Syllabus for Integrated Master of Technology (Int. M. Tech.)
Major: Chemical Engineering
with
Multidisciplinary Minors
Syllabus

(Under the National Education Policy 2020)
(NEP 2020))
in
(2023-2024)

INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956)
Elite Status and Center for Excellence Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA)

www.ictmumbai.edu.in

Preamble

The Institute revamped the syllabi of various courses in 2023 as per National Education Policy 2020. All the courses are credit based and the evaluation are grade based. The credit system is a systematic way of describing an educational programme by attaching credits to its components. The definition of credits is based on student workload, learning outcomes and contact hours. It is a student-centric system based on the **student workload** required to achieve the objectives of a programme. Each theory course consists of Lectures and tutorials. During tutorial session it is expected that the problem solving / case studies / relevant real life applications / student presentations / home assignments/ individual or group projects are discussed in presence of the teacher. Teacher can have the freedom to interchange lectures / tutorials depending upon the need. Each laboratory course consists of practical hours and/or extra lecture hours depending upon the need. The Institute gives emphasis on continuous evaluation with considerable freedom to the teacher in deciding the mode of evaluation of the students. It is desirable to revise the syllabi of various courses every 5 – 6 years. Accordingly, the Int. M. Tech. syllabus is being revised. The revised syllabus comes into effect for first year undergraduate Chemical Engineering students from the academic year 2023-24.

Detailed discussions were conducted by the syllabus revision committee of the Department and the following Programme Education Objectives (PEO), Programme Outcomes (PO) and Graduate Attributes (GA) were decided. The syllabus revision was carried out in view of the following PEO, PO and GA:

Programme Education Objectives

- 1. Create awareness amongst students about the social/industrial demands and role of chemical engineer in the society
- 2. Incorporate a culture of research and Innovation by providing students with latest facilities
- 3. Provide a platform to the students to interact with leading teachers, scientists and industry practitioners
- 4. Multi-faceted development of students through co-curricular and extra-curricular activities, participation in various events
- 5. Build technical and managerial capabilities amongst students to meet the needs of society and industry

Programme Outcome

- 1. Chemical Engineers having sound knowledge of mathematics, sciences, engineering fundamentals
- 2. Chemical Engineers with knowledge of fundamentals and innovation to solve the problems related to energy, food, environment, healthcare, etc.
- 3. Chemical Engineers with ability to keep abreast with the scientific literature, new technologies and new developments
- 4. Chemical Engineers who can work on complex problems in team and multidisciplinary situations
- 5. Chemical Engineers who can help government, society and industry in managerial activities related to chemical and allied industries
- 6. Chemical Engineers who can help government, society and industry to do technology development related activities for chemical and allied industries
- 7. Chemical Engineers who can cater to the needs of chemical industry, research organizations and academic institutes
- 8. Chemical Engineers who can set-up their own ventures and generate employment
- 9. Chemical Engineers who can promote awareness in society about Chemical Engineering profession

Graduate Attributes

- 1. Problem analysis and solving skills
- 2. Familiar with usage of modern tools, techniques
- 3. Communication Skills
- 4. Capacity to analyze new concepts
- 5. Capacity to analyze and interpret experimental dataCapacity to analyze business trends

- 6. Capacity to design, optimize and operate equipment and plants safely, economically and effectively
- 7. Design and Development of solutions to industrial and societal needs
- 8. Skills related to Project Management and Economics
- 9. Skills to analyze scientific literature including patents
- 10. Ethics

Syllabus Structure for Int. M. Tech.

Semester I

Course Code	Subjects	Course Type	Credits	Н	rs/Wee	ek
				L	T	P
CHT4151	Applied Chemistry	BSC	2	2	0	0
CHP4151	Applied Chemistry Lab	BSC	2	0	0	4
MAT4151	Mathematics-I	BSC	4	3	1	0
PHT4151	Applied Physics	BSC	2	2	0	0
PHP4151	Applied Physics Lab	BSC	2	0	0	4
EST4151	Structural Mechanics	ESC	2	2	0	0
ESP4151	Structural Mechanics Lab	ESC	2	0	0	4
ESP4152	Engineering Graphics with Computer Aided	VSEC	2	0	0	4
	Modeling					
HUP4151	Communication Skills- English	AEC	2			4
HUT4152	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	2			4
	Total		22	9	1	24

Semester II

Course Code	Subjects	Course Type	Credits	Hrs/we	eek	
Coue		Type		L	Т	P
CHT4152	Applied Chemistry II	BSC	2	2	0	0
MAT4152	Mathematics - II	BSC	4	3	1	Ü
EST4153	Electrical Engg and Basic Electronics	ESC	2	2	0	0
ESP4153	Electrical Engg and Basic Electronics Lab	ESC	2	0	0	4
EST4152	Mechanical Engg	ESC	4	2	1	1
EST4154	Introduction to Chemical Engineering	ESC	2	2		
CEP4151	Material Balance and Energy Balance Calculations	PCC	2			4
ESP4154	Engineering Applications of Digital computers	VSEC	2			4
HUT4153	MOOC- Indian Knowledge System	IKS	2	2		
HUT4154	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	2			4
	Total		24	13	2	17

Note: Universal Human Values (UHV) an audit course to be taken in inter-semester break after Semester-II to be taken as MOOC course.

BSC: Basic Science Course; ESC: Engineering Science Course; Program Core Course; PEC: Program Elective Course; MDM: Multidisciplinary Minor; OE: Open Elective Course; VSEC: Vocational and Skill Enhancement Course; AEC: Ability Enhancement Course; IKS: Indian Knowledge System Course; VEC: Value Education Course; FP: Field Project; IPT: In-plant Training = On Job Training

^{**} Students will undertake these co-curricular activities such as sports / Fine Arts / Yoga / Music / Literature etc administered through various clubs under Technological Association approved by Dean, Students Affairs.

Semester III

Semester III	~	~	~	/	-	
Course Code	Subjects	Course Type	Credits	Hrs /w	eek	
				L	T	P
CET4251	Fluid Flow	PCC	2	1	1	
CET4252	Heat Transfer	PCC	2	1	1	
EST4155	Engineering Thermodynamics	PCC	2	1	1	
CET4253	Industrial Chemistry and Reaction	PCC	4	3	1	
	Engineering					
CEP4251	Chemical Engineering Lab-I	PCC	2			4
XXT	From sciences and/or any other Engineering	MDM	2	2		
	Discipline					
CHTxxxx	From Basic Sciences (Chemistry)	OE	4	2		4
XXT	From Basic Sciences (Physics/Biology)	OE	2	2		
HUT4155	Communication Skills-Marathi (Any other	AEC	2	2		
	language will be using MOOCS)					
HUT4156	Basic Principles of Finance & Economics	Management	2	2		
CET4258	Environmental Sciences	VEC	2	2		
			26	18	4	8

Semester IV

Course Code	Subjects	Course Type	Credits	Hı	rs/week	(
				L	T	P
CET4254	Chem Engg Operations	PCC	4	2	2	
CET4255	Process Safety	PCC	2	1	1	
CET4256	Instrumentation and Process Dynamics	PCC	2	1	1	
XXT	From sciences and/or any other Engineering	MDM	2	2		
	Discipline					
XXP	From sciences and/or any other Engineering	MDM	2			2
	Discipline					
XXT	From Basic Sciences (Chemistry/	OE	2	2		
	Physics/Biology / Maths/ material Science)					
CEP4252	Chemical Engg Lab-II	PCC	2			4
HUT4157	Industrial Management	Management	2	2		
	Digital Computation in Emerging	VEC	2			4
	areas(AI/ML/DA)					
	Community Projects	Field Project	2			4
CETxxxx	Chemical Engg Elective - I	PEC	4	3	1	
	Total		30	13	5	12

[#] Students will undertake community projects as individual or group related to study of societal technological activities through various organization such as Lions club, Teach India, Marathi Vidnyan Parishad, CSR projects outsourced by various industries, ISR activities administered through Technological Association approved by the Dean, Student Affairs.

Semester	V
----------	---

Course Code	Subjects	Course Type	Credits	Hı	s /weel	k
				L	T	P
CET4351	Chemical Reaction Engineering	PCC	2	1	1	
CET4352	Momentum Transfer	PCC	2	1	1	
CET4353	Chemical Engg Thermodynamics	PCC	4	3	1	
CEP4253	Chemical Engineering Lab - III	PCC	2			4
CEP4255	Process Simulation Lab - I	VSEC	2			4
CETxxxx	Chemical Engg Elective-II	PEC	4	3	1	
CETxxxx	Chemical Engg Elective-III	PEC	4	3	1	
XXT	From sciences and/or any other Engineering	MDM	2	1	1	
XXT	Discipline From sciences and/or any other Engineering Discipline	MDM	2			2
CET4361	Honors Course -1/Research-1	PCC	4	3	1	
	Total		28	15	7	10

Semester VI

Course Code	Subjects	Course Type	Credits	H	rs/week	(
				L	T	P
CET4362	Honors Course-2/Research-2	PCC	4	3	1	
CET4354	Chemical Process Control	PCC	2	1	1	
CET4356	Separation Processes + Membrane	PCC	2	1	1	
CET4357	Heat Transfer Equipment design	PCC	2	1	1	
CETxxxx	Chemical Engg Elective-IV	PEC	4	3	1	
CET4363	Honours Course-3/Research-3	PCC	4	3	1	
XXT	From Sciences and/or any other Engineering	MDM	2	1	1	
	Discipline					
CEP4256	Process Simulation Lab-II	VSEC	2			4
CEP4254	Chemical Engineering Lab-IV	PCC	2			4
CET4358	Chemical Project Economics	PCC	2	2		
CEP4271	IPT (after Semester VI exams for eight weeks)	IPT	4			
	Total		30	15	7	8

Semester VII

Course Code	Subjects	Course Type	Credits	H	rs/week	K
				L	T	P
CET4451	Chemical Process Development and	PCC	3	2	1	
	Engineering					
CET4452	Chemical Industrial Management	PCC	2	2		
CETxxxx	Chemical Engg Elective III-Environmental	PEC	4	3	1	
	Engineering and Chemical Process Safety					
CEP4451	Chemical Process Equipment Design and	PCC	2			4
	drawing					
CET4364	Honours Course-4/Research-4	PCC	2	2		
CET4365	Honours Course-5/Research-5	PCC	4	3	1	
XXT	From sciences and/or any other Engineering	MDM	2	2		
	Discipline					
CEP4452	Literature Review	RM	2	1		2
CEP4453	Design and Analysis of Experiments	RM	2	1		2
CEP4461	Design Project - I	Project	4			8
	Total		27	15	3	20

Semester VIII

Course Code	Subjects	Course Type	Credits		Hrs /week	
CEP4473	IPT (4-6 months)	IPT	12	L	T	P
	Total		12			

Semester IX

Course Code	Subjects	Course Type	Credits		Hrs/week	
CEP4474	Thesis	Research	22	L	T	P
	Total		22			

Semester X

Course Code	Subjects	Course Type	Credits		Hrs /week	
CEP4475	Thesis	Research	22	L	T	P
	Total		22			

Exit Options

The exit paths for the program were discussed and resolved to be as follows:

Exit Option (Semesters)	Nomenclature of Exit Option	
Year 1 (2 Semesters)	Certificate (Chemical Engineering) (46 credit)	
Year 2 (4 Semesters + IPT)	Diploma (Chemical Engineering) (102 credit)	
Year 3 (6 Semesters + IPT)	B. Voc. (Chemical Engineering) (160 credit)	
Year 4 (8 Semester + IPT)	 B. Tech. (Major: Chemical Engineering, MDM minors) (181 credit) B. Tech. with Honors and Minor (Major: Chemical Engineering, MDM minors) with option for 1 year M. Tech. Degree (199 credit) B. Tech. with Research and Minor (Major: Chemical Engineering, MDM minors) with option for 1 year M. Tech. Degree (199 credit) 	
Year 5 (10 Semesters)	 M. Tech. (Major: Chemical Engineering, MDM minors), one year [+ B. Tech. with Honors and Minor (Major: Chemical Engineering, MDM minors) with option for 1 year M. Tech. Degree] M. Tech. (Major: Chemical Engineering, MDM minors), one year [+ B. Tech. with Research and Minor (Major: Chemical Engineering, MDM minors) with option for 1 year M. Tech. Degree] 	

- Multidisciplinary Minor to be selected based on student choice and academic performance at the end of Semester II.
- Choice of Honors to be available to the student and be selected, if CGPA at the end of Semester IV is greater than 7.5.

First Year Semester ONE

	Course Code:	Course Title: Applied Chemistry-I	Credits		2
	CHT4151		L	T	P
	Semester: I	Total contact hours: 30	2	0	0
		Course Outcomes (students will be able to)			
	To introduce the students to the	principles of analytical chemistry and physical chemistry			
2	Describe the fundamental conce	pts related to Basic instrumentation and chromatographic analysis.			
;		aces and kinetics of the chemical reactions			
		ous catalysis in chemical reactions			
i		·			
		List of Prerequisite Courses			
	Standard XII Chemistry				
		ourse Contents (Topics and subtopics)		ıd. hou	ırs
		istry: Accuracy precision, Errors, Qualitative and	4		
		concentrations. Good laboratory practices	4		
,		nalysis – Volumetric and gravimetric methods. Colorimetric, Complexometric and precipitation	4		
2	titration.	, Complexometric and precipitation			
3		thods: General principle of chromatography,	6		
		ic techniques. Paper, thin layer, GC and HPLC			
	chromatographic techniques.	o teeninquest ruper, ann layer, ee and in he			
		e, Instrumentation, Applications of UV-Vis			
	spectrophotometer	**			
		easurement of surface tension, Thermodynamics of surfaces: Gibbs			
		erms. Surface active agents: Types and applications. Surfactant			
	aggregates.				
;	Kinetics:		8		
		constant, effects of the following on rate of reaction: concentration,			
		expression for Second order reactions, Complex reactions: parallel,			
	consecutive, reversible, chain, st	leady state reactions.			
5	Heterogeneous and heterogenou	s catalysis, Kinetics of reaction on solid surface, Enzyme and photo-	2		
	catalysis.	z waazyoto, 12110 aan oo a	-		
			30		
		List of Text Books			
	1. Fundamentals of Analytical (Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R.			
	Crouch, Cengage Learning, 201	4.			
	2. Principles of Instrumental Ar	nalysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage			
	Learning, 2007				
	3. Instrumental methods of Cher	mical Analysis, E.W. Ewing, McGraw Hill.			
		rsis, R.J. Masel, John Wiley and Sons1			
		on dynamics, Paul H. Houston, McGraw Hill			
		Catalysis, J.M. Thomas and W.J. Thoma			
	List of Additional Reading Material / Reference Books				

Semester: I Total contact hours: 60	
Semester: I Total contact hours: 60	L T P
	0 0 4
Course Outcomes (students will be able to)	
1 Students will be able to list steps for identifying simple organic compounds. 2 Students will be able to list some methods of separation of organic compounds.	
3 List simple methods of chemical analysis	
4 Determination of physic chemical parameters using simple laboratory tools	
List of Prerequisite Courses	
Standard XII Chemistry	
Commercial Contracts (Tourism and architectus)	D J. b
Course Contents (Topics and subtopics) 1 ORGANIC CHEMISTRY:	Reqd. hours
 a) Identification of an organic compound through elemental analysis, group de physical constants (m.p and b.p) and derivatisation. b) One-step synthesis of organic compounds: Common synthetic methods using in refor the synthesis of pharmaceutical and biological importance molecules and optim of reaction conditions, and Progress of the reactions monitoring by this chromatography (TLC) and IR analysis. c) Separation and purification of binary mixtures of the type (2): liquid-liq distillation, dissociation –extraction, crystallization, etc. 	reactions mization in layer
PHYSICAL CHEMISTRY: a) Determination of the dissociation constant of the weak electrolyte using conductor b) Determination of Critical Micelle Concentration (CMC) of a Surfactant c) Study of kinetics of a reaction by using spectrophotometric method.	ometry 20
ANALYTICAL CHEMSITRY: a) Volumetric Titration: Colorimetric: determination of alkalinity of water b) Conductometric titration: Determination of total dissolved sulphate in water sample. c) UV-Vis spectroscopy: i) to find out the absorption maxima, ii) Beers Lambert Law verification and iii) concentration of a substance from a given sample. d) High pressure liquid Chromatography (HPLC) Determining the concentration of a active ingredient in a marketed product	w
List of Text Books	
1 Practical Organic Chemistry, by I.L. Finar 2 Practical physical Chemistry, P. Visyanthan and P.S. Rachavan	
 2 Practical physical Chemistry – B.Viswanthan and P.S. Raghavan 3 Practical physical Chemistry- Alexander Findlay 	
4 Practical physical Chemistry- Alexander Findlay	
List of Additional Reading Material / Reference Books	
Elst of Additional Reading Platerial / Reference Doors	

Course Code: MAT4151	Course Title: Applied Mathematics - I	C	redi	ts = 4
		L	T	P
Semester: I	Total contact hours: 60	4	0	0

List of Prerequisite Courses

HSC Standard Mathematics

List of Courses where this course will be prerequisite

Applied Mathematics – II (MAT XXXX)

Description of relevance of this course in the Int. M. Tech. Program

This is a basic Mathematics course. This knowledge will be required in almost all subjects later on. This knowledge is also required for solving various mathematical equations that need to be solved in several chemical engineering courses such as MEBC, momentum transfer, reaction engineering, separation processes, thermodynamics, etc.

	Course Contents (Topics and subtopics)	Hours
	Calculus of one variable: Review of Mean Value theorems, Higher order differentiation	
1	and Leibnitz Rule for the derivative, Taylor's and Maclaurin's theorems and applications	8
	to error estimates, convexity of functions, Local Maxima/Minima.	
	Multivariable calculus: Functions of two or more variables, Limit and continuity,	
2	Partial differentiation, Directional derivatives, Total derivatives, Chain Rules of partial	10
2	derivatives, Taylor's theorem for multivariable functions and its application to error	10
	calculations, Local and absolute Maxima/Minima	
	Integral Calculus: Beta and Gamma functions, Differentiation under the integral sign,	
3	Multiple Integrals, Line and surface integrals and applications to Greens, Gauss-	12
	Divergence and Stokes theorem	
	Linear Algebra-I: Systems of linear equations, matrices and Gauss elimination,	
	Vectors in \mathbb{R}^n , notion of linear independence and dependence. Vector subspaces of \mathbb{R}^n ,	
4	basis of a vector subspace., row space, null space, and column space, rank of a matrix.	8
7	Determinants and rank of matrices. Abstract vector spaces, linear transformations, matrix	o
	of a linear transformation, change of basis and similarity, rank-nullity theorem and its	
	applications	
	Linear Algebra-II: Inner product spaces, orthonormal bases, Gram-Schmidt	
	orthogonalization process, Eigenvalues and eigenvectors, characteristic polynomials,	
5	eigenvalues of special matrices (orthogonal, unitary, Hermitian, symmetric, skew-	8
3	symmetric, normal), Orthogonal projection and its application to least methods	O
	Diagonalization of matrices and its applications stochastic matrices, Matrix	
	Factorization, Applications such as SVD, PCA etc.	
	Ordinary Differential Equations: Review of first and second order ODEs (constant	
6	coefficient), Existence and Uniqueness theorems for first order ODEs. Higher order	8
O	Linear ODE with constant and variable coefficient, Solutions of Initial and Boundary	O
	value problems, Solving initial value system of linear ordinary differential equations.	
7	Ordinary Differential Equations -II: Power series method of solving ODE's and	6
	special functions, Legendre Polynomials Bessel functions and applications.	
	List of Textbooks / Reference Books	
1	G. Strang, Linear Algebra and its Applications (4th Edition), Thomson (2006).	
2	W. Keith Nicholson, Linear Algebra with Applications, Lyryx Learning Inc	
3	Howard Anton, Elementary Linear Algebra, Wiley (2016)	
4	Arnold J. Insel, Lawrence E. Spence, and Stephen H. Friedberg, Linear Algebra, Pearson	
5	E. Kreyszig, Advanced Engineering Mathematics (8th Edition), John Wiley (1999).	
	(Officially prescribed)	
6	S. R. K. Iyengar, R. K. Jain, Advanced Engineering Mathematics Narosa.	
7	Marsden, J.E., Tromba, Anthony, Weinstein, Alan, Basic Multivariable Calculus.	
	Course Outcomes (students will be able to)	
CO1	understand the notion of differentiability and apply these concepts to find maxima and	K1, K3, K4
CO1	minima of functions of one and several variables	K1, KJ, K4
CO2	Understand different techniques for evaluating single and multiple integrals and apply	K2 K2 K4
CO2	them compute surface and volume integrals.	K2, K3, K4,
	Demonstrate their understanding on different concepts in vector spaces in solving	
$\alpha\alpha$	computational problems related to matrices and determinants, such as solving systems of	K1, K2, K3
CO3	linear equations, etc.	

CO4	Understand the computational and geometrical concepts related to eigenvalues and eigenvectors and apply them to solve computational problems arising from chemical engineering	K1, K2, K3			
CO5	Build mathematical models governed by differential equations to formulate chemical	K3, K4, K5,			
C03	engineering problems and solve the equation using appropriate analytical techniques	K6			
	Solve ordinary differential equations using power series method and understand the				
CO6	utility and applications of various orthogonal functions in different chemical engineering	K3, K4, K5			
	problems				
K1 -	K1 – Remembering, K2 – Understanding, K3 – Applying, K4 – Analyzing, K5 – Evaluating, K6 – Creating				

	Course Code: PHT4151	Course Title: Applied Physics	Cree	dits =	2
			L	Т	P
5	Semester: I	Total contact hours: 30	2	0	0
	(Course Outcomes (students will be able to)			
		s crystallographic planes and directions in a crystal lattice, thereby	unde	erstand	-
	periodicity in the crystal lattice				
		on pattern to deduce the crystal structure of the material and calcul	ate th	e valu	es
	of the basic structural paramete				
3	Classify solids, and in turn sem	niconductors, based on electron occupancy and calculate basic quant	ntities	relate	d
3 (charge transport in them.				
		scribe the laws of electrostatics and magnetostatics.			
	Apply the laws of electrostatics				
5 1	Understand the microscopic or	igins of magnetism in materials through semi-classical theories.			
		List of Prerequisite Courses			
	Standard XI and XII Physics co				
2 5	Standard XII Chemistry course				
		of Courses where this course will be prerequisite			
	Applied Physics Laboratory (S				
	Materials Technology (Sem-VI				
		am courses (Sem-III, IV, V, VI, VII, VIII)			
4 (_	ysics Department (Sem-II, IV, V)			
		f relevance of this course in the B. Chem. Engg. Program		1.01	
		key role in the field of chemical engineering and technology. The			
		the necessary fundamentals to develop a broad understanding of			ре
lated		ip them with the ability to apply it wherever required in their cours			
	Cot	rrse Contents (Topics and subtopics)	Req	d. hou	ır
1	Converted Storyetypes of Selider A	Solid State Physics			_
		revision of concepts of a lattice, a basis, unit cell, different crystal), co-ordination number and packing fractions. Single crystalline,		3	
	Polycrystalline, and Amorphou			3	
		directions: concept of Miller indices and its determination,			_
		planar spacing in terms of Miller indices.		3	
		cture using X-rays: Bragg's law of X-ray diffraction, types of			_
		raction peaks and calculation of various lattice parameters and		4	
	crystallite size	r r r r		-	
		elassification of solids, the concept of Fermi level and Fermi			_
		sic and extrinsic semiconductors, Transport properties of		_	
		in semiconductors and its dependence of carrier concentration		5	
	and mobility.	•			
		Electric and Magnetic properties of materials	•		
	Revision of the laws of electros	statics and magnetostatics with illustrative examples. Introduction			
t	to the gradient, divergence, ar	nd curl operators. The current density vector and the continuity		4	
	equation.				
		ee and bound charges, polarization, introduction to the electric			
		vectors, dielectric constant, and electric susceptibility. Gauss's		6	
	law in presence of dielectrics, (
		ory of Diamagnetism and Paramagnetism: deriving the magnetic		_	
		v. An introduction to the Weiss theory of paramagnetism and		5	
1	ferromagnetism.	71. AT 1. 1. 10° 2			_
1 -		List of Textbooks/Reference books			_
		liday, Resnick, Walker - 6 th Edition - John Wiley	.•		
		rsity Physics - Young and Freedman - 12 th Edition - Pearson Educa		7.11.1	_
		nysics - M N Avadhanulu, P G Kshirsagar, TVS Arun Murthy -	11''' E	dition	1
- 1	Chand Publishers	: 10th P.17. N. A. P. 17.1			
		ni - 10 th Edition - New Age Publishers			
5 5	Solid State Physics - A. J. Dekl	Ker - MacMillan India			_
[]	Engineering Physics - V Rajen	dran - 6 th Edition - McGraw Hill Publishers			

	7	Electricity and Magnetism - Edward Purcell and David Morin - 3 rd Edition - Cambridge University Press
	8 Electricity And Magnetism - R. Murugeshan - 3 rd Edition - S Chand Publishers	
ſ	9	Introduction to Electrodynamics - David Griffiths - 3 rd Edition – Pearson Education

	Course Code: PHP4151	Course Title: Applied Physics Laboratory	Credits =		= 2	
	Course coue. 1111 4131	Course Title. Applied Thysics Laboratory	L	T	P	
	Semester: I	Total contact hours: 30	-	+-	4	
	Semester: 1	Total contact nours. 50				
	(Course Outcomes (students will be able to)				
1		, and use basic setups to measure and obtain various physica	1 guant	ities.		
_		ernier-caliper, screw-gauge, travelling microscope, thermome			ake	
2	accurate measurements.					
	Correlate and use directly measured quantities to obtain the relevant parameters through appropriate					
3	formulae, calculations, and/or graphical plotting, thereby understand the measurement principle involved				red in	
	the experimental setups.					
4	Preliminarily treat the obtain	ed datasets statistically to obtain errors in the experiments.				
	Ta	List of Prerequisite Courses				
1	Standard XI and XII Physics					
2	Applied Physics (theory) in					
		f relevance of this course in the B. Chem. Tech. Program		.1	*.1	
		by the students in the Applied Physics laboratory course wil				
ba	sic experimental skills related	to measurement of various important physical quantities. The	ese ski	lls W1l	l act	
		for other laboratory and theory courses in their area of special	lızatıor	1.		
		urse Contents (List of Experiments)				
	Determination of Co-efficient of Viscosity by Poiseuille's method					
		Determination of Bandgap of a semiconductor				
		pility of liquids using an Ultrasonic Interferometer				
		ductivity of a solid: Lee's disc method				
	Photoelectric effect: Determine					
		variation) Determination of carrier type and concentration in				
		variation) Determination of carrier type and concentration i	n a sem	nicond	uctor	
	Newton's rings: Determinati					
	Laser Diffraction: Determina	ation of particle size				
		essiblity of liquid as function of temperature				
		niconductor using four probe method				
	Determination of magnetic s	usceptibility of paramagnetic liquid using Quincke's method				
	1	List of Textbooks/Reference books				
	I=					
1		alliday, Resnick, Walker - 6 th Edition - John Wiley				
2	Sears and Zeemansky's Univ	versity Physics - Young and Freedman - Pearson Education				
4		endran - 6 th Edition - McGraw Hill Publishers				
5	Concepts of Modern Physics					
6		oplications - J. Blitz, Butterworth.				
7	Optics - Ajoy Ghatak - 7th E					
8		Jenkins and H. White - 4 th Edition McGraw Hill				
9	ICT Physics Laboratory Mar	nual (supplied to students)				

Course Code: EST4151	Course Title: Structural Mechanics	Credits = 3		3
		L	T	P
Semester: I	Total contact hours: 32 Hrs	2	1	0
	List of Prerequisite Courses			
	Maximum Marks: 100			
Engineering Mathematics Funda	mentals			
Materials in Engineering				
List of Courses where this course will be prerequisite				
Equipment Design and Drawing	I			
Equipment Design & Drawing II				
Chemical Process equipments				
Material Technology			•	

Description of relevance of this course in the Int. M. Tech. Program

This subject will help students to understand use of basics of Applied Mechanics and Strength of Materials. In engineering equipments and structures, which different types of forces are to be considered and how to quantify them? What are different conditions of equilibrium? How to apply equilibrium condition to analyse the problems? Importance of centre of gravity and moment of Inertia in Engineering Design. Advantages and disadvantages of various geometric sections available for engineering design. Study of different types of stresses and strains occurring in various components of the structure. Understanding and calculating Shear force and Bending moment in the beams with simple and complex loading. Determination of Bending stresses and shear stresses in the beams. Evaluation of slopes and deflections in the beams with simple and complex loading. This is the foundation course for a good Design Engineer.

	Course Contents (Topics and subtopics)	Reqd. hours				
1	Concepts of forces, their types, Resolution of forces, Composition of forces, Steps in Engineering Design, Different types supports and free body diagram.	3				
2	Equilibrium of rigid bodies - Conditions of equilibrium. Determinant and indeterminate structures. Equilibrium of beams, trusses and frames problems on analysis of beams and truss.	5				
3	Concept of moment of Inertia (Second moment of area) its use. Parallel axis theorem. Problems of finding centroid and moment of Inertia of single figures, composite figures. Perpendicular axis theorem, Polar M.I., Radius of gyration.	4				
4	Shear Force and Bending Moment - Basic concept, S.F. and B.M. diagram for cantilever, simply supported beams (with or without overhang). Problems with concentrated and U.D. loads.	5				
5	Stresses and Strains - Tensile and compressive stresses, strains, modulus of elasticity, modulus of rigidity, bulk modulus. Relation between elastic constants. Lateral strain, Poisson's ratio, volumetric strain. Thermal stresses and strains. Problems based on stresses and strains. Stresses and Strains Relationship and Strain Deformation relationship.	4				
6	Theory of Bending - Assumptions in derivation of basic equation, Basic equation, section modulus, bending stress distribution. Advantages of various geometric sections from bending consideration.	3				
7	Problems on shear stress - Concept, Derivation of basic formula. Shear stress distribution for standard shapes. Problems of Shear stress distribution. Conditions under which shear stress is the governing criteria of design.	3				
8	Slope and Deflection of beams - Basic concept, Slope and Deflection of cantilever and simply supported beams under standard loading. Macaulay's method. Simple problems of finding slopes and deflections.	3				
	List of Text Books/ Reference Books					
	Engineering Mechanics Vol I Statics by B. N. Thadani, Publisher Wenall Book Corporation Introduction to Mechanics of Solids by Egor Popov, Prentice Hall of India Pvt. Ltd					
	Mechanics of Materials by Ferdinand Beer and E. Russel Johnston, Tata McGraw Hill Publishing Co. Ltd.					
	Fundamentals of applied Mechanics by Dadhe, Jamdar and Walavalkar, Sarita Prakashan Pune					
	Engineering Mechanics by S. Timoshenko and D. H. Young, McGraw Hill Publications					
	Strength of Materials by Ferdinand Singer and Andrew Pytel, Harper Colins Publishers					
	Course Outcomes (students will be able to)					

1	Understand the use of basic concepts of Resolution and composition of forces.	CO 1
2	Analysis of the beams, truss or any engineering component by applying conditions of equilibrium.	CO 2
3	Understand the advantages and disadvantages of various geometric sections used in engineering design.	CO 3
4	Understand the different stresses and strains occurring in components of structure various standard loadings and in case of any complicated loading.	CO 4
5	Determination of shear stress, bending stresses in the beams with simple and complex loading.	CO 5
6	Understand how to calculate the deformations such as axial, normal deflections under different loading conditions.	CO 6

= 1					
P					
2					
List of Prerequisite Courses					
List of Courses where this course will be prerequisite					

Description of relevance of this course in the Int. M. Tech. Program

This subject will help students to understand use of basics of Applied Mechanics and Strength of Materials. In engineering equipment which different types of forces are to be considered and how to quantify them. What are different conditions of equilibrium and how to apply them analyse the problems. Importance of centre of gravity and moment of Inertia in Engineering Design. Study of different types of stresses and strains occurring in various components of the structure. Advantages and disadvantages of various geometric sections available for engineering design. This is the foundation course for a good Design Engineer.

		Course Contents (Topics and subtopics)	Reqd. hours
	Suitable	e number of experiments from the above list will be performed (Minimum 5):	
	1.	To study simple lifting machine and determine Law of Machine for (Screw Jack	
		and Differential wheel and axle).	
	2.	To study graphical methods of analysis.	
	3.	To study the Universal testing machine and tests. (Demonstration)	
	4.	To study Non-destructive testing methods in Engineering	
	5.	Demonstration of Smith Hammer test, Ultrasonic pulse velocity test	
	6.	To study corrosion of reinforcement. (Demonstration)	
	7.	To study properties of cement composites and its applications.	
	8.	To study effect of performance enhancing admixtures and additives for cement	
		composites.	
	9.	To study methods of manufacturing for Fibre Reinforced Polymer Composites	
	10.	To study various materials used for flooring.	
	11.	To study various materials used for Pipes for different engineering applications.	
		List of Textbooks/ Reference Books	
	Enginee Corpora	ring Mechanics Vol I Statics by B. N. Thadani, Publisher Wenall Book tion	
		tion to Mechanics of Solids by Egor Popov, Prentice Hall of India Pvt. Ltd	
		ics of Materials by Ferdinand Beer and E. Russel Johnston, Tata McGraw Hill	
	Pune	entals of applied Mechanics by Dadhe, Jamdar and Walavalkar, Sarita Prakashan	
		ring Mechanics by S. Timoshenko and D. H. Young, McGraw Hill Publications	
	Strength	of Materials by Ferdinand Singer and Andrew Pytel, Harper Colins Publishers	
<u> </u>		Common Ontoniona (atraliante e 2011), alla tra	
-	Further	Course Outcomes (students will be able to) understanding of the concepts in the Theory course of Structural Mechanics	
	1 ul ulel	understanding of the concepts in the Theory course of Structural Mechanics	

Course Code: ESP4152	Course Title: Engineering Graphics and Computer Aided Drafting	Cred	its = 2	2
	(CAD)	L	T	P
Semester: I	Total contact hours: 60	0	0	4
	List of Prerequisite Courses			
Basic Geometry				
	List of Courses where this course will be prerequisite			
Engineering Graphics	- II, Equipment Design and Drawing, Home Paper - II, Structural			
Mechanics				

Description of relevance of this course in the Int. M. Tech. Program

A student of Chemical Engineering is required to know the various processes and the equipment used to carry out the processes. Some of the elementary processes like filtration, size reduction, evaporation, condensation, crystallization etc., are very common to all engineers and technologists. These and many other processes require machines and equipment. One should be familiar with the design, manufacturing, working, maintenance of such machines and equipment. The subject of "drawing" is a medium through which, one can learn all such matter, because the "drawings" are used to represent objects and processes on the paper. Through the drawings, a lot of accurate information is conveyed which will not be practicable through a spoken word or a written text. Drawing is a language used by engineers and technologists. This course is required in many subjects as well as later on in the professional career.

eng	engineers and technologists. This course is required in many subjects as well as later on in the professional career.				
	Course Contents (Topics and subtopics)	Reqd. hours			
1	Orthographic projections: Basics of Engineering drawing, Different lines in the drawing and their applications, Methods of projection, Different planes of projection, first and third angle of projections of drawing, four quadrants and concept of orthographic projections.	12			
2	Sectional views and Missing views: Need for the drawing sectional views, concept of sectioning and section lines, sectional drawings of different solids and machine components, auxiliary planes and views. Concept of recognizing missing views and their interpretation, drawing of missing views from given orthographic drawings.	08			
3	Projections, Sections, Development of surfaces and Interpenetration of solids: Introduction to basic shapes of Solids, Projections of Solids in different planes as per the given conditions, Sectional planes for cutting solids and respective drawings, Concept of surface development of respective solids, Development of surfaces of cylinders, prisms, pyramids, cones etc. Interpenetration of two or more solids and their respective drawings	12			
4	Introduction to Computer Aided Drafting (CAD): Basic introduction to CAD softwares, 2D and 3D drawings, drawing modification and dimensioning, different components of an engineering drawing in the industry.	08			
5	Isometric projections using CAD: Concept of isometric views, isometric projections and isometric scale, Iso metric projections of different solids and machine components using CAD softwares.	08			
6	Assembly drawing using CAD: Basics of Assembly drawing, preparation of 3d components and assembling on CAD softwares, labelling and table creation for bill of materials	12			
	List of Textbooks/ Reference Books	<u> </u>			
	1. Engineering Drawing by N.D.Bhat				
	Engineering Drawing by N.H.Dubey CAD/CAM : Theory and Practice by Ibrahim Zeid and R Sivasubramanian				
-	Course Outcomes (students will be able to)				
1	Read Drawing				
2	Can understand different views.				
3	Can draw 3d drawing on a CAD software				
L					

	Course Code: HUP4151	Course Title:	Credits = 2		2
		COMMUNICATION SKILLS - ENGLISH	L	T	P
	Semester: I	Total contact hours:30	0	-	4
		Course Outcomes (students will be able to)			
1		ate the 5 step communication process			
2	Student would be able to explain	n the end goal of communication			
3	Student would be able to explain	n barriers to clear communication			
4	Student would be able to articuthe creative process to express h	late the role of visual communication within society, and implement			
5		y the most relevant textbooks, reviews, papers and journals			
	Student would be usic to identify	List of Prerequisite Courses			
	RASIC ENGLISH LANGUAG	E OF THE XII GRADE LEVEL			
	BASIC ENGLISH LANGUAG	LOT THE AIT GRADE ELVEL			
		ourse Contents (Topics and subtopics)	Req	d. hou	ırs
1	Communication as a way of life			6	
l	Process of communication and i				
	Functions of communication and	*			
	Essentials of good communicati	on			
2	The communication cycle			4	
	The 5-step communica	tion cycle:			
	Idea formation				
	Message encoding				
	Message transmission				
	Decoding				
	Feedback				
3	Factors affecting effective comm			3	
	Planning for effective communi	cation			
	Modes of communication				
4	Nonverbal communication			4	
	Gestures				
	Facial expressions				
	Posture and movement				
	Paralinguistics				
	Eye contact				
	Image management				
5	Presentation skills			8	
	What makes good presentation?				
	Presenting the message				
	Presenting oneself				
	Visual Communication				
6	Introduction to research study			5	
	Introduction to databases				
	Introduction to citation and refe				
	How to conduct literature review				
	Preparation of a report based on				
	THE SCIENCE OF FEEE CT	List of Text Books	ı		
		VE COMMUNICATION: Improve Your Social Skills and Small arn How to Talk to Anyone- Ian Tuhovsky			
	Taik, Develop Charisma and Le	ani from to fair to Anyone- fair fullovsky			
_	The Quick and Easy Way to Eff				
		of Additional Reading Material / Reference Books			
	The Hindu Businessline				
	National Newspapers' editorials				

First Year Semester TWO

	Course Code: CHT4152	Course Title: Applied Chemistry-II	Cre	dits =	2
			L	T	P
	Semester: II	Total contact hours: 30	2	0	0
				'	_
		Course Outcomes (students will be able to)			
1		ture activity relationship in organic molecules.			
2	Write simple mechanisms of an				
3		epts related to name reactions, organometallics, Metal-ligand bonding			
	and types of ligands				
4	Role of Wilkinsons, Grignard l	Reagent in chemical reactions			
5		T' CD '' C			
	Carrie 1 VII Chambar	List of Prerequisite Courses			
	Standard XII Chemistry				
		annas Contenta (Torica and subtonica)	Dar	d be-	
1		ourse Contents (Topics and subtopics) ip in organic molecules: Use of bond length and bond energies to		d. hou	ırs
1		onal groups. Acidity & basicity values for organic molecules such as	4		
	alkynes, alcohols, acids, ketone				
		itution: Activating and deactivating functional groups on aromatic	10		
2		tures, reactions such as Halogenation, Nitration, Friedel Crafts	10		
_	alkylation and acylation, sulfo	mation, Diazotization and important reacts of arene diazonium salts.			
	Dyes – Chromophore and auxo				
3		ems associated with SNAr reactions and how to overcome them.	4		
-	Mechanism for aromatic nucle		-		
4	Organometallics: Metal-ligan	d bonding, Concepts of sigma and pi bond formation. Types of	6		
	ligands, CO and PPh ₃ ligands.				
5		tallic compounds: insertion, migration, oxidative addition, reductive	6		
	elimination. E.g. Wilkinsons, C	Grignard Reagent etc.			
			30		
		List of Text Books			
		G Solomons, C. B. Fryhle, John Wiley and Sons			
		, Greeves, Warren, Oxford publication			
	3. Organic Chemistry, Paula Y				
		try of the Transition Metals by Robert H. Crabtree			
		Chemistry: Reactions, Mechanisms, and Structure 7 Edition (English,			
	Paperback, Michael B. Smith)	E A Cattan and C Williams Islan Wiles and Con-			
	o. Dasic morganic Chemistry,	F.A. Cotton and G. Wilkinson, John Wiley and Sons			
	T:a	t of Additional Reading Material / Reference Books			
	Lis	t of Additional Resuling Material / Reference Dooks			

Course Code: MAT4152	Course Title: Applied Mathematics – II	Cre	s = 4	
		L	T	P
Semester: II	Total contact hours: 60	4	0	0

List of Prerequisite Courses

HSC Standard Mathematics, Applied Mathematics – I (MAT XXXX)

List of Courses where this course will be prerequisite

Description of relevance of this course in the Int. M. Tech. Program

This is a basic Mathematics course. This knowledge will be required in almost all subjects later on. This knowledge is also required for solving various mathematical equations that need to be solved in several chemical engineering courses such as MEBC, momentum transfer, reaction engineering, separation processes, thermodynamics, etc.

	Course Contents (Topics and subtopics)	Hours
1	Probability Theory and Sampling Distribution: Review of probability, Random variables and cumulative distribution function; probability mass function and probability density function; Some common univariate distributions: Binomial, Poisson, Geometric and Uniform, exponential, Normal, Gamma, beta etc; Expectation and Moments (central and raw moments); Generating functions: moment generating function and characteristic function; Multiple random variables and Joint distribution; marginal distributions, independence; Covariance and Correlation; method of least squares and simple linear regression; nonlinear regression	15
2	Partial Differential Equations : Introduction to Partial Differential Equations (PDE), Classification of higher order PDEs, Solution of PDEs using separation of variable techniques	10
3	Numerical Solution of System of Linear Equations: Solutions of system of linear equations (Gauss-elimination, LU-decomposition etc.), Numerical solution set of linear algebraic equations: Jacobi, Gauss Siedel, and under / over relaxation method	5
4	Numerical Roots: Numerical methods for solving non-linear algebraic / transcendental etc.: Newton's method, Secant and Regula Falsi	6
5	Interpolations: Interpolation and extrapolation for equal and non-equal spaced data (Newtons Forward, Newtons backward and Lagrange), Numerical integration (trapezoidal rule, Simpson's Rule)	6
6	Numerical Solution IVP: Numerical methods for solution of first and higher order ODEs (initial values and boundary value problems) using single step methods (RK, Euler's explicit and implicit methods), multi-step methods (predictor – corrector methods etc.)	8
7	Numerical Solutions of BVP and PDE: Finite difference methods: Forward difference, Backward difference, and Central differences application of finite difference methods to Boundary value problem in ODE and PDE (parabolic, elliptic and hyperbolic)	10
	List of Textbooks / Reference Books	
1	A First Course in Probability, Sheldon Ross, Pearson Prentice Hall, 9 th Edition (2018)	
2	W.W. Hines, D. C. Montgomery, D.M. Goldsman, John-Wiely, Probability and Statistics in Engineering, John Wiley & Sons (2008)	
3	Alexander M. Mood, Duane C. Boes, and Franklin A. Graybill, Introduction to the Theory of Statistics, McGraw Hill; 3rd edition (1974).	
4	An Introduction to Statistics with Python with Applications in the Life Sciences by Thomas Haslwanter, 2016, Springer	
5	E. Kreyszig, Advanced Engineering Mathematics, 8 th Ed., John Wiley (1999).	
6	S. R. K. Iyengar, R. K. Jain, Advanced Engineering Mathematics, Narosa	
7	Learning Statistics with R by Daniel Joseph Navarro, 2015	
8	Sastry S. S., Introductory Methods of Numerical Analysis, 5th Ed., PHI (20120	
9	M. K. Jain, S R K Iyengar and R K Jain, Numerical Methods: For Scientific and Engineering Computation, New Age International Publication (2003)	
10	Kenneth J Beers Numerical Methods for Chemical Engineering Application Using MATLAB (2007), Cambridge University Press	
11	Mark E. Davis, Numerical Methods and Modelling for Chemical Engineers, Dover	

	Publications (2003)	
12	Sandip Mazumder, Numerical Methods for Partial Differential Equations (2015),	
12	Elsevier	
	Course Outcomes (students will be able to)	
CO1	Understand the concepts of various probability distributions and apply them to analyze	K2, K3, K4
COI	various engineering problems and make inference about the system	K2, K3, K4
	Understand the method of linear and nonlinear least squares method and apply it to	
CO2	choose appropriate mathematical functions for modelling real data sets, arising from	K2, K3, K4,
	chemical engineering applications	
CO3	classify higher of partial differential equation and solve parabolic equation using	K1, K2, K3
CO3	separation of variables.	K1, K2, K3
CO4	Understand the principles of various numerical approximation techniques and apply	K3, K4
CO4	them to solve system of linear equations and nonlinear algebraic equations	K3, K4
CO5	Approximate appropriate mathematical functions from equal an unequally spaced data	K2, K3, K4
CO3	and perform integration using various numerical methods	K2, K3, K4
	Choose appropriate numerical techniques to solve initial and boundary value problems	
CO6	on ordinary and partial differential equations arising from various chemical engineering	K3, K4, K5
	applications	
K1 -	 Remembering, K2 – Understanding, K3 – Applying, K4 – Analyzing, K5 – Evaluating, K6 	- Creating

Course code:	EST4153
Course title	Electrical Engineering and Basic Electronics
Scheme and Credits	2 L: 0 T: 0 P 2 Credits
Pre-requisites	XIIth Standard Physics and Mathematics courses, Applied Physics - II
Objectives of the course	Students will get an insight to the importance of Electrical Energy in Chemical Plants. The students willunderstand the basics of electricity, changing the voltage levels to match with the appliances through transformers. Student will acquire the knowledge on the number systems and different logic gates with the fundamentals of digital electronics. They will get basic knowledge as regards to thyristor application in industries.

	Detailed contents	L	T	P
1	DC Circuits: Circuit Components, Ohm's Law - Kirchhoff's Laws -Independent and Dependent Sources - Voltage divider rule and Current divider rule - Nodal Analysis, Mesh analysis with Independent sources.	7	0	0
2	AC Circuits: Average value, RMS Value, form factor and peak factor. A.C. through resistance, inductance and capacitance. Instantaneous power, real power, reactive power and apparent power, power factor.	7	0	0
3	Single Phase Transformers: Necessity of transformer, Principle of operation, Types and construction of transformers, EMF equation, losses, definition of regulation and efficiency.	6	0	0
4	Digital Electronics: Number system and codes: Binary, octal, hexadecimal and decimal Number systems and their inter conversion. Basic Logic gates (AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR and their truth tables).	6	0	0
5	Power Electronics devices-Thyristor: Construction and Static I-V characteristics of Thyristors, Applications.	4	0	0

Suggested books

1	Edward Hughe "Electrical and Electronic Technology", 10th Edition, Pearson Education Asia, 2019.
2	Kothari DP and I.J Nagrath, "Basic Electrical and Electronics Engineering", Second Edition, McGraw Hill
	Education, 2020
3	Chapman, "Electric Machinery Fundamentals", McGraw-Hill Higher Education.
4	William H. Gothmann, "Digital Electronics", second edition, PHI publishers.
5	M.D. Singh, K B Khanchandani, 'Power Electronics', second edition, TATA McGraw Hill.

Reference books

1	Electronic devices and circuits by Boylstead, Nashelsky
2	Principles of Electronics by V.K.Mehta and Rohit Mehta
3	Electrical Technology by B.L.Theraja, A.K.Theraja Vol I,II,IV
4	A.Anand Kumar, "Fundamentals of Digital Circuits", fourth edition, PHI publishers.
5	Power Electronics by P.S. Bhimbra.

Outcomes: Students will be able to

CO1	Understand the concepts of D.C circuits and AC circuits.
CO2	Apply the electrical circuit concepts to Solve the basic electrical circuits.
CO3	Understand the transformer working principle and its basic concepts.

CO4	Understand the concept of number systems and logic gates in digital electronics.
CO5	Apply the power electronics devices for industrial applications.

	C C 1 FCD41#3		<u> </u>	10,	_
	Course Code: ESP4153	Course Title: Electrical Engineering and Basic Electronics Laboratory	Cre L	dits =	= 2 P
	Semester: II	Total contact hours: 60	0	0	4
	Schiester. II	List of Prerequisite Courses	U	U	7
	XIIth Standard Mathematic	s and Physics courses, Applied Physics I, Electrical Engg and			
	Eletronics	s and Thysics courses, Applied Thysics I, Electrical Engg and			
	List	of Courses where this course will be prerequisite			
	Chemical Process Control	•			
		of relevance of this course in the Int. M. Tech. Program			
		the importance of Electrical Energy in Chemical Plants. The			
		ity, selection of different types of drives for a given application			
	get basic knowledge as regalistries.	ards to Power supplies, instrumentation amplifiers and thyristor	app	mcan	on in
maa		urse Contents (Topics and subtopics)	Rec	ıd. ho	urs
	Electrical Engineering Ex		1111	iu. no	uis
	To verify KCL and KVL				
	To verify Thevenin's theor	rem.			
	To verify Superposition the	eorem			
	To measure three phase po	wer by using two wattmeter method			
	Study of RLC circuits				
	Load test on transformer				
	Load test on induction mot				
	Study of 3 phase circuits w				
	Study of 3 phase circuits w				
	Study of C.R.O. and its ap				
	Measurement of Earth resi				
		ave and bridge rectifier circuits			
		characteristics of a transistor.			
	Study of operational ampli				
		OR, AND, NOR, NAND): Characteristics Trainer			
		List of Textbooks/ Reference Books			
		amentals by Vincent Deltoro			
		its by Boylstead, Nashelsky			
	Electrical Machines by Nag				
	Electrical Machines by P.S.	L.Theraja, A.K.Theraja vol I,II,IV			
	Electrical Technology by B.	L. Theraja, A.K. Theraja voi 1,11,1v			
	(Course Outcomes (students will be able to)			
1		epts of D.C., single phase and three phase AC supply and			
	circuits Solve basic electrica				
2		epts of transformers and motors used as various industrial			
	drives.				
3		cepts of electronic devices and their applications in power			
4	supplies, amplification and i				
4	Understand the basic concep	ots of Data acquisition, signal conditioning			

	Course Code: EST4152	Course Title: Mechanical Engineering	Credits		= 4
			L	T	P
	Semester: II	Total contact hours: 60	3	1	0
List	of Prerequisite Courses				
		ynamics-I, Material and Energy Balance Calculations, Applied			
	Physics I and II, Applied Mathe				
List	of Courses where this course w				
		Paper I and II, Env. Eng. And Proc. Safety, Chem. Project Engg and			
Dog	Eco.,	rse in the Int. M. Tech. Program			
		rious equipment's like steam turbine, gas turbine, pumps, compresso	rs and	1 now	er
	smission system.	mous equipment 5 like steam turome, gas turome, pumps, compresso	15, 4110	ı pow	<i>5</i> 1
-	Course Contents (Topics and s	subtanies)	Rec	ıd. ho	urs
1		s, First and Second law of thermodynamics.	1100	4	uis
2		m, Calculation of entropy, enthalpy, specific volume of steam,		4	
	steam table, Dryness fraction,	,			
3		ant, Rankine cycle, Reheat cycle, Regenerative cycle, Back Pressure		6	
	Turbine,				
4	Steam Turbine, Classification, C	Calculation of Power Developed by Steam Turbine, Compounding		6	
	of Steam Turbine				
5		various Boilers such as Babcock & Wilcox Boiler, Cochran Boiler,		6	
		r, Boiler Mountings and Accessories, Boiler Performance,			
	Measurement of Steam Quality				
6		of Steam Nozzles, Variation of area, velocity, and specific volume		2	
7		arious types of steam condenser, Condenser Efficiency		4	
8		Compressors, Reciprocating Compressors, Single stage compressor		4	
	Centrifugal and Axial compressor, P-V	diagram, Application of Compressors, Rotary Compressors,			
9		, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear		4	
	Pumps, Maintenance of Pumps	, reciprocating 1 unips, centificing 1 unips, Axiai 1 unips, Gear		7	
10		or and heat pumps, classification of refrigerants, Nomenclature,		6	
		s. Vapour compression refrigeration cycle. Methods of increasing			
	COP of VCRS. Vapour absorpti				
11		nermodynamic cycles such as otto, diesel and dual cycles. Methods			
		and performance of internal combustion engines		4	
12		and constant volume gas turbines, open and closed cycle gas			
		thermal efficiency and specific work output of gas turbines.		4	
13		ction to various drives such as belt, rope, chain, and gear drives.			
T		ents such as keys, couplings, and bearings in power transmission.		6	
List	of Textbooks/ Reference Books 1. Thermodynamics by P.				
	2. Power plant by Morse	K. Nag			
	3. Heat Engines by P.L. E	Ralani			
	4. Hydraulic Machines by				
		onditioning by C.P. Arora			
	6. Theory of Machines by				
	7. Gas turbine theory by I				
	7. Gas taronic theory by I	IIII Saravanamutoo.			
Cou	rse Outcomes (students will be	able to)			
1	Understand first law and second	law of thermodynamics with its implications. (K2)			
2		and working of various steam boilers (K2)			
3		of power developing systems such as steam turbines, gas turbines			
	and internal combustion engines				
4		of vapour compression and vapour absorption refrigeration systems.			
_	(K2)				
5		transmission systems and their typical applications. (K2)			
6	Explain the working principles (of power absorbing devices such as pumps and compressors. (K2)			

	Course Code: EST4154	Course Title: Introduction to Chemical Engineering	Credits = 2		2		
			L	T	P		
•	Semester: II	Total contact hours: 30	2	0	0		
					•		
		Course Outcomes (students will be able to)					
1		tand the chemical sector and role of chemical engineers					
2		tand and predict the growth of various chemical sectors					
3	Student would be able to unders	tand the sequence of processing steps in chemical industry					
		List of Prerequisite Courses					
<u> </u>							
			-				
1		urse Contents (Topics and subtopics)	_	d. hou	irs		
1	Chemical Engineer and Chemical		4				
2		etroleum and petrochemical industry (b) Pharmaceutical industry	8				
	1 1	cides industry (d) Speciality Chemicals industry (e) Inorganic	2				
	Chemicals etc						
3		s: Chemical reaction engineering, separation processes, automation	n 4				
4	and process control		1 4				
4	Overview of chemical process equipment: Reactors, Distillation, Absorption, Filters, Dryer and solid handling						
5	Global trends of chemicals						
6	Life cycle assessment and environment	onmental impact	4				
7	Modern Chemical Engineering l	Plants: Batch to Continuous processing	2				
		List of Text Books					
1		neering - Tools for Today and Tomorrow: A First-Year Integrated					
		perback, Kenneth A. Solen, John N. Harb), Wiley, 2014					
2		gineering (English, Paperback, S. Pushpavanam) Publisher: PHI					
	LEARNING PVT. LTD-NEW I						
3		troduction (Cambri(Paperback) by Morton Denn (Cambridge					
	University Press)						
	List	of Additional Reading Material / Reference Books					

	Course Code: CEP4151	Course Title: Material Balance and Energy Balance	Credits		= 2
		Calculations	L	T	P
	Semester: II	Total contact hours: 60 hrs	0	0	4
		rse Outcomes (students will be able to)			
1	Students will be able to convert of units	t units of simple quantities from one set of units to another set			
2		date quantities and /or compositions, energy usages, etc. in quipment such as reactors, filters, dryers, etc.			
		List of Prerequisite Courses			
	XIIth Standard Mathematics, Chemistry – I, Applied Physics	Chemistry, Physics, Applied Mathematics - I, Organic			
	Court	as Contonts (Tonics and subtonics)	Da	d la	
1	Course Contents (Topics and subtopics) Introduction to Chemical Engineering: Chemical Process Industries, Chemistry to Chemical			qd. h	ours
1	Engineering, Revision of Units	and Dimensions	4		
2		tionship and Stoichiometry, Behaviour of gases and vapors	6		
3	Material balances for reacting a recycle, bypass and purge	and non-reacting chemical and biochemical systems including	20		
4	Introduction to psychrometry hu	umidity and air-conditioning calculations.	10		
5		s, Energy Balances in systems with and without reactions	10		
6	Unsteady State Material and End	ergy Balances	6		
7	Material and Energy Balances for	or multistage processes and complete plants	4		
		List of Text Books			
1	Chemical Process Principles, Ho	ougen O.A., Watson K. M.			
2		ns in Chemical Engineering, Himmelblau,			
3	Stoichiometry, Bhatt B.I. and V	ora S.M.			
	List of A	dditional Reading Material / Reference Books			

	Course Code: ESP4154	Course Title: Engineering Applications of Digital	Credits = 2		2
		Computers	L	T	P
	Semester: II	Total contact hours: 60	0	0	4
		ourse Outcomes (students will be able to)			
1	Students would be able to caproblems	arry out Spreadsheet calculations for chemical engineering			
2	Students would be able to devel	op programming logic and code it in software			
		List of Prerequisite Courses			
	XIIth Standard Mathematics and	l Physics Courses, Applied Mathematics – I and II			
		se Contents (Topics and subtopics)	_	d. hou	rs
1		f cells, formulas, table calculations, graphs, matrix operations,	20		
	basic programming	regression, statistical analysis, excel important formulas, visual			
2		referably python): Basics, array types, conditional statements,	20		
	iterative loops, functions	telerably python). Basies, array types, conditional statements,	20		
3		lving solution of single non-linear equation (Equation of state	6		
		Robinson, RKS, friction factor equation, Ergun equation,			
4	Estimation of Drag Coefficient				
4	Solution of ordinary differential		8		
5	Data visualization (2D plots, 3D	* · · · · · · · · · · · · · · · · · · ·	6		
	Minney & Office Late	List of Text Books	ı		
	Microsoft Office help	M.C. D			
	Python: The Complete Reference				
	Unit Operations of Chemical En	gineering, McCabe, Smith and Harriott (for case studies)			
	I ict of	Additional Reading Material / Reference Books			
_	List of	Additional Reduing Waterial / Reference Dooks			

Second Year Semester Three

	Course Code: CET4251	Course Title: Fluid Flow	Cre	dits =	2	
			L	T	P	
	Semester: III	Total contact hours: 30	1	1	0	
		ourse Outcomes (students will be able to)				
1	Calculate pressure drop in pip two phase flow, fixed and fluid	elines and equipment for different situations such as single and dized beds				
2	Calculate forces on particles a	nd terminal velocities of particles				
3	Design pumps and piping syst	ems for simple situations				
	T	List of Prerequisite Courses	1			
	XIIth Standard Physics and M I and II	athematics, Applied Physics – I and II, Applied Mathematics –				
		rse Contents (Topics and subtopics)				
_		Reqd. hours				
1	Fluid Statics and applications		4			
2		gineering applications, Pressure drop in pipes and Fittings,	6			
2	Piping systems		0			
3	Thermic fluid system	process industries: Cooling water, Steam, Chilled water,	8			
4	Fluid moving machinery such	as pumps, blowers, compressors, vacuum systems, etc.	6			
5	Particle Dynamics, Boundary Fluidised Beds, Flow through	layer separation: skin and form drag, Flow through Fixed and porous media	6			
		List of Text Books				
		B., Stewart W.E., Lightfoot E.N.				
	Fluid Mechanics, Kundu Pijus					
	Fluid Mechanics, F. W. White					
	Unit Operations of Chemical I	Engineering, McCabe, Smith and Harriott				
	List of	Additional Reading Material / Reference Books				

	Course Code: CET4252	Course Title: Heat Transfer	Credits =		= 2
			L	T	P
	Semester: III	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	Momentum and Mass transfe	er, Applied Mathematics I and II, Material and Energy Balance			
	Calculations				
		f Courses where this course will be prerequisite			
	Chemical Reaction engineering, Multiphase Reactor Engineering, Process Developmen				
		r I and II, Env. Engg. and Process Safety, etc.			
		f relevance of this course in the Int. M. Tech. Program			
		ith heat transfer, overview of heat exchangers Heat transfer fo	rms o	one o	f the
bas		ring Education and is required in all future activities.			
		rse Contents (Topics and subtopics)		d. ho	ours
1		ransfer: Steady state and unsteady state conduction, Fourier's	6		
	law, Concepts of resistance to heat transfer and the heat transfer coefficient. Heat transfer				
		spherical coordinate systems, Insulation, critical radius.			
2					
	and analogy between momer				
3	Heat transfer by natural conv		4		
4		turbulent flow in circular pipes: Double pipe heat exchangers:	8		
		and cross flows, mean temperature difference, NTU - epsilon			
		uation. Heat transfer outside various geometries in forced			
		spheres, banks of tubes or cylinders, packed beds and fluidised			
	beds				
5		ssels: coils, jackets, limpet coils, calculation of heat transfer	4		
_		ling times, applications to batch reactors and batch processes			
6	Basics of Radiative heat tran	sfer and application to Furnace Design	4		
	I	List of Text Books/ Reference Books			
	Process Heat Transfer, Kern	`			
	Heat Exchangers, Kakac S.,				
	Process Heat Transfer, G. He				
		ourse Outcomes (students will be able to)			
1	Calculate temperature profile				
2		cients for free and forced convection in different heat transfer			
2	equipment	han an wine NTH conilar mostly d			
3		changer using NTU-epsilon method			
4	Design agitated vessel for he	at transfer controlled process			

	Course Code: EST4155	Course Title: Engineering Thermodynamics	Cre	dits =	2	
			L	T	P	
	Semester: III	Total contact hours: 30	1	1	0	
		List of Prerequisite Courses				
	Mechanical Engineering Co	ourse (ESC) from first year syllabus				
		of relevance of this course in the Int. M. Tech. Program				
		s on performance of processes and equipment. This course give				
		y to do a preliminary thermodynamic analysis of a process for	the	purpo	se of	
esta	blishing feasibility assuming	ideal mixing.				
		urse Contents (Topics and subtopics)		d. ho	urs	
1	*	of thermodynamics and 1st Law of Thermodynamics to open	2			
	processes	1011 7 7				
_		tropy and Gibbs-Free Energy	_			
2	Need for Entropy and Gibbs Energy, Exergy, Industrial Applications of Second Law or					
2	Thermodynamics using Ideal Gas Law and Thermodynamic Property Charts and Tables					
3		anges, Maxwell Relations and the need for Equations of State.	4			
4	Residual Properties, Industrial Applications using Equations of State					
5	Phase Equilibria for Pure Fluids, Fugacity and Fugacity Coefficient Thermodynamic Properties of Mixtures, Gibbs Duhem Equation					
6		res, Fugacity and Fugacity Coefficient in Mixtures	4			
7		n Ideal Mixtures, T-x-y and P-x-y diagrams, Bubble point and	4			
,	Dew point calculations for l					
8		Properties and activity coefficients	4			
		•				
		List of Text Books/ Reference Books				
	Introduction to Chemical En	ngineering Thermodynamics: Smith, van Ness, Abbott				
	Chemical, Biochemical and	Engineering Thermodynamics: S. I. Sandler				
		Reference Books				
		uids: Reid, Prausnitz, Pauling				
		Course Outcomes (students will be able to)				
1	Calculate Enthalpy, Entropy and Gibbs energy changes in fluids with changes in					
	temperature and pressure (K3)					
2		s using entropy or exergy concepts (K4)				
3		ature and pressure relationship for pure fluids from equations of				
4	state (K3)	libria in ideal mixtures (K4)				
4	Anaryze vapor – nquid equi	nona in iucai inixiuies (N4)				

	Course Code: CET4253	Course Title: Industrial Chemistry and Reaction	Cre	dits =	4
		Engineering	L	T	P
	Semester: III	Total contact hours: 60	2	2	0
		Outcomes (students will be able to)			
1		ally, using minimum amount of data			
2		s way to get the required data, if not available			
3		vity and/or safety by improving/changing the reactor			
	type/sequence and/or operating of				
4	Draw process flow diagrams/prochemicals from process descript	ocess block diagrams for the manufacture of various ion			
5		or carrying out a particular process and provide			
	recommendations for the best ch				
6	List Principles of combustion sy	stems for solid, liquid and gaseous fuel			
	<u>, </u>	List of Prerequisite Courses			
		Energy Balance Calculations, Applied Mathematics			
	I and II, Momentum and Mass T	ransfer, Chem Engg Thermodynamics I and II			
		ontents (Topics and subtopics)	Req	d. hou	ırs
1	Raw material and energy sour products, Bulk and specialty che	ces, Organic and inorganic intermediates and final	10		
2	Production costs of fue	ls and chemicals	2		
3	Industrial gases and inorganic pr	roducts	4		
4	Examples of major industrial pro	ocesses	6		
5	Types of chemical reaction	ons: elementary/non-elementary, single/multiple,	8		
	irreversible/reversible				
6	Types of chemical reactors: b (CSTR and PFR)	atch and semi-batch reactors, continuous reactors	8		
7	Reaction kinetics (homogeneous	reactions)	8		
8	Isothermal, adiabatic and non-is-	othermal operation modes	8		
9	Different types of single phase a	nd multiphase reactors	6		
		List of Text Books			
1	Elements of Chemical Reaction	Engineering – H. Scott FOGLER			
2	Chemical Reaction Engineering				
3	The Engineering of Chemical Ro	eactions – Lanny D. SCHMIDT			
4	An introduction to Chemical E	Engineering Kinetics and Reactor Design - Charles			
5		and II – L. K. Doraiswamy, M. M. Sharma			
6	Encyclopedia of Chemical Tech				
7	Ulmann's Encyclopedia of Indus	C1 -			
8	Industrial Organic Chemistry, W				
9	Chemical Process Industries, Sh				
10	Chemical Process Technology, N	Moulijn, M. and van Dippen			
11	Dryden's Outlines of Chemical	Technology			
12	Elements of Fuels, Furnaces and	•			
13	Fuels handbook, Johnson	<u>-</u>			
	List of Add	itional Reading Material / Reference Books			

	Course Code: CEP4251	Course Title: Chemical Engineering Laboratory - I	Credits =		2
			L	T	P
•	Semester: III	Total contact hours: 60	0	0	4
				•	
		ourse Outcomes (students will be able to)			
1		to experimentally verify various theoretical principles			
2		ualize practical implementation of basic chemical engineering			
	principles				
3	Student would be able to Devel				
4	Student would be able to Conne	ct classroom teaching with the laboratory practicals			
5	Student would be able to Impro	ve understanding about safety in the laboratory			
		List of Prerequisite Courses			
	Introduction to Chemical Eng	ineering, Material Balance and Energy Balance Calculations,			
		ngineering Thermodynamics, Mathematics I, Mathematics II,			
	Applied Physics, Applied Chem	nistry			
		rse Contents (Topics and subtopics)	Req	d. hou	ırs
1	8-10 Experiments on Fluid Flov	V	40		
2	2-3 Experiments on Heat Trans	fer	10		
3	2-3 Experiments on Thermodyn	amics	10		
		List of Text Books			
1	McCabe W.L., Smith J.C., and	Harriott P. Unit Operations in Chemical Engineering, 2014			
2	Bird R.B., Stewart W.E., and Li	ghtfoot, E.N. Transport Phenomena, 2007			
3		F., and Sinnott, R.K. Coulson & Richardson's Chemical			
	Engineering: Chemical enginee	ring design, 1996.			
4		Chemical Engineers' Handbook, Eighth Edition, 2007.			
	List of	f Additional Reading Material / Reference Books			
		-			

	Course Code: BST4151	Course Title:	Introduction	to	Biological	Sciences &			
	C 4 HI	Bioengineering	20				L	T	P
	Semester: III	Total contact ho	urs: 30				2	0	0
		Course Outcomes		be abl	le to)				
1	Describe the basic principles of		ules						
2	Analyze the structure and functi								
3	Understand the central dogma of			S					
4	To comprehend cell division and		on						
5	To interpret basic genetics and c								
<u> </u>		List of P	rerequisite Cou	ırses					
—	Standard XII Chemistry								
	Co	urse Contents (To	opics and subto	pics)				d. hou	ırs
1	Introduction to cells, Microscop								
	of some of the types of sugar, F					id in proteins, A	A		
	survey of the nucleotides, The p						1		
_	Protein Structure and Function								
2	antibodies, Cell breakage an			extrac	ets, Protein	separation b	y		
2	chromatography, Protein analys			E.	DNIA 4	D II	-		
3	DNA and Chromosomes, DNA			on, Fr	om DNA to	Protein: How	6		
4	Cells Read the Genome, Control How Cell Obtain energy from for			: 1	avala Enan	Camanatian i	. 4		
4	Mitochondria and Chloroplasts,		e complete citri	acia	cycle, Energ	gy Generation i	1 4		
5	Cell division, Sex and Genetics	Redox potentials					4		
6	Bioengineering, tissues, stem ce	lls and agneer					4		
U	Broengmeering, tissues, stem ce	iis and cancer					30		
		T :~.	t of Text Books				30		
	1. Bruce Alberts, Dennis Bray,			ncon	Julian I av	ic Martin Daf	r		
	Keith Roberts, and Peter Walter			1115011,	Julian Lew	is, iviaitiii Kall	٠,		
	2. Becker's World of the Cell. B								
	3. Eduardo D.P.De Robertis, E.I			ar Ric	logy 2017				
	4. Geoffrey Cooper, Robert E. H								
		of Additional Rea				6			
	List	oi Auditional Kea	duing Material	Refe	Tence DOOK	3	1		

	Course Code: HUT4156	Course Title:	Credits = 2		
		Basic Principles of Finance and Economics	L	T	P
	Semester: III	Total contact hours: 30	2	0	0
Cour	rse Outcomes (students will be	able to)			
1	Students will be able to know a	and apply accounting and finance theory.			
		and the mechanics of preparation of financial statements,			
	their analysis and interpretation				
		basic economic terms, concepts, and theories			-
	Students will be able to identify				
	of Prerequisite Courses	,	ı		
		OF FIRST YEAR COURSEWORK			
List o	of Courses where this course w	vill be prerequisite			
		•			
	PROJECT ECONOMICS				
		KETING MANAGEMENT AND MARKET			
	RESEARCH				
		L. I. D. CHELODIC D			
Desci	ription of relevance of this cou	rse in the BACHELOR'S Program			
	Course Contents (Topics and	subtonics)	Reo	ıd. hou	ırc
	INTRODUCTION	subtopics)	Reg	3	13
	Explaining the Econon	nv		5	
	The Supply and Demai				
	Using the Supply and I				
2	THE COMPETITIVE EQUILIF			5	
	Deriving Demand				
	Deriving Supply				
	Market Equilibrium an				
3	DEVIATIONS FROM COMPE			5	
	Monopoly and Market				
	Between Monopoly an Antitrust Policy and Ro				
4	MACRO FACTS AND MEASI			5	
T	Getting Started with M			3	
		Income and Spending of Nations			
5	ACCOUNTING TRANSACTION			5	
	Journal entries				
	Debit credit rules				
	Compound journal ent	ry			
	Journal and ledger				
	Rules of posting entrie Trial balance	S			
	I rial balance				
6	CAPITAL AND REVENUE			5	
	Income and expenditur	re.			
	Expired costs and inco				
	Final accounts				
	Manufacturing account	ts			
	Trading accounts				
	Profit and Loss accoun	t			
	Suspense account				
	Balance sheet				
_	CONCERT OF DEPRESE TO	N. I			
/	CONCEPT OF DEPRECIATION Textbooks	JN		2	

	Finance and Accounting for Nonfinancial Managers: All the Basics You Need to Know -William G. Droms and Jay O. Wright
	Microeconomics: Basic Principles and Applications- A A Temu, D W Ndyetabula, et al
	PRINCIPLES OF ECONOMICS(12e)- E. Case Karl, C. Fair Ray, et al
List	of Additional Reading Material / Reference Books
	Basic Finance for Nonfinancial Managers: A Guide to Finance and Accounting Principles for
	Nonfinancial Managers- Kendrick Fernandez
	Microeconomic Theory: Basic Principles and Extensions- Walter Nicholson and Christopher
	Snyder
	Macroeconomics(10e) Part of: Pearson Series in Economics (23 books) - by Froyen

	Course Code: CET4258	Course Title: Environmental Sciences	Cre	dits =	2
			L	T	P
	Semester: III	Total contact hours: 30	2	0	0
				·	
		rrse Outcomes (students will be able to)	ı		
1	Describe the methods of industri				
2	apply the learning for selective technique for sustainable develo	on and implementation of appropriate waste management pment			
		List of Prerequisite Courses			
			-		
		e Contents (Topics and subtopics)	Req	d. hou	rs
1	(a) Concept of circular eco	nomy, EHS management (b) Environment management	_		
	systems in the chemical industry	(c) Legal provisions for environmental management: EP Act	6		
		1974; Hazardous waste management Rules, 2019	-		
2		treatment and discharging norms for treated water	6		
3	SPCB consent parameters, moni		4		
4	External monitoring of ambient		4		
5		ts on human health and environment, monitoring and analysis	6		
6	Life cycle analysis, environment	al impact assessment	4		
		List of Text Books			
1	Introduction to Environmental E Ela	Engineering and Science by Gilbert M Masters and Wendell P			
2	Environmental Pollution Contro	l Engineering, C. S. Rao			
3	Principles of Instrumental Ana	lysis by D. A. Skoog, F. James Holler and S. R. Crouch,			
	Cengage Learning, 2007				
	List of A	Additional Reading Material / Reference Books			

Second Year (Semester FOUR)

Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter 4 Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up 5 Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up		Course Code: CET4254	Course Title: Chemical Engineering Operations	Credits =		4
Material & Energy Balance Calculations, Physical Cheistry, Organic Chemistry-I and II, Chem. Eng. Thermodynamics-I, Momentum and Mass Transfer List of Courses where this course will be prerequisite This is a basic Chem Eng. course. It is required in almost all the courses, such as, Separation Processes, Chemical Engineering Laboratory I, II and III, Process Simulation Lab – I and III, Home Paper I and II, etc. Description of relevance of this course in the Int. M. Tech. Program This is a basic Chem Eng. course. The principles learnt in this course are required in almost all the courses and throughout the professional career of Chemical Engineer Course Contents (Topics and subtopics) Introduction to Unit Operations and Chemical Engineering Processes, Introduction to mass transfer: Concepts of Convective and diffusive transport Introduction to Unit Operations and Chemical Engineering Processes, Introduction to mass transfer: Concepts of Convective and diffusive transport Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, reflux, reflux ratio, need for reflux, McCabe-Thiele, Lewis-Sorel methods of estimation of number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliland Methods for multicomponent separations: Fenske-Underwood-Gilliland Method Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Operating and field mixtures are column general manace, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column deficiency and column performance, Nature processes, and provide and processes of packed columns for packed columns for packed columns f				L	T	P
Material & Energy Balance Calculations, Physical Cheistry, Organic Chemistry-I and II, Chem. Eng. Thermodynamics-I, Momentum and Mass Transfer List of Courses where this course will be prerequisite This is a basic Chem Engg. course. It is required in almost all the courses, such as, Separation Processes, Chemical Engineering Laboratory I, II and III, Process Simulation Lab -1 and II, Home Paper I and II, etc. Description of relevance of this course in the Int. M. Tech. Program This is a basic Chem Engg. course. The principles learnt in this course are required in almost all the courses and throughout the professional career of Chemical Engineer Course Contents (Topics and subtopics) Introduction to Unit Operations and Chemical Engineer Processes, Introduction to mass transfer: Concepts of Convective and diffusive transport. Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, reflux, reflux ratio, need for reflux, McCabe-Thicle, Lewis-Sorel methods of estimation of number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation: rate based methods: HETP, HTU, Ponchon Savarit method, Introduction to batch distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliland Method Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations; loading and flooding zones, pressure-drop and column diameter Liquid Filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performanc		Semester: IV	Total contact hours:60	2	2	0
II, Chem. Eng. Thermodynamics-I, Momentum and Mass Transfer List of Courses where this course will be prerequisite This is a basic Chem Engg. course. It is required in almost all the courses, such as, Separation Processes, Chemical Engineering Laboratory I, II and III, Process Simulation Lab - I and III, Home Paper I and II, 4c. Description of relevance of this course in the Int. M. Tech. Program This is a basic Chem Engg. course. The principles learnt in this course are required in almost all the courses and throughout the professional career of Chemical Engineer Course Contents (Topics and subtopics) Introduction to Unit Operations and Chemical Engineering This is a basic Chem Engg. course. The principles learnt in this course are required in almost all the courses and throughout the professional career of Chemical Engineer Course Contents (Topics and subtopics) Introduction to Unit Operations and Chemical Engineering This is a basic Chem Engg. course. The principles are the introduction to mass transfer: Concepts of Convective and diffusive transport Distillation of binary mixtures: Differential distillation, Flash or equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation: rate based methods of estimation of number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation and steam distillation mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column stages, Packed column stages, Operating and feed column method, Introduction to batch distillation and stages of silenting of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operation and Straiping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operation and Straiping of dilute mixtures: Fundamentals of absorptio			List of Prerequisite Courses			
List of Courses where this course will be prerequisite This is a basic Chem Engg. course. It is required in almost all the courses, such as, Separation Processes, Chemical Engineering Laboratory I, II and III, Process						
This is a basic Chem Engg. course. It is required in almost all the courses, such as Separation Processes, Chemical Engineering Laboratory I, II and III, Process Simulation Lab – I and II, Home Paper I and II, etc. Description of relevance of this course in the Int. M. Tech. Program This is a basic Chem Engg. course. The principles learnt in this course are required in almost all the courses and throughout the professional career of Chemical Engineer Course Contents (Topics and subtopics) Reqd. hours			•			
Separation Processes, Chemical Engineering Laboratory I, II and III, Process				1		
Simulation Lab - I and II, Home Paper I and II, etc.						
Description of relevance of this course in the Int. M. Tech. Program This is a basic Chem Engg. course. The principles learnt in this course are required in almost all the courses and throughout the professional career of Chemical Engineer Course Contents (Topics and subtopics) Reqd. hours Introduction to Unit Operations and Chemical Engineering Processes, Introduction to mass transfer: Concepts of Convective and diffusive transport Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, reflux, reflux ratio, need for reflux, McCabe-Thiele, Lewis-Sorel methods of estimation of number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation: rate based methods: HETP, HTU, Ponchon Savarit method, Introduction to batch distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliland Method Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU). Design considerations: loading and flooding zones, pressure drop and column diameter Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, flitration, graph for the contributed Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, elassifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Dyring of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in						
This is a basic Chem Engg. course. The principles learnt in this course are required in almost all the courses and throughout the professional career of Chemical Engineer Course Contents (Topics and subtopics) Introduction to Unit Operations and Chemical Engineering Processes, Introduction to mass transfer: Concepts of Convective and diffusive transport Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, reflux, reflux ratio, need for reflux, McCaber Thiele, Lewis-Sorel methods of estimation of number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliland Method Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and seale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, Selection, Sizing and grinding equipment impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment impact and roller mills, fluid energ						
throughout the professional career of Chemical Engineer Course Contents (Topics and subtopics) Introduction to Unit Operations and Chemical Engineering Processes, Introduction to mass transfer: Concepts of Convective and diffusive transport Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, reflux, reflux ratio, need for reflux, McCabe-Thiele, Lewis-Sorel methods of estimation of number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation: rate based methods: HETP, HTU, Ponchon Savarit method, Introduction to batch distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliland Method Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of Solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up conside	This			courses	s and	
Course Contents (Topics and subtopics)						
1 Introduction to Unit Operations and Chemical Engineering Processes, Introduction to mass transfer: Concepts of Convective and diffusive transport 2 Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, reflux, reflux ratio, need for reflux, McCabe-Thiele, Lewis-Sorel methods of estimation of number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation: rate based methods: HETP, HTU, Ponchon Savarit method, Introduction to batch distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gillland Method 3 Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter 4 Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up 5 Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up 6 Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operations, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts 7 Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Drying and Signary and Signary and Signary and Signary and Signary and Signary a				Requ	l. hou	rs
Distillation of binary mixtures: Differential distillation, Flash or equilibrium distillation, Fractionating column and multistage column, reflux, reflux ratio, need for reflux, McCabe-Thiele, Lewis-Sorel methods of estimation of number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation: rate based methods: HETP, HTU, Ponchon Savarit method, Introduction to batch distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliland Method Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Seale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterw	1	Introduction to Unit Opera	tions and Chemical Engineering Processes, Introduction to mass		4	
Fractionating column and multistage column, reflux, reflux ratio, need for reflux, McCabe-Thiele, Lewis-Sorel methods of estimation of number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation: rate based methods: HETP, HTU, Ponchon Savarit method, Introduction to batch distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliand Method 3 Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter 4 Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up 5 Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up 6 Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts 7 Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment 8 Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Crushing and grinding equipment mills, fluid energy mills, wet/dry media mi						
Thiele, Lewis-Sorel methods of estimation of number of equilibrium stages, Operating and feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation: rate based methods: HETP, HTU, Ponchon Savarit method, Introduction to batch distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliland Method 3 Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter 4 Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up 5 Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up 6 Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts 7 Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment 10 Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Process from the particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. 2 Scader, J.D., Henley, E.J., 2005. Separation Process Principle	2				12	
feed lines, minimum and optimum reflux ratio, Tray and column efficiency, Packed column distillation: rate based methods: HETP, HTU, Ponchon Savarit method, Introduction to batch distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliland Method Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Kichardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Seader, J.D., Henley, E.J., 2005. Separation Process P						
distillation: rate based methods: HETP, HTU, Ponchon Savarit method, Introduction to batch distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliliand Method 3 Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter 4 Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up 5 Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up 6 Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts 7 Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment **List of Text Books/ Reference Books** 1 Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. 2 Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. 3 Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. 4 McCabe, W., Smith, J., Harriott, P.,						
distillation and steam distillation. Methods for multicomponent separations: Fenske-Underwood-Gilliland Method Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Professional, Edinburgh. Course Outcomes (student						
Underwood-Gilliland Method Absorption and Stripping of dilute mixtures: Fundamentals of absorption, equilibrium curves, Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Professional, Edinburgh. Course Outcomes (students will be able to) Know the significance and usage of different particulate c						
Operating lines from material balances, Number of equilibrium stages, Kremser Equation, Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Course Outcomes (students will be able to) Know the significance and usage of different						
Stage efficiency and column performance, Absorption columns, Rate based methods for packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment works and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment. Woburn, MA. List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Scader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edi	3	Absorption and Stripping of	f dilute mixtures: Fundamentals of absorption, equilibrium curves,		12	
packed columns (HTU, NTU), Design considerations: loading and flooding zones, pressure drop and column diameter 4 Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up 5 Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up 6 Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts 7 Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books 1 Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. 2 Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. 3 Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. 4 McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. 5 Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. 6 Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi.						
drop and column diameter Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of e						
Liquid Filtration: Filtration theory: constant pressure, constant rate, and variable pressure-variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection			U), Design considerations: loading and flooding zones, pressure			
variable rate filtration, Incompressible and compressible cake filtration, Continuous filtration, filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection					1.0	
filter aids, Filtration equipment, Selection, Sizing and Scale-up Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	4				10	
Sedimentation, Classification and Centrifugal Separations: Design and scale up equations, Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection						
Performance evaluation, Sedimentation equipment, classifiers, centrifugal equipment, Sieving operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and seale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	5				Q	
operations, types of sieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	5				0	
Selection, sizing and scale-up Drying of solids: Mechanism of drying, drying rate curves, Estimation of drying time, Drying Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection						
Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection						
Equipment, operation, Process design of dryers, material and energy balances in direct dryers, Drying of bioproducts Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	6	Drying of solids: Mechanism	n of drying, drying rate curves, Estimation of drying time, Drying		10	
Particle Size Reduction: Energy requirements for size reduction and scale-up considerations, Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection		Equipment, operation, Proce	ess design of dryers, material and energy balances in direct dryers,			
Operational considerations, Crushing and grinding equipment: impact and roller mills, fluid energy mills, wet/dry media mills, Selection of equipment List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection						
Eist of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	7				4	
List of Text Books/ Reference Books Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection						
Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection		energy mills, wet/dry media	* *			
Particle technology and separation processes. Butterworth-Heinemann, Woburn, MA. Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	1	Richardson I.F. Coulson				
 Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J. Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection 	1					
Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA. McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	2					
 McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection 						
5 Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh. 6 Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	4					
McGraw-Hill Professional, Edinburgh. 6 Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) 1 Know the significance and usage of different particulate characterization parameters, and equipment to estimate them 2 Describe Size reduction energy requirements, estimate performance of equipment, selection		McGraw-Hill Science/Engir	neering/Math, Boston.			
Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	5					
Pvt. Ltd, New Delhi. Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	_					
Course Outcomes (students will be able to) Know the significance and usage of different particulate characterization parameters, and equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	6	1	es of Mass Transfer and Separation Process. Prentice-Hall of India			
1 Know the significance and usage of different particulate characterization parameters, and equipment to estimate them 2 Describe Size reduction energy requirements, estimate performance of equipment, selection		Pvt. Ltd, New Delhi.				
1 Know the significance and usage of different particulate characterization parameters, and equipment to estimate them 2 Describe Size reduction energy requirements, estimate performance of equipment, selection			Course Outcomes (students will be able to			
equipment to estimate them Describe Size reduction energy requirements, estimate performance of equipment, selection	1	Know the significance and				
2 Describe Size reduction energy requirements, estimate performance of equipment, selection	1	_	usage of uniferent particulate characterization parameters, and			
	2	1 1	ergy requirements, estimate performance of equipment selection			
	_		of equipment, selection			

3	Analyze filtration data and select systems based on requirements, estimate filtration area for	
	given requirements, understand filter aids and their usage	
4	Draw T-y-x diagrams, and y-x diagrams, operating lines, feed line, bubble point, dew point	
	calculations, ternary phase diagrams, partition coefficient	
5	Describe two common modes of drying, industrial drying equipment	
6	Calculate mass transfer coefficient in various equipment, Calculate height and diameter	
	required, minimum solvent required in absorption, calculate height and diameter required,	
	minimum reflux required in distillation	

	Course Code: CET4255	Course Title: Process Safety	Cre	dits =	2
			L	T	P
	Semester: IV	Total contact hours: 30	1	1	0
		rse Outcomes (students will be able to)	1		
	identify hazards in a given proc safely.	sess and assess the same and provide solutions for operating			
	specify safety requirements for	storage and handling of a given chemical.			
		List of Prerequisite Courses			
	Course	e Contents (Topics and subtopics)	Dag	ıd. hoı	
	Safety management in chemica		10	u. not	11.2
	(a) o Regulations in cher	nicals manufacturing units (b) Overview of hazards, is accidents, importance of safety culture (c) Causes of fires	10		
	Transport, storage and safe han		10		
	(a) Flammable and combi				
	(b) Storage and handling of haz				
		ng of chemicals at workplace			
	(d) Safety during transportation				
	Basics of laboratory safety		10		
	(a) MSDS and personal prote Machine safety (e) Cylinder sa	ective equipment (b) Electrical safety (c) Fire safety (d) fety (f) Bio safety			
		List of Text Books			
	Chemical Process Safety: Fur Joseph F. LOUVAR	ndamentals with Applications – Daniel A. CROWL and			
		Management, Environment, Safety, Health, and Quality -			
	Center for the Chemical Proce (AIChE)	ss Safety of the American Institute of Chemical Engineers			
		ing from Case Histories – Roy E. SANDERS			
		Documentation – Center for the Chemical Process Safety of			
		Additional Reading Material / Reference Books			
_		2			
			1		

	Course Code: CET4256		Title:	Instrumentation	and Process	Cre	dits =	2
		Dynamics				L	T	P
	Semester: IV	Total cont	tact hou	rs: 30		1	1	
		•						
				ents will be able to				
1	To identify appropriate instrum		uremen	t of process variables	<u> </u>			
2	To estimate time variant nature							
3	To classify nature of the system							
4	To estimate response of the syst			to change				
5	To understand behavior of com							
				iisite Courses				
	Maths-I: Laplace Transform to	solve differe	ential eq	uations, Linear Alge	bra			
	Physics-I							
	Fluid Flow & Heat Transfer							
	General Chemistry							
				nd subtopics)			d. hou	rs
1	Instrumentation for measurements Basic underlying principles and				l, concentration.	6		
2	Precision, Sensitivity, accuracy				nts. Transduces.	2		
	Transmission of signals, Drift	- ,		,	,,	-		
3	Unsteady mass and energy bala	nces of syste	em. dvna	amic equations		2		
4	First and second order systems,				nse of First order	6		
	systems to step, pulse, sinuso							
5	Combination of systems and the	eir response	to input	changes, Open Loor	response	2		
6	Overview of dynamic model ed							
	as level in a tank, temperature	in a heated	tank, C	STR, distillation colu				
7	parameter systems, packed colu				D DI 1	4		
7	To design a simple control syst PID				-			
8	Electronics for control system	ns: Distribi	uted co	ntrol system, Progr	ammable Logic	2		
	Controllers, SCADA, HMI							
		Lis	st of Te	xt Books				
	Instrumentation, Eckman							
	Chemical Process Control- Geo	rge Stephea	nopoulo	us				
	List of Ac	dditional Re	eading N	Material / Reference	Books			
						1		

	Course Code: CEP4252	Course Title: Chemical Engineering Laboratory - II	Credits =		2
			L	P	
	Semester: IV	Total contact hours: 60	0	0	4
		rse Outcomes (students will be able to)			
1		to experimentally implement various theoretical principles			
2	Student would be able to U experimental data	tilize the chemical engineering equipment to generate			
3	Student would be able to Calcul	ate experimental results			
4	1	ve ability to write laboratory reports			
5	Student would be able to Improve	ve ability for oral communication			
		List of Prerequisite Courses			
	Material Balance and Energy Balance Calculations, Fluid Flow, Heat Transfer, Engineering Thermodynamics, Mathematics I and II, Chemical Engineering Operations, Industrial Chemistry and Reaction Engineering, Instrumentation and Process Dynamics				
		Contents (Topics and subtopics)	_	d. hou	rs
1	1-2 Experiments on Fluid Dynar		6		
2	4-6 Experiments on Heat Transf		18		
3	1-2 Experiments on Reaction Er		6		
4	6-8 Experiments on Chemical E		24		
5	1-2 Experiments on Instrumenta		6		
		List of Text Books			
1		Harriott P. Unit Operations in Chemical Engineering, 2014			
2		ghtfoot, E.N. Transport Phenomena, 2007			
3		, and Sinnott, R.K. Coulson & Richardson's Chemical			
	Engineering: Chemical engineer				
4		hemical Engineers' Handbook, Eighth Edition, 2007.			
	List of A	dditional Reading Material / Reference Books			

	Course Code: HUT4157	Course Title: Industrial Management			2
					P
	Semester: IV	Total contact hours: 30	2	0	0
		ourse Outcomes (students will be able to)			
1		nowledge about managing production processes.			
2	Student would be able to explain process	n the importance, functions and productivity of the conversion			
3		nowledge about various productivity techniques			
		List of Prerequisite Courses			
	NONE				
	Cour	se Contents (Topics and subtopics)	Rea	d. hou	rc
1	The production function	se contents (Topies and subtopies)	6	u. nou	1.5
_	Operation concept of production	1			
	Production as the conversion pr				
	Productivity of conversion proc				
		tion-Planning, organising and controlling			
2	Manufacturing systems	<u> </u>	8		
	Factors influencing choice of m	anufacturing system			
	Classification of manufacturing				
	Jobbing production	•			
	Batch production				
	Mass or flow production				
3	Facilities location		6		
	Factors governing plant location				
	Economic survey of site selection				
	Urban, sub-urban, rural site loca	ation			
4	Productivity techniques		5		
	Kaizen				
	Kanban				
	JIT				
	5S				
	Poka yoke				
_	Six sigma		-		
5	Gantt chart for production plant		5		
	M. Jana Dan Jana's 10	List of Text Books	_		
		s Management, (8e)- Buffa and Sarin			
	Operations Management, 12e-Ja	y Heizer, Barry Render, et al.			
		Additional Reading Material / Reference Books	1		
	OPERATIONS MANAGEMEN	NT 13TH EDITION			
	by William J. Stevenson				
	Operations and Symply Chair N	Ignograment (SIE) 15th Edition			
	by Richard B. Chase, Ravi Shar	Innagement (SIE) 15th Edition			
	by Kichard B. Chase, Kavi Shar	ikai, ti ai.			
			1		

Third Year (Semester FIVE)

	Course Code: CET4351	Course Title: Chemical Reaction Engineering	Cre	dits =	2
			L	T	P
	Semester: V	Total contact hours: 30	1	1	0
	Co	urse Outcomes (students will be able to)			
1		nally, using minimum amount of data			
2		ous way to get the required data, if not available	-		
3	<u> </u>	, ,			
4	fix some problems related to operability and productivity Select appropriate single and multiphase reactor configuration for given application				
Lis	t of Prerequisite Courses				
_10		& Energy Balance Calculations, Applied Mathematics I and			
		sfer, Chem Engg Thermodynamics I and II			
	Course Contents (Topics and s	subtopics)	Req	d. hou	rs
1		al Reactors (single and multiple reactions (series/parallel))	6		
2	Series of reactors, Recycle real Non-Isothermal reactor design	actors, Use of energy balance in reactor sizing and analysis,	6		
3		ctors: RTD, Axial dispersion models	6		
4	Gas-Solid reactions: Catalytic		4		
5		nal and external transport, kinetics and mechanisms	4		
6	Gas-solid reactions (non-catal	ytic), Kinetics of fluid-fluid reactions	4		
		List of Text Books			
1	Elements of Chemical Reaction	n Engineering – H. Scott FOGLER			
2	Chemical Reaction Engineering				
3		Reactions – Lanny D. SCHMIDT			
4		Engineering Kinetics and Reactor Design – Charles HILL			
5		. I and II – L. K. Doraiswamy, M. M. Sharma			
	List of	Additional Reading Material / Reference Books			
			<u></u>		

Course Code: CET4352	Course Title: Momentum Transfer	Credits = 2		Credits =		2
		L	T	P		
Semester: V	Total contact hours: 30	1	1	0		
	t technique for detailed characterization in chemical process					
	List of Prerequisite Courses	•				
XIIth Standard Physics and Ma I and II	thematics, Applied Physics – I and II, Applied Mathematics –					
Cours	e Contents (Topics and subtopics)	Req	d. hou	rs		
Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses,						
Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and		6				
Introduction to turbulence: Turuse	bulent pipe flow, basis of Universal velocity profile and its	6				
Similarities in Momentum, Hea	t and Mass Transfer	6				
		4				
	List of Text Books					
Transport Phenomena, Bird R.E				-		
	ngineering, McCabe, Smith					
List of	Additional Reading Material / Reference Books					
	Colculate velocity profiles, force Calculate forces on particles and Apply Momentum, Heat and may Select appropriate measurement equipment XIIth Standard Physics and Mart I and II Course Equations of Continuity and Maininar flows and its applicate power, etc. in various engineering Boundary Layer Flows: Blasius solutions, Introduction to turbulence: Turt use Similarities in Momentum, Heat Introduction to experimental attomography etc, Turbulence model and the control of the con	Course Outcomes (students will be able to) Calculate velocity profiles, forces, pressure drops for simple 1 –D laminar flow situations Calculate forces on particles and terminal velocities of particles Apply Momentum, Heat and mass transfer concepts to simple situations Select appropriate measurement technique for detailed characterization in chemical process equipment List of Prerequisite Courses XIIth Standard Physics and Mathematics, Applied Physics – I and II, Applied Mathematics – I and II Course Contents (Topics and subtopics) Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Introduction to turbulence: Turbulent pipe flow, basis of Universal velocity profile and its use Similarities in Momentum, Heat and Mass Transfer Introduction to experimental and computational fluid dynamics: HFA, LDA, PIV, UVP, tomography etc, Turbulence modeling, multiphase system modeling etc List of Text Books Transport Phenomena, Bird R.B., Stewart W.E., Lightfoot E.N. Fluid Mechanics, Kundu Pijush K.	Calculate velocity profiles, forces, pressure drops for simple 1 – D laminar flow situations Calculate forces on particles and terminal velocities of particles Apply Momentum, Heat and mass transfer concepts to simple situations Select appropriate measurement technique for detailed characterization in chemical process equipment List of Prerequisite Courses XIIth Standard Physics and Mathematics, Applied Physics – I and II, Applied Mathematics – I and II Course Contents (Topics and subtopics) Req Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and 6 solutions, Introduction to turbulence: Turbulent pipe flow, basis of Universal velocity profile and its 6 use Similarities in Momentum, Heat and Mass Transfer Introduction to experimental and computational fluid dynamics: HFA, LDA, PIV, UVP, 4 tomography etc, Turbulence modeling, multiphase system modeling etc List of Text Books Transport Phenomena, Bird R.B., Stewart W.E., Lightfoot E.N. Fluid Mechanics, Kundu Pijush K. Fluid Mechanics, F. W. White Unit Operations of Chemical Engineering, McCabe, Smith	Course Outcomes (students will be able to) Calculate velocity profiles, forces, pressure drops for simple 1—D laminar flow situations Calculate forces on particles and terminal velocities of particles Apply Momentum, Heat and mass transfer concepts to simple situations Select appropriate measurement technique for detailed characterization in chemical process equipment List of Prerequisite Courses XIIth Standard Physics and Mathematics, Applied Physics — I and II, Applied Mathematics — I and II Course Contents (Topics and subtopics) Equations of Continuity and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar flows and its applications for the calculation of velocity profiles, shear stresses, power, etc. in various engineering applications. Boundary Layer Flows: Blasius equations and solution, Von-Karman integral equations and solutions, Introduction to turbulence: Turbulent pipe flow, basis of Universal velocity profile and its use Similarities in Momentum, Heat and Mass Transfer Introduction to experimental and computational fluid dynamics: HFA, LDA, PIV, UVP, 4 tomography etc, Turbulence modeling, multiphase system modeling etc List of Text Books Transport Phenomena, Bird R.B., Stewart W.E., Lightfoot E.N. Fluid Mechanics, Kundu Pijush K. Fluid Mechanics, F. W. White Unit Operations of Chemical Engineering, McCabe, Smith		

Course Code: CET4353	Course Title: Chemical Engineering Thermodynamics	Cred	lits = 4	1
		L	T	P
Semester: V	Total contact hours:60	3	1	0
	List of Prerequisite Courses			
Engineering Thermodynamics c	ourse in Second Year			

Description of relevance of this course in the Int. M. Tech. Program

This course builds on the preceding course by developing the concept of non-ideal mixing and provides students with the formalism and insights necessary to tackle real industrial problems like liquid-liquid phase splitting, azeotropy, non-zero heats of mixing, sparingly soluble gases and solids, electrolytes etc. Student who have taken this course may be expected to intelligently analyze practically the full spectrum of industrial chemical processes.

unis	course may be expected to intenigently analyze practically the full spectrum of industrial cher	nicai processes.
	Course Contents (Topics and subtopics)	Reqd. hours
1	Revision of Concepts of Ideal and non-ideal mixtures	4
2	Models of the Liquid Phase: Activity Coefficient Models (Redlich-Kister, Wilson et al,	8
	UNIQUAC and NRTL)	
3	Vapor - liquid equilibria in non-ideal mixtures including azeotropes and high pressure	8
	vapor – liquid equilibria using gamma-phi and phi-phi approaches	
4	Use of VLE data in design and analysis of distillation processes	4
5	Solubility of Gases in Liquids, concept of infinite dilution activity coefficient and	8
	Unsymmetric convention, Henry's law, Shair Prausnitz correlation	
6	Liquid – Liquid Equilibria and Phase splitting, applications to extraction	8
7	Solubility of Solids in Liquids	4
8	Debye Huckel Theory, activity coefficients of electrolytes	4
9	Chemical Equilibrium in Ideal and non-ideal Mixtures in single phase reacting mixtures	6
10	Chemical Equilibrium in Ideal and non-ideal mixtures in Heterogenous reacting mixtures	6
	List of Text Books/ Reference Books	
	Chemical, Biochemical and Engineering Thermodynamics: S. I. Sandler	
	Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott	
	Reference Books	
	Properties of Gases and Liquids: Reid, Prausnitz, Pauling	
	Course Outcomes (students will be able to)	
1	Calculate Vapor - liquid equilibria in binary non-ideal mixtures using activity coefficient	
	models (K2)	
2	Calculate solubility of solutes (gases and solids) in liquids (K2)	
3	Calculate liquid – liquid equilibria using activity coefficient models (K2)	
4	Analyze equilibria in reacting mixtures (K3)	

	Course Code: CEP4253	Course Title: Chemical Engineering Lab-III	Credits = 2		2
			L	T	P
	Semester: V	Total contact hours: 60	0	0	4
		rrse Outcomes (students will be able to)			
1	Student would be able to Design assistance	gn and implement the experimental procedure with minimal			
2		ct various chemical engineering subjects for common output			
3		ze large experimental data and results			
4		ve ability to write scientific reports			
5	Student would be able to Impro	ve ability draw conclusions			
		List of Prerequisite Courses			
		alance Calculations, Fluid Flow, Heat Transfer, Engineering			
		I and II, Industrial Chemistry and Reaction Engineering,			
		Dynamics, Chemical Reaction Engineering, Momentum			
	Transfer, Chemical Engineering	Thermodynamics			
		e Contents (Topics and subtopics)		d. hou	rs .
1	4-6 Experiments on Momentum		18		
2	2-3 Experiments on Chemical E		10		
3	4-6 Experiments on Reaction En		16		
4	2-4 Experiments on Chemical E		10		
5	1-2 Experiments on Instrumenta		6		
	Drat Wracilla	List of Text Books			
1		Harriott P. Unit Operations in Chemical Engineering, 2014			
2		ghtfoot, E.N. Transport Phenomena, 2007			
3		T., and Sinnott, R.K. Coulson & Richardson's Chemical			
1	Engineering: Chemical engineer				
4	ı ,	hemical Engineers' Handbook, Eighth Edition, 2007.			
	List of A	Additional Reading Material / Reference Books			

	Course Code: CEP4255 Course Title: Process Simulation Laboratory - I		Cre	2	
			L	T	P
	Semester: V	Total contact hours: 60	0	0	4
		rse Outcomes (students will be able to)			
<u> </u>	Use advanced programming so	oftware with built in functions			
?	Write own functions/macros				
3	Solve chemical engineering pr				
1	Design a distillation column u	sing short-cut and rigorous method			
		List of Prerequisite Courses			
	XIIth Standard Physics and Mathematics – I and II	Mathematics, Applied Physics - I and II, Applied			
	Course	Contents (Topics and subtopics)	Req	d. hou	ırs
	Introduction to object-oriented		8		
		nemical engineering such as simultaneous linear and	8		
3		CSTR, PFR, multiple reactions, adiabatic, non-isothermal	8		
1	Flash vessel calculations		4		
;	Design of chemical engineering	a equinment	12		
, 5	Process flow sheeting	g equipment	4		
7	Chemical process simulators	such as Aspen, Coco simulators etc (mixing blocks, ed design of separation equipment such as distillation,	16		
		List of Text Books			
		ess Design for Chemical and Petrochemical Plants			
2	Perry's Chemical Engineering				
3	Albright's Chemical Engineeri	ng Handbook			
	ASPEN manual				
	List of A	dditional Reading Material / Reference Books			
	2300 0171				

Third Year (Semester SIX)

	Course Code: CET4354	Course Title: Chemical Process Control	Credits = 2		2
			L	T	P
	Semester: VI	Total contact hours:30	1	1	0
				'	
		ourse Outcomes (students will be able to)			
1		stand behavior of a close loop controlled system			
2		ose loop control system, stability and controllability, Robustness			
3	To select and Design control stra	ategy			
4		em, design multivariable controllers			
5	To evaluate plant-wide control s	•			
		List of Prerequisite Courses			
	Maths-I and Maths-II				
	Instrumentation and Process dyr	namics			
	Chemical Reaction Engineering				
	Transport Phenomena				
	Chemical Process safety				
	Course Contents (Topics and subtopics)				rs
1	Design of controllers using frequency response technique, Nyquist and Bode Stability criteria,				
2	Control Strategies- Cascade compensation	control, Ratio Control, Feedforward control, Dead time	4		
3	Multivariable Systems, Identificontrollers for multivariable sys	ication of Interaction and selection of pairings, Design of tems, Decouplers,	4		
4		nal model control, Dynamic Matrix control	4		
5		STR, Distillation column, heat exchangers	6		-
6	Process Instrumentation diagran	ns, Safety alarms and interlocks	2		-
7		rogrammable logical controllers, Distributed control systems,	2		
7	Digital control systems, Introduc	ction to z-transforms	2		
8		lation of plant-wide control systems	2		
		List of Text Books			
	Chemical Process Control- Geor	ge Stephenopoulus			
	Process control- Shinskey				
	List of	Additional Reading Material / Reference Books	1		
			ļ		

	Course Code:	Course Title: Material Technology	Cre	dits =	2
			L	T	P
	Semester: VI	Total contact hours: 30	2	0	0
		tcomes (students will be able to)			
1	Students will be able to read and				
2	Student would be able to select				
3	Student would be able to description analysis	ribe causes of mechanical failure and failure			
4		te the corrosion problems in process industry			
5	Student would be able to learn fr	rom incidences			
		ist of Prerequisite Courses			
		hysics I and II, physical chemistry			
	7 11	71 3			
	Course Conte	nts (Topics and subtopics)	Req	d. hou	ırs
1		ation, study of ferrous and nonferrous	2		
2	Phase diagrams of steel and the a	applications of phase diagrams	2		
3	Effect of structure on properties:	subatomic to macroscopic level	4		
4	Modification and control of mate	erial properties	3		
5	Polymeric materials , Ceramic materials	e materials, Composite materials and Smart	3		
6	Corrosion Engineering: Electroc	hemical principles, different types of	8		
	corrosion, Polarisation, mechani	isms of corrosion control and prevention,			
	preventive coatings. Corrosion b steels, brass etc.	ehavior of important alloys such as stainless			
7		s, plastic deformation. Types of mechanical	6		
8	Criteria for selection of materials		2		
9					
	TOTAL		30		
		List of Text Books			
	The Essence of Materials for Eng				
	Materials Science and Engineering	ng, Raghavan V.			
	Materials Science and Engineering				
		nal Reading Material / Reference Books			
	Metals handbook				
	Engineering Materials and Appli				

	Course Code: CET4356	Course Title: Separation Processes	Cred	lits =	3
		Course Tives sopulation 11000sses	L	Т	P
	Semester: VI	Total contact hours:45	2	1	0
	1	List of Prerequisite Courses			
		Balance Calculations, Chemical Engineering Operations – I, nodynamics-I and II, Momentum Transfer, Applied			
	l l	of Courses where this course will be prerequisite			
	Chemical Engineering I and II, Proc Dev and	g Laboratory, Process Simulation Lab - I and II, Home Paper			
	D : /:				
This		of relevance of this course in the Int. M. Tech. Program on and in continuation with Chem. Engg. operations. It fo		ha ha	-ia a
Che		and hence it is required in almost all the courses and throughout			
	Cou	rse Contents (Topics and subtopics)	Rego	l. hou	rs
1		f ternary systems: Ternary diagrams, Hunter-Nash graphical	•	10	
	Operating point, number o	abert graphical equilibrium-stage method, Solvent Selection, f stages, maximum solvent to feed ratios, minimum reflux, es, Introduction to reactive extraction, aqueous two phase			
	extraction, extraction of extraction: Solid - liquid ed	biomolecules, supercritical fluid extraction, Solid-liquid quilibria, efficiency, performance evaluation, Equipment for ir sizing, Design considerations			
2		ge: Liquid Adsorption, Ion-Exchange Equilibria, Equilibria in		10	
_	Chromatography, Breakth Convection-Dispersion Mo	brough Curves, Kinetic and transport considerations, odel, Separation Efficiency (Plate Height or Bandwidth), Rate Coefficients, Equipment for sorption operations, Scale-		10	
	modes of operation	es, Adsorptive Membranes, simulated-moving-bed operation,			
3	relationship), Supersaturation method of moments for ra	solubility and crystallization, phase diagram (temp/solubility on, Nucleation, Crystal Growth, Population balance analysis, ate expressions for, volume, area and length growth, CSD		10	
		ration, evaporative and cooling (rate expressions), most fied bed, Precipitation, Melt crystallization, Process design of tion			
4	Cooling tower process desineat balances in bulk and in	ng Towers: Method of changing humidity and equipment, ign, counter-current, concurrent and cross current, mass and aterfaces, Estimation of air quality, performance evaluation of		5	
5	Cooling towers.	Types of separations, reverse osmosis, ultrafiltration, gas		10	
	separation, vapour permeati Transport Through Porous Pores, Gas Diffusion Thr Membranes, Solution-Diff	ion and pervaporation, dialysis, electrodialysis, nanofiltration, Membranes, Resistance Models, Liquid Diffusion Through rough Porous Membranes, Transport Through Nonporous usion for Liquid Mixtures, Gas Mixtures, Concentration Membrane modules, arrangement of modules in cascades,		10	
		List of Text Books/ Reference Books			
1	Richardson, LF Coulson	n, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical			
	engineering: Particle techn Woburn, MA.	nology and separation processes. Butterworth-Heinemann,			
2	N.J.	2005. Separation Process Principles, 2 ed. Wiley, Hoboken,			
3	ed. McGraw-Hill Science/E				
		Perry's Chemical Engineers' Handbook, Eighth Edition, 8			
4	ed. McGraw-Hill Profession				

	India Pvt. Ltd, New Delhi.	
	Course Outcomes (students will be able to)	
1	List situations where liquid-liquid extraction might be preferred to distillation, Make a	
	preliminary selection of a solvent using group-interaction rules, Size simple extraction	
	equipment	
2	Differentiate between chemisorption and physical adsorption, List steps involved in	
	adsorption of a solute, and which steps may control the rate of adsorption, Explain the	
	concept of breakthrough in fixed-bed adsorption	
3	Explain how crystals grow, Explain the importance of supersaturation in crystallization.	
	Describe effects of mixing on supersaturation, mass transfer, growth, and scale-up of	
	crystallization	
4	Explain membrane processes in terms of the membrane, feed, sweep, retentate,	
	permeate, and solute-membrane interactions. Distinguish among microfiltration,	
	ultrafiltration, nanofiltration, virus filtration, sterile filtration, filter-aid filtration, and	
	reverse osmosis in terms of average pore size. Explain common idealized flow patterns	
	in membrane modules.	

	Course Code: CET4357	Course Title: Heat Transfer Equipment Design	Credits =		2
			L	T	P
	Semester: VI	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	Momentum and Mass transfer, A Calculations	Applied Mathematics I and II, Material and Energy Balance			
		Courses where this course will be prerequisite			
		g, Multiphase Reactor Engineering, Process Development and II, Env. Engg. and Process Safety, etc.			
		relevance of this course in the Int. M. Tech. Program			
	is a basic course that deals with	neat transfer, heat exchangers and their design. Heat transfer Education and is required in all future activities.	form	s one	of the
		Contents (Topics and subtopics)		d. hou	rs
1	their nomenclature, choice of e	Basic construction and features, TEMA exchanger types, exchanger type, correction to mean temperature difference exchangers. Design methods for shell and tube heat d, Bell – Delaware method			
2	Finned tube exchangers, air-coo	led cross flow exchangers and their process design aspects	3		
3	Compact Exchangers: Plate, F limitations and their process des	late fin, Spiral, etc.: Construction, features, advantages, ign aspects	3		
4	aspects, horizontal versus verti Process Design aspects of t	pretical prediction of heat transfer coefficients, practical cal condensation outside tubes, condensation inside tubes, otal condensers, condensers with de-superheating and component mixture, condensation of vapours in presence of			
5	Heat transfer to boiling liquids circulation reboilers	Process design aspects of evaporators, natural and forced	8		
	1	List of Text Books/ Reference Books	L		
	Process Heat Transfer, Kern D.0				
	Heat Exchangers, Kakac S., Ber				
	Process Heat Transfer, G. Hewi	tt			
	Cou	rse Outcomes (students will be able to)			
1	like double pipe heat exchange condensation, evaporation, agita				
2		and tube exchanger based on TEMA classification.			
3	Design a reboiler system for dis	tillation			

		urse Title: Process Simulation Laboratory -	Cred		_
	П	II		T	P
	Semester: VI To	tal contact hours: 60	0	0	4
		tcomes (students will be able to)			
1		problems involving iterative calculations			
2	Solve chemical engineering proble ODEs/PDEs	ms involving non-linear equations coupled with			
3	Develop and optimize a process flow	w sheet for chemical production			
		ist of Prerequisite Courses			
	XIIth Standard Physics and Math Mathematics – I and II	ematics, Applied Physics - I and II, Applied			
	Course Conte	ents (Topics and subtopics)	Reg	d. hou	rs
1	Detailed design of multicomponent		8		
2	Detailed design of shell and tube he		8		
3	Detailed design of multiphase reacte	or system such as hydrogenation etc	8		
4	Detailed design of continuous crysta		4		
5		sient systems (solution of partial differential	8		
6	Detailed design of batch crystallizer		4		
7		mechanical vapor compression refrigeration,	8		
8		ce, bagging and boosting, hyper parameter	6		
9	Uncertainty analysis		6		
		List of Text Books			
1		esign for Chemical and Petrochemical Plants			
2	Perry's Chemical Engineering Hand				
3	Albright's Chemical Engineering Ha	andbook			
4	ASPEN manual				
	List of Addition	nal Reading Material / Reference Books			
	List of Addition	nai Reading Wateriai / Reference Dooks			

	Course Code: CEP4254	Course Title: Chemical Engineering Laboratory -	Cre	dits =	2
		IV	L	T	P
	Semester: VI	Total contact hours: 60	0	0	4
	•				
		se Outcomes (students will be able to)			
		letely design and implement the experimental procedure			
2	Student would be able to Proce problems	ess complex information to solve chemical engineering			
1	Student would be able to I recommendation	Evaluate a large experimental data and results for			
ļ	Student would be able to Impro-	ve ability to write cohesive technical document			
		List of Prerequisite Courses / Balance Calculations, Fluid Flow, Heat Transfer,			
	Engineering, Instrumentation a Momentum Transfer, Chemica	Mathematics I and II, Industrial Chemistry and Reaction nd Process Dynamics, Chemical Reaction Engineering, Il Engineering Thermodynamics, Multiphase Reactors, tration Processes, Heat Transfer Equipment design			
	Course	Contents (Topics and subtopics)	Req	d. hou	irs
	6-8 Experiments on Multiphase	Reactors	22		
,	2-3 Experiments on Heat transfe	er	8		
	4-6 Experiments on Chemical P	rocess Control and Dynamics	18		
	2-4 Experiments on Mass Trans	fer and Separation Processes	12		
		List of Text Books			
	McCabe W.L., Smith J.C., and 2014	Harriott P. Unit Operations in Chemical Engineering,			
,	Bird R.B., Stewart W.E., and Li	ghtfoot, E.N. Transport Phenomena, 2007			
	Coulson J.M., Richardson J.F., Engineering: Chemical engineer	, and Sinnott, R.K. Coulson & Richardson's Chemical ring design, 1996.			
Ļ	Green D. and Perry R. Perry's C	Chemical Engineers' Handbook, Eighth Edition, 2007.			
	List of Ad	ditional Reading Material / Reference Books			

	Course Code: CET4358	Course Title: Chemical Project Economics	Cre	dits =	2
		,	L	T	P
	Semester: VI	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
	Material and Energy Balance (Ind Eng Chem.	Calculations, Equip Des and Dwg I, Energy Engineering,			
	List of C	Courses where this course will be prerequisite			
	Home Paper I and II				
This	Description of course is required for the future	relevance of this course in the Int. M. Tech. Program professional career			
	Course	Contents (Topics and subtopics)	Req	d. hou	ırs
1	fluctuations on Project justification including typical design deliver maintainability during all stage	jects and global nature of projects; Impact of currency ation and cash flows andConcepts of "Quality by Design" erables andunderstanding constructability, operability and es of project execution. Meaning of Project Engineering,	1		
2	analysis. Elements of cost of p Administrative expenses, sale project cost and their estimatio their use in estimating plant	a product and project cost and cost of production, EVA production, monitoring of the same in a plant, Meaning of sexpenses etc. Introduction to various components of n. Introduction to concept of Inflation, location index and and machinery cost. Various cost indices, Relationship	4		
4	contribution, source of finance money, selection of various a Indian norms, EMI calculation estimate of working results o project.	Equity ratio, Promoters' contribution, Shareholders', time value of money. Concept of interest, time value of alternative equipment or system based on this concept. s. Depreciation concept, Indian norms and their utility in f project. Working capital concept and its relevance to	4		
5	operating profit, profit before evaluation: Cumulative cash f various ratios analysis, Discour		4		
6	Process Selection, Site Selection		4		
7	of technical and non technical a Types of contract. Lump-sum	ssioning: milestones, Project execution as conglomeration activities, contractual details. Contract: Meaning, contents, a Turnkey (LSTK), Eng, Procurement and Construction and Construction Management (EPCM). Mergers and	4		
8		evaluation of Techno-commercial Project Reports.	2		
9	PERT, CPM, bar charts and net	5 1	4		
	, , ,	<u>. </u>			
		List of Text Books/ Reference Books			
		Mahajani V. V. and Mokashi S M.			
		r Chemical Engineers, Peters M.S., Timmerhaus K.D.			
	Process Plant and Equipment C	ost Estimation, Kharbanda O.P.			
		0.4.1.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			
1		rse Outcomes (students will be able to)	ı		
<u>l</u>	Calculate working capital requi				
	Calculate cost of equipment use				
	Calandata and H F				
2 3 4	Calculate cash flow from a give Select a site for the project from				

	Course Code: CEP4371	Course Title: IPT (8 Weeks)	Credits = 4				
			L	T	P		
	Semester: VI	Total contact hours:	0	0	40		
	List of Prerequisite Courses						
	All						
	List of Co	ourses where this course will be prerequisite					
		levance of this course in the Int. M. Tech. Program					
This	course enables students to integ	grate all the subjects that they have learnt and design	plants	/ proc	esses		
from	Chemical Engineering Principle	S.					
	Course C	Contents (Topics and subtopics)	Reqd	l. hour	'S		
1							
	I	ist of Text Books/ Reference Books					
		e Outcomes (students will be able to)					
1	Identify market requirement rela	ited to a particular chemical					
2	Draw a process block diagram f	rom a given process description.					
3	Select a site for the project						
4	Develop a PFD based on block of	liagram					
5	Do material and energy for all the	ne equipment in PFD.					

Fourth Year (Seventh Semester)

	Course Code: CET4451	Course Title: Chemical Process Development	Cre	dits =	3
		and Engineering	L	T	P
	Semester: VII	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			
		ets, Material Science and Engineering, Env Engg			
	and Proc Safety				
		ses where this course will be prerequisite			
	Home Paper I and II				
		ance of this course in the Int. M. Tech. Program			
		al engineering and allied subjects for appropriate of	desig	n of pi	ocess
plant	s, in selection of processes and e	valuating alternatives			
	Course Con	tents (Topics and subtopics)	Req	d. hou	rs
1		rocess System: Modular approach	2		
2		etion of process, basic economic evaluation	2		
3	Sequencing of operations and in		2		
4	Batch vs continuous vs semi-bat	ch processes- Scale up	3		
5	Process Engineering aspects of	low and medium volume chemicals including	3		
	process development.				
6	Concept of dedicated and multip	roduct plant facilities, pilot plant, mini plants	3		
7	Development and evaluation of		3		
8	Scale up aspects; identification of	of controlling steps of process,	3		
9	Green Engineering principles		6		
10	Utilisation of energy; cost of util	lities, heat exchange networks	3		
11	Process intensification		3		
12		ss and instrumentation diagrams	3		
13	Preparation of process specificat		3		
14	Safety and Risk of chemical pro-	cesses	3		
15	Learn from mistakes		3		
		of Text Books/ Reference Books			
	Industrial Chemical Process Des				
	Laboratory Chemical Process De				
	Organic Unit Processes, Groggin				
	Chemical Process Engineering:				
	Handbook of Chemical Process				
	Conceptual Chemical Plant Desi	gn, Douglas J. M.			
_		outcomes (students will be able to)			
1	to select a strategy for a process				
2	Determine strategy for carrying				
3	Prepare specifications for a parti	cular equipment			
4	Calculate utility requirements				

Course Code: CEP4451	Course Title: Chemical Process Equipment	Cred	its =	2
	Design & Drawing	L	T	P
Semester: VII	Total contact hours: 60	0	0	4
	List of Prerequisite Courses			
Structural Mechanics, Material and IIm	s Science and Engineering, Engineering Graphics I			
List of Co	urses where this course will be prerequisite			
Home Paper I and II, Equ	tipment Design & Drawing II, Chemical Project			
Engineering and Economics, Pro	ocess Dev and Engineering			
Description of rel	levance of this course in the Int. M. Tech. Program			

Knowledge of chemicals and chemical producing equipments and plants are essential for professional Chemical engineer and Technologist. This subject will help students to understand use of basics of applied science in the form of mechanics, strength of materials, selection of materials and suitable manufacturing techniques and the details of operating conditions of equipment and its design procedure. This will help Chemical engineer to understand process equipments and their design concept and section of proper equipments for the designed functions of the plats. It will help them to understand various design codes used for fabrication of these equipments and the various types of destructive and non destructive tests performed on equipments before and after assembly of equipment defining its capacity, reliability, and its life.

Course Contents (Topics and subtopics) Reqd. hours Basic design concepts, use of standards and design stresses and factor of safety, selection of materials, working conditions, corrosion and its effects on equipments. Standard design codes Design of pressure vessels: stresses acting on pressure vessels, operating conditions, 6 selection of materials, pressure vessel codes, design stress and design criteria's, Design of Shell, Head, Nozzle, Flanged joints for heads and nozzles Design of Storage vessels: Storage of various types of fluids and liquids in tanks, 6 Loss mechanism of storage of volatile and non-volatile liquids and gases, Types of storage vessels, Vessels for storing of gases, method of storage of gases, Design of rectangular and cylindrical tank with components such as shell, bottom plate, selfsupporting roof design, types of roofs, Testing of process equipment, various Mechanical Design of Reaction Vessels. 14 a) Design of shells subjected to internal and external pressures. Types of Jackets /Coils used for heating and cooling in reaction vessels and their design. c) Type of agitators and their design. Design of agitator system components such as shafts, stuffing box etc. 12 Mechanical Design of Heat Exchangers a) Components of shell and tube type heat exchangers. b) Design of various components of heat exchangers such as Fixed tube sheet type, U tube, Floating head etc. Various codes for heat exchangers. Mechanical design of distillation columns 12 a) Various components of columns such as trays, packings, downcomers, bubble b) Design of shell for various stress conditions. Tray supports and their design List of Text Books/ Reference Books Process equipment Design By V V Mahajani, S. B. Umarji Equipment Design by Dawande Process equipment Design by Young Welding Technology by O.P. Khanna, Welding Technoloy by Little Course Outcomes (students will be able to....) Understand general design procedure for chemical process equipments. (K2) Design and draw pressure vessels and its parts subjected to internal pressure. (K6) Design and draw reactors and its parts subjected to internal and external pressure. (K6)Design and draw shell and tube type of heat exchangers. (K6)

5	Design and draw tray columns and its parts. (K6)	
6	Understand different types of supports for chemical process equipments.(K2)	

	Course Code: CEP4452	Course Title: Literature Review (Research	Cred	lits =	2
		Methodology – I)	L	T	P
	Semester: VII	Total contact hours: 45	1	0	2
	·				
	Course	e Outcomes (students will be able to)			
1	Understand the basic concepts	of research and the components therein, formally		K2	
2	Understand and appreciate the	e significance of statistics in Chemical Technology,		K2	
	Pharmacy and Chemical Engine	eering			
3	Understand and apply important	ce of literature survey in research design		K3	
4	Understand an in-depth knowle	dge on the documentation in research		K2	
5	Evaluate importance of various	parts of a research report/paper/thesis in presentation		K4	
	of research results				
6	Prepare and Deliver a model re-	search presentation		K5	
7	Understand the significance of	various types of IPRs in research		K1	
8	Create a model research project			K6	
		List of Prerequisite Courses			
1	NA				
	List of Co	urses where this course will be prerequisite			
1	NA	•			
	Description of re	levance of this course in the Int. M. Tech. Program			

Description of relevance of this course in the Int. M. Tech. Program

The formal exposure to various elements of research methods such as problem formulation, literature search, planning of various activities, documentation, budgeting, purchase, report/thesis compilation, manuscript writing, patent drafting, is critical for polishing the naïve research attitude and aptitude in the PG students of the programme. The course is designed to formally introduce various concepts of research methodology in stepwise manner to the students

	Course Contents (Topics and subtopics)	Reqd. hours
1	Introduction of Course	3
	Academic Honesty Practices	
	General philosophy of science & Arguing About Knowledge	
	Case studies in science history	
2	Motivation and Background	3
	Motivation/Demotivation for Research, Building Background for Research and How	
	to read research papers	
3	Time Management (Academic and Non-academic time), Effort Management, Plan	4
	execution, Energy Management Issue, Role and expectation of research supervisor	
	and student	
4	Finding and Solving Research Problems	4
	What is Research, How to start?, Approaches to find research problems and	
	psychological experiments	
	Literature survey, Textbooks, Review and research papers	
	How to ask Questions	
	What is worthwhile research problem, Analytical and synthetic research approach	
5	Finding and Solving Research Problems	4
	What is Research, How to start?, Approaches to find research problems and	
	psychological experiments	
	Literature survey, Textbooks, Review and research papers, critical review of research	
	papers, how to write literature survey report, How to ask Questions, formulating	
	research questions,	
6	What is worthwhile research problem, Analytical and synthetic research approaches	4
	How to solve research problems, designing work plan, importance of objectives,	
	activity and strategizing research work. Design of timeline for work plan (Gnatt	
	Chart etc), Grant Writing Guidelines	4
7	Experimental Research	4
	Inventory Management, Material Management	
	Learning required skills for research, Documentation and lab notebook guidelines,	
	Safety aspects in chemical/biological research	
8	Methods and Tools used in Research: Qualitative studies; Quantitative studies;	6

	Simple data organization; Descriptive data analysis; Limitations and sources of error;	
	Inquiries in form of Questionnaire, Opinionnaire or by interview; Statistical analysis	
	of data including Variance, Standard deviation, Students 't' test and Analysis of	
	variance (ANOVA), Correlation data and its interpretation, Computer data analysis	
9	Scientific Writing	6
	Skeleton of research paper, author guidelines, good writing skills, importance of	
	discussion, Macro-level discussion.	
	Structure of the documents. General issues of presentability. Micro-level discussion.	
	Stylistic issues.	
	Examples of bad and good writings.	
10	Publishing and Reviewing	4
	Publication process, How to publish papers, where to submit, Review process and	
	reacting to a review report	
	Reviewing scientific papers	
11	Scientific Norms and Conventions	3
	Authorship.	
	Plagiarism.	
	Simultaneous submissions. Reviewing norms. Referring to other papers. Use of data.	
	Collaborative Research Work	
	List of Textbooks	
	Menzel, D.; Writing a Technical Paper; McGraw-Hill, United States (1961).	
	Best, J. W., Kahn, J. V., Jha, A. K.; Research in Education; 10th ed.; Pearson, New	
	Delhi, India (2005)	
	List of Additional Reading Material / Reference Books	

Course Code: CEP4453	Course Title: Design and Analysis of Experiments	Cre	edits	=2
	(Research Methodology – II)	L	T	P
Semester: VII	Total contact hours: 45	1	-	2
Li	st of Prerequisite Courses			
Applied Mathematics I				
List of Courses	where this course will be prerequisite			
This course is required for graduating	engineers to function effectively in Industry, Academia			
and other professional spheres. This co	ourse is in Semester VIII			
Description of relevan	Description of relevance of this course in the Int. M. Tech. Program			

Modern day manufacturing activities and R&D activities need decisions taken with a scientific rigour and should be well-supported by 'statistics'. Chemical engineering graduates who will serve industry as well as postgraduate research students who will serve industry, R&D organisations, or academic research should have a reasonably good background of statistical decision making. This also involves extraction of meaningful data from well-designed minimal number of experiments at the lowest possible material costs. This course will also help the students in all domains of their life by imparting them a vision for critical appraisal and analysis of data.

neip	elp the students in all domains of their life by imparting them a vision for critical appraisal and analysis of data.			
	Course Contents (Topics and subtopics)	Reqd. hours		
1	Fundamental principles of classical design of experiments			
	Strategy of Experimentation, Typical applications of Experimental design, Basic Principles,			
	Guidelines for Designing Experiments.	4		
2	Review of Probability and basic statistical inference:			
	Concepts of random variable, probability, density function cumulative distribution function.			
	Sample and population, Measure of Central tendency; Mean median and mode, Measures of			
	Variability, Concept of confidence level. Statistical Distributions: Normal, Log Normal &			
	Weibull distributions, Hypothesis testing.	3		
3	Experiments with a Single Factor: The Analysis of Variance			
	Fixed effect model and Random effect model, Model adequacy checking, Contrasts,			
	Orthogonal contrasts, Regression Models and ANOVA, Violation of Normality Assumption:			
	Kruskal-Wallis test.			
	Randomized block designs, Latin square designs, Balanced Incomplete Block Designs	6		
4	Factorial designs:	_		
	Definition, Estimating model parameters, Fitting response curves and surfaces.	3		
5	The 2 ^k Factorial Design, Blocking and Confounding in the 2k Factorial Design; Focus of 2 ²			
	and 2 ³ designs, Blocking and Confounding in the 2 ^k Factorial Design.	6		
6	Plackett Burman methods, Central Composite Design (CCD)	3		
7	Descriptive Statistics, Probability Distribution and testing of Hypothesis using R	4		
8	Regression techniques, diagnostic checks, ANOVA using R and implementation of contrasts.	4		
9	Construction of Balanced Incomplete Block Designs and data analysis using R	4		
10	Analysis of factorial designs using R, understanding output and interpretation.	4		
11	Factorial designs, Data analysis and interpretation.	4		
	List of Text Books / Reference Books			
1	Douglas C. Montgomery, Design and Analysis of Experiments, 8 th Edition, John Wiley &			
_	Sons, Inc. 2013			
2	Box, G. E., Hunter, W.G., Hunter, J.S., Hunter, W.G., Statistics for Experimenters: Design,			
	Innovation, and Discovery, 2nd Edition, Wiley, 2005.			
3	John Lawson, Design and Analysis of Experiments with R, CRC Press, 2015			
4	Dieter Rasch, Jürgen Pilz, Rob Verdooren, Albrecht GebhardtOptimal Experimental Designs			
_	with R. CRC Press, 2011.			
5	José Unpingco, Python for Probability, Statistics, and Machine Learning, Springer, 2019			
6	Response Surface Methodology: Process and Product Optimization using Designed			
	Experiments: R. H. Myers, D. C. Montgomery.			
7	Introduction to Statistical Quality Control: D. C. Montgomery.			
8	Design of Experiments in Chemical Engineering: Živorad R. Lazić.			
_	Course Outcomes (students will be able to)			
1	Students should be able to understand basic principles of design of experiments.			
2	Students should be able to perform statistical analysis of single experiments and do post hoc			
	analysis.			

3	Students should be able to conduct experiment and analyse the data using statistical methods.	
4	Students should be able to choose an appropriate design given the research problem.	
5	Students should be able to perform statistical analysis of different designs using R and	
	interpret the results.	

	Course Code: CEP4461	Course Title: Design project – I	Credits =		4
			L	T	P
	Semester: VII	Total contact hours: 120	0	0	8
		List of Prerequisite Courses			
	All				
		ourses where this course will be prerequisite			
	Home Paper II				
		levance of this course in the Int. M. Tech. Program			
		grate all the subjects that they have learnt and design I	olants	/ proc	esses
from	Chemical Engineering Principle				
		Contents (Topics and subtopics)		l. hou	rs.
1		to solve a problem on design, which will set by one or			
		tution. The design will have to be submitted in the form			
		ry student will be orally examined. The student will be			
		ss made during the semester. There would be two			
		ion and PFD, (ii) Material and Energy Balance. The			
		o a panel of faculty members / examiners There will be			
		nissions and 40% for the presentation. to the students from time to time by the coordinator.			
	Additional details may be given	to the students from time to time by the coordinator.			
	I	ist of Text Books/ Reference Books			
	Cours	e Outcomes (students will be able to)			
1	Identify market requirement rela				
2	Draw a process block diagram f	rom a given process description.			
3	Select a site for the project				
4	Develop a PFD based on block of	liagram			
5	Do material and energy for all the	ne equipment in PFD.			

	Course Code: CET4452	Course Title: Chemical Industrial Management	Cre	Credits = 2	
			L	T	P
	Semester: VII	Total contact hours:30	2	0	0
		se Outcomes (students will be able to)			
1		stand the process of corporate recruitment.			
2	Student would be able to use the	ne information while applying for jobs			
3	Student would be able to gair process	n knowledge on how to perform well in an interview			
1	Student would be able to gain be performance is measured.	knowledge on how goals are set in any organization and			
		List of Prerequisite Courses			
	NONE				
	Course	Contents (Topics and subtopics)	Rea	d. hou	ars
1	Basics of management		·	3	
	The eras of management				
	Mission and vision of organizat	ions			
2	Micro organizational behaviour			5	
	Psychoanalytical framework				
	Common personality traits				
	Hofstede cultural dimensions				
3	Employee Recruitment and Sele	ection		6	
	Concept of Role				
	Job description and man specifi	cations			
	Some methods of recruitment				
	Selection methods				
1	Employee performance			5	
	MBO				
	Appraisal methods				
	Review meetings				
5	Employee motivation			5	
	Employee pre disposition to mo	tivation			
	Goal setting Recent motivation theories				
	How to motivate trouble spots				
5				6	
,	Group dynamics Theories of group formation			U	
	Pitfalls of a group				
	Conflicts				
	Commets	List of Text Books			
	Human Resource N	Management (15e) - Gary Dessler, Biju Varrkey			
	Management(15e)-Robbins				
		ditional Reading Material / Reference Books			
	Select HBR articles	alasan An Annii ad Ammas at Misteria Armii d			
	industrial/Organizational Psych	ology: An Applied Approach- Michael Aamodt			

Fourth Year (Semester EIGHT)

	Course Code: CEP4473	Course Title: IPT (4-6 Months)	C	Credits = 1		12
			L	,	T	P
	Semester: VIII	Total contact hours:	0		0	12
		List of Prerequisite Courses				
	All					
	List of	Courses where this course will be prerequisite	e			
	Description of	relevance of this course in the Int. M. Tech. F	Program			
Thi	s course enables students to in	tegrate all the subjects that they have learnt ar	nd design pla	nts	/ prod	esses
fror	n Chemical Engineering Princi	ples.				
	Cours	e Contents (Topics and subtopics)	R	eq	d. hou	rs
1						
		List of Text Books/ Reference Books				
	Cor	rrse Outcomes (students will be able to)				
1	Identify market requirement	related to a particular chemical				
2	Draw a process block diagram	n from a given process description.				
3	Select a site for the project				•	
4	Develop a PFD based on bloo	ck diagram			•	
5	Do material and energy for a	I the equipment in PFD.			•	

Fifth Year (Semester NINE and Semester TEN)

Course Code:	Course Title: Thesis	Credits = 22				
CEP4474		L	T	P		
Semester: IX	Total contact hours:	0	0	40		
	List of Prerequisite Courses					
All						
List of Courses where this course will be prerequisite						
Description of we	lavance of this source in the Int. M. Teeh. Duegnen					

Description of relevance of this course in the Int. M. Tech. Program

The Research project is concerned with detailed and critical analysis of literature related to a topic of research. Development of research hypothesis.

Identification of novel topic

Performing control and critical analyses to test the research hypothesis

Demonstrate applications of the research topic

A report to be made and submitted as Thesis as per the guidelines (provided separately).

Course Code:	Course Title: Thesis	Cred	its = 22	
CEP4475		L	T	P
Semester: X	Total contact hours:	0	0	40
	List of Prerequisite Courses	•	•	
All				
L	ist of Courses where this course will be prero	equisite		
Descript	ion of relevance of this course in the Int. M.	Гесh. Program		
ne Research project is conc	erned with detailed and critical analysis of liter	rature related to a top	ic of res	earch.

The Research project is concerned with detailed and critical analysis of literature related to a topic of research. Development of research hypothesis.

Identification of novel topic

Performing control and critical analyses to test the research hypothesis

Demonstrate applications of the research topic

A report to be made and submitted as Thesis as per the guidelines (provided separately).

HONOURS Syllabus

	Course Code:	Course Title: Biochemical Engineering	Credits =		4
			L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Physical Chemistry, Materia Thermodynamics I and II, Chem	g, Introduction to Biological Sciences and Bioengineering, all and Energy Balance Calculations, Chem Engg Engg Operations			
		Courses where this course will be prerequisite			
	Paper I and II	g, Env. Engg and Proc Safety, Proc Dev and Engg., Home			
		relevance of this course in the Int. M. Tech. Program			
This	course integrates Biological scien	nces and chemical engineering and a requisite for Biobased In	dustr	y	
		Contents (Topics and subtopics)	Requ	d. hou	rs
1		Role of chemical engineers in biotechnology		3	
2		d Tissue Culture: Recombinant DNA technology		3	
3	Structure function relations of en			3	
4	Mechanism of Enzyme action, E	nzyme kinetics, inhibition and regulation		3	
5	Enzyme purification and charact			3	
6	Enzyme reactors, thermostabiliz	ation, immobilization of enzymes		3	
7	Enzymes as industrial catalysts-			2	
8		r the production of biochemicals, Immobilized cells.		4	
9	Kinetics of microbial growth, m microbial culture	odels and simulations, Batch and continuous culture, Mixed		8	
10	Biochemical process developme	nt and bioreactors using biological catalysts		8	
11	Integration of downstream proce	ssing with bioprocessing		4	
12	Transport phenomena in bioreac	tions and bioreactors		4	
13	Fundamentals of fermentation biochemical engineering aspects	-submerged fermentation, Fermenter design and basic of fermentation		4	
14	Reactor design for biochemical Bioreactor design, Scale up of b	reactions and scale up, Process Design for bioproducts, oreactions/reactors,		8	
	•	List of Text Books/ Reference Books			
	Biochemical Engineering Funda				
		esses, Doble, Anilkumar and Gaikar, Marcel Dekker			
		rse Outcomes (students will be able to)			
1	Calculate microbial/enzymatic k				
2	Design enzyme reactors and sca				
3	Calculate biomass production/su	bstrate requirements			
4	Decide process parameters				
5	Estimate energy equipments/ox				· · · · · · · · · · · · · · · · · · ·
6	Estimate bio-reactor size/time for	r a given microbial/enzymatic process.			

	Course Code:	Course Title: Multiphase Reaction Engineering	Credits =		3
			L	T	P
	Semester:	Total contact hours: 45	2	1	0
	1				
		se Outcomes (students will be able to)			
1	calculate operating regime for a				
2	calculate intrinsic kinetics from				
3		ty / size / temperature / pressure / power required for			
	conducting a given multiphase r				
		List of Prerequisite Courses			
	Chemical Reaction Engineering	g , Momentum Transfer, Mass Transfer, Heat Transfer, , Chemical Engineering Operations, Separation Processes,			
	Chem Engg Thermodynamics				
	Course	Contents (Topics and subtopics)	Reqd. hours		ırs
1	_	eactors, qualitative description, examples of industrial	8		
	importance				
2		ess design and performance of the following major classes			
	of multiphase reactors, case stud	lies and problems, w.r.t:	10		
2a	Stirred tank reactors,	1 2 1 11 111 1	10		
2b		columns, sectionalised bubble columns,	8		
2c		nir-lift reactors, jet loop reactors,	6		
2d	rotating disc contactors	y columns, packed columns, plate columns, static mixers,	5		
2e	Fixed bed reactors, trickle bed re		4		
2f	Solid-liquid and gas-solid fluidi	sed bed reactors, solid-gas transport reactors	4		
		List of Text Books			
1		I and II – L. K. Doraiswamy, M. M. Sharma			
2		n in Stirred Reactors – G. B. Tatterson			
3	Bubble Column Reactors – W. I				
4	Fluidisation – D. Kunni and O.				
5	Gas Liquid Reactions – P. V. Da				
6	Fluidisation – J. F. Davidson and				
7	Random Packings and Packed T				
	List of A	dditional Reading Material / Reference Books			

	Course Code: Course Title: Mathematical Methods & Optimization			on Credits = 4		
		in Chemical Engineering	L	T	P	
	Semester:	Total contact hours: 60	2	0	4	
List of Prerequisite Courses						
1	Applied Mathematics - I and	II, Momentum Transfer, Chem. Eng. Operations, Chem				
	Engg Thermodynamics I and II					
	List of (Courses where this course will be prerequisite				
1	Transport Phenomena					
2	Heat transfer, Chemical Reaction	on Engineering, Chemical Process Control, Optimization				
	of Chemical Engineering System	ns, Home Paper I and II, Seminar, etc.				
	Description of a	elevance of this course in the Int. M. Tech. Program				

In this course advanced mathematical tools are covered which will help students to solve complex problems in Chemical Engineering. This course will serve as a bridge between the applied mathematics courses and their application to Chemical Engineering problems. Specifically, the techniques learnt in this course will help problem formulation and solution in Chemical Reaction Engineering, Chemical Process Control, Heat Transfer and Transport Phenomena. Many Chemical Engineering problems encounter trade-offs between two or more parameters and thus formulation and solution of an optimization problem helps a Chemical Engineer to obtain the best solution.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Vector algebra: scalar & vector product (application to fluid flow problems) and Linear algebra	12
2	PDEs: Types, solution (penetration theory, 2D conduction, counter-current heat exchanger, reaction-diffusion, dispersion model, etc.)	8
3	Fourier series, transforms (diffusion equations), Laplace, Z transform	8
4	Equation scaling, normalization, convergence	4
5	Integer, linear and quadratic programming (simple scheduling, simple production planning, fuel blending, data fitting, optimal control)	10
6	Nonlinear programming (Reflux ratio optimization, consecutive reaction, reactor-separator recycle systems)	6
7	Mixed integer linear programming (flowsheet optimization, supply chain optimization)	6
8	Multi-objective optimization (design and operation of chemical processes)	6
	List of Text Books/ Reference Books	
1	Kreyszig, E. Advanced Engineering Mathematics.	
2	Pushpavanam, S. Mathematical Methods in Chemical Engineering	
3	Collette, Y. and Siarry, P. Multi-objective optimization	
4	Vanderbei, R.J. Linear programming: Foundations and extensions	
5	Jenson, V.G. and Jeffreys, G.V. Mathematical Methods in Chemical Engineering	
	Course Outcomes (students will be able to)	
1	Formulate a Chemical Engineering problem into a mathematical problem	
2	Solve (analytically or numerically) ODE and PDE equations encountered in Chemical	
	Engineering Applications	
3	Assess stability of Chemical Engineering systems	
4	Formulate a Chemical Engineering problem into an optimization problem	
5	Solve (analytically or numerically) optimization problems encountered in Chemical Engineering Applications	

	Course Code:	Course Title: Refinery Science and Engineering	Cred	lits = 3	3
			L	T	P
	Semester:	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			
1	Material and Energy Balance Transfer	e Computation, Chemical Reaction Engineering, Heat			
	List of C	Courses where this course will be prerequisite			
1		1 1			
		elevance of this course in the Int. M. Tech. Program			
		Contents (Topics and subtopics)	Req	d. hou	rs
1		oil, Petroleum pricing and economics		4	
2	Fundamentals of crude distillation			4	
3		s, refining chemistry, role of catalysis		4	
4	Refinery processes - thermal c reforming, refinery alkylation, is	racking, fluid catalytic cracking, hydrotreating, catalytic somerization		9	
5	Integration of petrochemical pro			4	
6	Material selection in refinery tec	chnology		4	
7	Treatment processes, gas cleaning	ng		3	
8	Safety, health and environment			4	
9	Renewable and alternative fuels			4	
10	Biorefineries			5	
		List of Text Books/ Reference Books			
1		carbon Thermodynamics Vol I and Vol II Gulf Publishing			
2		etroleum encyclopedia 2008 (3 Volume).			
	Cour	rse Outcomes (students will be able to)			
1	To understand refining trends, c				
2		rocesses in the world energy challenge			
3	To propose feasible solutions for				
	To propose reastore solutions to	t chorg, seeding in main			

	Course Code:	Course Title: Catalytic Science and Engineering	Credits =		4
			L	T	P
	Semester:	Total contact hours: 60	4	2	0
		List of Prerequisite Courses			
1	Applied Chemistry, Chemical F	Reaction Engineering			
	List of Co	ourses where this course will be prerequisite			
	Description of m	lander of the comment to the Lat M. Teal December			
	Description of re	levance of this course in the Int. M. Tech. Program			
	Course	Contents (Topics and subtopics)	Dog	d. hou	
1		economy and green chemistry concepts, Homogenous	Keq	<u>u. nou</u> 10	15
1	and heterogeneous catalysis	economy and green enemistry concepts, fromogenous		10	
2		s catalysis and mechanisms and kinetics, Fundamentals		10	
		etics, structural and dynamic considerations,			
3		ics of surface reactions, Fractal models, Determination		10	
	of surface structure though m	odern methods, Significance of Pore structure and			
	models				
4		hods: Surface area and pore volume determinations,		10	
		techniques, Temperature programmed reduction &			
5	oxidation, Electron microscopy	catalysis, Quantum mechanical, molecular mechanical		10	
3		design through artificial intelligence and computer		10	
	modelling	design unough artificial intempence and computer			
6		ation and selectivity, Catalytic process engineering,		10	
		and kinetic parameters, Types of reactors			
		ist of Text Books/ Reference Books			
1		eitkamp, "Handbook of Heterogeneous Catalysis" Vol			
	1-5, Wiley - VCH.				
2		atalytic reaction Engineering", Dover Publications.			
3		J. Farrauto "Fundamentals of Industrial catalytic			
	Processes", Wiley- VCH.				
1		e Outcomes (students will be able to) erization, activity and deactivation of heterogeneous	1		
1	catalyst	crization, activity and deactivation of neterogeneous			
2	Understand the mechanisms of	homogeneous catalysis			
3	Understand the role of catalysis				
4	To plan, develop and test cataly				
5	Suggest strategies for catalyst d				
6	Select and design multiphase ca	talytic reactors			

	Course Code:	Course Title: Statistical Thermodynamics	Cre	dits =	3
			L	T	P
	Semester:	Total contact hours: 45	3	2	0
		e Outcomes (students will be able to)			
		stand and use the concept of microcanonical, canonical,			
	grand-canonical and PVT ensembles and the partition functions thereof Student would be able to relate macroscopic thermodynamic quantities like entropy				
	and free energy to the partition				
		rstand the algorithms behind Monte Carlo simulations			
	and write a simple Monte Carlo				
		derstand the algorithms behind Molecular Dynamics			
	Simulations and write a simple	MD simulation			
		erstand and use the fluctuation dissipation theorem in			
	conjunction with Monte Carlo simulations to determine transport coefficients using the				
	Green Kubo relations.				
	De a company	List of Prerequisite Courses			
		pability, vectors and linear algebra, Computer			
	Programming especially working	g with arrays and vectors.			
	C	Sentents (Tender and make site)	D	1 1	
	Course C	Contents (Topics and subtopics)		d. hou	rs
	Introduction to statistical med Introduction to the Boltzmann I	chanics – a first look at the Canonical Ensemble.	3		
	I .	cal, PVT and Grand Canonical Ensembles	3		
		Quantities as Functions of Ensembles with particular	-		
		level difference between Heat Transfer and Work			
	Transfer.	level difference between freat fransier and work			
	1	Law using Schrodinger's Equation applied to Particle-	8		
		particle systems using statistical mechanics			
		. , , ,			
	b) Derivation of Pressure for an	Ideal Gas and introduction to the Virial Theorem			
	Introduction to the pair interaction	on energy, pair correlation function (radial distribution	5		
		of macroscopic thermodynamic quantities including			
	derivation of the van der Waals				
		pling, detailed balance and the Metropolis Monte Carlo	3		
	Algorithm				
	Writing a code for Monte Carlo	simulations in 1D using periodic boundary conditions	3		
		orem and Molecular Dynamics Simulations	3		
	1	ting a code for molecular dynamics simulations in 1D	3		
`	using periodic boundary conditi				
)		n and the Green Kubo relations to determine transport	8		
	properties from MD simulations				
	Writing code to determine ther	modynamic and transport properties of a system from			
	fluctuations and autocorrelation				
1		Monte Carlo Simulations for Phase Equilibria	3		
L	Introduction to Transition State	Mione Carlo Simulations for Finase Equinoria			
	1	List of Text Books			
	An Introduction to Statistical Th	nermodynamics by Terrence Hill (Dover Books)			
		lations by Daan Frenkel and Berend Smit (Academic			
	Press)	-, [11 and 25 one of the frequency			
	,	and Systems S.T. Thornton and J. B. Marion (Cengage			
	Learning)	, (e -ng ge			
		Quarrie (University Science Books)			
		ditional Reading Material / Reference Books			

LIST OF ELECTIVES

ELECTIVE SUBJECTS

The elective subjects may be added from time to time with prior approval from UGPC/Senate.

1. PYT 1104E – Molecular Quantum Mechanics (Applied Physics Department)

Revision of Basic Concepts

Schrodinger equation for the hydrogen atom, solution in terms of radial and angular wavefunctions, significance of quantum numbers, atomic spectra.

The quantum harmonic oscillator, eigenvalues and eigenfunctions (no detailed derivation), significance of 'zero-point' energy.

Origin of Molecular Spectra

Analysis of diatomic molecule as a rigid rotator, rotational and vibrational energy levels of a simple diatomic molecule.

Approximation methods in Quantum Mechanics

Brief introduction to perturbation theory with simple examples, variational theorem, analysis of helium atom as an example.

Molecular Quantum Mechanics

Molecular orbital and valence bond theories for diatomic molecules, Born-Oppenheimer approximation, LCAO method in H_2^+ ion and H_2 molecule, valence bond method

2. PYT 1105E – Statistical Mechanics (Applied Physics Department)

Basic Statistical Approach to a System

Applicability of the statistical approach to a system, equilibrium and fluctuations, irreversibility and approach to equilibrium, counting of system states – macrostates and microstates, equiprobability postulate, concept of statistical ensemble, number of accessible states of a system, phase space.

Ensemble approach to Thermodynamics of Physical Systems

Isolated system – microcanonical ensemble, system in contact with a heat reservoir, canonical ensemble, Maxwell-Boltzmann distribution as an example, mean values in a canonical ensemble, partition function for a canonical ensemble, relation to thermodynamics.

Generalised Interactions

Grand canonical ensemble, systems with variable number of particles, chemical potential, partition function for a grand canonical ensemble, relation to thermodynamic variables.

Applications to Multi-phase Systems

Stability conditions for a homogeneous system, equilibrium between phases, phase transformations, general relations for a system with several components, general conditions for chemical equilibrium, chemical equilibrium between ideal gases, the equilibrium constants in terms of partition functions.

3. CHT 1403E – Advanced Spectroscopy (Applied Chemistry Department)

UV-VIS spectroscopy - Woodward rules, aromatic and heterocyclic compounds

IR spectroscopy: FT technique, group frequencies, vibrational coupling. NIR spectroscopy. New applications

Raman spectroscopy: Stokes, anti-Stokes and Releigh scattering, rotational and vibrational transitions. Raman vs IR.

NMR spectroscopy: Pulse technique, FID, and FT. Relaxation and saturation phenomena, quadrupole relaxation, isotopomers.

H1 NMR: Chemical shifts and factors affecting the same, spin-spin coupling of different systems, different spin systems, coupling constants.

Simplification of complex spectra: Double resonance and decoupling, lanthanide shift reagents, INDOR technique.

C13 NMR: Basics, doble resonance,

2D NMR: H1-H1- COSY, H1-C13 HETCOR- APT and DEPT, C13-C13 connecticity: INADEQUATE

F19 and P31 NMR

Through space interactions: NOE and NOESY

Solid state NMR and MAS.

Mass spectrometry: Basics, EI and CI techniques. Isotopic abundance, fragmentation, rearrengment of ions, Maclaferty rearrangement, retrodiels-alder reaction.

Hyphenated techniques: GC-MS, LC-MS, LC-MS-MS, GC-IR, GC-AIS, GC-NMR, LC-NMR **ESR spectroscopy:** Theory, experimental technique, Hyperfine splitting

	Mossbaur spectroscopy
	Structure elucidation using combined stereoscopic methods
	Emission: Flame photometry, ICP, Ark-Spark spectra, Phosphorescence, XRF
4.	CHT 1205E – Organometallic Chemsitry (Applied Chemistry Department)
	Nature of C-M bond: Metal-carbon bond with main group and transition elements.
	Factors controlling metal-carbon bond formation. Methods of M-C bond formation.
	Nomenclature and heptacity. Electron counting and 16 and 18 electron rules - applications and
	exceptions. Stability. Stereochemical nonrigidity in organometallic compounds.
	Structure and bonding of metal alkyls and aryls. Complexes with CO and related ligands, olefins,
	acetylenes and related unsaturated molecules. Organic transition metal complexes as protective
	and stabilizing groups for double bond, triple bond, propyl cation and short lives species.
	Complexes with cyclopentadiene and arenes and other CnHn sandwich and half-sandwich complexes. Hydride, dinitrogen and dihydrogen complexes
	Bimetallic and cluster complexes: Structure and applications in catalysis Basic organometallic reactions: Ligand substitution, oxidative reactions, migratory reactions,
	migratory insertion, extrusion, oxidative addition, reductive elimination, reductive elimination –
	mechanism and stereochemistry.
	Nucleophilic regents with C-M bond: Li, Mg, Al, Ti and Ce alkyls; Organicuprates, organic
	zinc reagents
	Alkyne complexes: Pauson Khand reaction. The use of stoichiometric transition metal complexes
	in the synthesis of complexes organic molecules - enantioselective synthesis via organometallic
	compounds.
	Organo silicon compounds, boranes, carboranes and, metallocarboranes, organo platinum
	complexes, metallocenes
	Importance of organometallic compounds in Biological systems
5.	CHT 1206E – Green Chemistry & Catalysis (Applied Chemistry Department)
	Concept of Green Chemistry: Twelve principles of green chemistry, E factor, Waste
	management
	Types of catalysis: Homogeneous and Heterogeneous catalysis. Catalytic cycles
	Organometallic compounds used as catalysts: Pd, Rh, and Ru in C-C bond formation.
	Catalytic properties of mononuclear compounds
	Homogeneous catalysis: Hydrogenation, hydroformylation, hydrocyanation, Hydrosilylation,
	Wilkinson catalysts, Chiral ligands and chiral induction, Ziegler-Natta catalysts Mercuration and oxymercuration
	Organopalladium catalysts: Suzuki coupling, Heck coupling and related cross coupling
	reactions.
	Alkene oligomerization and metathesis.
	Catalytic oxidations and reductions: Epoxidation, dihydroxylations.
	including carbonylation, decarbonylation, olefin isomerization, arylation
	Important catalytic reactions: Monsanto acetic acid process, Wacker process, Heck reaction.
6.	CHT 1303 – Theoretical and Computational Chemistry (Applied Chemistry Department)
	Basics: Wave character and wave functions, De Broglie equation, normalization and
	orthogonalization,
	Quantum mechanical operators, Schrodinger equation, particle in an infinite square well
	potential, quantum mechanical harmonic oscillator, angular momentum operator and rigid rotor,
	Born Oppenheimer approximation, potential energy surfaces, self consistent field wave functions,
	Computational methods: Molecular mechanics, MO theory, semi empirical and ab initio
7.	methods, SCF theory, Hartree Fock method, DFT. MAT 1107E – Momentum, Heat and Mass Transfer (Applied Mathematics Department)
/.	Derivation of equation of momentum, energy, mass transfer in curvilinear coordinate system,
	constitutive equation (Newtonian & Non Newtonian fluids), Flow in some simple cases - Flow
	between two concentric cylinders, flow between two concentric rotating cylinders,
	hydrodynamics of bearings lubrication, steady flow around a sphere (theory of very slow
	motion).
	Singular perturbation theory, derivation of bounder layer equations (using singular perturbation
	theory), similar and non similar solutions for some forced, mixed and natural convection
	problems (using bounder layer theory).
	Flow stability, theory of ordinary diffusion in liquids, diffusion with homogenous chemical
	reaction, diffusion into a falling liquids films (forced convection mass transfer).
8.	MAT 1108E - Turbulent Flow and CFD (Applied Mathematics Department)

	Derivation of equations of momentum and energy for turbulent flows. Modelling of turbulent
	flows: kinetic energy, algebraic stress model, Low Reynolds number model, LES model etc.
	Turbulent boundary layer flows and similar solutions
	Grid generation
	Use of Control volume method, Methods of lines, Finite difference, Finite element and various
	algorithms (SIMPLE, SIMPLER & SIMPLEC etc) to solve the momentum, energy and mass
	transfer equations for simulation of some practical problems (Simulation of stirred vessel,
9.	Natural convection flow inside a closed chamber etc)
9.	GET 1303E – Advanced Strength of Materials (General Engineering Department) Analysis of Trusses - Condition for perfect truss, redundancy, stable, unstable truss. Analysis of
	truss by method of joints, method of sections.
	Torsion of a circular shaft - concept, basic derivation, shear stress distribution, simple problem.
	Short and Long columns (Struts) - Basic concept, crippling load, end conditions. Euler's and
	Rankine's approach (without derivations)
	Thick and Thin cylinders - concept of radial, longitudinal stresses, behaviour of thin cylinders.
	Problems on thin cylindrical and spherical shells. Behaviour of thick cylinders (theory only).
	Advance stresses and strains – Representation of stress and strain at a point, Stress stain
	relationship, plane stress and plane strain. Transformation of stresses and its importance,
	Principal stresses and strains, maximum shearing stress, Mohr's circle its use and construction.
	Basics of Engineering Design - Steps in the engineering design, Importance of analysis, 1-D, 2-D
	and 3-D analysis and interpretation of results. Design philosophies, factor of safety, Force
	displacement relationship, Strain deformation relationship, Introduction to finite element
	packages. Computer aided analysis and design.
	Composite Materials – Types of composite materials, fillers for composites, polymer composites,
	fibres and matrix for a composite material, Types of fibres, their properties, woven and non
	woven fibres, manufacturing of polymer composite materials. Mechanics of composite materials,
	Properties and testing of composite materials, Uses of composite materials.
	Advance materials for industrial applications - Advances in materials, Materials used for
	coatings, anticorrosive coatings, special purpose floorings, water proofing compounds, Various polymers and epoxies used for industrial applications. Different types of performance enhancing
	and special purpose construction chemicals. Plasticizers and super-plasticizers, air entraining
	agents, accelerators and retarders, viscosity modifying agents, corrosion inhibitors
10.	agents, accelerators and retarders, viscosity modifying agents, corrosion inhibitors. HUT 1105E – Industrial Economics (Humanities)
10.	HUT 1105E – Industrial Economics (Humanities)
10.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics
10.	HUT 1105E – Industrial Economics (Humanities)
10.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand
10.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of
10.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale.
10.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and
10.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation.
10.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing
10.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation /
	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization
10.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical
	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department)
	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as
	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of
	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as
	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions,
	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyers reaction, Darzens condensation, etc. Typical reaction schemes for the synthesis of
	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyers reaction, Darzens condensation, etc. Typical reaction schemes for the synthesis of medium and low volume chemicals, with an emphasis on the alternative flow sheets of the entire
11.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyers reaction, Darzens condensation, etc. Typical reaction schemes for the synthesis of medium and low volume chemicals, with an emphasis on the alternative flow sheets of the entire process. CET 1204E – Electrochemical Engineering (Chemical Engineering Department) Introduction to eletrochemical engineering. Theoretical aspects and special features of
11.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyers reaction, Darzens condensation, etc. Typical reaction schemes for the synthesis of medium and low volume chemicals, with an emphasis on the alternative flow sheets of the entire process. CET 1204E – Electrochemical Engineering (Chemical Engineering Department) Introduction to eletrochemical engineering. Theoretical aspects and special features of electrochemical processes. Some
11.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E — Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyers reaction, Darzens condensation, etc. Typical reaction schemes for the synthesis of medium and low volume chemicals, with an emphasis on the alternative flow sheets of the entire process. CET 1204E — Electrochemical Engineering (Chemical Engineering Department) Introduction to eletrochemical engineering. Theoretical aspects and special features of electrochemical processes. Some aspects of electrochemical reactor design. Scale-up and optimization of reactors.
11.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyers reaction, Darzens condensation, etc. Typical reaction schemes for the synthesis of medium and low volume chemicals, with an emphasis on the alternative flow sheets of the entire process. CET 1204E – Electrochemical Engineering (Chemical Engineering Department) Introduction to eletrochemical engineering. Theoretical aspects and special features of electrochemical processs. Role of mass transfer in a variety of electrochemical processes. Some aspects of electrochemical reactor design. Scale-up and optimization of reactors. CET 1712E – Mathematical Methods in Chemical Engineering (Chemical Engineering
11.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyers reaction, Darzens condensation, etc. Typical reaction schemes for the synthesis of medium and low volume chemicals, with an emphasis on the alternative flow sheets of the entire process. CET 1204E – Electrochemical Engineering (Chemical Engineering Department) Introduction to eletrochemical engineering. Theoretical aspects and special features of electrochemical process. Role of mass transfer in a variety of electrochemical processes. Some aspects of electrochemical reactor design. Scale-up and optimization of reactors. CET 1712E – Mathematical Methods in Chemical Engineering (Chemical Engineering Department)
11.	HUT 1105E – Industrial Economics (Humanities) Nature and Significance of Economics Demand and supply / elasticity of demand and supply, price determination, demand forecasting theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale. Money market and capital market, evolution of money and banking, foreign exchange and currency de-valuation. Budget, taxation, public expenditure, borrowing and deficit financing Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department) Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyers reaction, Darzens condensation, etc. Typical reaction schemes for the synthesis of medium and low volume chemicals, with an emphasis on the alternative flow sheets of the entire process. CET 1204E – Electrochemical Engineering (Chemical Engineering Department) Introduction to eletrochemical engineering. Theoretical aspects and special features of electrochemical processs. Role of mass transfer in a variety of electrochemical processes. Some aspects of electrochemical reactor design. Scale-up and optimization of reactors. CET 1712E – Mathematical Methods in Chemical Engineering (Chemical Engineering

	evaluation of Laplace Transforms.
	Separation of variables, Eigen values, Collocation Techniques.
14.	CET 1713E – Statistical Methods in Engineering (Chemical Engineering Department) Continuous and discrete probability distributions, normal, chi-square, gamma, Poisson distributions. Applications. t-Tests, F-Test, Homogeneity tests, Quality Control. Acceptance sampling Linear regression and lack of fit Contingency tables.
15.	CET 1103E – Heat Transfer Equipment Design (Chemical Engineering Department) Classification of Heat Transfer Equipment, direct, indirect, boiling, fired, Fluidised, geometry, construction.
	Thermal design methods of heat exchangers : survey, capital NTU, LMTD concept, temperature approach, etc.
	Shell and Tube heat exchangers: thermal, mechanical design, hydraulic design and equations, introduction to codes and standards
	Extended surface heat exchanger design: plates, plate fins, effectiveness factor. Heat transfer equipment with phase change, two phase flow maps, and design of equipments
	for heat transfer and pressure drop. Fluidised bed and direct heat exchangers design methodology. Synthesis of optimal heat exchanger networks.
	Worked Examples
16.	CET 1205E - Mixing (Chemical Engineering Department) Examples of industrial importance
	Flow pattern, power consumption, classification of impellers, internals
	Mechanism of mixing, Blending in viscous and turbulent system, Suspension of solid
	particles, Heat transfer, Gas-liquid dispersion, Liquid-liquid dispersions, Three phase dispersions,
	Solid-solid mixing, emulsions, pastes, Mass transfer at gas-liquid, liquid-liquid, solid-solid and
	solid-liquid interface
17.	Process design and scale-up considerations case studies
17.	CET 1507E – Petroleum Reservoir Engineering (Chemical Engineering Department) Energy sources, world scenario, oil pricing, Genesis of petroleum and migration, Composition of
	petroleum and its classification, Petroleum reservoirs, Exploration and drilling technology, Well
	logging and well completion, Core analysis, Capillarity and wettability, Models of pore structure
	and multiphase flow, Well stimulation and production strategy, Well pressure behaviour, Gas
	reservoir engineering, Fluid displacement and frontal displacement; Buckley-Leverett theory,
	Material balance, Decline curve analysis, Well patterns and displacement efficiencies, Primary
	recovery, Gravity drainage, Waterflooding, Mechanisms of microscopic and macroscopic flow, Transportation of oil and gas, Production rate, reservoir life, Heavy oil and tar sand technologies,
	Residual oil determination, Computer modelling of reservoirs, Tertiary recovery methods
18.	CET 1508 – Enhanced Oil Recovery (Chemical Engineering Department)
10.	Residual oil and tracer studies, Defining enhanced oil recovery, Basic equations for fluid flow in
	porous media, Petrophysics and petrochemistry, Phase behaviour and fluid properties, Efficiency
	of waterflooding, Pore level mechanisms, Mobility control, capillary number, bond number
	correlations, Heterogeneity of pore structure and reservoirs, Thermal methods, Steam
	stimulation, steam flooding and hot water drive, Combustion- forward and reverse, Ancillaries in
	thermal methods, Miscible flooding, Surfactant flooding, Microemulsion flooding, Foam flooding, Polymer flooding, Micellar-polymer flooding, Alkaline flooding, Carbon dioxide
	flooding, Inert gas injection, Reactive gas injection, Microbial recovery
19.	CET 1104E – Flow Though Porous Media (Chemical Engineering Department)
	Relevance of pore structure in science and technology, Examples from oil reservoirs, catalysis,
	soil science, membranes, aquifers, foods, polymers, biology, etc., Pore structures and their
	determination, Capillarity and wettability, Models of pore structure, Wettability and flow
	histories, Single phase flow, Multiphase flow, Percolation processes and network models, Fractal
	models, Simulations of macroscopic properties, Pore level mechanisms of flow, Diffusion and
	dispersion in porous media, Membrane transport, Analysis of trickle and packed beds, Ultrafiltration, Models of catalyst poisoning and deactivation, Geostatistics
20.	CET 1509E – Refinery Science and Engineering (Chemical Engineering Department)
	Terminology, Origin, Kerogen, Occurrence, Recovery, Classification, Composition, Evaluation,
	Fractionation, Identification, Asphaltic constituents, Refining chemistry, Refining distillation,
	Thermal cracking, Catalytic cracking, Hydroprocessing, Reforming, Treatment processes, Gas
	cleaning, Products, Petrochemicals
21.	CET 1206E - Fundamentals of Catalytic Science and Engineering (Chemical Engineering

Department)

Relevance and examples, Atom economy and green chemistry concepts, Homogenous and heterogeneous catalysis, Fundamentals of homogeneous catalysis and mechanisms and kinetics, Fundamentals of adsorption, isotherms, energetics, structural and dynamic considerations, Mechanisms, models and kinetics of surface reactions, Fractal models, Determination of surface structure though modern methods, Significance of Pore structure and models, Solid and surface chemistry of catalysis, Quantum mechanical, molecular mechanical and hybrid models, Catalyst design through artificial intelligence and computer modelling, Poisoning, promotion, deactivation and selectivity, Catalytic process engineering, Measurement of catalytic rates and kinetic parameters, Types of reactors

22. CET 1207E – Homogeneous Catalysis (Chemical Engineering Department)

Examples, Single phase and multiphase catalytic reactions, Acid--base catalysis, Transition metal catalysis, Bio-catalysis: Microbes and enzymes, Phase transfer catalysis, Micellar catalysis, Microemulsion catalysis, Electron transfer catalysis, Heteropoly acid catalysis, Homogeneous polymer catalysis, Heterogenisation of homogeneous catalysts, Catalysis by microwaves and ultrasound, Catalyst recovery and reuse

23. CET 1208E - Catalytic Green Science and Technology (Chemical Engineering Department)

Green synthesis and heterogeneous catalysis, Metal and supported metal catalysis, metal-support interaction, Metal oxides and determination of acidity and basicity, Nature and type of supports, Solid acid catalysis, Solid base catalysis, Catalyst design, preparation and activation, Clay and modified clays, Ion exchange resins, Zeolites and zeotypes, Heteropoly acids, Inorganic-organic catalysts, Immobilised enzymes, zeozymes, complexes, Electrochemical catalysis, Photocatalysis, Microwave catalysis, Ultrasound catalysis, Synergistic catalysis, Important examples from, Refinery industry -FCC, reforming, platforming, hydroforming, polymerisation, alkylation, isomerisation; hydrodesulfurisation, hydronitrogenation, Pharmaceutical and fine chemical industry, Dyestuff and intermediate industries, Perfume and flavour industry, Polymer industry, Textile industry, Paint industry, Edible oil industry, Food industry, Waste water treatment, Catalysis for auto-exhaust pollution abatement, DeNox, DeSOx technologies

24. CET 1602E – Colloid and Interfacial Science (Chemical Engineering Department)

Capillarity: Definition, Existence of surface tension/surface free energy, Laplace equation, Young Equation, Capillarity rise phenomena, Measurement of surface tension, Contact angle Wetting characteristics

Surface Thermodynamics: Surface thermodynamic properties, Kelvin Eqn. Gibbs eqn, Surface Excess, Monolayer phase

Adsorption: Localised vs Mobile adsorption, Adsorption isotherms

Langmuir, Freundlich, BET etc., - Potential theory, Adsorption from solution, Electrical Diffuse Double layer theory, Debye Huckel theory scaled particle theory, Stern layer, Surfactant adsorption

Micelles: Classes of surfactants, synthesis of surfactants, Micelle structures, Determination of HLB, Models for micelle formation, Swollen micelles, Hydrotropy

Solubilization in micelles :Location of solubilizate in micelles, Measurement of solubilization, Spectroscopic methods:NMR, Fluorescence, IR etc, Detergency, selective solubilization

Emulsions :Micro and macro emulsions, Stability of emulsions (Mechanical vs. thermodynamic), Bancroft rule, deemulsification, HLB for emulsion, multiple emulsions, applications

Foams: Gibbs triangle, Film elasticity, drainage of films, Foam, defoaming, applications of foams

25. CET 1603E – Interfacial Science and Engineering (Chemical Engineering Department)

Definitions: Chemical and physical properties of interfaces, Introduction to surface mechanisms and thermodynamics, capillarity, meniscus shapes, contact angle, surface tension and its measurement, Laplace Equation, Young's equation, Kelvin Equation, Gibbs equation, equilibrium criteria, dividing surface, monolayers and films, mobile and fixed interfaces Interfacial areas and degrees of wetting, aerosols, liquid-liquid and particulate dispersions, Bubbles, and drops aphrons.

Microphases: Definitions and dynamics, Micelle formation surfactants CMC, structures of micelles, swollen micelle and microemulsions models, phase diagrams, Macroemulsions, Mechanical vs thermodynamic stability, HLB, Bancroft rule and other systems, Foams Colloids, Film elasticity, drainage, association, Langmuir-Blodgets film production. Experimental techniques of measurement of relevant properties: surface tension, solubilization,

thermodynamic properties, spectroscopic techniques

Rheological aspects of two phase (involving microphases) flow and transport, visco-elasticity of surfactant solutions.

Solubilization and catalysis by microphases: Models, theories and data, surface potential and equations of state, double layer theory, layer Debye Huckel theory, Thermodynamics of solubilization, Hydrotropy

Emulsification and Demulsification, foam breakage, theories of coalescence, and agglomeration, Brownian motion, shear and other models.

Applications: Adsorption, foam fractionation, froth floatation Enhanced oil recovery, Novel separation processes, Coagulation, Flocculation, Microelectronics, surface vapour deposition, other applications with techniques

Monte Carlo simulation for molecular dynamics of structures, graphics software for structural display.,

Diffusion on the surface and in microphases.

CET 1403E – Adsorptive Separations (Chemical Engineering Department)

Separation Processes: overview, alternative separation techniques, Mass separating agents Adsorbents: Molecular sieves activate carbon, zeolites alumina, silica ion exchangers, Polymeric adsorbents

Physical and Reactive adsorption: Selectivity engineering in catalysis, Gaseous and liquid adsorption, Thermodynamics of adsorption, Statistical thermodynamics of adsorption phenomena, Surface excess, theories of adsorption. Separations: Bulk separation, purifications, Concentration and recovery from dilute solutions: metals, organic chemicals, microelectronics

Design of adsorbers: Gaseous and liquid phase adsorption

Theoretical analysis of diffusion in relation to adsorption in micropores

Chromatographic separations: Bulk chemicals separations, Purification, refining operations, Biochemical applications

Novel separation techniques using adsorbents, Industrial examples

CET 1209E – Advanced Biochemical Engineering (Chemical Engineering Department)

Biotechnology, Biochemistry and microbiology, Enzymatic reactions, cell culturing

Enzyme engineering, enzyme modifications, stability, reactivity and selectivity considerations

Genetics and Genetic engineering, DNA recombinant technology, Hybridoma technology, single cell proteins, gene manufacturing

Fermentation and design of fermenters with modified organisms

Bioprocess simulations, molecular modelling for protein synthesis and drug design, protein engineering

Applications in fermentation industry, pharmaceutical industry, medical field such as gene therapy, Biomedical engineering

Bioreactor design, Scale up of bioreactions/reactors, Downstream processing in biochemical industry

Organic synthesis using enzymes

CET 1404E – Downstream Processing in Biochemical Industry (Chemical Engineering Department)

Separation processes in biochemical industry, Separation processes for bulk chemicals and proteins, special needs, Unit operations on biochemical industry, such as filtration, centrifugation, heat and mass transfer, Solvent extraction: liquid-liquid extractions, phase diagrams, thermodynamics of liquid-liquid extraction, physical vs reactive extraction, liquid ion exchangers, design of extractors, two phase flow in extractors, modelling and simulation of extractors, Aqueous two phase extraction, affinity partitioning, dye ligand partitioning, Reverse micellar extraction of proteins and enzymes, Adsorption: physical and chemical adsorption, theories of adsorption, ion exchange resins and polymeric adsorbents, adsorption of small molecular weight bioproducts such primary and secondary metabolic products of cells, Protein purifications, precipitation, affinity precipitation, adsorptive and chromatographic separations of proteins, design of adsorption columns, Methods of operation., Gel permeation chromatography, metal ligand chromatography, dye ligand chromatography, affinity chromatography, expanded bed chromatography,

Applications in biochemical industry.

CET 1405E – Advanced Separation Processes

Membrane Processes: Principles of various membrane processes like Reverse Osmosis, pervaporation, gas separation and electro-dialysis. Design equations and module design.

Concentration polarization.

Adsorption and Ion Exchange Processes: Adsorption and ion exchange equilibria. Various isotherms. Contact filtration, design of fixed bed adsorber including breakthrough cuurve.

Chromatographic Separations: Principles of chromatographic separation, criteria for effective separation, supports and methodology and process design.

Separation of Racemic Mixtures: Principles of racemic modification and their application in separation of racemic mixtures with specific examples.

Dissocaition Extraction, Reactive Extraction

CET 1210E – Introduction to Polymer Engineering (Chemical Engineering Department)

Introduction to Polymers: Classification based on application and history, Natural and synthetic polymers and types e.g. fibres, rubbers, adhesives, resins, plastics, etc.

Classification based on properties/structures: Thermoplastic, thermosetting, crystalline, amorphous, molecular weights status, transitions, glass transition temperature

Polymer formation/modification: Functionality and reactions, chain, ionic, condensation, coordination, complex polymerisation, Kinetic schemes, Orders of reactions, Cross-linking, Copolymerisation, Heat effects

Polymerisation Processes and methods of manufacture: Bulk, Solution, Suspension and emulsion polymerisation with examples, polystyrene, polyethylene/propylene, styrene-Butadiene, poly urethane, Epoxy, PET, Kinetics, reaction rates, diffusional limitations, Biodegradable polymers.

CET 1604E – Polymer Processing (Chemical Engineering Department)

Plastic Technology: Moulding, (injection, blow) extrusion, cold-not and vacuum forming multipolymer systems. Equipments design and operating conditions

Fibre Technology: Textile processing, fibre spinning and after treatment. Equipments design and operating conditions

Elastomer Technology: Vulcanisation, Reinforcement compounding Equipments- design & operating conditions, environmental impact

Recycle of polymers: Reprocessing techniques and limitations

Selection of polymers : domestic & engineering usage

Rheological and mechanical measurements concept of solution viscosity

CET 1211E – Polymer Reactor Engineering (Chemical Engineering Department)

Kinetic modelling, concept of reactor design, optimisation and control of polymerisation process, isolation and separation of monomers/catalyst/by products etc for Bulk polymerisation, Solution polymerisation, Emulsion polymerisation, suspension polymerisation with case studies Kinetic modelling of co-polymerisation processes.

CET 1605E – Advanced topics in Polymer Chemistry/Physics Characterisation/Analysis of Polymers (Chemical Engineering Department)

Structure/property relationship : Morphology & Cristallinity Mechanical and Chemical properties

Structure/Rheology relationships

Rheology, elasticity, Viscoelasticity, yield and fracture chemical resistance

Properties of commercial polymers. PE, PP, Acrylic, amides & peptides phenolic & Urethane resins

Role of Additives: Type of additives and their role in altering the properties

Polymer composites: Carbon filled, fibre filled etc. Reinforced polymers

Analysis of polymer solubility, thermodynamics and phase equilibrium of polymer solutions, End group analysis, Colligative property measurement, Light scattering, Solution viscosity and molecular size and wt distribution. Spectroscopic methods, microscopy, thermal analysis. Selection of polymers, domestic and engineering usage.

CET 1510E – Fuels Engineering (Chemical Engineering Department)

Classification of fuels : G/L/S

Automotive Fuels Bharat Standards II III & IV

Gaseous Fuels:

Natural Gas: Processing for pipe line specs

CO₂/H₂S/COS Removal

Gas dehydration

Gas compression for pipe line transport

Coal bed methane, Bio Gas (methane)

CNG: As auto fuel, Compression, CNG stations

LNG: Liquefaction of NG JT effect, closed & open cycle, Storage of LNG, Transportation of LNG, vessels / truck, terminal, Gasification

of LNG to NG for pipeline transport **Liquid Fuels:** Refinery sources, Reforming for fuels LPG: Domestic and Auto LPG, Storage and handling, Manufacture and Storage (Partly in I&EC) Petrol, Diesel, Aviation Turbine Fuel, HSD, LDO. Furnace oil, Fuel oil, LSHS. Biofuels: bioethanol, biodiesel Solid Fuels: Characterization Coal **Biomass** Residue from Refinery Plastic waste Municipal domestic waste **Combustion of Fuels:** Basic equation, air requirement norms for excess air. Heating value: GHV/LHV Calculations for mixture of components Wobbe number for Gaseous Fuels definition and significance. Burners: Gas/Liquid/Hydrogen Flue gas composition, Dew point calculations Treatment of flue gas to meet local standards, Carbon Credit Gasification of i) Coal, Indian Coal; ii) Biomass; iii) Refinery Heavy Residue Power generation, combined cycle, cogeneration **CET 1511E – Plant Utilities (Chemical Engineering Department)** Role of Process Utilities in process industries. Impact on Project economics Water, its characteristics and its conditioning and treatment for process industries e.g. boiler feed water, cooling water. Recycling aspects of water from blow downs. Application of steam systems in chemical process plants, design of efficient steam heating systems, condensate utilization, flash steam, steam traps. Characteristics properties, classification, selection and industrial applications Characteristics of air and air receivers, instrument air. Inert gas generation Vacuum system engineering. Electrical Power: HT/LT Area classification, Motors/drives selection accordingly. Single line diagram. **Emergency Drives Identification** Emergency power. Inverters, DG sets. Etc. Estimation of utilities **Utilities Audit** CET 1512E - Project Management: Case Study Approach (Chemical Engineering Department) Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non technical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process. **CET 1606E – Advanced Materials (Chemical Engineering Department)** Nanostructured Materials: Metal nano particles, their structure and properties Carbon nano tubes: manufacture, properties and applications. Nano materials in catalysis.

Composite Materials: Polymer composites, metal-metal composites, polymer-metal

composites, metal- ceramic composites.

Superconducting Materials: Principles of superconductivity, properties, advantages

and limitations of superconductors. Applications

superconductors

Smart Materials: Shape memory alloys, Auxetic materials and Biomimmicking

materials. Stimulii for sensors and actuators.

CET 1513E – Process Systems Engineering (Chemical Engineering Department)

Introduction to Systems Engineering: Systems and their origin, examples of problems in Systems Engineering

Foundations of Systems Engineering: Scope and Formulation of Engineering Problems, Goals, Objectives, Specifications and Constraints, Types of Models; Hierarchical decomposition of systems, Types of Problems: Forward solution and inversion of models

Structural Analysis of Systems: Graphs and digraphs: Representation of systems, Partitioning and Precedence Ordering of systems, Structural analysis of modeling equations, Structural controllability and observability of systems, Applications to engineering problems

Steady State Analysis of Systems: Formulating steady-state models and simulations, Degrees of freedom and design specifications, The Sequential-Modular Strategy, The Equation-Oriented Strategy, Applications to engineering problems

Optimization of Systems: Theory and Algorithms: Basic concepts and definitions, Linear programming, Unconstrained nonlinear optimization, Nonlinear Programming, Combinatorial optimization, Applications to engineering problems

Simulation of Dynamic Systems: Basic concepts: Systems described by ODEs and DAEs, Formulating dynamic simulations; consistent initialization, Numerical integration of ODEs and DAEs, Modeling-simulation of hybrid Discrete/Continuous systems, Applications to engineering systems

Model-Based Process Control: The nature of feedback control, The concept of model-based control systems, Design and analysis of model-based control systems applications

CET 1106 – CFD applications in chemical processes (Chemical Engineering Department)

Derivation of equations of momentum and energy for turbulent flows.

Finite volume technique

One dimensional heat conduction and flow

Grid generation

Space and time discretization

Pressure velocity coupling (simple, simpler & SIMPLEC)

OpenFOAM software, simulation of pipe flow, backward step, flow past cylinder

Commercial software, simulation of pipe flow, backward step, flow past cylinder, stirred vessel, bubble column, cyclone separator, spray dryer etc.

Suggested Books:

Versteeg and malalasekera, "An introduction to computational fluid dynamics. The finite volume method", (2007)

Patankar S., "Numerical heat transfer and fluid flow", (1980)

CET 1407 – Process Design of Heat and Mass Transfer Equipment

(3 Credits: 2 Lectures + 1 Tutorial – 3 hours per week, 45 hrs total)

Advanced Process design aspects of various process equipments will be considered through several case studies; and will cover: hydrodynamic characteristics, heat and mass transfer characteristics, selection criteria, etc. The topics will include some of the following equipment (but not limited to):

- (1) Equipment for heat transfer: plate heat exchangers, plate fin exchangers, finned tube exchangers, thermo-siphon reboilers, evaporators, condensers, etc.
- (2) Equipment for Unit operations: plate and packed columns, spray towers, etc.
- (3) Equipment for Multiphase reactions: Stirred tanks, gas inducing reactors, bubble columns / modified bubble columns, air-lift reactors, packed and plate columns, trickle bed reactors, ejectors, etc.

CET 1408 Advanced Membrane Separations

Introduction: classification and definitions

Membrane Processes and their applications: Microfiltration, Ultrafiltration and micelle-enhanced ultrafiltration, Nanofiltration, Reverse osmosis, Dialysis, piezodialysis, electrodialysis, Pervaporation and membrane distillation, Gas permeation, Liquid membranes, Ion exchange membranes

Transport mechanisms, and mathematical modelling

Membranes: Design of membranes, Characterization

Polarisation and fouling: Polarisation phenomena and fouling concentration polarization, Characteristic flux behaviour in pressure driven membrane operation, Membrane fouling, Methods to reduce fouling

Process design: modules and configurations: Capillary, hollow fibre, tubular, Plate and frame, Spiral wound

Membrane reactors and their applications in biotechnology

Text books:

Mulder, M.H.V. Membrane Separations, Springer.

Philip, R., Wankat, C. Rate-Based Separations, Springer.

Reference books:

Nunes, S.P., Peinemann, K.V. Membrane Technology in the Chemical Industry, Wiley.

Rautanbach and R. Albrecht, Membrane Processes, Wiley.

Crespo, J.G., Bodekes, K.W. Membrane Processes in Separation and Purification, Kluwer Academic Publications.

Geankoplis, C.J. Transport Processes and Unit Operations, Prentice-Hall.

CET 1607 Biomaterials: Biodegradable Materials for Biomedical Applications

Introduction of Biomaterials

Biomaterials Surfaces: Structure and Properties, Surface Energy

Adsorption and Reconstruction at Surfaces,

Protein-Surface Interactions

Proteins: Structure, Properties, Functions, Protein Adsorption: Complex Phenomena, Measurement

Cell-Surface Interactions: Host Response to Biomaterials: Cell adhesion mechanism, coagulation cascade, immune response

Surface Characterization: AES, XPS, AFM, Contact Angle

Quantifying Cell Behavior: Cell Culture, Cellular Assays

Biosensors and Diagnostic devices

Drug Delivery: Controlled Release, Diffusion Controlled and Membrane based devices, Mechanical Pumps

Biomaterial for Organ Replacement

Mechanical Properties, Bone Substitutes

Introduction of Tissue Engineering: Cell, Scaffold design, Artificial liver, pancreas, cartilage Regulatory overview

Text Books:

Ratner, Buddy D., et al. Biomaterials Science: An Introduction to Materials in Medicine. 2nd ed. Burlington, MA: Academic Press, 2004. ISBN: 9780125824637.

MAT XXXXE: Machine Learning

Machine Learning Concepts: Mean Square Error (MSE), Training Error, Test Error, Biasvariance trade-off, Measuring the quality of fit, Regression Diagnostics, Understanding the concept of model flexibility and prediction accuracy, Universal behaviour of Training and Test MSE. Case study of linear regression with K-nearest neighbour regression

Model Selection and Regularization: Validation set approach, Leave-One-Out-Cross-Validation, K-fold cross validation, Best subset selection, Forward Selection, Backward selection, Hybrid selection, shrinkage methods: Ridge regression, Lasso, Least angle regression.

Decision Trees, Bagging and Boosting, Random Forests, Gradient Boosting, Artificial Neural Network

Classification problem: Logistic Regression, Support Vector Machines, Receiver operating characteristic (ROC) curves, Area under the curve (AUC) and other related accuracy measures Multivariate methods: Principal Component Analysis, Factor Analysis, Principal component regression, K-means clustering, Hierarchical Clustering, Multi-dimensional scaling

Text Books:

- 1.Andreas C. Müller and Sarah Guido, Introduction to Machine Learning with Python: David Barber A Guide for Data Scientists, (2016), O'Reilly Media.
- 2. Hands on Machine Learning with R by Bradley Boehmke and Brandon Greenwell, CRC Press, 2020.
- 3.Introduction to Statistical Learning with Application in R by James, G., Witten, D., Hastie, T. and Tibshirani, R, 2011.
- 4. All of Statistics: A concise course on Statistical Inference by Larry Wasserman, 2009.

- 5. The Elements of Statistical Learning by Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie (2001), Springer.
- 6. Ethem Alpaydin, Introduction to Machine Learning by (2004), The MIT Press, Cambridge.
- 7. Ian H. Witten, Eibe Frank, Mark A. Hall, Data Mining: Practical Machine Learning Tools and Techniques by (2011), Elsevier
- 8. Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series) by Kevin P. Murphy (2012)

MAT XXXXE: Optimization Techniques

Review of local maximum/minimum

Method of Lagrange Multipliers and KKT methods

One dimensional Optimization Techniques: Fibonacci search method, Golden section method and interpolation method.

Direct Search unconstrained optimization: Powell's method, Nelder-Mead (simplex) method Gradient Search Optimization Methods: Steepest Descent Method, Newton's Method, Conjugate gradient methods

Linear Programming: Simplex Method, Revised Simplex Method and other Advanced Methods, Integer Programming

Modern Optimization Techniques; Genetic Algorithms, Simulated Annealing, Ant Colony Optimization

Textbooks:

- 1. Engineering Optimization: theory and practices, S.S. Rao, New Age International Pvt. Ltd.
- 2. An Introduction to Optimization, Edvin K. P. Chong & Stanislab H. Zak, Wiley Publication
- 3. Optimization for Engineering Design, K. Deb, Prentice Hall, India

HUT 1102E: Perspectives of Society, Science and Technology

History of Science and Technology and its relevance in the respective era

Recent developments in technology (chemical, biotechnology energy, telecommunications, etc.) and their influence on society

Economics and Sustainable Development

Value system and Ethics in the profession of Technology, Science and Engineering.

Problems before the World and India. Various approaches in solving them.

Integrating Issue: Society and Science

Industrial disasters and their effect on science and technology and society

Environmental degradation, global warming and their effect on science and technology and society

IPR issues and their relevance to science and technology and society

Some aspects of future of Society, Technology, Science and Engineering.

Interdependence of Theology and Science

Impact of climate change on the nexus of water, energy and water

Technology and World Peace Role of Innovation and R&D

Industry-Academia Interaction to Enhance Standard of Living

Textbooks:

Science, Technology and Society: An Encyclopedia by Sal Restivo, Oxford University Press 2005

Science, Technology and Society: A Sociological Appraoach by Wenda K. Bauchspies, Jennifer Croissant, Sal P. Restivo

Vision of STS: Counterpoints in Science Technology and Society Studies by Stephan H. Cutcliffe, Carl Mitcham, Sunny Press 2012