Syllabus for Multi-Disciplinary Minor Degree In Chemical Sciences

Under the National Education Policy (NEP 2020) in

(2023-2024)

Offered by

DEPARTMENT OF CHEMISTRY

INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956)

Elite Status and Center for Excellence Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

A. Preamble:

Chemistry is known as the 'central science' – a sound understanding of the interactions between molecules is critical in all the technical applications. Understanding the fundamentals of Chemistry is the first step towards designing high throughput synthetic methodologies for fine and bulk chemicals, pharmaceutical components, plastics, etc. All industrial progress relies primarily on the improved materials provided by the chemical industry. Applications based on the chemical sciences are bound to play an indispensable role in achieving sustainable development goals at a global level.

The present module of Multidisciplinary Minor (MDM) degree in Chemical Sciences is offered by the Department of Chemistry, Institute of Chemical Technology (ICT) under the aegis of the National Education Policy (NEP 2020). The aim of the Chemical Sciences MDM degree is to equip Chemical Engineering and Chemical Technology undergraduates with a thorough understanding of the concepts and applications of Chemistry. The salient features of the MDM degree in Chemical Sciences are as follows:

Industry relevance: The bulk and fine manufacturing industries rely heavily on their trained experts to bridge the gap between concepts and technology. The MDM aims to equip students for diverse roles in numerous industries such as pharmaceuticals, polymers, dyes, and textile industries

Innovation and Entrepreneurship: The national objectives of self-reliance are driving the economy towards a setup where entrepreneurial ventures will be more important. With the growth in demand for locally manufactured chemicals and in accordance with the Institute's legacy of producing industrialists and entrepreneurs, students will be able to successfully combine the expertise in Chemistry and technology to address this expanding market.

Research and Development: The future of research in interdisciplinary areas with greater coordination between the scientists and technologists. The students will comprehend and combine both aspects through their training to be competent researchers on a global level.

Sustainable development: The current challenges of pollution and non-renewable feedstocks can only be addressed through well-trained chemical experts. Development of clean technologies and energy-efficient transportation can be achieved only through application of chemical knowledge. Chemistry can play a pivotal role in ensuring food security and access to health care – key factors in alleviating poverty.

B. Programme Specific Outcomes:

Programme Specific Outcomes (PSOs) for Chemical Sciences (MDM)

	Foundation of Organic Chemistry: Understand the structure and properties of hydrocarbons
PSO1	(including aliphatic, aromatics, heterocyclics) to enable problem solving related to the
	largest class of industrially relevant compounds and processes related to their manufacture
	Foundation of Physical Chemistry: Use the principles of kinetics, interfacial phenomena,
PSO2	and the underlying thermodynamic concepts to link basic chemical sciences and
	engineering principles for solving real life problems
	Foundation of Computational Chemistry: Apply modern computational theories and
PSO3	methods to model chemical systems from the molecular scale to bulk scale - critical in
	developing advanced understanding
	Foundation of Catalysis: Understand the diverse applications of catalysis and the
PSO4	developments in the field to enable application of cutting-edge chemical technology on a
	large scale
	Conduct investigations of complex problems: Identify, formulate, review research
	literature, and analyze complex real-life problems using chemical know-how Use research-
PSO5	based knowledge in chemical sciences and research methods including design of
	experiments, analysis, and interpretation of data to unfold complex problems from industry
	and academia and provide working solutions.
	Societal Applications of Chemistry: Apply reasoning informed by the existing knowledge
PSO6	pool to convert into a quantitative framework, collect relevant information and address
	various societal issues using chemical tools

C. Intake: Minimum 15 and Maximum 35 (the intake criteria is subject to the norms prescribed by the Institute)

D. **Eligibility criteria:** The courses offered require a basic understanding of the principles of Chemistry at Std XII (HSC or equivalent) level. The students enrolled for the B. Chem. Engg. / B. Tech. (Chemical Technology) programs of the Institute of Chemical Technology are eligible due the present criteria for admission. The allotment to the MDM degree and/or change, if any, in MDM after Sem-III examination will be as per the Institute's rules.

In case the candidate wishes to opt for the MDM degree in Chemical Sciences but does not meet the eligibility criterion, he/she/they may have to acquire the same by successfully completing equivalent courses and providing evidence for the same.

- E. **Pedagogy:** The courses will be taught in a combination of classroom lectures and experiential learning modules. Laboratory demonstrations will be incorporated wherever required for enhanced understanding. Courses like Computational Chemistry will involve practical exercises as an important component.
- F. **Evaluation:** The students will be assessed based on a combination of continuous assessment and end-semester test. The continuous assessment could be incorporated in the form of quizzes, assignments, presentations, group projects, etc. The evaluation policies are subject to the norms prescribed by the Institute.

G. Structure of the multidisciplinary minor (MDM) degree program in Chemical Sciences:

Subject Code	Sem	Subject	Credit s	Hr	s./W	eek	Ma	ırks foı	r various	Exams
				L	T	P	CA	MS	ES	Total
CHT 1003	III	Chemical Kinetics	02	2	0	0	20	30	50	100
CHT 1004	IV	Interfacial Chemistry	02	2	0	0	20	30	50	100
CHT 1005	V	Organic Synthesis	04	3	1	0	20	30	50	100
CHT 1006	VI	Organic Spectroscopy	02	2	0	0	20	30	50	100
CHT 1007	VII	Computational Chemistry	02	2	0	0	20	30	50	100
CHT 1008	VIII	Organometallic Chemistry and Catalysis	02	2	0	0	20	30	50	100
		Total	14					/		

H. Faculty members:

- 1) Chemical Kinetics Prof. R. V. Jayaram
- 2) Interfacial Chemistry Prof. R. V. Jayaram
- 3) Organic Synthesis -Dr. A. R. Kapdi
- 4) Organic Spectroscopy Prof. A Chaskar / Visiting faculty
- 5) Computational Chemistry Dr. R. V. Pinjari
- 6) Organometallic Chemistry and Catalysis Prof. B. M. Bhanage / Dr. A. Kapdi

I. Detailed syllabus:

	Course Code:	Course Title: Chemical Kinetics	<u> </u>		ts = 2
	CHT 1003 Semester: III	Total contact hours: 30	L 2	T 0	P 0
	Semester. III	Total Contact Hours. 50	2	U	
		List of Prerequisite Courses			
Std XII	Chemistry, Chemistry-I	•			
	List of Co	ourses where this course will be prerequisite		•	
Interfac	ial Chemistry (CHT 1004)				
		ance of this course in the MDM in Chemical Science			
to under	rstand how fast a reaction c e are critical for designing	ots of three of the principal topics in chemical kinetics. an go. Understanding of reaction rates and kinetic parameter and controlling many industrially relevant processes.			•
		ontents (Topics and subtopics)		Hot	
1	experimental methods in	ntroduction, concept of reaction rates and order, n kinetic studies, differential and integral methods to of zero, first and second order		03	3
2	molecularity	illel, consecutive, and reversible reactions, order, and		03	3
3	Mechanism of thermal ph	mechanism- steady state and rate determining step notochemical chain reactions, polymerization reactions, and kinetics of enzyme catalysis		00	5
4	Kinetics of surface react surface reactions	ions – Adsorption, Hinshelwood, and Ridel models of		02	2
5	Theories of reaction rate Theory of unimolecular r	es and temperature effects- Collision theory and TST reactions		04	1
6	Kinetics of reactions in se Kinetic isotope effect	olutions- solvent effects and effects of ionic strength		04	1
8	Fast reactions and reaction	ons in molecular beams – experimental techniques		03	3
9	Kinetics of solid-state rea			02	2
10	Applications – Food indu	stry, Pharmaceutics, Industrial synthesis		03	3
	X,•			30)
		ist of Textbooks / Reference Books			
1	Chemical Kinetics – K.J.				
2	*	Einetics- J.C.House, Publisher Wm C. Brown, 1997	70		Ioh
3	Wiley & Sons, 1990	Study of Reaction Rates in Solution, Kenneth Antonio C			
4	Chemical Kinetics: From Elsevier, 2021	m Molecular Structure to Chemical Reactivity,	Luis	A 1	rnaut,
		e Outcomes (students will be able to)			·
CO1	_	different mechanisms using appropriate models		K2	
CO2	Apply the rate laws to ch	emical reactions and processes		K3	3

CO3	Analyze the kinetic aspects of chemical processes taking place on the interfacial electrode surface	К3
CO4	Compare the theoretically predicted rates with the rates computed experimentally	К3
CO5	Modify the kinetic parameters to improve the selectivity or yield of given reaction / process	К3
CO6	Evaluate the kinetic model by comparing the experimentally observed data with the proposed rate law	K4

Ma	apping of Cour	rse Outcomes (COs) with Pro	gramme Out	comes (PSOs	
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	3	2	1	1	2
CO2	2	3	2	1	1	2
CO3	2	3	1	2	2	3
CO4	1	3	3	2	2	1
CO5	3	2	3	3	2	3
CO6	2	3	1	2)	1	1

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

	Course Code:		C	andii	ts = 2
	CHT 1004	Course Title: Interfacial Chemistry	L	T	$\frac{\mathbf{ls} = 2}{\mathbf{P}}$
	Semester: IV	Total contact hours: 30	2	0	0
	Schiester: 1 v	List of Prerequisite Courses		U	
Cham	ical Kinetics (CHT 1003)	List of Frerequisite Courses			
Chem		urses where this course will be prerequisite			
Organ	ometallic Chemistry and Ca				
Organ	•	ance of this course in the MDM in Chemical Sciences	,		
The cl		ces and disperse systems is important in governing stabi		rasc	tivity
	_	ntroduces fundamentals of interfacial chemistry which c	-		-
		schemistry, separation processes and allied fields.	an o	o ap	phed
10 1100		ontents (Topics and subtopics)		Hou	irs
1		Chemistry – Introduction, surface tension and surface		02	
		etermining surface and interfacial tensions			
2		faces – Surface excess, Gibbs adsorption equation,		05	
	curved surfaces- bubbles	, droplets and foams, Kelvin, Young Laplace and			
	Thomson equations, homo	geneous nucleation			
3		d liquid interfaces – Contact angle, wetting and		04	ŀ
		phesion, contact angle measurements and hysteresis			
4		rption at surfaces and interfaces, surfactant aggregates,		06	j
	factors affecting aggregati				
5	·	surfactants synthesis and applications		02	
6	Industrial applications of s			03	
7	Environmental effects of s			02	2
8		ions microemulsions and foams, Thermodynamics and		06	,
	1	lloids - preparation, stability, characterization, surface			
	charges and electrical dou	ble layer			
		0		30)
		ist of Textbooks / Reference Books		• • • •	
1		surface chemistry – D. J. Shaw, Butterworth Publication	ns, 2	2000)
2		lloids- Drew Myers- Wiley VCH , 1999	1		
3		phenomena- Milton J Rosen – Wiley Interscience, 200			1
4	AOCS Press, 2000	factants principles and applications – M.J. Rosen and M	Dar	ıana	yake,
5		ence – Robert J Hunter – Oxford university Press, 2001			
3		troduction, Second Edition, Geoffrey Barnes and Ian G	entle	<u> </u>	x ford
6	University Press, 2011	and tail of barnes and tail of	CIITI	<i>5</i> , <i>6</i> .	ATOTA
)				
	Cours	e Outcomes (students will be able to)			
CO1		interfacial phenomena in influencing the behaviour of		17.1	
CO1	disperse systems			K1	
CO2	Understand the variation of	of structural features at the interface and the resulting		K2	,
CO2	effect on properties			IXZ	1
CO3		om various characterization techniques to understand		K3	
	interfacial features			113	
CO4		operties by applying various models to the interfacial		K2	ļ.
	systems				

CO5	Design surfactants / colloids for a given application using the various surface properties	K3
CO	Justify the observed macroscopic behaviour based on interfacial properties	K4

CO1 1 2 2 2 1 1 CO2 1 2 2 2 1 1 CO3 1 3 3 1 2 2 CO4 2 3 2 1 3 1 CO5 1 2 2 2 3 2 2 CO6 1 3 3 3 2 2 2 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	CO2 1 2 2 2 1 1 CO3 1 3 3 1 2 2 CO4 2 3 2 1 3 1 CO5 1 2 2 2 3 2 CO6 1 3 3 3 2 2		PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO3 1 3 3 1 2 2 CO4 2 3 2 1 3 1 CO5 1 2 2 2 3 2 CO6 1 3 3 3 2 2 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	CO3 1 3 3 1 2 2 CO4 2 3 2 1 3 1 CO5 1 2 2 2 3 2 CO6 1 3 3 3 2 2 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	CO1	1	2	2	2	1	1 ^
CO4 2 3 2 1 3 1 CO5 1 2 2 2 3 2 CO6 1 3 3 3 2 2 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	CO4 2 3 2 1 3 1 CO5 1 2 2 2 3 2 CO6 1 3 3 3 2 2 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	CO2	1	2	2	2	1	1
CO5 1 2 2 3 2 CO6 1 3 3 3 2 2 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	CO5 1 2 2 3 2 CO6 1 3 3 3 2 2 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	CO3	1	3	3	1	2	2
CO6 1 3 3 3 2 2 2 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	CO6 1 3 3 3 2 2 2 3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	CO4	2	3	2	1	3	1
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution	CO5	1	2	2	2	3	2
		CO6	1	3	3	3	2	2
	Debr.							
	Deb.				ASUA!			
		Ses						

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

Course Code:	Course Title: Organic Synthesis	Cı	redi	ts = 4
CHT 1005	Course rine. Organic Synthesis	L	T	P
Semester: V	Total contact hours: 60	3	1	0

List of Prerequisite Courses

- B. Chem. Engg. Applied Chemistry (CHT 1251) or equivalent;
- B. Tech. Organic Chemistry (CHT 1407) or equivalent

List of Courses where this course will be prerequisite

Organic Spectroscopy (CHT 1006), Organometallic Chemistry and Catalysis (CHT 1008)

Description of relevance of this course in the MDM in Chemical Sciences

To acquaint the students with concepts related to fundamentals of Organic Chemistry including reaction mechanisms, organic transformations, types of reactions, selectivity of chemical transformations, stereochemical implications of organic reactions, functional group identification and reactions so that they are perfectly aligned to apply the same for future courses and in their professional career

they as	Course Contents (Topics and subtopics)	Hours
		Hours
1	Chemistry of Carbonyl Compounds Concept of acidity and tautomerism of carbonyl compounds, General methods of preparation and Nucleophilic Addition reactions Enolate chemistry, Aldol and related condensation reactions, Michael reaction, Robinson annulation, Claisen condensation, Dieckmann condensation, Mannich reaction.	10
2	Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions (SN1 &SN2) and elimination reactions.	10
3	Heteroaromatic compounds: Basic structures and common names, comparison of electronic and structural properties to benzenoid compounds, Reactivity and synthetic routes Pyrrole, Furan, Thiophene, Pyridine.	12
4	Named Organic Reactions: Perkin reaction (Mauvine synthesis-dyes), Fischer indole synthesis (Dyes), Jacobson Corey epoxide synthesis (Pharmaceuticals), Ziegler Natta polymerization (Polymer), Multicomponent reactions, Maillard reaction (Foods), Strecker amino acid synthesis (Pharmaceuticals & Foods), Wittig reactions, Prilezhaev reaction	10
5	Stereochemistry of Organic Compounds Containing one and two asymmetric carbon atoms, Stereo descriptors – R/S, E/Z, erythro and thero, Conformation – Ethane and butane. Enantiomers and Diastereomers, meso compounds, different representations of stereoisomers – Saw-horse, Newmann, Wedge and dash and Fischer and their interconversions	10
6	Chemistry of important natural products: Terpenes, steroids, carotenoids/prostaglandins	8
		60
	List of Textbooks / Reference Books	
1	Clayden, J., Greeves, N., Warren, S.; Organic Chemistry; 2nd ed.; Oxford Un (2012)	·
2	Graham Solomons, T. W.; Fryhle, Craig B.; Snyder, Scott A. Organic Chemistry; Wiley & Sons. Inc. (2016)	12th Ed.; John
3	Smith, M. B.; March's Advanced Organic Chemistry: Reactions, Mechanisms and ed.; Wiley, India (2015)	
4	Carey F. A., Sundberg, R. J. Advanced Organic Chemistry: Part A: Structure and 5th ed.; Springer (2005)	Mechanisms;

5	Carey F. A., Sundberg, R. J.; Advanced Organic Chemistry: Part B: Reaction	and Synthesis; 5th
3	ed.; Springer (2007)	
6	Wade, L. G.; Simek, J. W.; Singh, M. S. Organic Chemistry; 9th Ed.; Pearson	Education (2019)
7	Eliel, E. L. Stereochemistry of Carbon Compounds; McGraw-Hill (2001)	
8	Bruice, Paula, Y. Organic Chemistry; 8th Ed.; Pearson Education (2020)	
9	Bhat, S. V., Nagasampagi, B. A., Meenakshi, S. Natural Products Chemistry	and Applications.
9	Narosa publishing house (2009)	
	Course Outcomes (students will be able to)	
CO1	Identify structures of organic compounds and write their IUPAC names	K2
COI	correctly	K2
	Understand organic chemistry reactions related to aliphatic as well as	
CO2	aromatic compounds as well as decipher the outcome of a given organic	K2
	transformation	Y
CO3	List the properties and synthetic routes, and decipher outcomes of various	K3
CO3	transformations involving heterocycles	KS
CO4	Apply the knowledge obtained through the course to predict the outcome of	К3
CO4	reactions and devise solutions to unknown problems	KS
CO5	Appreciate the stereochemical implications of organic compounds and	К3
CO3	visualize and appreciate the chirality concept	KS
CO6	Interpret and analyze reactions having different functionalities to predict	K4
200	products and design synthetic protocols	124

Ma	Mapping of Course Outcomes (COs) with Programme Outcomes (PSOs)									
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6				
CO1	2	1	1	2	2	1				
CO2	2	1	1	2	2	1				
CO3	3	2	2	1	3	1				
CO4	3	1	2	2	2	1				
CO5	3	2	1	3	1	2				
CO6	3	2	2	2	2	2				

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

	Course Code: CHT 1006	Course Title: Organic Spectroscopy	L	redit 2 T	s = P
	Semester: VI	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
B. Che	em. Engg. – Applied Chen	mistry (CHT 1251) or equivalent;			
		(CHT 1406) or equivalent			
	List of C	Courses where this course will be prerequisite			
P1. !		nce of this course in the MDM degree in Chemical Scien		0	4 4
		ne students to the concepts of organic spectroscopy. The contudents with various spectroscopic techniques used for t			
	ation of organic molecules		110 5	uci	urur
		Contents (Topics and subtopics)]	Hour	rs
1	Lambert's law, Energy U.V. spectroscopy hypochromic shift, h	pectroscopy: Introduction, spectrophotometer, Beer- y absorption and electronic transitions, Terms used in (Chromophore, auxochrome, bathochromic shift, apperchromic and hypochromic shift), Woodward – es, enones and aromatic compounds,		6	
2	stretching and bending Group frequencies, Fac	y: Vibrational transitions, Selection rule, Modes of g, FT-IR (Fourier Transform Infra-Red) spectroscopy. ctors affecting IR group frequency, NIR spectroscopy, conal spectroscopy in structural elucidation of organic		6	
3	A. ¹ H NMR Spe magnetic mome Shielding mech B. ¹³ C NMR Spec of approximate	ctroscopy: Basic principle, Nuclear spin states and ents, Chemical shifts, Factors affecting the chemical shift, anism and anisotropic effects. ctroscopy: Elementary idea, Chemical shift, Calculation chemical shift values, coupling constants, Interpretation spectra, Proton coupled and decoupled ¹³ C NMR spectra.		10	
4	rule, Radical site and C associated with commo	ntroduction, Ion production, Fragmentation, Stevenson's Charge site-initiated cleavage, Rearrangements, Cleavage n functional groups, Molecular ion peak, Metastable ion MS and HRMS, Isotopic abundance and Interpretation of		8	
7				30	
1		List of Textbooks / Reference Books scopy, D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan 2009	ı, Ce	ngag	e
2	_	ation of Organic Compounds, Robert M. Silverstein, Franci	s X.		
	0	William Vanna Dalamana 1075			

Principles of NMR in one and Two Dimensions: R.R. Ernst, G. Bodenhausen, A. Wokaun:

Organic Spectroscopy: William Kemp, Palgrave , 1975

Oxford Science Publication , 1987

4

	Course Outcomes (students will be able to)	
CO1	Understand the general principles of various spectroscopic techniques used for characterization of organic molecules	K2
CO2	Assign the spectroscopic data to structural features of molecules	К3
CO3	Understand the theory of Nuclear Magnetic Resonance spectroscopy and its applications to structural problems	K2
CO4	Predict the fragmentation of alkanes, alkyl aromatics, alcohols, ketones using the principle of Mclafferty rearrangement, and mass spectrometry	К3
CO5	Solve problems based on UV, IR, NMR & MS Spectroscopy for interpretation of the structure.	K4
CO6	Choose the optimum spectroscopic technique/s for identification and structure elucidation of a given compound	K3

Ma	apping of Cour	rse Outcomes (COs) with Pro	gramme Out	comes (PSOs)
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	2	1	1	2	2	1
CO2	2	1	1	2	2	1
CO3	3	2	2	1	3	1
CO4	3	2	2	2)	2	2
CO5	3	1	2	2	2	1
CO6	3	2	1	3	1	2

³⁻Strong Contribution; 2-Moderate Contribution; 1-Low Contribution

	Course Code:	Course Title: Computational Chemistry	C	redi	ts = 2
	CHT 1007	Course Title. Computational Chemistry	L	T	P
	Semester: VII	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
Standa	ard XII th Mathematics (Cal	culus and Matrix Algebra), Chemistry			
	List of C	courses where this course will be prerequisite			
	,				
	Description of rele	vance of this course in the MDM in Chemical Science	S		
Quanti	um chemistry gives the mo	plecular level understanding of the chemical reactions and	the	prop	erties
of mod	derated sized isolated mo	lecules, while molecular mechanics can be used for the	stu	dyin	g the
supran	nolecules and ensembles.	The course will provide a brief introduction to applying	com	puta	tional
packag	ges to molecules and supra	molecular assemblies.			
7	Course (Contents (Topics and subtopics)		Hoi	ırs

	Course Contents (Topics and subtopics)	Hours
1	Introduction to Computational Chemistry, Basic concepts	2
2	Historical background of quantum mechanics - failure of classical theory, wave particle duality, uncertainty principle, Postulates of Quantum mechanics, probabilistic interpretation of wave function, Schrodinger wave equation, Eigen values and operators.	4
3	Applications of Schrodinger equation—particle in a box, harmonic oscillator	4

	H and H like atoms- two particle problem, Schrodinger equation in spherical	
	coordinates, representation of orbitals, radial and angular plots, probability	
	functions	
4	Chemical bonding- Born-Oppenheimer approximation, LCAO and MO theory	4
5	Electronic structure - methods: SCF Theory, Energy of Slater Determinant,	6
	Basis Set Approximation, Basis Sets, Hartree-Fock Approximation	
6	Semiempirical Methods, Huckell Theory	4
7	Force fields , potential energy functions, inter and intramolecular interactions, empirical parameters.	4
	Molecular mechanics calculations, energy minimization, conformational analysis	
8	Applications in Drug Designing, QSAR, and Catalysis.	2
		30
	List of Textbooks / Reference Books	
1	Alan Hinchliffe, Molecular Modelling for Beginners, 2nd Ed. Wiley & Sons, 200	18.
2	Frank Jensen, Introduction to Computational Chemistry, Wiley & Sons,1999.	
2	Christopher J. Cramer, Essentials of Computational Chemistry: Theories and Mo	odels, 2nd Ed.
3	Wiley & Sons, New York.	
4	Daan Frenkel & Berend Smit, Understanding Molecular Simulation, AP, NY, 200	02.
_	Andrew R. Leach, Molecular Modelling: Principles and Applications, 2nd Ed.,	Prentice Hall,
5	2001.	
6	James E. House, Fundamental of Quantum Chemistry, 2nd Ed. Academic Press, 2	2004.
	Course Outcomes (students will be able to)	
701	Define the computational techniques currently used to predict the structure and	W2
CO1	properties of molecules	K2

properties of molecules

elucidate their properties

experimental observations

reactions and processes

molecules

CO2

CO3

CO4

CO5

CO6

M	apping of Cour	rse Outcomes (COs) with Pro	gramme Out	comes (PSOs)
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	1	2	3	1	2	1
CO2	1	2	3	1	2	1
CO3	1	2	3	2	2	2
CO4	1	3	3	1	1	1
CO5	1	2	3	2	1	1

Apply semi-empirical / ab initio techniques to model structure and properties of

Apply molecular dynamics techniques for modelling larger systems and

Compare the output of the various computational methods to explain the

Design the computational protocol for predicting the outputs of chemical

Choose the optimum level of theory for computing properties of the systems

K3

K3

K4

K4

K4

CO6	2	2	3	2	1	1
	3-Strong Contr	ribution; 2-Mod	erate Contribut	ion; 1-Low Co	ontribution	

	Course Code:	Course Title: Organometallic Chemistry and	Cı	redit	ts = 2
	CHT 1008	Catalysis	L	T	P
	Semester: VIII	Total contact hours: 30	2	0	0
				•	
		List of Prerequisite Courses			
Organi	c Synthesis (CHT 1005)				
	List of Co	ourses where this course will be prerequisite		(7)	J.
	Description of relev	vance of this course in the MDM in Chemical Science	S		
To acq	<u>-</u>	e concepts of organometallic chemistry which is the b		of a	ll the
_		n academia or industries. The course will allow students			
-	-	processes help expedite synthesis.		•	
		ontents (Topics and subtopics)		Hot	ırs
	General Properties of	Organometallic Complexes: 18- electron rule and its			
1	limitation, Electron count	ting in reactions, Bridged complexes, Metal-metal bond.		6	
	Associative-Dissociative	mechanisms			
	Complexes of π-Bound	Ligands: Back bonding concept for explaining metal-			
2	alkene and alkyne interac	ctions. Alkene and Alkyne complexes allyl complexes,		10)
2	Diene complexes. Ziegle	er-Natta Polymerization, SHOP (Shell Higher Olefin			
	Process), Catalytic Hydro	ogenation			
		Back bonding concept for explaining metal-carbonyl			
		mplexes of CO ligands, Dissociative substitution,			
3		. Substitution reactions of Metal-CO complexes.		10)
		Acetic Acid Synthesis), Hydroformylation (Otto Roelen			
	Process)				
4		stry for meeting future challenges: Environment		4	
	remediation for CO ₂ utili	zation and depolymerization		24	
		1 (AT		30)
1		ist of Textbooks / Reference Books	(7 7 * 1	0	
1		nistry of the transition metals, Robert H. Crabtree, John	Wile	y &	Sons
3	Organometallic Chemistr	ry of Transition elements: F. P. Pruchnik: Springer)l. 1	: 4:	
3	Organometatiic reagents	in Organic Synthesis: Paul R. Jenkins: Oxford Science I	-ubii	ican	<u>on</u>
	Course	o Outcomes (students will be able to			
COI	/	se Outcomes (students will be able to)		TZ 1	
CO1	Learn the basic concepts	•		K1	
CO2	•	perties for organometallic compounds		K2	
CO3	•	properties based on structure and bonding in		K2)
	organometallics	l observations by proposing plausible mechanisms for			
CO4	catalytic reactions	rouservations by proposing plausible mechanisms for		K 3	į
	-	nometallic compounds for applications as catalysts in			
CO5	organic transformations	iometaine compounds for applications as catalysts in		K3	;
	organic dansformations				

CO6	Develop synthesis and characterization protocols for organometallics based on	K3
C00	the desired structure and applications	KS

Map		rse Outcomes (
904	PSO1	PSO2	PSO3	PSO4	PSO5	PSO
CO1	2	2	1	2	2	2
CO2	2	2	1	2	2	2
CO3	2	2	1	3	2	2
CO4	1	1	2	3	1	2
CO5	1	1	2	3	1	2
CO6	1	1 ribution; 2-Mod	1	3	2	2
oek			SUS			