INSTITUTE OF CHEMICAL TECHNOLOGY Master of Chemical Engineering (M. Chem. Engg.) Syllabus (2021 – 2022)

The revised syllabus comes into effect for first year Master of Chemical Engineering students from the academic year, July 2021.

			H	r/We	Week Marks				
No.	Subject	Credit	L	Т	Р	Continuous Assessment	Mid-semester Examination	Final Examination	Total
	a		1		SI	EMESTER I			1
CET 2151	Core I: Advanced Transport Phenomena	3	2	1	0	10	15	25	50
CET 2152	Core II: Thermodynamics of Phase Equilibria	3	2	1	0	10	15	25	50
CET 2153	Core III: Advanced Reaction Engineering	3	2	1	0	10	15	25	50
CET 2161	Chemical Safety and Risk Management	3	2	1	0	10	15	25	50
CET	Elective I	3	2	1	0	10	15	25	50
HUP 2101	Research Methodology	4	2	0	4	25		25	50
CEP 2351	Chemical Engineering Laboratory	3	0	0	6	25		25	50
CEP 2353	Research Project I: Seminar: Literature Review Related to topic other than Research Project	2	0	0	4			30 (Report) 20 (Presentation)	50
	TOTAL:	24	12	5	14				400
				1	SE	MESTER II			1
CET 2154	Core IV: Advanced Separation Processes	3	2	1	0	10	15	25	50
CET 2155	Core V: Advanced Mass transfer	3	2	1	0	10	15	25	50
CET 2156	Core VI: Multiphase Reactor Engineering	3	2	1	0	10	15	25	50
	Elective II	3	2	1	0	10	15	25	50
	Elective III	3	2	1	0	10	15	25	50
CEP 2354	Process Simulation and Modelling Laboratory	3	0	0	6	25		25	50
CEP 2355	Research Project II	6	0	0	12			60 (Report) 40 (Presentation)	100
	TOTAL:	24	10	5	18				400
				SEM	EST	ERS III (CEP 2	356)		
Resea	rch Project III: 24 credi	its							
				Se	mest	er IV (CEP 235	7)		
Resea	rch Project IV: 24 Cred	lits							

Syllabus Details for the degree of Master of Chemical Engineering Course

Semester - I

	Course Code: CET 2151	Course Title: Advanced Transport Phenomena	ena Credi				
			L	Τ	P		
	Semester: I	Total contact hours: 45	2	1	0		
			<u> </u>				
	Сол	rse Outcomes (students will be able to)					
1	Calculate pressure drop in pipel	lines and equipment for different situations such as single- and two-		K3			
	phase flow, fixed and fluidized l	peds (K3)					
2	Describe and discuss equation o	f motion for turbulent flows (K2)		K2			
3	Design various components of H	Ieat transfer equipment (K5)	<u> </u>	K5			
4	Compare various heat transfer situation (K5)		K5				
		List of Prerequisite Courses					
1	Mathematics course involving p	artial and ordinary different equations					
2	Physics course involving fluids,	Basic concepts of viscosity, stress and strain in fluids.					
3	Basic fluid flow course involvin	g equation of continuity, motion and related laminar flow problems.					
	List of	Courses where this course will be prerequisite					
1	CET 2156 Multiphase Reactor H	Engineering					
2	CEP 2354 Process Simulation at	nd Modeling Laboratory					
	Description of re	elevance of this course in the M. Chem. Engg. Program	i i				
This	course introduces advanced cor	ncepts of momentum transfer and heat transfer to students. Various	conce	epts su	ich as		
press	sure, momentum, energy, heat tra	nsfer, heat exchangers and their design are introduced. Laws related t	o con	servat	ion of		
mom	nentum, energy are taught. App	lications of these laws to various engineering situations and proc	ess e	quipm	ent is		
expla	ained with the help of several pro	blems.					
	~		_				
	Cours	se Contents (Topics and subtopics)	Rec	<u>ld. ho</u>	ours		
1	Turbulent flow: basics, Reynold	ls average Navier-Stokes equations, closure problem, Boussinesques		10			
	hypothesis, Prandtl mixing leng	th theory, turbulence models, energy spectrum, 1 urbulent boundary					
	layer, universal velocity profile						
2	Gas-liquid and solid-liquid fluid	dised beds: Characteristics of particles Principle of fluidisation and		10			
-	mapping of various regimes,	Two phase theory of fluidisation, Bubbles in fluidised bed,		10			
	Entrainment and Elutriation, Fa	st fluidised bed, Mixing, segregation and gas dispersion, Heat and					
	mass transfer in fluidised bed,	Solid-liquid fluidised bed and three phase fluidised bed, Design of					
	fluidised bed reactors						
3	Forced and natural convective h	eat transfer, analogies of momentum and heat transfer, Heat transfer		10			
	with phase change						
4	Design aspects of shell-and-tub	be heat exchangers (NTU-epsilon method; Bell-Delaware method),		10			
	plate heat exchangers and spira	al heat exchangers; Flow-stream analysis, Design of compact heat					
	exchangers, Design aspects of c	ondensers, reboilers, and evaporators					
5	Padiation hast transfer concents	Angle factor calculations. Padiation calculation through gases and		5			
5	vapours design methods for fur	naces		5			
	vapours, design methods for fur	List of Toythooks	<u> </u>				
	Transport Dhanomana P. B. Bir	A WE Stowart E N Lightfoot	r				
	Transport Phenomena R S Bro	dkey					
	Momentum Heat and Mass Tra	nsfer Bennet and Myers					
	Fluid Mechanics. Pijush K. Kun	du					
	Turbulent Flows: Fundamentals	Experiments and Modeling by G. Biswas. V. Eswaran					
	Transport Phenomena, R.B. Bird	d, W.E. Stewart, E.N. Lightfoot					
	Heat Transfer: Jack P. Holman						
	List of A	Additional Reading Material / Reference Books					
		0					

	Course Code: CET 2152	Course Title: Thermodynamics of Phase Equilibria	Cre	dits =	= 3	
			L	Τ	Ρ	
	Semester: I	Total contact hours: 45	2	1	0	
	1					
	Cou	rse Outcomes (students will be able to)				
1	Students would be able to calcul	ate various thermodynamic properties from equations of state (K3)				
2	Students would be able to calc	ulate the vapor pressure - temperature relationship for pure single		K3		
	component in vapour – liquid eq	uilibrium (K3)				
3	Students would be able to ca	lculate various thermodynamic properties like fugacity, activity		K3		
4	coefficients for binary mixtures	in various states (K3)		170		
4	Students would be able to calcu	late equilibrium compositions of binary mixtures for various fluid-		K3		
5	Students would be able to apply		V/			
5	Students would be able to do have	$K_{\rm rescale}$ and correlate the equilibrium data for binary phase equilibria (K4)		K4 K6		
0	Students would be able to do bas	List of Pronoguisite Courses		KU		
1	Desis second in mothematics the	List of Prerequisite Courses	1			
1	Basic course in mathematics, the	ermodynamics, physical chemistry.				
2	Kinetic theory of gases, ideal ga	s law, vapor pressure, kaouns law				
-	List of	Courses where this course will be prerequisite	1			
1	CET 2154 Advanced Separation	Processes				
	Description of re	elevance of this course in the M. Chem. Engg. Program	1			
The	rmodynamics sets hard limits on	performance of processes and equipment. This course gives studen	its the	1ns1gh	nts of	
phas	se equilibrium along with in depth	understanding of Fugacity.	-			
	Cours	se Contents (Topics and subtopics)	Req	d. ho	urs	
1	Introduction to molecular therm	dynamics of fluid phase equilibrium		~		
	ma oddetion to molecular alerm	Dignames of fund phase equinorium		5		
2	Applications of phase equilib	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid		5		
2	Applications of phase equilibre equilibria.	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems. Gibbs - Duhem equation.		5		
2 3	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity		5 5 5		
2 3 4	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure		5 5 5 5		
2 3 4	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure		5 5 5 5		
2 3 4 5	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure		5 5 5 5 5		
2 3 4 5	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretation	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure rial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure,		5 5 5 5 5		
2 3 4 5	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretati Redlich - Kwong equation of sta	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure trial equation of state, fugacities from Virial equation, third Virial cons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases		5 5 5 5 5		
2 3 4 5 6	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretation Redlich - Kwong equation of sta Fugacities in liquid mixtures:	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure rial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of		5 5 5 5 5 5		
2 3 4 5 6	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretation Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expanse	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure rial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of sion for excess Gibbs energy, equations of van der Waal, Wilson and		5 5 5 5 5 5 5		
2 3 4 5 6	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretati Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coe	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure trial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of sion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility		5 5 5 5 5 5		
2 3 4 5 6 7	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretati Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coe Intermolecular Forces and the	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure trial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of sion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility theory of corresponding states - potential energy functions for		5 5 5 5 5 5 5 5		
2 3 4 5 6 7	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vic coefficient, chemical interpretation Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coef Intermolecular Forces and the different molecular systems; Pol	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure trial equation of state, fugacities from Virial equation, third Virial cons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of bion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility theory of corresponding states - potential energy functions for ar and non-polar molecules		5 5 5 5 5 5 5 5		
2 3 4 5 6 7 8	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretation Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coef Intermolecular Forces and the different molecular systems; Pol Liquid phase models: van Laar Elory, Hugging theory	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure rial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of sion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility theory of corresponding states - potential energy functions for ar and non-polar molecules , Scatchard-Hildebrand theory, Lattice theory, two liquid theories,		5 5 5 5 5 5 5 10		
2 3 4 5 6 7 8	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretati Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coe Intermolecular Forces and the different molecular systems; Pol Liquid phase models: van Laar Flory - Huggins theory.	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure rial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of sion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility theory of corresponding states - potential energy functions for ar and non-polar molecules c, Scatchard-Hildebrand theory, Lattice theory, two liquid theories,		5 5 5 5 5 5 5 10		
2 3 4 5 6 7 8	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretati Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coe Intermolecular Forces and the different molecular systems; Pol Liquid phase models: van Laar Flory - Huggins theory.	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure trial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of sion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility theory of corresponding states - potential energy functions for ar and non-polar molecules by Scatchard-Hildebrand theory, Lattice theory, two liquid theories, List of Textbooks		5 5 5 5 5 5 5 10		
2 3 4 5 6 7 8	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vic coefficient, chemical interpretati Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coe Intermolecular Forces and the different molecular systems; Pol Liquid phase models: van Laar Flory - Huggins theory.	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure trial equation of state, fugacities from Virial equation, third Virial cons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of sion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility theory of corresponding states - potential energy functions for ar and non-polar molecules , Scatchard-Hildebrand theory, Lattice theory, two liquid theories, <u>List of Textbooks</u> ynamics, Smith, Van Ness ynamics, T E Daubert		5 5 5 5 5 5 5 10		
2 3 4 5 6 7 8	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vic coefficient, chemical interpretation Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coe Intermolecular Forces and the different molecular systems; Pol Liquid phase models: van Laar Flory - Huggins theory.	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure trial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of bion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility theory of corresponding states - potential energy functions for ar and non-polar molecules c, Scatchard-Hildebrand theory, Lattice theory, two liquid theories, List of Textbooks ynamics, Smith, Van Ness ynamics, R E Balzbiser		5 5 5 5 5 5 10		
2 3 4 5 6 7 8	Applications of phase equilibre equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretation Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coef Intermolecular Forces and the different molecular systems; Pol Liquid phase models: van Laar Flory - Huggins theory. Chemical Engineering Thermod Chemical Engineering Thermod Chemical Engineering Thermod	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure rial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of sion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility theory of corresponding states - potential energy functions for ar and non-polar molecules , Scatchard-Hildebrand theory, Lattice theory, two liquid theories, List of Textbooks ynamics, Smith, Van Ness ynamics, R.E. Balzhiser ynamics, B F. Dodge		5 5 5 5 5 5 10		
2 3 4 5 6 7 8	Applications of phase equilibred and applications of phase equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vic coefficient, chemical interpretation Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coefficient molecular Forces and the different molecular systems; Polfic Liquid phase models: van Laar Flory - Huggins theory. Chemical Engineering Thermod Chemical Engineering Thermod	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure rial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of sion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility theory of corresponding states - potential energy functions for ar and non-polar molecules , Scatchard-Hildebrand theory, Lattice theory, two liquid theories, <u>List of Textbooks</u> ynamics, Smith, Van Ness ynamics, R.E. Balzhiser ynamics, B.F. Dodge ynamics, S.I. Sandler		5 5 5 5 5 5 5 10		
2 3 4 5 6 7 8	Applications of phase equilibred equilibria. Classical thermodynamics of ph chemical potential, fugacity and Thermodynamic properties from liquid or solid Fugacities in gas mixtures - Vi coefficient, chemical interpretati Redlich - Kwong equation of sta Fugacities in liquid mixtures: equilibrium data, Wohl's expans Renon equations for activity coe Intermolecular Forces and the different molecular systems; Pol Liquid phase models: van Laar Flory - Huggins theory. Chemical Engineering Thermod Chemical Engineering Thermod	rium to vapor liquid, liquid-liquid, solid-liquid and gas-liquid ase equilibrium - open and closed systems, Gibbs - Duhem equation, activity volumetric data / fugacities at moderate pressure, fugacity of a pure rial equation of state, fugacities from Virial equation, third Virial ons of deviation from gas phase ideality, fugacities at high pressure, te, solubility of solids and liquids in compressed gases excess functions, activity and activity coefficient, testing of sion for excess Gibbs energy, equations of van der Waal, Wilson and fficient. Thermodynamic criteria of miscibility theory of corresponding states - potential energy functions for ar and non-polar molecules , Scatchard-Hildebrand theory, Lattice theory, two liquid theories, List of Textbooks ynamics, T.E. Daubert ynamics, B.F. Dodge ynamics, S.I. Sandler Fluid Phase Equilibria, J.M. Prausnitz		5 5 5 5 5 5 10		

List of Additional Reading Material / Reference Books					

	Course Code: CET 2153	Course Title: Advanced Reaction Engineering	Cre	= 3		
			L	Τ	Р	
	Semester: I	Total contact hours: 45	2	1	1	
-	1					
	Cou	rse Outcomes (students will be able to)				
1	Describe and discuss principles	of various types of reactors (K2)		K3		
2	Calculate rates of reactions based on given reaction scheme (K3)					
3	Design various components of reactors used in industrial practice (K5)					
4	Compare various reactors and se	lect an appropriate reactor for a given situation (K5)		K5		
		List of Prerequisite Courses				
1	Basic course in physical Chen partial differential equations.	histry, Kinetics, Mathematics involving solutions of ordinary and				
2	Basic course in reaction enginee	ring, concepts of plug flow and continuous stirred tank reactor				
	List of	Courses where this course will be prerequisite				
1	CEP 2354 Process Simulation and	nd Modeling Laboratory				
	Description of re	elevance of this course in the M. Chem. Engg. Program	1			
Adva is ve conc	anced Reaction Engineering is co ery relevant but not limited to the cepts related to design, analysis an	following industries: Pharmaceuticals, Petrochemical, Fine chemical d modeling of chemical reactors are covered in this course.	scale. s, etc	This c . Adv	anced	
	Cours	e Contents (Topics and subtopics)	Rec	q <mark>d.</mark> ho	ours	
1	Design of ideal reactors with hea	t effects, multiple steady states and reactor stability		12		
2	Non-ideal flow in reactors; RT tanks in series model, design a reactors	D, Estimation of dispersion/backmixing, dispersed plug flow and spects of reactors with non-ideal flow, micro and meso mixing in		9		
3	Kinetics of solid-catalysed fluid of rate equations for solid cataly Estimation of kinetic paramete particles. Design aspects of soli	phase reactions: Mechanisms of Catalytic Reactions, Development sed fluid phase reactions, Diffusion with reaction in porous catalyst, rs External/internal mass and heat transfer resistances in catalyst d catalyzed reactions	ent 12 vst, yst			
4	Fluid – Fluid Reactions: Mass contactors, design aspects of flui	transfer with chemical reaction (regimes and examples), model $d -$ fluid reactors		12		
		List of Textbooks				
	Chemical Reaction Engineering,	O. Levenspiel				
	Elements of Chemical Reaction	Engineering, H. Scott Foggler				
	Heterogeneous Reactions vol. I	and II, L.K. Doraiswamy, M.M. Sharma				
	Mass Transfer with Chemical Re	eaction, G. Astarita				
	List of A	dditional Reading Material / Reference Books	T			

	Course Code: 2161	Course	Title:	Chemical	Safety	and Risk	c Cr	edits	= 3
		Managen	nent		·		L	Т	Р
	Semester: I	Total cor	ntact hou	rs: 45			2	1	0
	Cou	rea Autor	mas (stu	donts will be	abla ta)			
1	To list principles of safety risk	nanagement	and mater	uciits will De		••)		K 1	
2	To define sefety principles, proc	nanagement	dords and r	agulations				K1 K1	
2	To describe safety aspects relate	d to chemic	ualus allu l ols fires el	eguiations	ans atc			K1 K2	
- 3	To apply SHE principles and its	managemen	at in the ind	ustry	ens etc.			K2 K3	
5	To assess the risks and environn	nanagemen pental impac	t of project	usu y				K/	
6	To perform tasks such as hazard	identificatio	on or plant	avout etc				K3	
0	10 perform tasks such as hazard	I i	st of Prere	auisite Courses				KJ	
1	Environmental Engineering and	Process Safe	etv: Proces	s Development a	nd Engineer	ing			
1	Lifthonnental Engineering and	of Courses	where thi	s course will be	nrerequisit	a a			
1	This course will be useful for ad	vanced level	l course on	chemical proces	s safety				
1	Description	of relevance	of this co	urse in the M	hem Engo	Program			
This	course will provide key informat	ion on sever	al safety-re	lated aspects in	the chemica	l industry or rese	arch 1	ahorato	ories
11113		urse Conter	ats (Topics	and subtonics)	the enerned	i medisity of rese	Rec	nd hor	ire
1	U Introduction to Safety and Ris	k Managar	nis (Topics	and subtopics)			Neg	<u>u. not</u> 2	11.5
1	Major industrial disasters and ex	K Managen	afety and ri	sk management				5	
2	Material bazard - CHS MSD -	nhysical he	arety and the	c hazard and ec	o-toxicity			4	
2	MSDS (Material Safety Data St	physical na	nt MSDS	uniformity in M	SDS details	s of MSDS_LD_	0	-	
	& I D ₁₀ dosage values: TI V S	FFI Flash	Vanour pr	essure: Globally	Harmonize	d System (GHS)	0		
	R&S nhrases		vapour pro	essure, Globally	marmonize	d System (OHS)	,		
3	PSM elements							2	
5	Why PSM: Overview of 14 elen	nents						2	
4	Hazard evaluation techniques	- What-If. (Checklist	HAZOP FEM	A etc.			3	
-	Overview of each of HAZOP	& HAZAN	Analysis.	Cause and Cou	isequence A	analysis [.] FEMA		5	
	LOPA: Fault Tree Analysis: OR	A	7 mary 515,	euuse und eon	isequence 7	indry 515, 1 Elvin	,		
5	Hazard identification and asse	ssment – 1.	Basic					2	
-	Hazard identification, assessmer	it & measure	es					_	
6	Flammability and fire safety-e	xtinguisher	s					2	
	Fire types, Types of fire extingu	ishers, Agen	- its for fire-f	fighting, Fire hyd	lrant				
7	SHE regulations in India- Fac	tories act, w	ater and e	nvironment act				2	
	Statutory regulations in India;	Codes and	Standards:	Scenario at pr	esent and v	vision for future	;		
	Factory Act.			1			·		
8	Human elements in safety-beh	aviour safet	ty					2	
9	Laboratory safety							2	
	Basics and Dos & Do nots								
10	Basic OSH							1	
	Occupational hygiene basics								
11	Compliance to statutory safety	' audits						1	
	Overview of safety audits based	on ISO stan	dards (140	00)					
12	Biosafety							6	
	Biohazards; Basic microbiolog	y of pathog	ens; Patho	genic risks; Co	ntainment;	Biosafety levels	;		
	Laboratory facilities for handl	ing pathoge	ens; Person	nal protective e	quipment;	Disinfection and	1		
	decontamination; Biohazard was	te disposal;	Emergency	/ measures					
13	Plant layout based on process	safety & fir	e safety-fiı	e hydrant syste	m design			1	
	Solvent yard, warehouse and pla	nt layout wi	th design o	f fire safety syst	em				
14	Management Practice in SHE	in Plant Op	eration					3	
1	Man-management, organizatio	n managem	nent, polic	y management	; Fundame	entals of safety	y		

	management systems for occupational safety, job hazard analysis (confined space, height safety, hot	
	jobs); Chemical and plant security; Cyber security as applicable to Chemical Projects; Management	
	of change; Incident reporting and investigation; Human elements in safety, ergonomics and	
	behavioral safety	
15	Hazard assessment – 2. Process safety, thermal safety, dust explosion etc.	2
	Inherent safety concepts for processes and unit operations; Powder handling hazards - dust explosion	
16	Safety in utilities	2
	Safety in electrical power generation units including nuclear, steam boilers, boiler feed water,	
	thermic fluids, transformers	
17	Storage, handling and transportation of hazardous substances	3
	Safety provisions during transport of petroleum products including LNG and other hazardous	
	materials by ship, rail, air cargo and roads; transport emergency; isolated storage; warehouses; color	
	coding of pipelines; inventory management; packaging and labelling.	
18	Environmental Impact Assessment	2
	Environmental impact and risk assessment (EIRA), risks of projects, process related risks,	
	measurement and monitoring tools	
19	Emergency response plan	2
	Hazard identification and elements of emergency response plan; OHC categorization, control	
	banding and precautions while handling substances; GMP principles	
	List of Textbooks	
1	Elements of Industrial Hazards; Ratan Raj Tatiya, CRC Press	
2	Ciambrone, D. F., Environmental Life Cycle Analysis, CRC Press	
	List of Additional Reading Material / Reference Books	
1	Handbook on Life Cycle Assessment: Operational guide to ISO standards, Kluwer Academic Pub.	

	Course Code: HUP 2101	Course Title: Research Methodology	Cre	= 4					
			L	Т	Р				
	Semester: I	Total contact hours: 90	2	0	4				
	Course Outcomes (students will be able to)								
1	Understand the basic concepts o	f research and the components therein, formally		K2					
2	Understand and appreciate the	significance of statistics in Chemical Technology, Pharmacy and		K2					
	Chemical Engineering								
3	Understand and apply importance of literature survey in research design								
4	Understand an in-depth knowledge on the documentation in research KZ								
5	5 Evaluate importance of various parts of a research report/paper/thesis in presentation of research K4			K4					
	results								
6	Prepare and Deliver a model research presentation								
7	Understand the significance of v	arious types of IPRs in research		K1					
8	Create a model research project			K6					
		List of Prerequisite Courses							
1	Previous (during undergraduate)	exposure to research project(s) is desirable but not necessary							
	List of	Courses where this course will be prerequisite							
1	Research Project I (CEP 2353)								
	Description of re	elevance of this course in the M. Chem. Engg. Program	1						
The	formal exposure to various elem	ents of research methods such as problem formulation, literature se	arch,	planni	ng of				
vario	ous activities, documentation, bu	dgeting, purchase, report/thesis compilation, manuscript writing, p	atent	draftii	ng, is				
critic	cal for polishing the naïve researc	h attitude and aptitude in the PG students of the programme. The cou	rse is	design	ied to				
form	ally introduce various concepts o	f research methodology in stepwise manner to the students							

	Course Contents (Topics and subtopics)	Read, hours
1	Introduction of Course	3
•	Academic Honesty Practices	0
	General philosophy of science & Arguing About Knowledge	
	Case studies in science history	
2	Motivation and Background	3
	Motivation/Demotivation for Research, Building Background for Research and How to read	
	research papers	
3	Time Management (Academic and Non-academic time), Effort Management, Plan execution,	6
	Energy Management Issue, Role and expectation of research supervisor and student	
4	Finding and Solving Research Problems	6
	What is Research, How to start?, Approaches to find research problems and psychological	
	experiments	
	Literature survey, Textbooks, Review and research papers	
	How to ask Questions	
	What is worthwhile research problem, Analytical and synthetic research approach	
5	Finding and Solving Research Problems	6
	What is Research, How to start?, Approaches to find research problems and psychological	
	experiments	
	Literature survey, Textbooks, Review and research papers, critical review of research papers, how to	
	write literature survey report, How to ask Questions, formulating research questions,	
6	What is worthwhile research problem, Analytical and synthetic research approaches	6
	How to solve research problems, designing work plan, importance of objectives, activity and	
	strategizing research work. Design of timeline for work plan (Gnatt Chart etc), Grant Writing	
	Guidelines	
7	Experimental Research	6
	Inventory Management, Material Management	
	Learning required skills for research, Documentation and lab notebook guidelines,	
0	Safety aspects in chemical/biological research	0
8	Methods and lools used in Research: Qualitative studies; Quantitative studies; Simple data	9
	Organization, Descriptive data analysis, Limitations and sources of error, inquiries in form of	
	Questionnaire, Opinionnaire of by interview, Statistical analysis of data including variance, Standard deviation, Students 't' test and Analysis of variance, (ANOVA). Correlation data and its	
	interpretation. Computer data analysis of variance (ANOVA), Conclation data and its	
0	Scientific Writing	10
2	Skeleton of research paper author guidelines good writing skills importance of discussion Macro-	12
	level discussion	
	Structure of the documents General issues of presentability Micro-level discussion	
	Stylistic issues	
	Examples of bad and good writings.	
10	Publishing and Reviewing	3
10	Publication process. How to publish papers, where to submit. Review process and reacting to a	5
	review report	
	Reviewing scientific papers	
11	Scientific Norms and Conventions	3
	Authorship.	5
	Plagiarism.	
	Simultaneous submissions. Reviewing norms. Referring to other papers. Use of data.	
	Collaborative Research Work	
12	Presentation (Oral/Poster): Importance, types, different skills; Content of presentation. format of	6
	model, Introduction and ending; Posture, Gestures, Eye contact, facial expressions stage fright:	-
	Volume- pitch, speed, pauses & language; Visual aids and seating; Questionnaire	
13	Introduction to Intellectual Property (IP) Aspects of Research (Patents and Trademarks, 24 Designs	6

	and Copyrights): The Patent System in India – Present status of Intellectual Property Rights (IPR),				
	Future changes expected in Indian Patents System; Advantages; The Science in Law, Turimetrics				
	(Introduction); What may be patented; Who may apply for patent; Preparation of patent document;				
	Registration of patent in foreign countries and vice-versa				
List of Textbooks					
	Menzel, D.; Writing a Technical Paper; McGraw-Hill, United States (1961).				
	Best, J. W., Kahn, J. V., Jha, A. K.; Research in Education; 10th ed.; Pearson, New Delhi, India				
	(2005)				
List of Additional Reading Material / Reference Books					

	Course Code:	Course Title: Elective I	Cree	: 3					
			L	Т	Р				
	Semester:	Total contact hours: 45	2	1	0				
Cano cons	Candidate will have to choose one of the elective subjects offered for that semester from the elective subjects. A consolidated list of all the elective subjects is given at the end.								

	Course Code: CEP 2351	Course Title: Chemical Engineering Laboratory	Cre	dits	= 3	
			L	Τ	P	
	Semester:	Total contact hours: 90	0	0	6	
	Cou	urse Outcomes (students will be able to)				
1	Learn how to experimentally ve	erify various theoretical principles				
2	Visualize practical implementat	ion of chemical engineering equipments				
3	Develop experimental skills					
		List of Prerequisite Courses				
1	All Chemical Engineering Subj	ects				
	List of	Courses where this course will be prerequisite				
	Description of r	elevance of this course in the M. Chem. Engg. Program	n			
Chemical Engineering lab provides students the experience of verifying various theoretical concepts learnt in the courses. It also exposes them to practical versions of typical chemical engineering equipments and servers as a bribetween theory and practice. This particular lab focuses on fluid mechanics, mass transfer, heat transfer thermodynamics.						
	Cour	se Contents (Topics and subtopics)	Rec	qd. h	ours	
1	Flow through pipes, coils and Flow through packed beds. To Fluidization. Solid-liquid sep- exchangers. Heat transfer in pa Diffusion. Absorption in a Differential and steam distillation of ideal and non-ideal reactors. liquid and liquid-liquid equilibri of liquid fuels. Proximate and dryers, filters, evaporators.	fittings. Flow meters, orifice, venturi, rotameter and turbine meter. wo phase flow. Compressors, blowers and pumps. Sedimentation. aration. Mixing. Heat transfer in shell and tube, and plate heat cked and fluidized beds. Evaporators. Unsteady state heat transfer. packed column. Adsorption isotherms. Drying characteristics. on. Homogeneous kinetics. Kinetics of polymerisation, performance . Characteristics of control valves. Controller calibration. Vapour- rium studies. Calorific values of solid and gaseous fuels. Properties alysis of coal. Study of spray nozzles, impellers, tower packings, Demonstration of some phenomena, particularly in mixing, fluid				

	mechanics, etc. Absorption with and without chemical reactions in packed, plate and bubble columns. Distillation in packed and/or plate column. Humidification towers. Spray, packed and mechanically agitated extraction columns. Solid dissolution with or without chemical reaction; Sublimation of solids. Absorption/ion exchange in fixed beds. Separation by membranes. Residence time distribution in tubes and coils. Kinetics of solid catalysed liquid phase reactions. Mixing studies. Flow of non- Newtonian fluids. Analogy between momentum, heat and mass transfer. Dynamics of feedback control systems. Level and pH control. Demonstration of some important phenomena in Chemical Engineering, notably coalescence, foaming, internal circulations in drops and bubbles, two and three phase fluidization, aggregative and particulate fluidization, mixing, crystallization etc. Suitable number of experiments from the above list will be performed. In addition to these experiments, students will also undertake demonstration experiments related to advanced analytical instruments such as GC, HPLC, GC-MS, LC-MS, SEM, FTIR, UV-Vis Spectrophotometry, NMR, TEM, ICP, particle size analyzer etc. In this student will work in groups on these instruments or provide a reaction of the size analyzer etc. In this student will work in groups			
	on these instruments to make a report on theory, working principle, standard operating procedure and one case study as well as live demonstration at the end of laboratory session.			
List of Textbooks				
[Heat Transfer Laboratory: Orientation, Protocol and Design Methodology M. H. Divekar			

	Course Code: CEP 2353	Course Title: Research Project I	Credits =		2		
			L	Т	P		
	Semester: I	Total contact hours: 60	0	0	4		
The	be Research project Lis concerned with detailed and critical analysis of literature related to a topic other than the research						

The Research project I is concerned with detailed and critical analysis of literature related to a topic other than the research area, supervised by a faculty member other than the research guide. Candidate is expected to submit a report as per guidelines provided below which will be evaluated by the supervisor and an external examiner from the Department/Industry based on the presentation made by the candidate. A suitable combination of the marks for report and presentation will be considered for the final evaluation.

Guidelines

1. Typically, the report should contain the following:

- (a) Introduction: 2 pages maximum,
- (b) Exhaustive review of literature (including figures): 10 12 pages: 50% Weightage
- (c) Critical analysis of the literature and comments Critical analysis should also contain quantitative comparison of observations, results, and conclusion amongst the various papers.
- 2. Two typed copies of the report on thesis size bond paper (297 mm x 210 mm) are to be submitted to <u>Coordinator</u> on <u>time to be decided by the coordinator</u>. In addition, soft copy of the report should be uploaded on the portal. The detailed timetable for the presentation would be communicated.
- **3.** The report should be prepared using the Times Roman font (size 12) using 1 1/2 spacing leaving 1-inch margin on all sides producing approximately 29 lines per page. The report should be typed on one side of the paper and need not be bound in a hard cover binding. Figures and tables should be shown as a part of the running text. Each figure should be drawn inside a rectangular box of 12 cm width and 10 cm height. The figures must be sufficiently clear and hand drawn figures will be acceptable. Particular care must be taken if a figure is photocopied from source. Each figure must have a sequence number and caption below. Each table must have a sequence number and title at the top.
- **4.** Name of the student, title of the problem and year of examination must be indicated on the top cover. THE NAME OF THE SUPERVISOR (ONLY INITIALS) MUST APPEAR ON THE BOTTOM RIGHT CORNER OF THE TOP COVER.
- 5. The report must be precise. All important aspects of the topic should be considered and reported. The total number

of pages, including tables, figures, and references should not exceed 30. Chapters or subsections need not be started on new pages, while getting the report typed.

- **6.** Typographical errors in the report must be corrected by the student. The student will be discredited for any omission in the report. All the symbols used in the text should be arranged in an alphabetical order and given separately after conclusions.
- 7. The list of references should be arranged in alphabetical order of the names of authors. In the text, the reference should be cited with author's name and year. (author date style) For example:
- (i) The flow pattern in gas-liquid-solid fluidized bed has been reported in the published literature (Murooka et al., 1982).

OR

- (ii) Murooka et al. (1982) have measured flow patterns in gas-liquid-solid fluidized beds. The title of the article should also be included. The references must be given in the following standard format.
- (a) Format for listing references of articles from periodicals: Murooka S., Uchida K. And Kato Y., Recirculation Turbulent Flow of Liquid in Gas-Liquid-Solid Fluidised Bed", J. Chem. Engg. Japan, 15, 29-34 (1982).
- (b) Format for listing references of Books: Constant R.F.,"Crystallization, Academic Press, New York, pp. 89-90, 1968.
- (c) Format for listing Thesis: Niranjan K., "Hydrodynamic and Mass Transfer Characteristics of Packed Columns", Ph.D. (Tech.) Thesis, University of Mumbai, 1983.
- (d) Format for listing references of Patents in Chemical Abstracts: Cananaush R.M., U.S.Patent 2,647,141, Cf. C.A. 48, 82636 (1954).
- (e) Format for listing Handbooks, Tables, Symposia etc.: Kumar R and Kuloor N.R., "Formation of Drops and Bubbles", in Advances in Chemical Engineering, Vol.8, T.B. Drew et.al. (Eds.) New York, Academic Press, pp.256-364 (1970).
- (f) Format for listing Private Communications and other categories: Sharma, M.M., Private Communication (1984).
- **8.** Consistency of units should be maintained in the written report. SI systems should be used. [For SI system Ref: Ind. Chem. Engr., 24, 32, 3 (1983)]. Units used in the literature (if not SI) should be correctly converted.
- 9. The time allotted for the oral presentation is 20 minutes: additional 10 minutes are provided for questions and answers.
- **10.** INCOMPLETE AND CARELESSLY WRITTEN REPORT IS LIABLE TO BE REJECTED.
- **11.** The last date for submission will NOT be extended on any grounds whatsoever.
- **12.** There must not be any acknowledgment about the guidance by the faculty in the report.
- **13.** The report will be evaluated on the basis of (i) rational approach to the problem, ii) correctness and completeness of the written text and iii) performance in the oral presentation.
- **14.** Word-to-word copying from the published article is not permitted. Flowery language is not to be used.

	Course Outcomes (students will be able to)					
1	Student would be able to collect literature related to an assigned area	K1				
2	Student would be able to understand the lacunae in the literature	K2				
3	Student would be able to analyze the literature and present suitable guidelines	K4				
4	Student would be able to write a neat report following the guidelines	K2, K4				
5	Student would be able to propose a defined plan for the research	K6				
	List of Prerequisite Courses					
1	All Chemical Engineering courses					
	List of Courses where this course will be prerequisite					
1	CEP 2355 Research Project II					
Description of relevance of this course in the M. Chem. Engg. Program						
This	This course enables students to gather scientific information on a particular topic, analyze the information and present a					
writt	written and oral summary on that topic. This enables the students to function in a professional environment later on in their					

SEMESTER II

	Course Code: CET 2154	Course Title: Advanced Separation Processes	Credits		= 3
			L	Т	Р
	Semester: II	Total contact hours: 45	2	1	0
	Cou	rse Outcomes (students will be able to)			
1	Describe and discuss principle	es of various advanced separation processes based on membranes,		K2	
	chromatography, distillation, ex	tractions (K2)			
2	Design various components of e	equipment used in advanced separation processes (K5)		K5	
3	Compare various options and se	elect an appropriate process for a particular separation (K5)		К5	
1		List of Prerequisite Courses	r		
1	Basic course on mass transfer an	nd separation process			
	List of	Courses where this course will be prerequisite			
T 1 ·	Description of r	elevance of this course in the M. Chem. Engg. Program	<u> </u>	1	
I his	is a course further built up on	and in continuation with undergraduate level course on mass transformation and an experimentation and an experimentation of a second se	er and	d sepa	ration
proc	less. Advanced separation proces	s such as memorane-based separation, adsorption, etc. are covered in c	letan.		
	Cour	se Contents (Topics and subtopics)	Rec	<mark>ld.</mark> ho	ours
1	Revision of basic concepts	of Distillation, Design Aspects of multi-component distillation.		12	
	Principles of azeotropic and ex	tractive distillation processes, Residue Curve Maps. Use of ternary			
	diagrams for azeotropic and ex	tractive distillation. Designing separation strategy based on Residue			
2	Curve Maps.	1's '1 stand's XV. 's stand of the second stand state		10	
2	Revision of basic concepts of	inquid extraction. Various types of extraction equipment and their		12	
	feed streams using reflux and t	mixed solvents. Basic concepts and design calculations of Reactive			
	extraction Basic concepts and	calculations of separation factor for dissociation extraction			
3	Membrane Processes: Transpor	t processes involved in various membrane separation processes such		12	
	as ultrafiltration, nano-filtration	n, gas separation, reverse osmosis. Calculations of flux, separation			
	factor, and design aspects of va	rious membrane processes such as ultrafiltration, nano-filtration, gas			
	separation, reverse osmosis.				
4	Adsorption and Ion Exchange:	Thermodynamic aspects of adsorption and ion exchange equilibria.		9	
	Design aspects of fixed bed	adsorption, ion exchange processes, analysis and models for			
	breakthrough curves.				
		List of Textbooks	1		
	Separation Process Principles, A	Authors: J.D. Seader, E.J. Henley	ļ		
	Principles of Mass Transfer and	Separation Processes, B.K. Dutta			
L	List of A	Additional Reading Material / Reference Books			

	Course Code: CET 2155	Course Title: Advanced Mass Transfer Operations	Cre	dits =	= 3
			L	Т	Р
	Semester: II	Total contact hours: 45	2	1	0
	Cou	rse Outcomes (students will be able to)			
1	Describe and discuss principles	of various mass transfer operations (K2)		K2	
2	Calculate Mass transfer rates for	given mass transfer operation (K3)		K3	
3	Design various components of e	quipment used in mass transfer operations (K5)		K5	
4	Compare various options of n equipment / operation for a parti	hass transfer operations and equipment and select an appropriate cular situation (K5)		K5	
		List of Prerequisite Courses			
1	Basic course in fluid flow physic	cs and mathematics, basic course in mass transfer			
2	Diffusion, Film and penetration	theories			
	List of	Courses where this course will be prerequisite			
	Description of re	elevance of this course in the M. Chem. Engg. Program	1		
This	is a course further built up on an	d in continuation with undergraduate level course on mass transfer. I	Model	ing of	mass
trans	fer process with or without chem	ical reaction is explained in this course.			
-	C.		D	11	
1	Cours Thermodynamic binetic and b	se Contents (1 opics and subtopics)	Reg	a. no	ours
1	and generation of interfacial trai	arodynamic physical phenomena governing interfacial mass transfer		10	
2	Shell balances to set up lumped	parameter models and more sophisticated differential equation based		10	
	models to describe mass transfer	under various commonly encountered industrial situations.			
3	The Stefan-Maxwell Unified ap	proach to mass transfer.		5	
4	Standard algorithms for multico	mponent countercurrent mass transfer and their applicability.		8	
5	Mass Transfer equipment of Ind	ustrial significance and their quantitative characterization.		12	
		List of Textbooks			
	Principles of Mass Transfer and	Separation Processes, B.K. Dutta			
	Mass Transfer Operations, R.E.	Treybal			
	Chemical Engineering, Volume	2, J.M. Coulson, J.F. Kichardson			
	Transport Processes and Onit O	ion Process Principles C. I. Geankonlis			
	Separation Processes C I King	ion riocess rinciples, C.J. Geancopiis			
	Separation Process Principles, J	D. Seader, E.J. Henley			
	Equilibrium Stage Separation O	perations in Chemical Engineering, E.J. Henley, J.D. Seader			
	Unified Approach to Mass Tran	sfer: Krishna and Wesselingh			
	Diffusion: Mass Transfer in Flui	d Systems, E.L. Cussler			
	Perry's Chemical Engineer's Ha	ndbook (latest editions VIII)			
	Albrights' Handbook of Chemic	al Engineering			
	List of A	Additional Reading Material / Reference Books			

	Course Code: CET 2156	Course Title: Multiphase Reactor Engineering	Credits		= 3
			L	Т	Р
	Semester: II	Total contact hours: 45	2	1	0
	Cou	rse Outcomes (students will be able to)			
1	Describe and discuss principles	of various multiphase reactors (K2)		K2	
2	Calculate overall rates of reaction	ons for a given multiphase reaction (K3)		K3	
3	Design various components of r	nultiphase reactors used in industrial practice (K5)		K5	
4	Compare various multiphase rea	ctors and select an appropriate reactor for a given situation (K5)		K5	
		List of Prerequisite Courses			
1	CET 2153 Advanced Reaction I	Engineering			
2	CET 2151 Advanced Transport	Phenomena			
	List of	Courses where this course will be prerequisite			
	Description of r	elevance of this course in the M. Chem. Engg. Program	l		
Mul prin	tiphase Reactor Engineering is c ciples and scale up of variety of in	concerned with the utilization of chemical reactions on a commerci industrially relevant reactors are covered in this course.	al sca	ale. I	Design
	Cours	se Contents (Topics and subtopics)	Rec	d. h	ours
1	Types, classification, application	n of industrial importance		5	
2	Hydrodynamic characteristics	of different reactors; mechanically agitated contactors, bubble		15	
2	Columns, slurry reactors, spray of	columns, loop reactors and modified versions		10	
3	reactors	y agrated contactors, bubble column, packed and Fluidized bed		10	
4	Detailed design of mechanically	agitated contactors for different phases such Gas-liquid, Gas-liquid		10	
	solid. Including few case studies	3			
5	Case studies on design of bubble	es column		5	
		List of Textbooks			
	Heterogeneous Reactions vol. I	and II, L.K. Doraiswamy, M.M. Sharma			
	Fluid Mixing and Gas Dispersio	n in Stirred Reactors, G.B. Tatterson			
	Bubble Columnn Reactors, W.D	D. Deckwer			
	Fluidisation, D. Kunni and O. L	evenspiel			
	Fluidisation, Davidson J.F., Har	rison D.			
	Random Packings and Packed T	ower Design, Strigel R.F.	1		
-	8		1		

	Course Code:	Course Title: Elective II	Credits		= 3			
			L	Т	Р			
	Semester: II	Total contact hours: 45	2	1	0			
Cano cons	Candidate will have to choose one of the elective subjects offered for that semester from the elective subjects. A consolidated list of all the elective subjects is given at the end.							

	Course Code:	Course Title: Elective III	Credits		= 3			
			L	Т	Р			
	Semester: II	Total contact hours: 45	2	1	0			
Cano	Candidate will have to choose one of the elective subjects offered for that semester from the elective subjects. A consolidated list of all the elective subjects is given at the end.							

	Course Code: CEP 2354	Course Title: Process Modelling and Simulation Laboratory	ry Credi		= 3
			L	Т	Р
	Semester: II	Total contact hours: 90	0	0	6
			-	<u> </u>	<u> </u>
	Сон	rse Outcomes (students will be able to)			
1	Students would be able to derive	e model equations for various process equipment (K3)		K3	
2	Students would be able to selec $(K3)$	t numerical / analytical method for solving the developed equations		K3	
3	Students would be able to pre-	edict the performance of the process equipment after solving the		K5	
	equations (K5)				
4	Students would be able to design	n equipment by solution of model equations (K5)		K5	
		List of Prerequisite Courses			
1	All Chemical Engineering Subje	ects			
2	Mathematics course involving differential equations	numerical methods for solution of linear algebraic equations			
	List of	Courses where this course will be prerequisite			
		ê ê			
	Description of re	elevance of this course in the M. Chem. Engg. Program	L I		
In th	nis course, students will develop	a computer software for design and optimization of various chen	nical e	engine	ering
equi	pments. The course content is sin	nilar to the activities carried out by any organization working on "det	ailed e	engine	ering
pack	ages" In this course student will	learn the widely used chemical engineering software such as ASPEN.			
	G		Dee	1 1	
1	Cours Magroscopic mass, opergy and t	se Contents (Topics and subtopics)	Req	<u>a. no</u>	ours
2	Fluid thermodynamics chemi	ical equilibrium reaction kinetics and feed/ product property			
2	estimation in mathematical mod	els			
3	Simulation of steady state lumpe	ed systems including simultaneous solution, modular solution, nested			
	inside-out algorithms				
4	Partitioning and tearing with re-	eference to chemical process equipments like reactors; distillation,			
~	absorption, extraction columns;	evaporators; furnaces; heat exchangers; flash vessels etc.	 		
5	Unsteady state lumped systems	and dynamic simulation			
0	Commercial steady state and d	ynamic simulators; Computer algorithms for numerical solution of to models: Microscopic balances for steady state and dynamic			
	simulation	the models, wheroscopic balances for steady state and dynamic			
7	Process modelling of distributed	l systems; axial mixing; micro-mixing; diffusion etc.			
8	Computer algorithms for micr	oscopic models; Simulation of process flow sheets and Boolean			
	digraph algorithms; Modelling	g and simulation of complex industrial systems in petroleum,			
	petrochemicals, polymer, basic	chemical industries.			
	Suitable simulation problems fr	om the above-mentioned broad areas will be given to the candidates			
	wherein the candidates are expe	ected to develop an simulation code and execute using the computer			
	packages available such as Exce	ei, Matiao, Schao, Aspen, GPKOMis, dynochem, python etc.			
	1	List of Textbooks	<u> </u>		
	Process Modelling Simulation	and Control for Chemical Engineers Luyben			
	I ist of A	Additional Reading Material / Reference Rooks	<u> </u>		
		Autonal Maunig Matrial / Meterence Dooks			

	Course Code: CEP 2355	Course Title: Research Project II	Credits :		: 6			
			L	Т	P			
	Semester: II	Total contact hours: 90	0	0	12			
This	would be concerned with the cor	ntinuation of the research project executed in the first semester and the	e exact	t work	plan			
will	be decided in consultation with	the research guide. At the end of the project, the candidate is expe	ected t	o subi	mit a			
repo	report as per similar guidelines provided for CEP 2353 above which will be evaluated by the research guide and an external							
exan	examiner from the Department/Industry based on the presentation made by the candidate. A suitable combination of the							
mark	marks for report and presentation will be considered for the final evaluation.							

Semester III & IV

	Course Code: CEP 2356	Course Title: Research Project III	Credits		= 24				
			L	Т	P				
	Semester: III	Total contact hours: 360			24				
This	would be concerned with the con-	ntinuation of the research project executed in the first semester and the	e exac	t work	plan				
will	be decided in consultation with	the research guide. At the end of the project, the candidate is expe	ected	to sub	mit a				
repo	rt as per similar guidelines provid	led for CEP 2353 above which will be evaluated by the research guid	le and	an ext	ernal				
exan	examiner from the Department/Industry based on the presentation made by the candidate. A suitable combination of the								
mark	marks for report and presentation will be considered for the final evaluation.								

	Course Code: CEP 2357	Course Title: Research Project IV	Credits = 24		
			L	Т	Р
	Semester: IV	Total contact hours: 360			24
T1.:.					

This would be concerned with the continuation of the research project executed in the first semester and the exact work plan will be decided in consultation with the research guide. At the end of the project, the candidate is expected to submit a report as per similar guidelines provided for CEP 2353 above which will be evaluated by the research guide and an external examiner from the Department/Industry based on the presentation made by the candidate. A suitable combination of the marks for report and presentation will be considered for the final evaluation.

Electives

The following subjects can be offered as ELECTIVES

1	CET 2251 Advanced Material Science	
	Polymeric Materials: Structure property relationship, glass transition temperature, degree of	
	titanates cermets Composites: Fibre re-inforced composites auxetic composites polymer	
	composites. Super conducting Materials: Metallic solid hydrogen, tantalum, tellurium, etc. Nano	
	structured Materials: carbon nano structures, ceramic, and polymer based nano composites. Clad	
	Materials: Titanium, aluminium and lead cladding on steel.	
2	CET 2252 – Interfacial Science and Engineering	
	• Definitions: Chemical and physical properties of interfaces, Introduction to surface mechanisms and thermodynamics, capillarity, meniscus shapes, contact angle, surface tension and its measurement, Laplace Equation, Young's equation, Kelvin Equation, Gibbs equation, equilibrium	
	criteria, dividing surface, monolayers and films, mobile and fixed interfaces Interfacial areas and degrees of wetting, aerosols, liquid-liquid and particulate dispersions, Bubbles, and drops aphrons.	
	 Microphases: Definitions and dynamics, Micelle formation surfactants CMC, structures of micelles, swollen micelle and microemulsions models, phase diagrams, Macroemulsions, Mechanical vs. thermodynamic stability, HLB, Bancroft rule and other systems, Foams Colloids, Film elasticity, drainage, association, Langmuir-Blodgets film production. Experimental techniques of measurement of relevant properties: surface tension, solubilisation, thermodynamic properties, spectroscopic techniques. 	
	• Rheological aspects of two phase (involving microphases) flow and transport, viscoelasticity of surfactant solutions.	
	• Solubilisation and catalysis by microphases: Models, theories and data, surface potential and equations of state, double layer theory, layer Debye-Huckel theory, Thermodynamics of solubilisation, Hydrotropy.	
	• Emulsification and Demulsification, foam breakage, theories of coalescence, and agglomeration, Brownian motion, shear and other models.	
	• Applications: Adsorption, foam fractionation, froth floatation Enhanced oil recovery, Novel separation processes, Coagulation, Flocculation, Fire fighting foams, pesticide formulations, liposomes, , other applications with techniques.	
3	CET 2253 – Advanced Membrane Separation Processes	
	Rate governed processes: definitions and terminologies	
	Membrane separation processes, preparation and characterization of membranes	
	Principles of reverse osmosis, nanofiltration, ultrafiltration, microfiltration	
	Osmotic controlled filtration, gel layer controlled filtration	
	• Detailed design and modelling: film theory, similarity solution, integral method	
	• Design of membrane / process modules; Basic principles and modelling of dialysis	
	• Electric field enhanced separation processes: zeta potential, electric double layer	
	Basic modelling of electric field enhanced filtration	
	• Liquid membrane and its modelling	
	Basic design of gas separation and pervaporation	
	• Ion exchange and adsorptive separation	
	Chromatographic separation	
4	CET 2254 – Research Methodologies	
	• Meaning of Research, Purpose of Research, Types of Research (Educational, Clinical, Experimental Historical Description Resid and Potent Oriented Research) Objective of	
	esearch-	
	• Literature survey – Use of Library, Books, & Journals – Medline – Internet, getting patents	
	and reprints of articles as sources for literature survey	

	Methods and tools used in Research	
	The Research Report / Paper writing / thesis writing	
	Results – tables, Graphs, Figures, and statistical presentation	
	• Discussion – Support or non- support of hypothesis – practical & theoretical implications,	
	conclusions	
	Acknowledgements	
	• References	
	• Errata	
	Importance of spell check for Entire project	
	• Use of footnotes	
	• Selecting a problem and preparing research proposal for different types of research mentioned	
	above.	
	Presentation: Skills and Execution	
	Protection of patents and trademarks. Designs and copyrights	
	Sources for procurement of Research Grants	
	Industrial-Institution Interaction	
5	CET 2255 – Cavitation for Green Processes	
2	Introduction to Cavitation types of cavitation sonochemistry mechanisms of intensification	
	Theoretical aspects in terms of hubble dynamics design aspects prediction of cavitational intensity	
	reactions inside the hubbles	
	Cavitational Reactor designs and effects of operating parameters	
	Applications of Cavitational reactors in chemical processing such as synthesis wastewater treatment	
	enzymatic reactions etc	
	Applications of Cavitational reactors in physical processing such as crystallization atomization	
	emulsification extraction distillations	
	Applications of cavitational reactors in health care applications such as improved drug delivery	
	systems	
	Possible combined routes for synergistic effects	
	Scale un aspects	
	Case study short review projects related to the above topics will be given in the tutorial hours	
6	CET 2256 – Innovations in Chemical Technology	
Ŭ	Basic of Innovations with case studies	
	Overview of Noble Lectures related to innovation	
	Overview of Case studies based on patents highlighting the different concepts in innovation	
	Overview of Patents and IP protection	
	Group Assignments short review projects related to the above topics will be given in the tutorial hours	
7	CET 2257 – Process Analysis and Control	
/ ·	Deriver of demonia habenians of linear contents and their control content design. Linear macrosoft	
	• Review of dynamic benaviour of linear systems and their control system design. Linear processes	
	with difficult dynamics. Nonlinear process dynamics; phase-plane analysis; multiple steady-state	
	and bifurcation behaviour; Process Identification; Controller design via frequency response	
	analysis; Model based control; Cascade, feed-forward & ratio control; Controller design for	
	nonlinear systems; Introduction to multivariable systems. Interaction analysis and multiple single	
	loop design. Design of multivariable controllers; Introduction to sampled-data systems; Tools of	
	discrete-time systems analysis; Dynamic analysis of discrete-time systems; Design of digital	
	controllers; Introduction to model predictive control; Convolution models; Model predictive	
	control of MIMO systems.	
8.	CET 2258 – Optimization Techniques in Process Design	
	• Introduction to optimization and its scope in chemical processes. Analytical methods: Objective	
	function, single variable optimization, multivariable optimization without and with constraints.	
	Linear programming: graphical, algebraic, simplex methods, duality. Numerical search methods:	
	one-dimensional search, unrestricted, exhaustive search methods, interpolation methods.	
	Multidimensional search methods without and with constraints. Variational methods and their	
	applications.	
9.	CET 2259 – Advanced Mathematical Techniques in Chemical Engineering	
	• Models in chemical engineering: vector and tensor spaces: metric norm and inner products:	
L		

	orthonormalization; matrices, operators and transformations; eigen values and eigen vectors; Fredholm alternative, Rayleigh quotient and its application to chemical engineering systems; self adjoint and non-self adjoint systems; partial differential equations and their applications in chemical engineering; Strum-Louisville theory; separation of variables and Fourier transformations; application of Greens function for solution of ODE and PDEs in chemical engineering; numerical techniques for solution of ODE and PDEs; linear stability and limit cycles; bifurcation theory; secondary bifurcation and chaos.	
10	CET 2260 – Industrial Pollution Control	
	 Engineering, ethics, and environment. Ecological systems and pollution. Fundamental definitions of pollution parameters - air and water quality criteria, Standards and legislation EIA, EIS and EMP. Air and water pollution management through waste minimization. Industrial air pollution management: air pollution meteorology (Generation, transportation and dispersion of air pollutants). Outlines of industrial air pollution control. Selection, design and performance analysis of air pollution control equipment: gravity settling chambers, air cyclones, ESPs, filters and wet scrubbers. Industrial water pollution management: Wastewater treatment processes; Pre- treatment, primary and secondary treatment processes. Advanced wastewater treatment processes. 	
11	CET 2261 – Petroleum Refinery Engineering	
	 Origin of petroleum crude oil. Evaluation of crude oil / evaluation and characterization of crude oil: TBP and other distillation tests. Petroleum products, their properties, specification and testing / different properties like flash point, fire point, smoke point, aniline point, carbon residue, kinematic viscosity, pour point, freezing point etc. Use of crude book data. Petroleum refinery distillation / pre-fractionation and atmospheric distillation of crude. Process design for atmospheric distillation. Stabilization of naphtha. Vacuum distillation of RCO. Reforming of naphtha. Other secondary processes like Vis-breaking, Furfural/Phenol/NMP extraction, Solvent dewaxing, propane deasphalting. Delayed coking process. FCC unit. Hydrotreatment processes in refining: hydro-desulphurisation, hydrofinishing, Hydrocracking. Production of lube oil base stock. Refinery equipment: furnaces, distillation columns, reactors, pumps, compressors and piping. Environmental impact of refineries. 	
12.	CET 2262 – <u>Clean Coal Technology</u>	
	 Role of coal in the overall energy situation. Recent advances in coal preparation methods including fine coal treatment. Simulation and modelling of coal beneficiation circuits. Thermodynamics and kinetics of coal gasification reactions. Fluidised bed coal gasification processes. Combined cycle power generation. Coal liquefaction: various methods, kinetics of solvent extraction, catalytic hydrogenation and other liquefaction processes. Concept of coal refinery and coalplex. Environmental impact analysis of coal utilization methods such as carbonization, gasifier, etc. 	
	• Preparation of coal for carbonization. Behaviour of coal on heating. Carbonization models and processes. Design, operation, and maintenance of high temperature coke ovens. Low temperature carbonization. Bye-product recovery system. Fluid bed carbonization	
	• Definition of gasification process, Gasification principles, Pyrolysis of coal. Modelling of pyrolysis. Thermodynamics of gasification processes. Design of gasifiers. Commercial gasification processes. Modern developments in gasification processes. Gas purification. F.T. Synthesis.	
13.	CET 2263 – Multiphase Flow	
	 Hydrodynamics of Gas-liquid flow, Homogeneous flow model. Separated flow model. Drift flux model. One-dimensional waves and their applications, Bubble formation and dynamics. Mass bubbling and liquid entrainment. Hydrodynamics of solid-liquid flow, homogeneous and beterogeneous flow. Design equations for 	
	hydraulic transportation.	
	• Hydrodynamics of gas-solid flow. Applications and principles of pneumatic transport	
14.	CET 2264 – Reservoir Engineering	
	• Reservoir rocks and structures, Classification of sedimentary oil reservoirs. Physical and chemical	

-	
	properties of reservoir rocks and fluids, porosity, saturation and permeability. Determination of reservoir volume. Reserve estimates, production and recovery
	 Properties of crude oils and liquid condensate. Typical core analysis of different formations.
	Reservoir traps. Bottom hole pressure, temperature in wells.
	• Reservoir fluids, forces, and energies. Mechanics of fluid flow in porous media. Well-bore hydraulics. Reservoir performance equations. Development plan for oil reservoirs. Solution-gas- drive oil reservoirs. Estimation and valuation of primary oil and gas reserves. Injection operations. Gas and water injection pressure maintenance. Electrical logging. Acidising, Shooting, fracturing and clear-up.
15.	CET 2265 – Storage and Handling of Minerals
	• Mechanics of particulate solids. Characterization of size and shape. Angle of repose. Stresses in deformable and non-deformable solids. Mohr circle. Flow of solids through apertures, bins, hoppers, and silos. Design of bins.
	• Applications of stackers, reclaimers etc. Blending of solids. Use of IC vibrators, various solids feeders like rotary, reciprocating, vibratory, belt etc. Design principles for open/closed stock pile systems for coarse/fine ores.
	Modes of transportation: long, medium, and short distance transportation of minerals by belt conveyor, aerial ropeway, hydraulic and pneumatic conveying
16.	CET 2266 – Green Technology
	 Prevention, Atom Economy, Less Hazardous Chemical Syntheses, Designing Safer Chemicals, Safer Solvent and Auxiliaries, Design for Energy Efficiency, Use of Renewable Feedstock, Reduction of Derivatives, Catalysis, Design for Degradation, Real-time Analysis for Pollution Prevention, Inherently Safer Chemistry for Accident Prevention.
17.	CET 2267 – Flow of Complex Mixtures
	 Multiphase flows and their types - flow pattern and flow regime map with and without phase change. One-dimensional models for continuity, momentum, and energy transfer for different models: Multi-dimensional and flow regime specific models. Liquid colid mixture transport in given flow pattern accelerating length value in grafile and
	• Liquid-solid mixture transport in pipe: now pattern, accelerating length, velocity profile, and pressure drop for turbulent slurry flow.
	• Gas-solid mixture transport in horizontal and vertical pipe.
	• Gas-solid fluidization; Phase equilibria and analogy with distillation / stage-wise separation.
	• Circulating fluidised bed.
	• Elutriation; Analogy with chemical reaction kinetics.
	 Introduction to boiling, condensation and critical two-phase flows Computed in the left second all income to be a second se
18	Computational methods for modelling multiphase systems. CET 2268 – Biochemical Engineering Fundamentals
10.	 Introduction to biochemical process industries - industrial alcohols, antibiotics, acids, alcoholic beverages, enzymes, vitamins, single cell protein. Life processes, unit of living system, microbiology, reaction in living systems, biocatalysts, enzymatic catalysis, thermal stabilisation and enzymatic reactors, enzymes / protein recovery and purification. Fermentation mechanisms and kinetics: kinetic models of microbial growth and product formation. Fermenter types; Modelling of batch and continuous fermenter. Bioreactor design, mixing phenomena in bioreactors. Sterilization of media and air, sterilization equipment, batch and continuous sterilise
	design. Biochemical product recovery and separation, affinity chromatography, etc. Electro- kinetic separation: electro-dialysis, electrophoresis. Wastewater treatment: activated sludge process, anaerobic digestion, trickling filter.
19.	CET 2269 – Real Time Intelligent Process Systems
	• Introduction and fundamentals of real-time systems; Conventional control theory versus modern control theory; Limitations of conventional control theory for industrial processes; Importance of hierarchical multilevel control; Special features of real-time chemical processes like dead-time, interactions, asymmetric dynamics, inverse response, multiple steady-states, stability, limit cycles, bifurcation and chaos etc. Real-time parameter estimation and observer theory: Application of

	real-time observers to process systems Model based control - linear and nonlinear; Industrial applications Optimal and sub-optimal spaces; Real-time optimization - steady state and dynamic; online optimization algorithms including SOCOLL etc; neighbouring optimal control; Intelligent Inferential control; Application of advanced Artificial intelligence based Controllers using Artificial Neural Networks, Fuzzy logic, Wavelet Transforms and induced learning algorithms.	
20.	CET 2270 – Petrochemical Technology	
	• Survey of petrochemical industry; Availability of different feed stocks; Production, purification and separation of feed stocks; Chemicals from methane; Production and utilization of synthesis gas, oxo reactions, etc.; Production of and chemicals from acetylene; Naphtha cracking; Chemicals from C2, C3, C4 and higher carbon compounds; Polymers - properties, production and utilization; Catalytic reforming of naphtha and isolation of aromatics; Chemicals from aromatics; Synthetic fibres, detergents, rubbers and plastics; Petroleum coke; Elements of design of steam reformer, naphtha cracker, catalytic reformer, etc.	
21.	CET 2271 – Combustion Engineering	
	 Mechanism and principle of combustion. Laminar flame propagation- theory and structure of flame. Burning velocity and its determination. Stability, extinction, and blow off phenomena. Design of gas burner& interchangeability of gases. Theory of oil droplet combustion. Methods of atomization and spray analysis. Various distribution functions to represent sprays. Spray combustion. Thermodynamics & kinetics of coal combustion process. Design of pulverised fuel flames and burners. Application to the design of pulverised fuel furnace and fluidised combustion process. 	
22.	CET 2272 – Mineral Beneficiation	
	• Exploitable characteristics of minerals. Economics of mineral beneficiation. Power laws. Principles of crushing and grinding. Grindability. Evaluation of particle size. Size distribution curves and their significance. Mechanism of breakage of material. Classification, design, and application of crushers and grinders. Industrial screening, classification, and performance of screens. Dry and wet classifiers. Thickeners, hydrocyclones, filtration, tabling, jigging, magnetic, and electrostatic separation. Surface behaviour and flotation principles. Flotation machines, differential flotation, and flotation circuit design. Elements of hydrometallurgy, microbial leaching etc. Important beneficiation circuits of minerals like chalcopyrites, sphalerite, galena, bauxite etc.	
23.	CET 2273 – Reactor Stability and Control	
	• Concept of stability as applied to chemical reactor systems. Transient behaviour of a jacketed stirred tank reactor. Fundamental linearisation theorem, Liapunov theorem of stability. Unsteady state analysis of a plug flow tubular reactor with axial and/or radial mixing. Study of packed abed catalytic reactor as a multiphase model with the characteristics of steady state multiplicity. Routh criteria and test for stability. Control of steady state of a CSTR system with a feedback control. Multiple steady states and limit cycles. Distributed parameter systems. Parametric sensitivity for PFR and batch reactor. Hot spot equation. Stability criteria for a packed bed reactor.	
24.	CET 2274 – Computer Process Control	
	 Evaluation of computer control; data logging, supervisory control and digital control. Types of computer control: program control, optimising and adaptive control, steady stage, and dynamic optimum control. Process identification, controllability, and observability. State-space representation of processes, canonical forms, Time optimal control, Pontyagrins maximum principle. Multivariable control systems. Process control computers. Mainframe and microprocessor systems. Dedicated vs. Time-sharing applications. Computer hardware. Analog subsystems, buffers, A//D, D/A, E/P, I/P, P/E, and P/I interfaces. Main-machine interfaces. Case studies of computer process control. 	
25.	CET 2275 – Project Engineering and Management	
	 Overview; Stages of project implementation; Project milestones; Project execution as conglomeration of technical and non-technical activities; Project review and control: bar charts and network (CPM, PERT) diagrams Relationship between price of a product and project cost and cost of production: Elements of cost 	
	of production, monitoring of the same in a plant; administrative expenses; sales expenses, etc.;	

	Introduction to various components of project cost and their estimation; Introduction to concept of inflation; Various cost indices; relationship between cost and capacity; location index, and its use in estimating plant and machinery cost
	Contract: meaning, contents, types of contract
	• Project financing: debt:equity ratio, promoter's contribution, shareholders' contribution, sources of finance
	• Concept of interest, selection of various alternative equipment or system based on this concept, Indian norms; Depreciation concept, Indian norms and their utility in estimate of working results of project; Working capital concept and its relevance to project; Estimate of working results of proposed project; Capacity utilization, gross profit, operating profit, profit before tax, corporate tax, dividend, net cash accruals
	• Project evaluation, break-even analysis, incremental analysis, ratio analysis – e.g. ROI, IRR, etc., discounted cash flow analysis; Process selection, site selection, feasibility report; Chemical Process Development
26.	CET 2276 – Furnace Technology
	• Definition and classification of furnaces, Combustion principles, and heat release methods. Application of thermodynamic law in furnaces. Steady and unsteady methods of conductive heat transfer. Optimum insulation thickness. Radiative (luminous and non-luminous) heat transfer in furnaces Aerodynamic principles in furnaces. Design of furnace and its accessories. Application of computer methods in furnace design. Zone method of analysis. Refractories. Furnace construction and its controls.
27.	CET 2277 – Floatation Techniques and its Applications
	• Physico-chemical properties of interface: polar and non-polar liquids: colloids, emulsions, floccules, froths and micelles. Surface tension and equilibrium, streaming potential and zeta potential and their measuring techniques. Bubble-mineral contact in three-phase system, floatability test. Hallimond tube, contact angle, captive bubble apparatus, chemical reagents in flotation. Activation theory. Types of flotation cells and methods of aeration, flotation kinetics and cell design : probability and kinetic models, empirical approach : CSTR and plug flow : model for recovery of water by entrainment and drainage, types of flotation circuits for sulphide and other ores; flotation of ultra fines, bulk oil flotation, spherical agglomeration, emulsion / agglomeration flotation
28.	CET 2278 – Hazard Analysis and Risk Management in Chemical Industry
	Introduction to Material Safety Data Sheet (MSDS)
	• Hazard and its classification – environmental, personal, and plant & equipment related issues; Regulatory bodies & regulations; Plant layout
	• Safety by design – sizing of specific devices such as, safety release valves, vents, flare systems; Instrumentation for safety - specific devices such as alarms, interlocks, shutdown systems
	• Economic aspects of safety; Operational safety – commissioning, safe start-up and safe shut-down of equipment such as, distillation column, furnace, reactor, pumps & compressors
	• Failure probability estimation methods; Fault Tree Analysis; HAZOP; HAZAN
	• Case studies from various sectors of chemical industry, such as, refinery, bulk chemicals, pesticides.
29.	CET 2279 – CFD Application in Chemical Processes
	• Introduction to Computational Fluid Dynamics (CFD) and modelling of flow; Summary of
	governing equations; Conservation form of equations; well-posed and ill-posed problems.
	• Introduction to turbulence modeling; Need to model Reynolds stresses; one equation, two qquation, RSM, LES, and DNS; Various 2 equation models (k- ε , k- ω)
	• Discretisation of the equations; Truncation and Round-off error; Explicit and Implicit approaches; Concepts of numerical or artificial viscosity; Different boundary conditions.
	• Application of Finite Difference methods to wave equations, Laplace equations, and Burger's equation; Stability considerations.
	Numerical methods for boundary layer type equations, Navier-Stokes equations, Outline of MAC

 Grid generation; Concepts of Finite volume methods. Solution of Flow with coupled heat transfer (forced and natural convection); Outline of flow (combustion) and multi-phase flow. Introduction of a commercial CFD package (FLUENT). CFD model development for turbulent pipe flow; concept of y+ CFD model development for turbulent pipe flow; concept of y+ CFD model development at the statistical inference. Quality control acceptance sampling. significance. Regression analysis. Analysis of variance. Statistical design of exp. Factorial design. EVOP techniques. Time series analysis, filtering theory CET 2281 Advanced Flow Visualization Techniques Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its revarious design parameters Instrusive and non-intrusive techniques Point measurement: Ultrasound velocity profiler Plane measurement: Ultrasound velocity profiler Plane measurement: scree-PIV, holographic PIV, tomographic PIV RTD measurement in G-L systems using wire mesh sensors (based on conductivity) CET 2283 - Mass Transfer Equipment Design Design of plate distillation and absorption column swith particular reference to the effec mixing in both phases. Design of batch and continuous crystallisers CET 2283 - Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicom multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential coperations. Get 2284 - Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalysta Deactivation, Cat	Reactive
 Solution of Flow with coupled heat transfer (forced and natural convection); Outline of flow (combustion) and multi-phase flow. Introduction of a commercial CFD package (FLUENT). CFD model development for turbulent pipe flow; concept of y+ CFD modelling of stirred tank: various approaches to model impeller rotation CET 2280 - Experimental Design and Analysis Statistical analysis of data, Statistical inference. Quality control acceptance sampling. significance. Regression analysis. Analysis of variance. Statistical design of exp Factorial design. EVOP techniques. Time series analysis, filtering theory CET 2281 Advanced Flow Visualization Techniques Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its re various design parameters Instrusive and non-intrusive techniques Point measurement: hot film anemometer, pitot tube, Doppler Shift, laser Doppler anemometer Line measurement: clurasound velocity profiler Plane measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) CET 2281 Advance State Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification or variables. Graphical multistage calculations. Approximate methods for multicom multistage separation. State efficiency and capacity. Synthesis of separation catalysis, Ricer various set Rigorous methods for multicomponent multistage separation. Continuous differential coperations. Cett 2284 - Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalysts Deactivation, Catalytis, Proc	Reactive
 Introduction of a commercial CFD package (FLUENT). CFD model development for turbulent pipe flow; concept of y+ CFD modelling of stirred tank: various approaches to model impeller rotation 30. CET 2280 - Experimental Design and Analysis Statistical analysis of data, Statistical inference. Quality control acceptance sampling. significance. Regression analysis. Analysis of variance. Statistical design of exp Factorial design. EVOP techniques. Time series analysis, filtering theory 31 CET 2281 Advanced Flow Visualization Techniques Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its revarious design parameters Instrusive and non-intrusive techniques Point measurement: hot film anemometer, pitot tube, Doppler Shift, laser Doppler anemometer. Line measurement: 2 turbulence and velocity profiler Plane measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effec mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2284 – Catalysis Graphical multistage calculations. Approximate methods for multico multistage separation. Stage efficiency and capacity. Synthesis of separation countilisting separations en Rigorous methods for multicomponent multistage separation. Continuous differential cooperations. Gett 2284 – Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysts, Intering	
 CFD model development for turbulent pipe flow; concept of y+ CFD modelling of stirred tank: various approaches to model impeller rotation CET 2280 - Experimental Design and Analysis Statistical analysis of data, Statistical inference. Quality control acceptance sampling, significance. Regression analysis. Analysis of variance. Statistical design of exp Factorial design. EVOP techniques. Time series analysis, filtering theory CET 2281 Advanced Flow Visualization Techniques Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its revarious design parameters Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its revarious design parameters Point measurement: Dtflm anemometer, pitot tube, Doppler Shift, laser Doppler anemometer Line measurement: Particle Image Velocimetry (PIV), Planar laser induced fluorescence, hi photography Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effec mixing in both phases. Multicomponent distillation column design. Design of extraction or variables. Graphical multistage Separation Operations. Equipment for multiphase contacting. Phase equilibrium properties. Specification or variables. Graphical multistage calculations. Approximate methods for multico multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential coperations. Get 2283 –	
 CFD model development for furbation pipe now, encept of y1 CFD modelling of stirred tank: various approaches to model impeller rotation CET 2280 - Experimental Design and Analysis Statistical analysis of data, Statistical inference. Quality control acceptance sampling. significance. Regression analysis. Analysis of variance. Statistical design of exp Factorial design. EVOP techniques. Time series analysis, filtering theory CET 2281 Advanced Flow Visualization Techniques Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its revarious design parameters Instrusive and non-intrusive techniques Point measurement: hot film anemometer, pitot tube, Doppler Shift, laser Doppler anemometer Line measurement: Ultrasound velocity profiler Plane measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases. Design of batch and continuous crystallisers CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification or variables. Graphical multistage calculations. Approximate methods for multicompute multistage separation. Continuous differential co operations. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalysti Aleactivation, Catalytic Proces	
 CFD indefining of stinred tank. Various approaches to indef impeter rotation CET 2280 - Experimental Design and Analysis Statistical analysis of data, Statistical inference. Quality control acceptance sampling. significance. Regression analysis. Analysis of variance. Statistical design of exp Factorial design. EVOP techniques. Time series analysis, filtering theory CET 2281 Advanced Flow Visualization Techniques Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its revarious design parameters Instrusive and non-intrusive techniques Point measurement: hot film anenometer, pitot tube, Doppler Shift, laser Doppler anenometer. Plane measurement: Ultrasound velocity profiler Plane measurement: Varticle Image Velocimetry (PIV), Planar laser induced fluorescence, hi photography Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurement: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicom multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential coperations. Fundamentals of Adsorption, Catalyst Chara	
 30. CET 2280 - Experimental Design and Analysis Statistical analysis of data, Statistical inference. Quality control acceptance sampling. significance. Regression analysis. Analysis of variance. Statistical design of experatorial design. EVOP techniques. Time series analysis, filtering theory 31 CET 2281 Advanced Flow Visualization Techniques Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its revarious design parameters Instrusive and non-intrusive techniques Point measurement: hot film anemometer, pitot tube, Doppler Shift, laser Doppler anemometer Line measurement: Particle Image Velocimetry (PIV), Planar laser induced fluorescence, hi photography Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 - Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases. Multicomponent distillation column design. Scer 2283 - Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification or unitistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential coperations. Modamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Giocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous	
 Statistical analysis of data, Statistical inference. Quality control acceptance sampling. significance. Regression analysis. Analysis of variance. Statistical design of exp. Factorial design. EVOP techniques. Time series analysis, filtering theory CET 2281 Advanced Flow Visualization Techniques Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its rovarious design parameters Instrusive and non-intrusive techniques Point measurement: hot film anemometer, pitot tube, Doppler Shift, laser Doppler anemometer. Line measurement: Ultrasound velocity profiler Plane measurement: Particle Image Velocimetry (PIV), Planar laser induced fluorescence, hi photography Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurement in G-L systems using wire mesh sensors (based on conductivity) CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases. Capatition Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential coperations. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalyst Deactivation, Catalytic Proces	1
 31 CET 2281 Advanced Flow Visualization Techniques Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its revarious design parameters 	Tests of riments.
 Introduction to fluid mechanics and role of flow visualization techniques; turbulence and its revarious design parameters Instrusive and non-intrusive techniques Point measurement: hot film anemometer, pitot tube, Doppler Shift, laser Doppler anemometer Line measurement: Ultrasound velocity profiler Plane measurement: Particle Image Velocimetry (PIV), Planar laser induced fluorescence, hi photography Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification or variables. Graphical multistage calculations. Approximate methods for multicom multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential co operations. 34. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalyst Deactivation, Catalytic Process Engineering, Catalytic Homogeneous Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis	
 various design parameters Instrusive and non-intrusive techniques Point measurement: hot film anemometer, pitot tube, Doppler Shift, laser Doppler anemometer Line measurement: Ultrasound velocity profiler Plane measurement: Particle Image Velocimetry (PIV), Planar laser induced fluorescence, hi photography Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification or variables. Graphical multistage calculations. Approximate methods for multicom multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential co operations. 34. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis. Prepathe catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrog Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammo	lation to
 Instrusive and non-intrusive techniques Point measurement: hot film anemometer, pitot tube, Doppler Shift, laser Doppler anemometer Line measurement: Ultrasound velocity profiler Plane measurement: Particle Image Velocimetry (PIV), Planar laser induced fluorescence, hi photography Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicom multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential cooperations. 34. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Prepa the catalysis for commercially important reactions. Catalysis in: Hydrotreating, Hydrodracking, Reforming for aromatics, Sulphuric acid Antmonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	
 Point measurement: Not thin anemoneter, pitot tube, Doppter Shift, faser Doppter anemoneter, Line measurement: Vltrasound velocity profiler Plane measurement: Particle Image Velocimetry (PIV), Planar laser induced fluorescence, hi photography Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicom multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential cooperations. 34. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalyst Deactivation, Catalytic Process Engineering, Catalytic I Homogeneous Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis, Prepathe catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrotreating, Hydrotreating, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	
 Plane measurement: Particle Image Velocimetry (PIV), Planar laser induced fluorescence, hi photography Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurement: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 – Mass Transfer Equipment Design • Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 – Equilibrium-Stage Separation Operations • Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multico multistage separation. Stage efficiency and capacity. Synthesis of separation expressions. 34. CET 2284 – Catalysis • Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalyst Deactivation, Catalytic Process Engineering, Catalytic I Homogeneous Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo- Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis, Prepa the catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrog Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. * Suntal Stage Senterogeneous, Wacker process homogeneous etc. * Suntal Stage Senterogeneous, Wacker process homogeneous etc. * Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid Nitric acid Nitri acid Nitric a	
 Indic inclusionent. Faither infige velocified (119), Flanta faster induced indorescence, in photography Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effec mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of wariables. Graphical multistage calculations. Approximate methods for multicom multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential co operations.	th speed
 Volume measurement: stereo-PIV, holographic PIV, tomographic PIV RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicom multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential co operations. 34. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis. Prepathe catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrog Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	in speed
 RTD measurements: conductivity meter, selection of tracer, application of radioactive tracers Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 - Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 - Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicom multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential cooperations. 34. CET 2284 - Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalysts, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis. Prepathe catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrof Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	
 Pressure sensors: flow instability analysis Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 - Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 - Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicom multistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential cooperations. 34. CET 2284 - Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalysts, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis. Prepathe catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrof Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	
 Holdup measurement in G-L systems using wire mesh sensors (based on conductivity) 32. CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicomultistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential cooperations. 34. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalyst Deactivation, Catalytic Process Engineering, Catalytic I Homogeneous Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis. Prepathe catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrof Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	
 32. CET 2282 – Mass Transfer Equipment Design Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 – Equilibrium-Stage Separation Operations 	
 Design of plate distillation and absorption columns with particular reference to the effect mixing in both phases. Multicomponent distillation column design. Design of extraction with back mixing in both phases, Design of batch and continuous crystallisers 33. CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicomultistage separation. Stage efficiency and capacity. Synthesis of separation services Rigorous methods for multicomponent multistage separation. Continuous differential cooperations. 34. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalyst Deactivation, Catalytic Process Engineering, Catalytic Homogeneous Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis. Prepathe catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrog Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	
 33. CET 2283 – Equilibrium-Stage Separation Operations Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicomultistage separation. Stage efficiency and capacity. Synthesis of separation se Rigorous methods for multicomponent multistage separation. Continuous differential cooperations. 34. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalyst Deactivation, Catalytic Process Engineering, Catalytic Homogeneous Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis. Prepathe catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrog Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	of back column
 Equipment for multiphase contacting. Phase equilibrium properties. Specification of variables. Graphical multistage calculations. Approximate methods for multicol multistage separation. Stage efficiency and capacity. Synthesis of separation services Rigorous methods for multicomponent multistage separation. Continuous differential cooperations. 34. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalyst Deactivation, Catalytic Process Engineering, Catalytic Homogeneous Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis. Prepathe catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrog Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	
 34. CET 2284 – Catalysis Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalyst Deactivation, Catalytic Process Engineering, Catalytic Homogeneous Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo-Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis. Prepathe catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrog Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	
 Fundamentals of Adsorption, Catalyst Characterization, Pore Structure, Solid-state and Chemistry of Catalysts, Catalyst Deactivation, Catalytic Process Engineering, Catalytic Homogeneous Catalysis, Biocatalysis, Micro-wave Catalysis, Sono-catalysis, Photo- Catalysis in Refinery, Organic and Inorganic Synthesis. Heterogeneous Catalysis. Prepa the catalysts for commercially important reactions. Catalysis in: Hydrotreating, Hydrog Hydrocracking, Reforming for aromatics, Sulphuric acid Nitric acid and Ammonia man Oxo-reactions (homogeneous & Heterogeneous), Wacker process homogeneous etc. 	f design mponent quences. ntacting
	f design nponent quences. ntacting
35. CET 2285 – Rheology and Non-Newtonian Flow	f design mponent quences. ntacting Surface leactors, atalysis, cation of enation, ifacture,
• Rheology, Rheometry, flow visualization: Streaming bi-refringence. Equations of change analysis. Theories of viscoelasticity. Constitutive equations and their development. Elon flow. Transient motion. Boundary layer theory. Film lubrication. Shear wave preparation around a sphere and swirling flow about bodies of revolutions. Stability analysis.	f design mponent quences. intacting Surface leactors, atalysis, atalysis, atalysis, atalysis, fenation, ifacture,
36. CET 2286 – Polymer Engineering	f design mponent quences. ntacting Surface Reactors, ratalysis, ration of enation, ifacture, Tensor gational n. Flow
• Introduction to polymer processing. General transport equations. Analysis of simple mod and combined flow. Development of constitutive equations for polymers. Physics and c of polymers and polymerization. Dimensional analysis in design. Discussion of in polymer processes like conveying of molten polymers, extrusion, calendaring, fibre s tubular film blowing, injection molding and reaction injection molding mix	f design mponent quences. intacting Surface Reactors, ratalysis, ration of genation, ifacture, Tensor gational n. Flow

1144	polymerization reaction. Polymer characterization, Physical and Rheological properties, Polymer property modifiers, Process Engineering aspects of manufacture of polyethylene's. Polypropylene, Polystyrenes, polyvinyl chloride (PVC), polyesters, phenolic resins, Specialty polymers, Polymers as material of construction	
51**.	• Air pollution: Definition of pollutants. Standards and limits of pollutants. Sources and sinks of	
	pollutants. Meteorology. Problems associated with dispersion. Sampling techniques. Control	
	techniques for removal of particulate and gaseous pollutants. Water pollution: Characterization of industrial waterwaters. Standards and limits of pollutants. Proliminary primary accordary and	
	tertiary treatment methods. Separation technique for removal and recovery of pollutants. Solid	
	waste treatment. Economics of pollution control: Socio-economic aspects recovery waste as	
32.	abatement. Safety, Health and Environment Management	
	 Microbial kinetics, Structured and unstructured models of microbial growth, Bioreactors, Reaction 	
	engineering of biotransformation (both microbial and enzymatic), multiphase reaction	
	engineering, reactor design including operation and control for bioreactors (cell and enzymatic biotransformation with special cases like shear sensitive systems like plant and mammalian cell	
	cultures). Population balance models, Extractive biotransformation, Elements of genetic	
	engineering, engineering applications in biotechnology, downstream processing. Genetic	
	phenomena in biological systems.	
33.	BS 152E – Bioseparations	
	• Introduction to downstream processing in biotechnology, primary purification technologies and their scale up for small and meansmalegulas (presiding contribution) and filtration	
	extraction etc with special reference to biomolecules), secondary purification methods and their	
	scale-up (adsorptive techniques like ion exchange, hydrophobic and affinity methods). Aqueus	
24	two-phase systems, chromatographic methods	
	(`F,'I' 2656F) =	
34.	CET 2656E − ●	
34. 35.	CET 2656E − • CET 2769E − Process Intensification (PI)	
34.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the setabut level (b) multi-functionality at the meeting interface (c) multi-functionality at the setabut level (b) multi-functionality. 	
34.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical 	
34.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane 	
34.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes 	
34. 35. 36.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E – Flow through Porous Media 	
34. 35. 36.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E – Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and 	
34. 35. 36.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E – Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids. Transient Flow. Simultaneous Immiscible Flow. Simultaneous Miscible Flow. Percolation 	
34. 35. 36.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E – Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids, Transient Flow, Simultaneous Immiscible Flow, Simultaneous Miscible Flow, Percolation Processes, Fractal Theory, Flow with Change of Phase, Applications to Reservoir Rocks, Coals, 	
34. 35. 36.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E – Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids, Transient Flow, Simultaneous Immiscible Flow, Simultaneous Miscible Flow, Percolation Processes, Fractal Theory, Flow with Change of Phase, Applications to Reservoir Rocks, Coals, Chemical Reactors, Membranes, Soils, etc. 	
34. 35. 36. 37.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E – Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids, Transient Flow, Simultaneous Immiscible Flow, Simultaneous Miscible Flow, Percolation Processes, Fractal Theory, Flow with Change of Phase, Applications to Reservoir Rocks, Coals, Chemical Reactors, Membranes, Soils, etc. BS 153E – Downstream Processes in Biotechnology Selection of separation process Chemical physical and biochemical aspects of isolation and 	
34. 35. 36. 37.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E – Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids, Transient Flow, Simultaneous Immiscible Flow, Simultaneous Miscible Flow, Percolation Processes, Fractal Theory, Flow with Change of Phase, Applications to Reservoir Rocks, Coals, Chemical Reactors, Membranes, Soils, etc. BS 153E – Downstream Processes in Biotechnology Selection of separation process. Chemical, physical, and biochemical aspects of isolation and purification of biomolecules. Product release from a cell. Concentration and separation methods: 	
34. 35. 36. 37.	 CET 2656E - CET 2769E - Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E - Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids, Transient Flow, Simultaneous Immiscible Flow, Simultaneous Miscible Flow, Percolation Processes, Fractal Theory, Flow with Change of Phase, Applications to Reservoir Rocks, Coals, Chemical Reactors, Membranes, Soils, etc. BS 153E - Downstream Processes in Biotechnology Selection of separation process. Chemical, physical, and biochemical aspects of isolation and purification of biomolecules. Product release from a cell. Concentration and separation methods: membrane, ion exchange. Precipitation and extraction. Chromatographic methods of purification. Design of downstream processing occurrent processing economy processing economy processing economy for the separation. 	
34. 35. 36. 37. 38.	 CET 2656E – CET 2769E – Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E – Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids, Transient Flow, Simultaneous Immiscible Flow, Simultaneous Miscible Flow, Percolation Processes, Fractal Theory, Flow with Change of Phase, Applications to Reservoir Rocks, Coals, Chemical Reactors, Membranes, Soils, etc. BS 153E – Downstream Processes in Biotechnology Selection of separation process. Chemical, physical, and biochemical aspects of isolation and purification of biomolecules. Product release from a cell. Concentration and separation methods: membrane, ion exchange. Precipitation and extraction. Chromatographic methods of purification. Design of downstream processing equipment. Downstream process economics. CET 2770E – Refining Engineering and Management	
34. 35. 36. 37. 38.	 CET 2656E - CET 2769E - Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E - Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids, Transient Flow, Simultaneous Immiscible Flow, Simultaneous Miscible Flow, Percolation Processes, Fractal Theory, Flow with Change of Phase, Applications to Reservoir Rocks, Coals, Chemical Reactors, Membranes, Soils, etc. BS 153E - Downstream Processes in Biotechnology Selection of separation process. Chemical, physical, and biochemical aspects of isolation and purification of biomolecules. Product release from a cell. Concentration and separation methods: membrane, ion exchange. Precipitation and extraction. Chromatographic methods of purification. Design of downstream processing equipment. Downstream process economics. CET 2770E - Refining Engineering and Management Considerations for crude selection, handling, storage, and pre-treatment. Various technologies	
34. 35. 36. 37. 38.	 CET 2656E - CET 2769E - Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level. (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E - Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids, Transient Flow, Simultaneous Immiscible Flow, Simultaneous Miscible Flow, Percolation Processes, Fractal Theory, Flow with Change of Phase, Applications to Reservoir Rocks, Coals, Chemical Reactors, Membranes, Soils, etc. BS 153E - Downstream Processes in Biotechnology Selection of separation process. Chemical, physical, and biochemical aspects of isolation and purification of biomolecules. Product release from a cell. Concentration and separation methods: membrane, ion exchange. Precipitation and extraction. Chromatographic methods of purification. Design of downstream processing equipment. Downstream process economics. CET 2770E - Refining Engineering and Management Considerations for crude selection, handling, storage, and pre-treatment. Various technologies available for secondary conversion of crude to maximise yield of desired products in product in product in products in product in products in products in pro	
34. 35. 36. 37. 38.	 CET 2656E - CET 2769E - Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the intra-reaction level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E - Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids, Transient Flow, Simultaneous Immiscible Flow, Simultaneous Miscible Flow, Percolation Processes, Fractal Theory, Flow with Change of Phase, Applications to Reservoir Rocks, Coals, Chemical Reactors, Membranes, Soils, etc. BS 153E - Downstream Processes in Biotechnology Selection of separation process. Chemical, physical, and biochemical aspects of isolation and purification of biomolecules. Product release from a cell. Concentration and separation methods: membrane, ion exchange. Precipitation and extraction. Chromatographic methods of purification. Design of downstream processing equipment. Downstream process economics. CET 2770E - Refining Engineering and Management Considerations for crude selection, handling, storage, and pre-treatment. Various technologies available for secondary conversion of crude to maximise yield of desired products in product pattern. Safety management in petroleum refinery. Environmental control applicable to petroleum refinery. Lube-oil manufacturing and blending operations using various cuts to achieve 	
34. 35. 36. 37. 38.	 CET 2656E - CET 2769E - Process Intensification (PI) Need for PI in the current and future contexts. Multifunctional Reactors: (a) Multi-functionality at the catalyst level, (b) multi-functionality at the reaction interface, (c) multi-functionality at the intra-reaction level, (d) multi-functionality at the inter-reaction level. Hybrid processes. Typical examples of fermentation accompanied by product removal by different techniques. Membrane reactors combining reaction and separation. Modelling of such multi-functional reactors / hybrid processes. CET 2161E - Flow through Porous Media Structure and Properties of Porous Materials, Statics of Fluids in Porous Media, Physical and Mathematical Theory of Flow, Models of Porous Structure, Laminar Flow of Homogeneous Fluids, Transient Flow, Simultaneous Immiscible Flow, Simultaneous Miscible Flow, Percolation Processes, Fractal Theory, Flow with Change of Phase, Applications to Reservoir Rocks, Coals, Chemical Reactors, Membranes, Soils, etc. BS 153E - Downstream Processes in Biotechnology Selection of separation process. Chemical, physical, and biochemical aspects of isolation and purification of biomolecules. Product release from a cell. Concentration and separation methods: membrane, ion exchange. Precipitation and extraction. Chromatographic methods of purification. Design of downstream processing equipment. Downstream process economics. CET 2770E - Refining Engineering and Management Considerations for crude selection, handling, storage, and pre-treatment. Various technologies available for secondary conversion of crude to maximise yield of desired products in product pattern. Safety management in petroleum refinery. Environmental control applicable to petroleum refinery. Lube-oil manufacturing and blending operations using various cuts to achieve the desired end-product specifications. Transportatio	

	relevant to petroleum refinery.	
41.	CET 2257E – Design of Nuclear Reactors	
	 Principles of Nuclear Reactions: fission, energy release, neutron flux, rate, power, chain reaction. Diffusion of neutrons in a moderator, slowing down of neutrons. Bare Homogeneous Reactors. Heterogeneous Reactors. Non-stationary conditions – sub criticality & super criticality. Reactor Kinetics, Reactor Response. Reactor Configurations and cycle diagrams for thermal reactors, fast reactor, research reactors. Heat generation, heat sources, and distribution. Various types of fuels, Fuel element design. Comparison of different coolants. Radiation shielding: principles and design. PHWR – with emphasis on plant layout, reactivity control, primary heat transfer system, Secondary system, power plant control and instrumentation, power plant safety: Criteria, Evaluation, and Monitoring. Nuclear architecture. Fast Breeder Reactors – introduction, reactor physics and safety, fast reactor core design, fuel, thermal analysis, mechanical design, hydraulic design, coolant, heat transfer system, instrumentation and control. 	
42.	CET 2164E – Nuclear Separation Processes	
43.	 Uranium and Thorium fuel cycles. Break-up of fuel cycle costs. Overview of Separation Processes and their Principles used in the Nuclear Industry. Uranium ores and their classification, production from ores. Recovery from Non-Conventional Sources, New Developments. Processes for Uranium Refining: Principles, Flow Sheet, and Equipments. Electrochemical Technology in nuclear industry. Beach sand Minerals: Production of thorium, Uranium, Rare Earths, Production of Zirconium, Zirconium and Hafnium separation, and Production of ZrO₂. Isotope Separation: Theory and Practice for Uranium. Heavy Water Production Processes and their applications. Fuel Reprocessing: need for reprocessing, principles, applications, and safety issues. Nuclear waste management: sources, Characteristics, Classification, Methods of treatment for low, intermediate, and high level – solid, liquid, and gas wastes with examples. Chemical Engineering in decommissioning of nuclear facilities. HU 151E – Management of Human Resources 	
-3.	Components of Human Decement & Human Decement Diaming Description of the second s	
	 Components of Human Resource Management : Human Resource Planning, Recruitment and Selection, Career Planning, Performance Appraisal, Wage and Salary Administration, Safety and Health, Human Resource Accounting and Audits, Human Resource Information system, Strategic HRM, International Human Resource Management 	
44.	HU 152E – Manpower Economics	
45	 Manpower problems and the Scope of Manpower Economics; Manpower and Human Capital Formation; Employment and Manpower Utilization : Determination of the General Level of Employment, Supply and Demand for Labour, Wage Determination, Definition and Structure of Labour Markets, Labour Productivity - Concepts and Measurement; Concepts and Patterns of Unemployment and Underemployment; Emergence of Education as a Work Prerequisite; Returns to Investment in Education; Role of Apprenticeship and on-the-job Training; Meaning and Importance of Manpower Planning at the Macro and the Micro Level; Forecasting and Auditing of Manpower; Quantitative and Qualitative Techniques of Manpower Planning; Manpower Planning and Total Quality Management; Comparative Manpower Planning and Development Policies of a few selected countries under Competitive Environment. 	
45.	HU 153E – Environmental Setting of Socio-Technical Systems	
	 Analysis of environment and its socio-cultural and Politico-economic dimensions, Organizations in Human Society, Structural - Functional Analysis of Organization, Organization and Human Value; Social Responsibility of Organizations, Organizational Pathology, Workers' Alienation, Organizational Change and Development, Automation; technology and Changing Social Relations at Work, Industrial Bureaucracy; Delegation of Authority, Social Policy and Social Planning, Entrepreneurship, Quality of Work Life. 	
46.	HU 154E – Effective Communication Laboratory	
	• Business English: Register, spoken and written, formal and informal; vocabulary and usage; reading and listening skills leading to written skill. Formal Communication : Formal Correspondence (Business letters, memos, minutes etc.); Organising Ideas and Writing Reports (Research papers, dissertation, notes & references); Speech Skills; Group Discussion, Interviews, Seminar Presentation (Defence); Negotiation, Non-verbal Communication.	

47.	HU 155E – Organizational Behaviour	
	• Introduction to OB, Perception, Attitudes and Values, Cross-cultural Dimensions, Personality and Self-development, Learning, Motivation, Transactional Analysis, Group Behaviour and Decision-making, Leadership, Power and Politics, Conflicts and Negotiations; Organizational Structure and Design, Organization Life, Cycle and Design; Organizational Change, Organizational Culture.	
25.	PY 151 – Physical Methods of Analysis	
	• Fourier Transform Infrared Spectroscopy: Molecular Vibrations, Frequency shifts associated with structural changes; Basic theory of FTIR spectroscopy, interferogram, digitization of interferogram, data points collection; Instrumentation and advantages of FTIR spectrophotometry; Qualitative and quantitative analysis using infrared spectrophotometry.	
	• Ultraviolet and Visible Spectrophotometry: Electronic transition, spectrum, shift of bands with solvents, isolated double bonds, conjugated dienes, carbonyl compounds, aromatic and heteroaromatic compounds; Application in pollution control and chemical industry.	
	• Nuclear Magnetic Resonance: Basic principle of NMR phenomenon, relaxation processes, spin- spin interaction, chemical shifts, interpretation of NMR spectra, correlation-hydrogen bonds to carbon and other nuclei; Instrumentation-Continuous and pulsed NMR, carbon-13NMR.	
	• X-ray Diffraction: Crystal geometry and structural determination; Bragg law of X-ray diffraction, powder method; X-ray spectrometers-wide and small angle diffractometers; Chemical analysis by X-ray diffraction.	
	• Particle Size Analysis: Particle size, sampling, conventional techniques of particle size measurement, light scattering, particle size measurement by light scattering techniques; Dynamic light scattering (DLS), fibre optic dynamic light scattering (FDLS).	
	• Chromatography: Basic theory of separation, efficiency, resolution; Liquid chromatography, high performances liquid chromatography; Gas chromatography-columns and detectors; Qualitative and quantitative analysis.	
	• Mass Spectroscopy: Basic principle, ionization of a molecule on electron impact, fragmentation processes in organic compounds, interpretation of mass spectra, molecular weight, molecular formula; Instrumentation-different types of ionization sources and magnetic analyser.	
48.	CET 2513E – Process Systems Engineering (Chemical Engineering Department)	
	Introduction to Systems Engineering: Systems and their origin, examples of problems in Systems	
	Engineering	
	Foundations of Systems Engineering: Scope and Formulation of Engineering Problems, Goals, Objectives, Specifications and Constraints, Types of Models; Hierarchical decomposition of systems, Types of Problems: Forward solution and inversion of models	
	Structural Analysis of Systems: Graphs and digraphs: Representation of systems, Partitioning and Precedence Ordering of systems, Structural analysis of modeling equations, Structural controllability and observability of systems, Applications to engineering problems	
	Steady State Analysis of Systems: Formulating steady-state models and simulations, Degrees of freedom and design specifications, The Sequential-Modular Strategy, The Equation-Oriented Strategy, Applications to engineering problems	
	Optimization of Systems: Theory and Algorithms: Basic concepts and definitions. Linear	
	programming, Unconstrained nonlinear optimization, Nonlinear Programming, Combinatorial optimization, Applications to engineering problems	
	Simulation of Dynamic Systems: Basic concepts: Systems described by ODEs and DAEs, Exemplating dynamic simulations: consistent initialization Numerical integration of ODEs and DAEs.	
	Modeling-simulation of hybrid Discrete/Continuous systems. Applications to engineering systems	
	Model-Based Process Control: The nature of feedback control, The concept of model-based control	
	systems, Design and analysis of model-based control systems applications	
49.	CET 2352 Molecular Modeling	
	• Postulates of statistical mechanics, ergodic hypothesis, System and particle partition function	15
	and relation to thermodynamics, micro-canonical ensemble, canonical ensemble, isothermal-	
	isobaric ensemble, grand-canonical ensemble, Gibbs ensemble, thermodynamic equivalence	
	 General features of molecular mechanics force fields bond stretching bond bending 	6
1		

	dihedrals and torsion, non-bonded interactions, hard and soft interactions, electrostatic	
	Interactions, combination/infixing rules, standard force fields	0
	• Introduction to Monte-Carlo simulation, importance sampling and the metropolis algorithm,	9
	implementation of metropolis Monte Carlo algorithm, simulation cell and periodic boundary	
	conditions, moves and acceptance criteria, simulations in different ensembles, multi-canonical	
	Monte Carlo and the transition matrix, configurational bias Monte Carlo, calculation of	
	thermodynamic properties.	
	• Introduction to molecular dynamics simulation, initialization and force calculation, algorithms	15
	to integrate the equations of motion, thermostats and barostats, autocorrelation functions,	
	tricks for speeding up the simulation, free energy calculations, molecular dynamics packages.	
	Reference Books:	
	1. McQuarrie, D.A. Statistical Mechanics (University Science Books: 2000).	
	2. Chandler, D. Introduction to Modern Statistical Mechanics (Oxford University Press, New York:	
	1987).	
	3. Hill, T.L. An introduction to statistical thermodynamics (Courier Dover Publications: 1960).	
	4. Widom, B. Statistical mechanics: a concise introduction for chemists (Cambridge University Press:	
	2002).	
	5. Frenkel, D. & Smit, B. Understanding molecular simulation: from algorithms to applications.	
	(Academic Press: 2002).	
50.	CET 2452 – Process Design of Multiphase Equipment	
	(3 Credits: 2 Lectures + 1 Tutorial – 3 hours per week, 45 hrs total)	
	Advanced Process design aspects of various process equipments use in multiphase contactors will be	
	considered through several applications. Course will cover: hydrodynamic characteristics, mass	
	transfer with chemical reactions, selection criteria, etc. The following equipments for Multiphase	
	reactions will be considered: (1) Equipment using mechanical energy: Stirred tanks, ejectors, venture	
	scrubbers: (2) Equipment using Pressure Energy: bubble columns / modified bubble columns, air-lift	
	reactors packed and plate columns trickle bed reactors etc.	
51	CET 2657 Introduction to Nanotechnology	
51.	Introduction: Nano particles, Nano tubes, Nano wires, Quantum dots and Nano composites	
	Characterization Tools: Imaging techniques, Spectroscopic methods and Diffraction techniques	
	Synthesis Techniques: Top and Bottom Approach Chemical and Physical Methods, thin film growth	
	techniques Nanolithography Enitaxy	
	Applications: Catalysis Energy Sensors Nanobiotechnology Health Security Environmental	
	Regenerative medicine	
	Regenerative incurrence.	
	1 Nanostructures and Nanometarials Guozhong Cao	
	I. Natiostructures and Nationaterials, Ouoziolig Cao Environmental Applications of Nanomaterials, Support Sorborts and Sonsors, Eruvall and	
	2. Environmental Applications of Nationaterials. Synthesis, Soldents and Sensors, Tryxen and	
	Cau 2 Non-ophemiotry Chemical Annuagh to Non-ometarials Orin and Arganovit	
	5. Indiochemistry. Chemical Apploach to Nationatenais, Ozin and Alsenaut	
52	4. Introduction to Nanotechnology, Poole and Owens	
52.	Latroduction and everying of fuel cell requirement history principle everying and basic	
	alastrochomistry of the fuel cell	
	electrochemistry of the fuel Cell Cill? C	
	Thermodynamics of Fuel Cell- Glob's free energy, reversible and irreversible losses, fuel cell	
	efficiency, Nernst equation: Effect of temperature, pressure and concentration on Nernst potential,	
	Concept of Electrochemical Potential	
	Components of Fuel cell: Electrolyte, catalyst, bipolar plate/current conector	
	Activation Polarization-electrochemical kinetics, reaction rate, surface coverage, Activation	
	polarization for charge transfer reaction, Butler-Volmer equation, Tatel equation.	
	Concentration Polarization: Diffusion transport in electrodes, transport through flow channel,	
	concentration polarization	
	Ohmic polarization: Ionic conductivity and Electronic Conductivity	
	Fuel Cell Characterization: Possible ways of Characterization, IV characteristics and electrochemical	
	impedance spectroscopy, cyclic voltametry	
	Comparison of High temperature and low temperature fuel cell, Different types of fuel cell	
1	Hydrogen production and storage safety issues and Cost issues	1

	Course Coue: CE1 2514	Course Title:	Credits = 3		
		Advanced Process Development and Engineering	LT	Т	']]
	Semester: I	Total contact hours:	30	15	(
	Course				
1	Describe key steps in the deve	lopment of industrial processes		K 1	
$\frac{1}{2}$	Assess techno aconomic para	meters of proposed projects		K1 K5	
2	Assess techno-economic para	avelopment and engineering of chemical		KJ K1	
5	processes	evelopment and engineering of chemical		K1	
4	Apply principles of process de processes	evelopment and engineering to improve existing		K3	
5	Assess alternative chemical pr best choice	cocesses and provide recommendations for the		K5	
6	Develop methodology for the	launch of novel processes and products		K6	
	· <u>-</u> <u>-</u> <u>-</u> <u>-</u>	List of Prerequisite Courses			
	All chemical engineering subj	ects; Design project / Home paper			
	List of Cours	ses where this course will be prerequisite			
	This course will be useful for	the development and engineering of chemical			
	processes.				
	Description of relevan	nce of this course in the M. Chem. Engg. Progra	m		
	This course will provide key i	nformation on several process development-related	1 aspe	ects.	
	Course Co	ntents (Topics and subtopics)	Req	d. hou	irs
1	Evolution of chemical proce Current trends and shifts	esses, e.g., ammonia, methanol and hydrogen;		2	
2	Introduction to green chemistr	ry: Green engineering principles		2	
3	From green to sustainable p sustainable technologies	processes; Tools for development of advanced		3	
4	Methods for sustainability Challenges to advance sustain	assessment; Tools, indicators and framework; ability at process level		3	
4 5	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples		3	
4 5 6	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering		3 4 2	
4 5 6 7	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to		3 4 2 2	
4 5 6 7 8	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments Safety of chemical processe HAZOP study	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to s; Risk-based process safety and its elements;		3 4 2 2 4	
4 5 6 7 8 9	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments Safety of chemical processe HAZOP study Energy-efficient designs	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to s; Risk-based process safety and its elements;		3 4 2 2 4 3	
4 5 7 8 9 10	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments Safety of chemical processe HAZOP study Energy-efficient designs Calculation of production cap	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to s; Risk-based process safety and its elements; acity of chemical plants		3 4 2 2 4 3 1	
4 5 6 7 8 9 10 11	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments Safety of chemical processe HAZOP study Energy-efficient designs Calculation of production capa Small-scale continuous chemi	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to s; Risk-based process safety and its elements; acity of chemical plants cal production; Technology gaps and challenges		3 4 2 2 4 3 1 3	
4 5 6 7 8 9 10 11 12	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments Safety of chemical processe HAZOP study Energy-efficient designs Calculation of production cap Small-scale continuous chemi Scale-up of chemical processe Commercial scale-up of new of	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to s; Risk-based process safety and its elements; acity of chemical plants cal production; Technology gaps and challenges es; Objectives, steps and procedures; Pilot plants; chemical processes		3 4 2 2 4 3 1 3 3	
4 5 7 8 9 10 11 12 13	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments Safety of chemical processe HAZOP study Energy-efficient designs Calculation of production cap Small-scale continuous chemi Scale-up of chemical processe Commercial scale-up of new of Future production concepts in continuous	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to s; Risk-based process safety and its elements; acity of chemical plants cal production; Technology gaps and challenges es; Objectives, steps and procedures; Pilot plants; chemical processes a the chemical industry; Modular, small-scale and		$ \begin{array}{c} 3 \\ 4 \\ 2 \\ 2 \\ 4 \\ 3 \\ 1 \\ 3 \\ 3 \\ 3 \\ 3 \end{array} $	
4 5 6 7 8 9 10 11 12 13 14	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments Safety of chemical processe HAZOP study Energy-efficient designs Calculation of production cap Small-scale continuous chemi Scale-up of chemical processe Commercial scale-up of new of Future production concepts in continuous Steps to transform a batch pro	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to s; Risk-based process safety and its elements; acity of chemical plants cal production; Technology gaps and challenges s; Objectives, steps and procedures; Pilot plants; chemical processes the chemical industry; Modular, small-scale and cess reaction to a continuous process		3 4 2 2 4 3 1 3 3 3 3	
4 5 6 7 8 9 10 11 12 13 14 15	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments Safety of chemical processe HAZOP study Energy-efficient designs Calculation of production cap Small-scale continuous chemi Scale-up of chemical processe Commercial scale-up of new of Future production concepts in continuous Steps to transform a batch pro Methodology for techno-econ- to new approaches for processe	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to s; Risk-based process safety and its elements; acity of chemical plants cal production; Technology gaps and challenges es; Objectives, steps and procedures; Pilot plants; chemical processes a the chemical industry; Modular, small-scale and cess reaction to a continuous process omic process evaluation; Examples; Introduction a development		3 4 2 2 4 3 1 3 3 3 2	
4 5 7 8 9 10 11 12 13 14 15 16	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments Safety of chemical processe HAZOP study Energy-efficient designs Calculation of production cap Small-scale continuous chemi Scale-up of chemical processe Commercial scale-up of new of Future production concepts in continuous Steps to transform a batch pro Methodology for techno-econ- to new approaches for processs Integrating process safety and	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to s; Risk-based process safety and its elements; acity of chemical plants cal production; Technology gaps and challenges es; Objectives, steps and procedures; Pilot plants; chemical processes the chemical industry; Modular, small-scale and cess reaction to a continuous process omic process evaluation; Examples; Introduction innovation		$ \begin{array}{c} 3 \\ 4 \\ 2 \\ 2 \\ 4 \\ 3 \\ 3 \\ 3 \\ 3 \\ 2 \\ 2 \\ 2 \end{array} $	
4 5 6 7 8 9 10 11 12 13 14 15 16 17	Methods for sustainability Challenges to advance sustain Intensification of chemical pro Equipment and methods for P and case studies Process optimization; Process Financial analysis of proposed guide investments Safety of chemical processe HAZOP study Energy-efficient designs Calculation of production cap Small-scale continuous chemi Scale-up of chemical processe Commercial scale-up of new of Future production concepts in continuous Steps to transform a batch pro Methodology for techno-econ- to new approaches for process Integrating process safety and Process retrofit; Analysis of p remove bottlenecks; Procedur	assessment; Tools, indicators and framework; ability at process level ocesses; Guiding principles and elements of PI; I; Separation process intensification; Examples Systems Engineering I projects; Calculation of financial indicators to s; Risk-based process safety and its elements; acity of chemical plants cal production; Technology gaps and challenges es; Objectives, steps and procedures; Pilot plants; chemical processes the chemical industry; Modular, small-scale and cess reaction to a continuous process omic process evaluation; Examples; Introduction a development innovation rocess bottlenecks; Methods to identify and es for process retrofits		$ \begin{array}{c} 3 \\ 4 \\ 2 \\ 2 \\ 4 \\ 3 \\ 1 \\ 3 \\ 3 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	

	2	Organic Unit Processes, Groggins			
List of Additional Reading Material / Reference Books					1
	1	Handbook of Chemical Process Development, Chandalia S. B.			l.