Syllabus for Multi-Disciplinary Minor (MDM) Degree in Mechanical Engineering

Under the National Education Policy-NEP 2020 in (2023-2024)

Offered by

DEPARTMENT OF GENERAL ENGINEERING

INSTITUTE OF CHEMICAL TECHNOLOGY (University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

A. Preamble:

The mechanical engineering minor is tailored to students who want to understand the fundamentals of mechanical engineering other than courses covered in engineering sciences. The students will develop abilities in design, analysis and experimentation through foundation of math, physics, chemistry including modelling, energy engineering, mechanics of materials, product design and hydraulics.

The students can combine the skills and technological expertise of this minor with a major in technology of aligned branch and chemical engineering to prepare for a wide variety of opportunities in industrial fields and in demand careers.

B. Programme Specific Outcomes:

Programme Specific Outcomes (PSOs) for Mechanical Engineering (MDM) as per course outcomes

PSO1	Use of Mechanical engineering knowledge in the design of chemical process equipment's, energy conservation systems.
PSO2	To provide specialized aspects of mechanical engineering to enhance their skill set and capabilities within their discipline specific field.
PSO3	To expand the working knowledge of Mechanical engineering principles to broader engineering activities.

C. Structure of the MDM course:

Subject Code	Semester	Subject	Credits	H	rs./Wo	eek	Marks various Exams		for	
				L	Т	P	CA	MS	ES	Total
GEP1132	III	Workshop Practice	2	0	0	4	50	-	50	100
GET1133	IV	Advanced strength of Materials	2	1	1	0	20	30	50	100
GET1134	v	Energy Engineering & Management	4	3	1	0	20	30	50	100
GET1135	VI	Mechanical design of chemical process equipment's.	2	1	1	0	20	30	50	100
GET1136	VII	Industrial Hydraulics	2	1	1	0	20	30	50	100
GET1137	VIII	Product Design and Development	2	1	1	0	20	30	50	100
		Total	14							600

- D. Intake: Minimum 15 and maximum 35 students
- E. **Duration:** 3 years (6 semesters)
- F. **Eligibility criteria:** Students enrolled in B. Chem. Engg and B. Tech programme are eligible. The allotment of minor degree programme will be as per the policy of the Institute.

G. Pedagogy/Teaching Method:

Lecture/Discussions: These sessions will discuss the subject matters of the course. Experiential Learning: The sessions will involve hands-on training. Tutorials: Problem solving / case studies / relevant real-life applications / student presentations / home assignments / individual or group projects.

H. Method of Evaluation/Delivery

Subject Code	Semester	Course	Method of Evaluation	Methods of Delivery
GEP 1132	III	Workshop Practice	a) Continuous internal Evaluation on assigned Job.b) Skill based end exam.	a) Hands on Training
GET 1133	IV	Advanced strength of Materials	 a) Minimum 2 class tests b) Assignments c) Seminar/ Presentation d) Report submission 	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects
GET 1134	V	Energy Engineering & Management	 a) Minimum two class test b) Assignments c) Seminar/ Presentation d) Report submission 	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects
GET 1135	VI	Mechanical design of chemical process equipment's.	 a) Minimum two class tests b) Assignments c) Seminar/ Presentation d) Report submission 	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects
GET 1136	VII	Industrial Hydraulics	 a) Minimum two class test b) Assignments c) Seminar/ Presentation d) Report submission 	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects
GET 1137	VIII	Product Design and Development	 a) Minimum two class tests b) Assignments c) Seminar/ Presentation d) Report submission 	 a) Lectures/Face to face training b) Tutorials c) Case study d) Presentation (PPT) e) Group Projects

I. Faculty/Instructor for the course

ſ	Subject	Semeste	Course	Instructor/Faculty
	Code	r		
	GEP 1132	III	Workshop Practice	Dr. Sachin Solanke
	GET 1133	IV	Advanced strength of Materials	Prof. Dilip Sarode
	GET 1134	V	Energy Engineering & Management	Dr. D. Biswas

GET 1135	VI	Mechanical design of chemical process equipment's.	Prof. Suresh Deshmukh/Prof V. R. Gaval
GET 1136	VII	Industrial Hydraulics	Prof. R.S.N. Sahai
GET 1137	VIII	Product Design and Development	Dr Vikram Korpale

J. Detailed syllabus:

	Course Code:	Course Title:	Cr		s = 2
			L	Т	Р
	GEP 1132 Semester: III	Workshop Practice Total contact hours: 60	0	0	4
	Semester. III	List of Prerequisite Courses	U	v	-
	Engineering Graphics	List of Frerequisite Courses			
		ist of Courses where this course will be prerequisite			
		Drawing, Design and fabrication of Molds			
		Course Contents (Topics and subtopics)	Re		iours
1	Introduction to various l	Production Processes		5	
2	Study of Construction, Milling etc.	Mechanism and Application of Lathe Machines, Drilling Machine,		16	
3	One composite job using	g a minimum of four Machining operations such as plane turning, taper			
	turning, external threading and knurling etc. with its process sheet.				
4	Classification of variou	s Joining and metal forming processes and their applicability such as	10		
		anical fastening, welding, and allied processes.		10	
5	- C	nical process equipment fabricators demonstrating use of forming,			
_	bending, rolling, and we			8	
6		es and 3D Printing technology.		5	
	1	List of Textbooks/ Reference Books			
1		Practice by K C John, PHI Learning 1. Workshop Technology Vol. 1 8. S. Dhanpat Rai & Sons, 1998.			
2	1998.	by Chapman W.A. J and Arnold E. Viva low priced, student edition,			
3		S Bawa, Tata McGraw-Hill, 2009.			
4		l Materials, B J Black, CRC Press.			
5		Hajra Choudhury A.K. and Nirjhar Roy S.K., "Elements of Workshop omoters and publishers private limited, Mumbai, Vol. I 2008 and Vol.			
CO1	Indonational different on	Course Outcomes (students will be able to)		K2	
CO1 CO2					
CO2 CO3		en joining and forming process for a suitable application.		K3 K4	
CO3		methods such as forming, bending, rolling and CNC machines		K4 K2	

_	Course Code: GET 1133	Course Titl	e: Advanced Stren	-	L	T	P
			-	•	C	redi	ts = 2
	CO4	3	2	2			
	CO3	3	2	1			
	CO2	1	3	2			
	CO1	1	3	3			
		PSO1	PSO2	PSO3			
	Mapping of Cou		COs) with Program Os)	nme Outcomes			

Semester: IV	Total contact hours: 30	I	U
	List of Prerequisite Courses		
Structural Mechanics, Bas	c Mechanical Engineering, Applied Mathematics		
List of Cour	ses where this course will be prerequisite		

	Course Contents (Topics and subtopics)	Reqd hour
1	Thick and Thin cylinders - concept of radial, longitudinal stresses, behavior of thin cylinders. Problems on thin cylindrical and spherical shells. Behavior of thick cylinders (theory only).	
2	Torsion of a circular shaft - concept, basic derivation, shear stress distribution, simple problem.	3
3	Short and Long columns (Struts) - Basic concept, crippling load, end conditions. Euler's and Rankine's approach (without derivations)	3
4	Advance stresses and strains – Representation of stress and strain at a point, Stress stain relationship, plane stress and plane strain. Transformation of stresses and its importance, Principal stresses and strains, maximum shearing stress, Mohr's circle its use and construction.	6
5	Basics of Engineering Design - Steps in the engineering design, Importance of analysis, 1-D, 2-D and 3-D analysis and interpretation of results. Force displacement relationship, Strain deformation relationship, Introduction to finite element Analysis. Computer aided analysis and design.	5
6	Different types of loads, load factor, factor of safety, Design philosophies, Working stress approach, Ultimate stress approach and Limit state theory. Performance based design Approach.	2
7	Natural Materials, Manmade materials, Alloys, Composite Materials – Types of composite materials, Cement and its varieties, cement composites, properties, recycling of waste, Sustainable materials	4
8	Advance materials for industrial applications - Advances in materials, Materials used for coatings, anticorrosive coatings, special purpose floorings, water proofing compounds, Various polymers and epoxies used for industrial applications.	3
9	Different types of performance enhancing and special purpose construction chemicals. Plasticizers and super-plasticizers, air entraining agents, accelerators and retarders, viscosity modifying agents, corrosion inhibitors List of Textbooks/ Reference Books	4
	 Engineering Materials by Rangwala Strength of Materials by Ferdinand Singer and Andrew Pytel, Harper Colins Publishers Introduction to Mechanics of Solids by Egor Popov, Prentice Hall of India Pvt. Ltd Strength of Materials by S. Timoshenko and D. H. Young, McGraw Hill Publications. Concrete Technology by A. M. Neville, Pearson Education ltd Concrete Technology – Theory and Practice by M. S. Shetty, S. Chand & Co. Fundamental of Fibre reinforced composite materials by A. R. Busell and J. Renard, Taylor & Corrosion and Corrosion Protection Handbook by Philip A. Schweitzer, CRC press 	

	Course Outcomes (students will be able to)				
CO1	Understand stresses induced in thin cylinders, shafts and columns.	K2			
CO2	Apply knowledge of equilibrium for analysis of complex stress situations.	K3			
CO3	Analyse different complex problems in engineering design.	K3			

CO4	Understand Force displacement relationship, Strain deformation relationship.	K2
CO5	Apply knowledge of materials for various engineering applications.	K3

Mapping of Co	Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)					
	PSO1	PSO2	PSO3			
CO1	3	1	2			
CO2	3	1	2			
CO3	3	2	2			
CO4	1	1	2			
CO5	2	2	2			

	Course Code: GET 1134	Course Title: Energy Engineering and Management		Cre =	dits 4		
			L	Т	P		
	Semester: V	Total contact hours: 60	3	1	0		
	List of Prerequisite Courses Elements of Mechanical Engineering, Basic Mechanical Engineering, Applied Mathematics						
	List of Courses where this course will be prerequisite						
	Heat Transfer Equipment design Management	, Chemical Project Economics, Chemical Industrial					
	Course Con	tents (Topics and subtopics)		leqd our:			
1.	 Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security Energy Conservation and its Importance, Features of Energy Conservation Act-2001, Basics of Energy and its various forms, Material and Energy balance. 			, 06			
2.					5		
3.	 Energy Management and Energy Conservation in Electrical Systems Electricity billing, Electrical load management and maximum demand Control, Energy efficient equipment and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control Occupancy sensors, daylight integration, and use of intelligent controllers, Energy conservation opportunities in water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives. 			16	5		
4.	 Boilers and furnaces: Classifie Wilcox Boiler, Cochran Boiler and Accessories, Boiler Perfor Steam Turbine: Classification Turbine, Compounding of Steam 	ycle, Reheat cycle, Regenerative cycle. cation, Study of various Boilers such as Babcock & c, La-Mount Boiler, Benson Boiler, Boiler Mountings mance on, Calculation of Power Developed by Steam am Turbine er, various types of steam condenser, Condenser		16	5		
5.	 Non-Conventional Energy Sour Role and importance of non-conthermal, solar Photo-voltaic, Content cells, wind, ocean, bio-mass and cells. 	cces: onventional and alternate energy sources such as solar Cooling techniques to cool Photovoltaic		06	5		

	1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell	
	Science	
	2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System	
	3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons	
	4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata	
	Energy Research Institute (TERI).	
	5. Energy Management Principles, C. B. Smith, Pergamon Press	
	6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E.	
	Richardson, Fairmont Press	
	7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus,	
	CRC Press	
	8. Thermodynamics by P.K. Nag	
	9. Power plant by Morse	
	10. Heat Engines by P.L. Balani	
	11. Renewable Energy resources by Tiwari and ghosal, Narosa publication.	
	12. Non-conventional energy sources, Khanna publications	
	Course Outcomes (students will be able to)	
CO1	To identify and describe the present state of energy security and its importance.	K2
CO2	To identify and describe the basic principles and methodologies adopted in energy	K3
	audit.	
CO3	To describe the energy performance evaluation of electrical and thermal installations	K3
	and identify the energy saving opportunities.	
CO4	To analyse the data collected during performance evaluation and recommend energy	K4
	saving measures.	
CO5	Discuss the steam formation process, working of steam boilers, mountings, and	K2
	accessories and their properties.	
CO6	Explain the need for and importance of various renewable energy sources.	K2
CO7	Employ this knowledge for energy saving in various devices.	K3

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)							
	PSO1	PSO2	PSO3				
CO1	3	1	2				
CO2	3	1	2				
CO3	3	1	2				
CO4	3	1	1				
CO5	1	1	2				
CO6	3	1	1				
CO7	3	1	2				

	Course Code:	Course Title: Mechanical Design of Chemical Process			
	GET 1135	equipment	L	Т	Р
	Semester: VI	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	Structural Mechan	ics, Basic Mechanical Engineering, Advanced Strength of			
	Materials, Enginee				
		of Courses where this course will be prerequisite			
	Chemical Process On Job Training P	Equipment Design and drawing, Home paper, Internship/ roject			
		Course Contents (Topics and subtopics)	Rec	-	
			hou		
1		sic Design concepts		2	
2	Design of Pressure			1.0	
		ssure vessels used in process Industries.		16	
		on for pressure vessels			
		Design stresses, factor of Safety, Types of stresses on Vessels			
	Vessels operating at Elevated and low temperatures. Cyclic loading and				
	consideration for corrosion for design Design of vessel Shell for Interna				
	pressure, combined loading and for external stresses, Use of reinforcement rings for shells Design of various types of head or cover Design and types of Nozzles				
	Design and types of Flange Joints for shell and nozzles Various types of				
	supports for pressure vessels				
3					
5	Design of Storage Vessel, Types and uses of storage Vessels used for storing various fluids and gases.				
	Loss mechanism in			12	
	Design of Recta				
	tank				
	Design of Vessel shell,				
	Design of bottom l				
	Wind girders, roo	f top angle curbs,			
	Design of self-sup				
	Use of support colu	mns for roof			
	1	List of Textbooks/ Reference Books			
		nent Design by, V. V. Mahajani			
	2. Equipment Des				
	3. Equipment Design by Young				
	4. Welding Techn	ology by O. P. Khanna			
		Course Outcomes (students will be able to)			
CO1	Understand Basic	Design concepts.		K2	
CO2		Vessel and Storage Vessel		K4	
CO3	Design with real tir	ne data		K5	

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)							
	PSO1	PSO2	PSO3				
CO1	3	2	1				
CO2	3	2	1				
CO3	3	2	1				

Course Code: GET 1136	Course Title: Industrial Hydraulics	Credits = 2		= 2
		L	Τ	P

	Semester: VII	Total contact hours: 30	1	1	0			
		List of Prerequisite Courses						
	Applied Physics, Basic M							
		Courses where this course will be prerequisite						
	Instrumentation and proc	cess control, Home Paper						
	Course Contents (Topics and subtopics)				d. rs			
1.	Introduction to Hydraulics: Basics of hydraulics, Pascal law, Advantages of Hydraulic drives, Quality requirement of hydraulic fluids and its requirements, Standard symbols for hydraulic lines, pumps, valves, motors, Check valves, its functions, various types and its applications, Directional control valve, two way and four way, Two positions and three positions direction valve, Rotary valve							
2.	functions, various types valve, Relief valve, simp	ve, working and its applications, Flow control valve, its and its applications, Pressure compensated flow contro le and compound, Balanced Piston relief valve, Sequence s. Study of various types of filters.	and its applications, Flow control valve, its cations, Pressure compensated flow control pund, Balanced Piston relief valve, Sequence					
3.	Pumps and Hydraulic motors: Pumps, Gear pumps, vane pumps, Positive displacement axial piston pump. Pressure intensifier, Accumulator, Hydraulic motors							
4.	Hydraulic circuits:Study of various Hydraulic circuit used in industry; Study of various Hydraulic4circuit used in Polymer processing							
5.	Pneumatic systems & components: Compressor, Receiver / Reservoir Tank, Starting Unloader & Controller, Filters, Regulators / Valves, Lubricators, Mufflers / Silencer, After Cooler, Air Dryers, and Indicators (Pressure, Temperature etc.)							
		List of Textbooks/ Reference Books						
	 Majumdar S.R, Oil McGraw Hill 	rs wer with application, Prentice Hal Hydraulic system- Principle and maintenance, Tata eumatics Systems Principles and Maintenance, Tata						
	5. Stewart H. L, Hydrau	llics and Pneumatics, Taraporewala Publications						
		rse Outcomes (students will be able to)						
CO1	Understand basics of hyd			K2				
CO2	Analyse applications of			K5				
CO3	Applications of pumps i			K3				
CO4	<u> </u>	for industrial applications.	<u> </u>	K6				
CO5	Applications of pneumat	tics in industry.	<u> </u>	K3				

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)

	PSO1	PSO2	PSO3
CO1	1	2	2
CO2	1	2	2
CO3	2	2	1
CO4	1	1	1
CO5	3	2	1

Course Code:		Course Title: Product Design and development	Credits =				
	GET 1137			Т	P		
Sei	mester: VIII	Total contact hours: 30	1	1	-		
		List of Prerequisite Courses	1				
	0 0	braphics, Structural Mechanics, Elements of Mechanical					
		aterials Engineering List of Courses where this course will be prerequisite					
		bb Training Project					
		Course Contents (Topics and subtopics)	Req hou				
1	Basics of Design: Design definitions and attributes, Product configurations and component matrix, Understanding and analysing product contexts, Modularity, and design of modular systems, understanding design situations-parallel and future						
2	Product design aspects: Design issues, Selection of materials and technical requirements, Dimensional accuracy and functional requirements, Surface finish, Making a product specification etc.						
3	Effect of wall th	neral Design features: ect of wall thickness, corner radius, drafts, shrinkage, and warpage, inserts and ing lines. Design of ribs, bosses, threads etc., Cost economics.					
4	Design thinking			06			
5	Product design procedures: Product design of engineering load bearing components such as gears, bearings, filament wound storage tanks, pipes etc.						
		List of Textbooks/ Reference Books					
1.	<u>^</u>	lesign handbook by Edward Miller					
2.	Ū	and development by Karl T. Ulrich					
3.	3. Change by Design by Tim Brown						
	1	Course Outcomes (students will be able to)					
CO1		product design and development procedure		K2			
CO2		ct design concepts to prepare industrial product		K3			
CO3	•	of plastic product design		K4			
CO4	Design engineering plastic products based on technical requirements			K6			

Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)							
	PSO1	PSO2	PSO3				
CO1	1	1	2				
CO2	3	2	1				
CO3	2	1	2				
CO4	1	2	3				