	IV Advanced strength of Materials		1	1	0	20	30	50	100
GET1134	V	Energy Engineering & Management	4	3	1	0	20	30	50	100
GET1135	VI Mechanical design of chemical process equipment's.		2	1	1	0	20	30	50	100
GET1136	VII Industrial Hydraulics		2	1	1	0	20	30	50	100
GET1137	VIII Product Design and Development		2	1	1	0	20	30	50	100
		Total	14							600

- **B.** Intake: Minimum 15 and maximum 35 students
- C. Duration: 3 years (6 semesters)
- D. Eligibility criteria: Students enrolled in B. Chem. Engg and B. Tech programme are eligible. The allotment of minor degree programme will be as per the policy of the Institute.
 E.Pedagogy/Teaching Method:

Lecture/Discussions: These sessions will discuss the subject matters of the course. Experiential Learning: The sessions will involve hands-on training.

Tutorials: Problem solving / case studies / relevant real-life applications / student presentations / home assignments / individual or group projects.

Subject Code	Semester	Course	Method of Evaluation	Methods of Delivery
GEP 1132	III	Workshop Practice	a) Continuous internal Evaluation on assigned Job.b) Skill based end exam.	a) Hands on Training
GET 1133	IV	Advanced strength of Materials	 a) Minimum 2 class tests b) Assignments c) Seminar/ Presentation d) Report submission 	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects

F. Method of Evaluation/Delivery

GET	17	Energy	a) Minimum two class test	a) Lectures/Face to face
1134	v	Engineering &	b) Assignments	training
		Management	c) Seminar/ Presentation	b) Tutorials
			d) Report submission	c) Case study
				d) Presentation (PPT)
				e) Group Projects
CET		Mechanical	a) Minimum two class tests	a) Lectures/Face to face
0E1 1125	VI	design of	b) Assignments	training
1155		chemical	c) Seminar/ Presentation	b) Tutorials
		process	d) Report submission	c) Case study
		equipment's.		d) Presentation (PPT)
				e) Group Projects
GET	VII	Industrial	a) Minimum two class test	a) Lectures/Face to face
1136	V II	Hydroulice	b) Assignments	training
		Tryurauties	c) Seminar/ Presentation	b) Tutorials
			d) Report submission	c) Case study
				d) Presentation (PPT)
				e) Group Projects
GET	VIII	Product	a) Minimum two class tests	a) Lectures/Face to face
1137	V 111	Design and	b) Assignments	training
		Development	c) Seminar/ Presentation	b) Tutorials
			d) Report submission	c) Case study
				d) Presentation (PPT)
				e) Group Projects

G. Faculty/Instructor for the course

Subject	Semest	Course	Instructor/Faculty
Code	er		
GEP 1132	111	Workshop Practice	Dr. Sachin Solanke
GET 1133	IV	Advanced strength of Materials	Prof. Dilip Sarode
GET 1134	V	Energy Engineering & Management	Dr. D. Biswas
GET 1135	VI	Mechanical design of chemical process equipment's.	Prof. Suresh Deshmukh/Prof V. R. Gaval
GET 1136	VII	Industrial Hydraulics	Prof. R.S.N. Sahai
GET 1137	VIII	Product Design and Development	Dr Vikram Korpale

H. Detailed syllabus:

	Course Code: Course Title:		Credits =			
	GEP 1132	Workshop Practice	L	T	Р	
	Semester: III	Total contact hours: 60	0	0	4	
		List of Prerequisite Courses	v		<u> </u>	
	Engineering Graphics					
	List	of Courses where this course will be prerequisite				
	Equipment Design and I	Drawing, Design and fabrication of Molds				
		Course Contents (Topics and subtopics)	Re	qd. l	iours	
1	Introduction to various I	Production Processes		5		
2	Study of Construction, Milling etc.	Mechanism and Application of Lathe Machines, Drilling Machine,		16		
3	One composite job using	g a minimum of four Machining operations such as plane turning, taper				
	turning, external threadi	ng and knurling etc. with its process sheet.		16		
4	Classification of variou	s Joining and metal forming processes and their applicability such as		10		
	adhesive bonding, mech	anical fastening, welding, and allied processes.				
5	Industrial visit to Cher	nical process equipment fabricators demonstrating use of forming,		8		
	bending, rolling, and welding processes.					
6 Basics of CNC Machines and 3D Printing technology.						
	ſ	List of Textbooks/ Reference Books				
1	Mechanical Workshop and 2 by Raghuvanshi B	Practice by K C John, PHI Learning 1. Workshop Technology Vol. 1 B. S. Dhanpat Rai & Sons, 1998.				
2	Workshop Technology 1998.	by Chapman W.A. J and Arnold E. Viva low priced, student edition,				
3	Workshop Practices, H	S Bawa, Tata McGraw-Hill, 2009.				
4	Workshop Practices and	Materials, B J Black, CRC Press.				
5	Hajra Choudhury S.K., Technology", Media pro II 2010.	Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop omoters and publishers private limited, Mumbai, Vol. I 2008 and Vol.				
		Course Outcomes (students will be able to)				
COI	Understand different op	erations performed using Lathe, drilling, and milling machine		K2		
CO2	Apply knowledge of lath	he operations to fabricate engineering part		K3		
CO3	Justify the choice betwe	en joining and forming process for a suitable application.		K4		
CO4	Understand fabrication 1	methods such as forming, bending, rolling and CNC machines		K2		

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)			
	PSO1	PSO2	PSO3
CO1	1	3	3
CO2	1	3	2
CO3	3	2	1
CO4	3	2	2

	Course Codos			Credits = 2	
	Course Code: Course Title: Advanced Strength of Materials		T	Т	Р
	GET 1133	,	L		
	Semester: IV	Total contact hours: 30	1	1	0
	1	List of Prerequisite Courses			
	Structural Mechanics, Bas	ic Mechanical Engineering, Applied Mathematics			
	List of Cours	es where this course will be prerequisite			
	Equipment design and drav	wing, Design and fabrication of molds, Home paper			
	Cour	se Contents (Topics and subtopics)	Re ho	eqd our	
1	Thick and Thin cylinders	- concept of radial, longitudinal stresses, behavior of		3	
	cylinders. Problems on th cylinders (theory only).	in cylindrical and spherical shells. Behavior of thick			
2	Torsion of a circular shaft simple problem.	- concept, basic derivation, shear stress distribution,		3	
3	Short and Long column conditions. Euler's and Ra	ns (Struts) - Basic concept, crippling load, end nkine's approach (without derivations)		3	
4	Advance stresses and stra	ins - Representation of stress and strain at a point,		6	
	Stress stain relationship, pl	ane stress and plane strain. Transformation of stresses			
	and its importance, Princi	ipal stresses and strains, maximum shearing stress,			
	Mohr's circle				
5	Its use and construction.	tion Stops in the angineering design Importance of		5	
5	analysis 1-D 2-D and	3-D analysis and interpretation of results. Force		5	
	displacement relationship	Strain deformation relationship Introduction to finite			
	element Analysis				
	Computer aided analysis and design.				
6	Different types of loads,	load factor, factor of safety, Design philosophies,		2	
	Working				
	stress approach, Ultimate stress approach and Limit state theory. Performance				
	based design Approach.				
7	Natural Materials, Manma	de materials, Alloys, Composite Materials – Types of		4	
	composite materials, Cem	ent and its varieties, cement composites, properties,			
	recycling of waste, Sustair	able materials			
8	Advance materials for indi	astrial applications - Advances in materials, Materials		3	
	proofing	mosive coamigs, special purpose moornigs, water			
	compounds Various polyr	ners and epoxies used for industrial applications			
9	Different types of perfor	mance enhancing and special purpose construction		4	
-	chemicals. Plasticizers and	d super-plasticizers, air entraining agents, accelerators			
	and retarders, viscosity mo	difying agents, corrosion inhibitors			
List of Textbooks/ Reference Books					
	1. Engineering Materials	by Rangwala			
	2. Strength of Materials b	y Ferdinand Singer and Andrew Pytel, Harper Colins			
	Publishers	· –			
	3. Introduction to Mechan	nics of Solids by Egor Popov, Prentice Hall of India			
	Pvt. Ltd Strength of Ma	terials by S. Timoshenko and D. H. Young, McGraw			
	Hill Publications.	- A M Marilla Decessor D1 (1 1/1			
	5. Concrete Technology b	- Theory and Practice by M. S. Shetty, S. Chand & Co.			

6.	Fundamental of Fibre reinforced composite materials by A. R. Busell and J. Renard,	
7.	Taylor & Corrosion and Corrosion Protection Handbook by Philip A. Schweitzer, CRC press	

Course Outcomes (students will be able to)			
CO1	Understand stresses induced in thin cylinders, shafts and columns.	K2	
CO2	Apply knowledge of equilibrium for analysis of complex stress situations.	K3	
CO3	Analyse different complex problems in engineering design.	K3	
CO4	Understand Force displacement relationship, Strain deformation relationship.	K2	
CO5	Apply knowledge of materials for various engineering applications.	K3	

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)					
PSO1 PSO2 PSO3					
CO1	3	1	2		
CO2	3	1	2		
CO3	3	2	2		
CO4	1	1	2		
CO5	2	2	2		

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

		Course Title:	Credits	
	Course Code: GET 1134	Energy Engineering and	= 4	
		Management	L T P	
	Semester: V	Total contact hours: 60	3 1 0	
List of Prerequisite Courses				
	Elements of Mechanical Engineering, Basic Mechanical Engineering, Applied Mathematics			
	List of Courses	where this course will be prerequisite		
	Heat Transfer Equipment design Management	, Chemical Project Economics, Chemical Industrial		
	Course Co	ntents (Topics and subtopics)	Reqd. hours	
1.	Energy Scenario:			
	• Present Energy Scenario, E	nergy Pricing, Energy Sector Reforms, Energy		
	 Energy Conservation and its 2001, 	Importance, Features of Energy Conservation Act-	06	
	• Basics of Energy and its variou	is forms, Material and Energy balance.		
2.	Energy Audit Principles:			
	 Definition, Energy audit- n management, approach-under performance, maximizing sy requirements, Fuel and energy Elements of monitoring & information-analysis. Financial analysis techniques: 	eed, Types of energy audit, Energy audit and rstanding energy costs, Bench marking, Energy ystem efficiencies, Optimizing the input energy substitution. targeting: Energy audit Instruments; Data and Simple payback period, NPV.	16	
3.	Energy Management and Energy	v Conservation in Electrical Systems		
	 Electricity billing, Electrical Energy efficient equipment an Energy efficiency measures in li Occupancy sensors, daylight Energy conservation opportu induction motors, motor retrofit 	load management and maximum demand Control, d appliances, star ratings. ghting system, Lighting control t integration, and use of intelligent controllers, inities in water pumps, industrial drives, itting, soft starters, variable speed drives.	16	
4.	Energy Management and Conse	ervation in Thermal Systems		
	 Steam Power Plant: Rankine cy Boilers and furnaces: Classific Wilcox Boiler, Cochran Boiler and Accessories, Boiler Perfor Steam Turbine: Classification Turbine, Compounding of Steat Elements of Steam condense Efficiency Waste heat recovery, use of instances 	ycle, Reheat cycle, Regenerative cycle. cation, Study of various Boilers such as Babcock & c, La-Mount Boiler, Benson Boiler, Boiler Mountings mance on, Calculation of Power Developed by Steam am Turbine er, various types of steam condenser, Condenser sulation- types and application.	16	
5.	Non-Conventional Energy Sour	ces:		
	• Role and importance of non-co thermal, solar Photo-voltaic, C cells, wind, ocean, bio-mass ar	nventional and alternate energy sources such as solar cooling techniques to cool Photovoltaic ad geothermal.	06	

	1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell		
	Science		
	2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System		
	3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons		
	4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata		
	Energy Research Institute (TERI).		
	5. Energy Management Principles, C. B. Smith, Pergamon Press		
	6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E.		
	Richardson, Fairmont Press		
	7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus,		
	CRC Press		
	8. Thermodynamics by P.K. Nag		
	9. Power plant by Morse		
	10. Heat Engines by P.L. Balani		
	11. Renewable Energy resources by Tiwari and ghosal, Narosa publication.		
	12. Non-conventional energy sources, Khanna publications		
	Course Outcomes (students will be able to)		
CO1	To identify and describe the present state of energy security and its importance.	K2	
CO2	To identify and describe the basic principles and methodologies adopted in energy	K3	
	audit.		
CO3	To describe the energy performance evaluation of electrical and thermal installations	K3	
	and identify the energy saving opportunities.		
CO4	To analyse the data collected during performance evaluation and recommend energy	K4	
	saving measures.		
CO5	Discuss the steam formation process, working of steam boilers, mountings, and	K2	
	accessories and their properties.		
CO6	Explain the need for and importance of various renewable energy sources.	K2	
CO7	Employ this knowledge for energy saving in various devices.	K3	

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)				
	PSO1	PSO2	PSO3	
CO1	3	1	2	
CO2	3	1	2	
CO3	3	1	2	
CO4	3	1	1	
CO5	1	1	2	
CO6	3	1	1	
CO7	3	1	2	

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution
	Course Code: Course Title: Mechanical Design of Chemical		Credits = 2			
	GET 1135	Process equipment	L	Т	Р	
	Semester: VI	Total contact hours: 30	1	1	0	
List of Prerequisite Courses						
	Structural Mechanics, Basic Mechanical Engineering, Advanced Strength of					
	Materials, Engineering Graphics					
	List of C	ourses where this course will be prerequisite				
	Chemical Process Equipment Design and drawing, Home paper, Internship/ On Job Training Project					
	Course Contents (Topics and subtopics)			Reqd. hour		
1	Introduction to Basic	Design concepts		2		
2	Design of Pressure V	fessel				
	Introduction to Press	ure vessels used in process Industries.		16		
	Design consideration	for pressure vessels				
	Design criterions, De	sign stresses, factor of Safety, Types of stresses on Vessels				
	Vessels operating a	t Elevated and low temperatures. Cyclic loading and				
	consideration for co	rrosion for design Design of vessel Shell for Internal				
	pressure, combined loading and for external stresses, Use of reinforcement rings					
	for shells Design of various types of head or cover Design and types of Nozzles,					
	Design and types of Flange Joints for shell and nozzles Various types of					
	supports for pressure vessels					
3	Design of Storage Ve	essel,				
	Types and uses of sto	brage Vessels used for storing various fluids and gases.		12		
	Loss mechanism in s	torage vessels.				
	Design of Rectang	gular				
	tank	1 11				
	Design of Vessel s	nell,				
	Design of bottom Pla					
	Wind girders, roof i	op angle curbs,				
	Use of support colum	ns for roof				
	Ose of support colum	List of Textbooks/ Reference Books				
1. Process Equipment Design by, V. V. Mahajani						
	2. Equipment Desig	n by Dawande				
	3 Fauinment Design by Young					
	4 Welding Technology by O. P. Khanna					
Course Outcomes (students will be able to)						
CO1 Understand Basic Design concents						
CO^2	Design of Pressure V	Tessel and Storage Vessel		<u>K</u> Δ		
CO3	Design with real time	data		K5		

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)				
	PSO1	PSO2	PSO3	
CO1	3	2	1	
CO2	3	2	1	
CO3	3	2	1	

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

	Course Code: GET	Course Title: Industrial Hydraulics		Credits = 2			
	136		L	Т	Р		
	Semester: VII	Total contact hours: 30	1	1	0		
	List of Prerequisite Courses						
	Applied Physics, Basic Mechanical Engineering,						
	List of Cou	rses where this course will be prerequisite					
	Instrumentation and proce	ss control, Home Paper		<u> </u>			
	Cours	e Contents (Topics and subtopics)]	Reqd. hours			
1.	Introduction to Hydraulics: Basics of hydraulics, Pascal law, Advantages of Hydraulic drives, Quality requirement of hydraulic fluids and its requirements, Standard symbols for hydraulic lines, pumps, valves, motors, Check valves, its functions, various types and its applications, Directional control valve, two way and four way, Two positions and three positions direction valve. Rotary valve			8			
2.	Valves: Pilot operated check valve, working and its applications, Flow control valve, its functions, various types and its applications, Pressure compensated flow control valve, Relief valve, simple and compound, Balanced Piston relief valve, Sequence valve and its applications. Study of various types of filters.				9		
3.	Pumps and Hydraulic motors : Pumps, Gear pumps, vane pumps, Positive displacement axial piston pump. Pressure intensifier, Accumulator, Hydraulic motors			5			
4.	Hydraulic circuits : Study of various Hydraulic circuit used in industry; Study of various Hydraulic circuit used in Polymer processing			4			
5.	Pneumatic systems & components: Compressor, Receiver / Reservoir Tank, Starting Unloader & Controller, Filters, Regulators / Valves, Lubricators, Mufflers / Silencer, After Cooler, Air Dryers, and Indicators (Pressure, Temperature etc.)			4			
	List of Textbooks/ Reference Books						
	 Hydraulics by Vickers Esposito A, Fluid Power with application, Prentice Hal Majumdar S.R, Oil Hydraulic system- Principle and maintenance, Tata McGraw Hill Majumdar S.R, Pneumatics Systems Principles and Maintenance, Tata McGraw Hill Stewart H. L, Hydraulics and Pneumatics, Taraporewala Publications 						
Course Outcomes (students will be able to)							
CO1	Understand basics of hydra	ulics.		K2			
CO2	Analyse applications of va	ications of valves in hydraulics.		K5			
CO3	Applications of pumps in hydraulics.			K3			
CO4	4 Design hydraulic circuits for industrial applications.						
CO5	COS Applications of pneumatics in industry.						

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)					
	PSO1	PSO2	PSO3		
CO1	1	2	2		
CO2	1	2	2		
CO3	2	2	1		
CO4	1	1	1		
CO5	3	2	1		

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

Course Code: GET 1137		Course Title: Product Design and development		Credits = 2		
				Т	Р	
Semester: VIII		Total contact hours: 30	1	1	-	
		List of Prerequisite Courses				
	Engineering Graphics, Structural Mechanics, Elements of Mechanical Engineering, Materials Engineering					
	Li	st of Courses where this course will be prerequisite				
	Internship/ On .	lob Training Project				
	Course Contents (Topics and subtopics)					
1	Basics of Design: Design definitions and attributes, Product configurations and component matrix. Understanding and analysing product contexts, Modularity, and design of modular systems, understanding design situations-parallel and future			, 08		
2	Product design aspects: Design issues, Selection of materials and technical requirements, Dimensional accuracy and functional requirements, Surface finish, Making a product specification etc.					
3	General Design features: Effect of wall thickness, corner radius, drafts, shrinkage, and warpage, inserts and parting lines. Design of ribs, bosses, threads etc., Cost economics.			06		
4	Design thinking: Steps in design thinking, relevance of design thinking with product development			06		
5	Product design procedures: Product design of engineering load bearing components such as gears, bearings, filament wound storage tanks, pipes etc.			06		
List of Textbooks/ Reference Books						
1.	Plastic product design handbook by Edward Miller					
2.	Product design and development by Karl T. Ulrich					
3.	Change by Design by Tim Brown					
Course Outcomes (students will be able to)						
CO1	1 Understand the product design and development procedure					
CO2	Apply the produ	ct design concepts to prepare industrial product		K3		
CO3	Analyse basics of plastic product design			K4		
CO4	Design engineering plastic products based on technical requirements					

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)				
	PSO1	PSO2	PSO3	
CO1	1	1	2	
CO2	3	2	1	
CO3	2	1	2	
CO4	1	2	3	

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution