

STRUCTURE OF THE CURRICULUM

for

BACHELOR OF TECHNOLOGY

in

DYESTUFF TECHNOLOGY

Department of Dyestuff Technology Institute of Chemical Technology Mumbai – 400019 JULY 2021

Preamble:

The undergraduate programmes at the Institute of Chemical Technology are reputed worldwide. Alumni from these programmes have found a place of pride in the Indian chemical industry including some top names and many as entrepreneurs, in Universities/ Institutes and Research Organisations throughout India and the world. The B.Tech. programmes in the then Department of Chemical Technology, University of Mumbai started in 1934 as post B.Sc., second graduation as B.Sc.(Tech.). Keeping national, societal needs in focus, post-independence, the programme grew into multiple branches keeping connection with chemical engineering content. Once the Institute became a university in 2009, these became independent B. Tech. Programmes retaining their dual core nature. The Institute of Chemical Technology is committed to keeping its syllabi updated and globally relevant for the industry. We have revamped the syllabi of all the B. Tech. programmes now in 2021. The 205 credit programmes each have around 6% humanities, 23% basic sciences, 8% engineering sciences, 12% chemical engineering plus 51% special subjects.

All the courses are credit based and the evaluation are grade based. The credit system is a systematic way of describing an educational programme by attaching credits to its components. The definition of credits is based on student workload, learning outcomes and contact hours. This system is described in detail in Regulation No.9 of the Institute. Each theory course consists of Lectures and tutorials. During tutorial session, it is expected that the problem solving / case studies / relevant real-life applications / student presentations / home assignments/individual or group projects are discussed in the presence of the teacher. Teacher can have the freedom to interchange lectures / tutorials depending upon the topic. Institute gives emphasis on continuous evaluation with considerable freedom to the teacher in deciding the mode of evaluation.

B. Tech. (Dyestuff Technology)

PROGRAMME EDUCATIONAL OBJECTIVES for B. Tech. (Dyestuff Technology)

Sr. No.	Program Education Outcomes
	Our graduates are expected to think critically, creatively and apply the fundamentals of chemistry, applied technology and engineering to chemical and
PEO-1	allied industries, especially the dyestuff industry, for the benefit of country in

	general, economy, society, and environment.
PEO-2	Our graduates are expected to adopt to evolving technologies and stay in tune with current needs of the country and society
PEO-3	Our graduates are expected to work for implementation of new technologies for the benefit of mankind in general, economy, society & environment in particular
	Our graduates are expected to be innovative and have good entrepreneurship,
PEO-4	communication, interpersonal and managerial skills

Programme Outcomes (POs) for B. Tech. (Dyestuff Technology.)

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO1	Specialization in the synthesis, analysis and application and knowledge of dyeing techniques: Our graduates will be totally in tune with the current needs of the dyestuff industry and have considerable problem-solving acumen.
PSO2	Core organic chemistry, technology development and implementation: Our graduates have strong foundation in chemistry, and thus combined with their engineering skills and independent ability to develop new dyestuff and allied chemical industry related technologies and successfully implement them at an industrial scale.

	Syllabus Stru	cture B. Te	ch. Fi	rst Y	ear				
		Semester							
Course	0		Hr	s/We	ek	Marks for various Exams			
Course Code	Subjects	Credits	L	т	Р	C.A.	M.S.	E. S.	Total
CHT1137	Organic Chemistry I	3	2	1	0	10	15	25	50
CHT1341	Physical Chemistry-I	3	2	1	0	10	15	25	50
CHT1139	Industrial Inorganic Chemistry	3	2	1	0	10	15	25	50
MAT1101	Applied Mathematics-I	4	3	1	0	20	30	50	100
PYT1101	Applied Physics-I	4	3	1	0	20	30	25	100
GEP1113	Engineering Graphics and Elementary AutoCAD	4	2	0	4	50	-	50	100
CHP1343	Physical and Analytical Chemistry Laboratory	2	0	0	4	25	-	25	50
	TOTAL:	23	14	5	8				500
		Semester I	I						
Subject			Hr	s/we	ek	Marl	ks for v	arious E	xams
Code	Subjects	Credits	L	Т	Р	C.A.	M.S.	E. S.	Total
CHT1401	Analytical Chemistry	3	2	1	0	10	15	25	50
CHT1342	Physical Chemistry-II	3	2	1	0	10	15	25	50
CHT1138	Organic Chemistry II	3	2	1	0	10	15	25	50
PYT1103	Applied Physics-II	3	2	1	0	10	15	25	50
MAT1102	Applied Mathematics-II	4	3	1	0	20	30	50	100
CET1507	Process Calculations	4	3	1	0	20	30	50	100
PYP1101	Physics Laboratory	2	0	0	4	25	0	25	50
CHP1132	Organic Chemistry Laboratory	2	0	0	4	25	-	25	50
HUP1101	Communication Skills	2	0	0	4	50			50
	TOTAL:	26	14	6	12				550
	Syllabus Struct	ture B. Tec	h. Sec	ond	Year				
	5	Semester I	I						
Subject Code	Subjects	Credits	Hr L	s /we	ek P	Marl C.A.	ks for v M.S.	arious E E.S.	xams Total
BST1110	Basics of Biology and Applications to Technology	3	2	1	0	10	15	25	50
GET1110	Basics of Mechanical Engineering	3	2	1	0	10	15	25	50
DYT 1101	SPL1: Technology of intermediates I	4	3	1	0	10	15	50	100
CET 1704	Material Technology	3	2	1	0	10	15	25	50

OLT 1102Chemistry of Oleochemicals and Surfactants4310203050PYT 1202Colour Physics and Colour Harmony3210101525PYT 1202Pr 1: Analysis of Inorganic Raw Materials used in Dyestuff industries200425025PYP 1203Pr 2: Color physics200425025	100 50 50 50
PYT 1202 Harmony 3 2 1 0 10 15 25 DYP 1001 Pr 1: Analysis of Inorganic Raw Materials used in Dyestuff industries 2 0 0 4 25 0 25 PYP 1203 Pr 2: Color physics 2 0 0 4 25 0 25	50
DYP 1001Analysis of Inorganic Raw Materials used in Dyestuff industries200425025PYP 1203Pr 2: Color physics200425025	50
TOTAL: 24 14 6 8	500
Semester IV	
Subject Subject Credite Hrs/week Marks for variou	Exams
SubjectSubjectsCreditsCodeLTPC. A.M.S.E. S	. Total
GET1117Engineering Mechanics and Strength of Materials3210101525	50
CET1105 Transport Phenomena 4 3 1 0 20 30 50	100
GET1105Electrical Engineering and Electronics3210101525	50
DYT 1102SPL2: Technology of intermediates-II4310203050	100
DYT 1202SPL3: Chemical and Physical Constituents of Colorants3210101525	50
DYT 1107 SPL4: Technology of quinonoid intermediates 3 2 1 0 10 15 25	50
GEP1106 Electrical Engineering and Electronics Laboratory 2 0 0 4 - 25	50
MAP1201Computer LaboratoryApplications 22004-25	50
TOTAL: 24 14 6 8	500
Syllabus Structure B. Tech. Third Year	
Semester V	- Fuerra
Subject Code Subjects Hrs /week Marks for variou L T P C. A. M.S. E. S	-
CET1401 Chemical Engineering 3 2 1 0 10 15 25	. Total 50
Operations	
CET1212Chemical Reaction Engineering3210101525DVT 1400SPL5:Technologyofazo4010101525	50
DYT 1103SPLS. rectiniology of a20 colorants4310203050SPL6:Chemistryand </td <td>100</td>	100

	Subjects	Credits Hrs/week Marks for various E					ixams		
	Semester VI								
	TOTAL:	26	13	7	12				550
DYP 1013	Pr 4: Chromatographic techniques	2	0	0	4	50	0	25	50
DYP 1002	Pr 3: Analysis of Intermediates, Dyes and Fibers	4	0	0	8	50	0	50	100
MAT1106	Design and Analysis of Experiments	4	2	2	0	20	30	50	100
DYT 1206	SPL7: Structural Elucidation of organic compounds	3	2	1	0	10	15	25	50
DYT 1207	SPL6: Chemistry and Technology of quinonoid colorants	3	2	1	0	10	15	25	50

Subject Code			L	т	Р	C.A.	M.S.	E. S.	Total
DYT 1105	SPL8: Technology of cationic and sulfur colorants	4	3	1	0	20	30	50	100
DYT 1203	SPL9: Fluorescent colorants	4	3	1	0	20	30	50	100
TXT 1215	SPL10: Technology of dyeing and printing	3	2	1	0	10	10 15 25		50
HUT1103	Industrial Psychology & Human Resource Management	3	2	1	0	10	10 15		50
HUT1106	Environment Science and Technology	3	2	1	0	0 10 15 2		25	50
	Institute Elective – I (Annexure A) 3		2	1	0	10	15	25	50
DYP 1006	Seminar	3	0	0	6	0	0	0	50
DYP 1014	Pr 5: Preparation of intermediates	2	0	0	4	25	0	25	50
DYP 1003	Pr 6: Experimental dyeing	2	0	0	4	25	0	25	50
	TOTAL:	27	14	6	14				550
	In-plant Training of 8 to 10 weeks after end of semester								

Internship

• After the end of the sixth semester examination and before the start of the seventh semester, every student will have to undergo an internship. The Internship would be of 6 credits.

• The internship (preferably Industrial Internship) would be assigned to the student by the Departmental Internship Coordinator, with the approval of the Head of the Department.

• The total duration of the internship would be for a period equivalent to 12 Calendar weeks. This period typically start from 1st May and end before 30th July every year. This means the end

semester examination of T. Y. Tech (Semester VI) should be completed by 25th April every year. The Semester VII (4th Year B.Tech.) should commence w.e.f. 1st Aug every year. The internship may be completed in one or more organizations as described below.

• The internship could be of the following forms:

(i) Industrial internship in a company (within India or Abroad) involved in R & D/design/manufacturing (QA/QC/Plant Engineering/Stores and Purchase)/marketing/finance/consultancy/Technical services/Engineering / Projects, etc.

(ii) Research internship in reputed Institutes (within India or Abroad) like, ICT, IITs, NITs, IISC, NCL, IICT etc.

• At the end of the internship, each student will submit a written report based on the work carried Out during the Internship. The report will be countersigned by the Supervisor from Industry/ Institute as the case may be.

• Performance of the student will be assessed based on the written report and a presentation to a committee consisting of two faculty members from the Department.

• Students will be assigned a grade based on the written report and a presentation; evaluated by a committee of faculty members.

	Syllabus Structure B. Tech. Final Year								
	Semester VII								
Subject		Credits	Hr	's/we	ek	Marks for various Exams			
Code	Subjects	Credits	L	Т	Р	C. A.	M.S.	E.S.	Tot al
CET1703	Chemical Process Control	3	2	1	0	10	15	25	50
DYT 1204	SPL11: Heterocyclic intermediates and colorants	3	3	1	0	10	15	25	50
DYT 1205	SPL12: Functional application of colorants	3	2	1	0	10	15	25	50
	Institute Elective- II: (Annexure B)	3	2	1	0	10	15	25	50
DYP 1012	In-plant Training	6	0	0	0	10	15	25	50
HUT1203	Industrial Management	4	3	1	0	20	30	50	100

CEP1714	Chemical Engineering Laboratory	2	0	0	4	25	-	25	50
DYP 1511	Pr 7: Preparation of dyes	2	0	0	4	25	0	25	50
DYP 1007	Project I	2	0	0	4	0	0	0	50
	TOTAL:	28	12	6	12				500
	S	emester V							
Subject			Hr	s /we	ek	Marl	ks for va	arious E	xams
Code	Subjects	Credits	L	Т	Р	C.A.	M.S.	E. S.	Total
CET1504	Chemical Project Engineering and Economics	3	2	1	0	10	15	25	50
DYT 1106	SPL13: Case studies in dyestuff industry	4	3	1	0	20	30	50	100
DYT 1108	SPL14 : Technology of inorganic pigments	3	2	1	0	10	15	25	50
DYT 1109	SPL15: Technology of organic pigments	3	2	1	0	10	15	25	50
	Program Elective: (Annexure C)	3	2	1	0	10	15	25	50
	Pre-approved Open Electives from MOOOCs/NPTEL	3	2	1	0	10	15	25	50
DYP 1008	Project II	4	0	0	8	0	0	0	100
DYP 1009	Pr 8: Preparation, analysis and application of dyes, optical brighteners and functional colorants	4	0	0	8	50	0	50	100
	Total	27	13	6	16				550

Semester I

	Course Code: CHT1137 Course Title: Organic Chemistry - I									
	Semester: I	Total Contact Hours: 45	2	1	0					
	List of Prerequisite Courses									
	a Basic Organic Che anced Organic Che	emistry Course. The Organic Chemistry studied at HSC is the bas mistry knowledge.	is for	build	ding					
	List	t of Courses where this course will be Prerequisite								
Organi	c Chemistry – II, Bio	ochemistry and several Special Subjects of individual departmen	its							
De	scription of releva	nce of this course in the B. Tech. (Pharm. Chem. Tech.) Pro	gran	nme						
fundan reactio	nentals of Organic	s with IUPAC and other types of Nomenclature of organic Chemistry including reaction mechanisms, organic transformati emical transformations, etc., stereochemical implications of orga ion and reactions	ons,	type	s of					
Sr. No.		Course Contents (Topics and Subtopics)		equir Iour:						
1	a. IUPAC Nomeno	clature of Organic Compounds		3						
-		arbanions, Carbon radicals and Carbenes - Generation,		5						
2	Structure, Stability and Reactions Stereochemistry of Organic Compounds containing one and two asymmetric carbon atoms, Stereo descriptors – R/S, E/Z, erythro and thero, Conformation – Ethane and butane Enantiomers and Diastereomers, meso compounds, different representations of stereoisomers – Saw-horse, Newmann, Wedge and dash and Fischer and their interconversions									
3	Haloalkanes Aliphatic Nucleoph Elimination Reaction	ilic Substitution Reactions: $S_N 1$, $S_N 2$ ons: E1, E2		7						
4	Chemistry of Car Concept of acidity preparation and Na Enolate chemistry	bonyl Compounds and tautomerism of carbonyl compounds, General methods of ucleophilic Addition reactions , Aldol and related condensation reactions, Michael reaction, on, Claisen condensation, Dieckmann condensation, Mannich		9						
5	Hückel rules, Aron	matic Compounds natic, Non-aromatic and Anti-aromatic compounds, Benzenoid d aromatic compounds		3						
6	Nitration, Halogen Activating, deactiv poly-substituted be	ylation, Acylation, Gattermann, Gattermann-Koch, Riemer-		10						
		Total		45						
		List of Text Books/Reference Books	1	-						
1	Clayden, J., Greev	es, N., Warren, S.; Organic Chemsitry; 2 nd ed.; Oxford University	Pres	s (20)12)					
2		s, T. W.; Fryhle, Craig B.; Snyder, Scott A. Organic Chemistry; 1			,					
3	Smith, M. B.; Marc ed.; Wiley, India (2	h's Advanced Organic Chemistry: Reactions, Mechanisms and 2015)	Struc	ture;	7th					
4	Carey F. A., Sund 5 th ed.; Springer (2	berg, R. J. Advanced Organic Chemistry: Part A: Structure and 2005)	Mecł	nanis	ms;					

5	Carey F. A., Sundberg, R. J.; Advanced Organic Chemistry: Part B: Reaction and Synthesis; 5 th ed.; Springer (2007)
6	Wade, L. G.; Simek, J. W.; Singh, M. S. Organic Chemistry; 9th Ed.; Pearson Education (2019)
7	Eliel, E. L. Stereochemistry of Carbon Compounds; Mcgraw-Hill (2001)
8	Bruice, Paula, Y. Organic Chemistry; 8th Ed.; Pearson Education (2020)

	Course Outcomes (Students will be able to)
CO1	draw structures of organic compounds and write their IUPAC names correctly (K2)
CO2	appreciate the stereochemical implications of organic compounds and visualize and appreciate
002	chirality concept (K2)
CO3	understand organic chemistry reactions related to aliphatic as well as aromatic compounds as
003	well as decipher the outcome of a given organic transformation (K3)
CO4	interpret and analyze reactions having different functionalities, deduce and solve problems
004	related to the reactions as well as apply them, if need be (K4)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO4	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title: Physical Chemistry	Cr	edits :	= 3						
	CHT1341	Course Title: Physical Chemistry - I	L	Т	Р						
	Semester: I	Total Contact Hours: 45	2	1	0						
	List of Prerequisite Courses										
Standa	ard XII Chemistry										
	Lis	t of Courses where this course will be Prerequisite									
Physic	al and Analytical Ch	nemistry Laboratory (CHP1343), Physical Chemistry - II (C	HT134	42)							
	Descripti	on of relevance of this course in the B. Tech. Programm	1e								
world s sponta	systems. The stude	e students to understand and apply the principles of thermo- nts would be able to apply the insights to understand the sta hemical processes, effect of thermodynamics parameter	ability o	of solu	tions,						
Sr. No.	C	ourse Contents (Topics and Subtopics)		equire Hours							
1		ermodynamic systems, Work, Heat and Energy, State and ensive and Extensive variables		3							
2	of First Law to ga	modynamics - Enthalpy and heat capacities, Application ses, Standard states, Enthalpy changes of chemical and ons, Thermochemistry – Hess's Law		6							
3	applications of Sec as a state func processes, Entrop	hird Laws of Thermodynamics - Statements and cond Law of thermodynamics, Clausius inequality, Entropy tion, Entropy changes for reversible and irreversible y and probability modynamics, Absolute entropies, Verification of Third Law		6							

1		1
	Spontaneous Process and Equilibrium - Combined statement of First and	
	Second Laws of thermodynamics, Helmholtz and Gibbs free energy,	7
4	Spontaneity and Free energy, Maxwell's relations, Effect of T and P on free	7
	energy, Van't Hoff equation, Free energy and equilibrium constant, Ellingham	
	diagrams	
5	Multicomponent Systems - Free energy and entropy of mixing, Partial	5
	molar quantities and chemical potential, Gibbs Duhem equation	
	Phase Equilibria - Gibbs Phase rule, Clausius- Clapeyron equation, Stability of phases, First and second order phase transitions, Phase diagrams of one	
6	and two two-component systems, I-L systems - TC, PC phase diagrams,	3
0	distillation and azeotropes, L/S systems, S/S – eutectics and deep eutectics,	5
	Phase diagram of three-component systems	
	Equilibrium in Solutions – Ideal and non-ideal solutions, Henry's law and	
	Raoult's law, Colligative properties	
	Solubility Equilibria – Solubility constant, Common ion effect, Effect of added	
7	salts on solubility, pH, Weak and strong acids and bases, Buffer solutions,	6
	Ionic solutions, Activity and activity coefficients, Thermodynamic properties	
	of electrolytes in solutions	
8	Chemical Equilibria - Equilibrium constants, Le Chaterlier's principle, Effect	6
0	of temperature, pressure and composition on equilibrium	0
	Electrochemistry – Thermodynamics of electrochemical systems - Types of	
9	electrochemical cells, Determination of electrode potentials, Activity and	3
	activity coefficients, Dissociation of electrolytes, Ionic equilibria	
	Total	45
ļ	List of Text Books/Reference Books	
1	Atkins, Peter W.; Paula, Julio de; Keeler, James. Atkin's Physical Chemistry;	; 11 th Ed.; Oxford
	University Press (2018)	0 (
2	Atkins, Peter W.; Paula, Julio de. Elements of Physical Chemistry; 7 th Ed.;	Oxford University
3	Press (2017) Levine, Ira. Physical Chemistry; 6 th Ed.; McGraw-Hill Education (2009)	
3	Course Outcomes (Students will be able to)	
CO1	comprehend the laws of thermodynamics and related concepts and to expl	ain the molecular
	basis for the same (K2)	
CO2		e substances and
CO2	apply the concepts of partial molar quantities to explain the behaviour of pure	e substances and
CO2 CO3	apply the concepts of partial molar quantities to explain the behaviour of pure solutions (K3)	
	apply the concepts of partial molar quantities to explain the behaviour of pure)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K3	3	3	2	2	2	3	1	3	0	3	2	2	2	3
CO3	K3	3	3	1	2	2	0	3	3	2	3	3	2	3	3
CO4	K2	2	2	0	2	0	3	3	3	3	3	3	1	2	2
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 3				
	CHT1139	Industrial Inorganic Chemistry	L	Т	Ρ				
	Semester: I	Total Contact Hours: 45	2	1	0				
		List of Prerequisite Courses							
Standa	ard XII Inorganic Cher								
		of Courses where this course will be Prerequisite							
	•••	1704), Engineering Mechanics and Strength of Mater echnology (HUT1106)	rials ((GET'	117),				
	Description	n of relevance of this course in the B. Tech. Programme	•						
	•	with synthesis, properties and applications of various ind	lustrial	inorę	ganic				
chemic	cals								
Sr. No.		ourse Contents (Topics and Subtopics)		equir Hours					
1	Inorganic Peroxo C Compounds, Phosp	Materials: Water, Hydrogen, Hydrogen Peroxide and compounds, Nitrogen, Ammonia, Nitric acid, and Nitrogen horus, Phosphoric acid and its Compounds, Sulfur, Sulfuric npounds, Halogens, Chloralkali and Halogen Compounds		12					
2	Metals and Their Compounds, Alumi Chromium, Silicon a Manganese, Metallu	10							
3	Organo-SiliconCompounds:IndustriallyImportantOrgano-siliconCompounds,IndustriallyImportantSilanes,Silicones,IndustrialSilicone7Products7								
4	-	Silicate Products, Inorganic Fibers, Construction Materials, , Metallic Hard Materials, Carbon Modifications, Fillers, , Cement, Glass	8						
5	about the Nuclear F	pnomic Importance of Nuclear Energy, General Information Fuel Cycle, Availability of Uranium, Nuclear Reactor Types, ction Disposal of Waste from Nuclear Power Stations	8						
	1	Total		45					
		List of Text Books/ Reference Books							
1		; Moretto, Hans-Heinrich; Woditsch, Peter. Industrial Inorg y Revised Edition; Wiley-VCH (2008)	ganic (Chem	istry,				
2	Benvenuto, Mark Ar	nthony. Industrial Inorganic Chemistry; de Gruyter (2015)							
3		organic Chemistry – An Industrial and Environmental Pers	spectiv	e; 1 st	Ed.;				
4	House, James, E. Ir	norganic Chemistry; 3 rd Ed.; Academic Press, Inc. (2019)							
	C	Course Outcomes (Students will be able to)							
CO1		ustrial chemicals of nitrogen, sulfur, hydrogen, phosphorus a		-	. ,				
	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)								
CO2	metallurgy (K3)								
CO2 CO3		blid materials like glass, silicone, cement, ceramics, etc. (K2	2)						

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	1	2	0	3	2	3	3	3	3	1	3	2

CO2	K3	3	3	2	2	2	3	3	1	3	3	2	2	3	3
CO3	K2	3	2	0	2	1	3	3	3	3	0	3	1	2	1
CO4	K2	3	2	1	2	1	2	3	3	3	3	1	1	3	2
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title: Applied Mathematics – I	Cre	= 4	
	MAT1101		L	Τ	Ρ
	Semester: I	Total Contact Hours: 60	3	1	0
<u> НСС 5</u>	Standard Mathema	List of Prerequisite Courses			
100 0		t of Courses where this course will be prerequisite			
This is		tics course. This knowledge will be required in almost all subje	ects la	ater	
		tion of relevance of this course in the B. Tech. Program			
make a for solv	d Mathematics is an impact in the wo ving various mathe ntum Transfer, Re	beyond crunching numbers. It is useful for solving real-life ported, technology being one of those fields. The knowledge gaine ematical equations in several Chemical Engineering courses su eaction Engineering, Separation Processes, Thermodynamics	ed is Ich as	requi s MEl	ired BC,
Sr. No.		Course Contents (Topics and Subtopics)		equir Iour:	
1	dependence. Ve space, Null space rank of matrices Abstract vector transformation, C applications Inner product sp process, Eigen Eigenvalues of methods Diagonalization of	:: Vectors in IR ⁿ , Notion of linear independence and ector subspaces of IR ⁿ , Basis of a vector subspace, Row ee, and Column space, Rank of a matrix, Determinants and spaces, Linear transformations in IR ⁿ , Matrix of a linear Change of basis and similarity, Rank-nullity theorem, and its paces, Orthonormal bases, Gram-Schmidt orthogonalization values and eigenvectors, Characteristic polynomials, special orthogonal projection and its application to least of matrices and its applications stochastic matrices, Solving em of linear ordinary differential equations		15	
2	derivative, Taylor functions, Radius Functions of two Total derivatives	culus: Higher order differentiation and Leibnitz Rule for the r's and Maclaurin's theorems, Maxima/Minima, Convexity of s of Curvature. or more variables, Limit and continuity, Partial differentiation, s, Taylor's theorem for multivariable functions and its or calculations, Maxima/Minima		15	
3	integral sign, Mu	us: Beta and Gamma functions, Differentiation under the ultiple integrals, Line and surface integrals, Applications of Divergence and Stokes theorems		15	
4	Probability & S function, Probab common univaria Normal, Expecta random variables Correlation Concept of parar least squares and	ne al, ble 15 nd			
	-	Total	1	60	
	1	List of Textbooks/Reference Books			

1	Stang, G. Linear Algebra and its Applications; 4th Ed.; Thomson (2006)
2	Anton, Howard; Kaul, Anton. Elementary Linear Algebra; 12th Ed.; Wiley (2019)
3	Friedberg, Stephen H.; Insel, Arnold J.; Spence, Lawrence E. Linear Algebra; 5th Ed.;
	Pearson Education (2019).
4	Hughes-Hallett, Deborah; Gleason, Andrew M.; McCallum, William G. Calculus: Single and
	Multivariable; 6 th Ed.; John Wiley & Sons, Inc. (2012)
5	Kreyszig, E.; Advanced Engineering Mathematics; 10th Ed.; Wiley Global Education (2010)
5	(Officially Prescribed)
0	Iyengar, S. R. K.; Jain, R. K. Advanced Engineering Mathematics; 4th Ed.; Alpha Science
6	(2014)
7	Ross, Sheldon M. A First Course in Probability; 10th Ed.; Pearson Education (2018)
8	Hines, William W.; Montgomery, Douglas C.; Goldsman, David M.; Borror, Connie M.
8	Probability and Statistics in Engineering; 4th Ed.; John Wiley & Sons, Inc. (2003)
9	Boes, Duane C.; Graybill, Franklin A.; Mood, Alexander McFarlane. Introduction To the
9	Theory of Statistics; 3 rd Ed.; McGraw Hill Education (India) (2013)
	Course Outcomes (Students will be able to)
CO1	understand the notion of differentiability and be able to find maxima and minima of functions
001	of one and several variables (K3)
CO2	compute surface and volume integrals (K3)
CO3	Understand and explain the notion of vectors and vector spaces (K2)
CO4	solve systems of linear equations and eigenvalue problems analytically and numerically (K3)
CO5	fit relationship between two data sets using linear, non-linear regression (K3)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	0	2	3	3	2	3	3	3	2	3	3
CO2	K3	3	3	2	2	2	3	1	1	3	3	2	1	3	3
CO3	K2	3	2	1	2	1	2	3	3	3	3	3	0	3	2
CO4	K3	3	3	2	1	2	3	2	0	0	0	3	2	3	3
CO5	K3	3	3	1	2	2	3	3	2	3	3	1	2	3	3
Course	K3	3	3	2	2	2	3	3	2	3	3	3	2	3	3

	Course Code:	Course Title: Applied Physics	Cre	dits	= 4							
	PYT1101	Course Title: Applied Physics – I	L	Т	Ρ							
	Semester: I	Total Contact Hours: 60	3	1	0							
	List of Prerequisite Courses											
Standa	ard XII Physics											
	Lis	t of Courses where this course will be prerequisite										
Applie	d Physics – II, Phy	ysics Laboratory, Chemical Engineering Thermodynamics, Mo	men	tum a	and							
Mass	Transfer, Heat Tra	nsfer, Material Science and Engineering, Structural Mechanics	s, etc									
	Descript	tion of relevance of this course in the B. Tech. Program										
This is	a basic physics o	course. This knowledge will be required in almost all subjects	later	on.T	his							
knowle	edge is also requi	red for understanding various chemical engineering concepts	s tha	t will	be							
introdu	introduced in courses such as momentum transfer, reaction engineering, separation processes,											
thermo	thermodynamics, heat transfer, etc.											
Sr. No.	Course Contents (Topics and Subtopics)											

CO4	calculate resolving power of instruments (K3)	
CO3	explain the principles of lasers, types of lasers and applications (K2)	
CO2	apply Bernoulli equation in simple pipe flows (K3)	
CO1	apply acoustic cavitation of Chemical Engineering Processes (K3)	
• -	Course Outcomes (Students will be able to)	
9	Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH.	
8	Ultrasonics: Methods and Applications – J. Blitz, Butterworth	
7	Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India	
6	Optical Fibre Communication – G. Keiser, McGraw-Hill	
5	A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern.	
4	Introduction to Modern Optics – G. R. Fowles ,Dover Publications	
3	Concepts of Modern Physics – A. Beiser, McGraw-Hill.	
2	Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa.	
1	Physics:Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern	
	List of Textbooks/Reference Books	
	Total	60
5	Generation of ultrasound: mechanical, electromechanical transducers; propagation of ultrasound, attenuation, velocity of ultrasound and parameters affecting it, measurement of velocity, cavitation, applications of ultrasound	10
	Ultrasound	
4	Lasers Introduction to interaction of radiation with matter, principles and working of laser: population inversion, pumping, various modes, threshold population inversion, types of laser: solid state, semiconductor, gas; application of lasers least squares and Simple linear regression, Nonlinear regression	10
	activity Fibre Optics: Introduction, optical fibre as a dielectric wave guide: total internal reflection, numerical aperture and various fibre parameters, losses associated with optical fibres, step and graded index fibres, application of optical fibres	
3	Diffraction: Introduction to interference and example; concept of diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits; diffraction grating, characteristics of diffraction grating and its applications Polarisation: Introduction, polarisation by reflection, polarisation by double refraction, scattering of light, circular and elliptical polarisation, optical	10
	equation, streamlined and turbulent flow, concept of viscosity, Newton's law of viscosity, brief introduction to non-Newtonian behaviour Optics and Fibre Optics	
2	Fluid Mechanics Basic concepts of density and pressure in a fluid, ideal and real fluids, Pascal's law, absolute pressure and pressure gauges, basic concepts of surface tension and buoyancy, fluid flow, equation of continuity, Bernoulli's	15
1	spectrometer Semiconductor Physics: Formation of energy bands in solids, concept of Fermi level, classification of solids: conductor, semiconductor and insulator, intrinsic and extrinsic semiconductors, effect of doping, mobility of charge carriers, conductivity, Hall effect	15
	Solid State Physics Crystal Structure of Solids: unit cell, space lattices and Bravais lattice, Miller indices, directions and crystallographic planes, Cubic crystals: SSC, BCC, FCC, Hexagonal crystals: HCP, atomic radius, packing fraction, Bragg's law of x-ray diffraction, determination of crystal structure using Bragg	

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	1	1	3	3	3	3	2	3	3
CO2	K3	3	1	2	1	2	3	3	3	3	3	0	2	1	3
CO3	K2	3	2	1	2	0	3	3	3	3	2	3	1	3	2
CO4	K3	2	3	2	1	2	2	0	2	3	3	3	2	0	3
CO5	K2	3	2	1	2	0	0	3	3	1	3	1	1	3	2
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 4			
	GEP1113	Engineering Graphics and Elementary AUTOCAD	L	Т	Ρ			
	Semester: I	Total Contact Hours: 90	2	0	4			
	·	List of Prerequisite Courses						
Basic	Geometry							
	Lis	t of Courses where this course will be prerequisite						
	-	neering (GET1110), Engineering Mechanics and Strength ngineering Operations (CET1401), Chemical Process Control (
	Descript	tion of relevance of this course in the B. Tech. Program						
	•••	student is required to know various processes and equipmen						
conde severa manuf is a m repres inform Drawin	nsation, crystalliza al other processes acturing, working, hedium through wi sent the objects an ation is conveyed, ng is a language us	e elementary processes such as filtration, size reduction, ation etc., are very common to all the branches of Technology require machines and equipment. One should be familiar wit and maintenance of such machines and equipment. The subject hich, one can learn all such matters, because the drawings of the processes on paper. With the help of the drawings, a lo which otherwise will not be practicable through spoken words of sed by Engineers and Technologists. This course is required as later on in the professional career.	y. Th h the ct of 'I are ot of a or writ	ese a des Draw usec accur tten t	and ign, ing' d to rate ext.			
		urse Contents (Topics and Subtopics)		equir Iours				
1	Orthographic Projections: Conversion of 3D object or pictorial view into front view, top view and side views using first angle method of projection Sectional views draw sectional front view, top view, and side view Problems with section plane cutting object exactly at centre or off centre Orthographic views of at least 15 machine parts using mini drafter and drawing board							
2	view or 3D view of Machine parts w inclined planes	ctions and Isometric Views: Isometric scale, draw pictorial using front and top view or front view and any one side view with circle, semicircle in the orthographic views and slots on etric drawings using mini drafter and drawing board		12				
3	Draw any one sid given. Problems	Draw top view when front and any one side view is given de view or both the side views when front view and top view is involving sectional views. The parts using mini drafter and drawing board.		12				
4	 Assembly Drawing: Draw front view and top view or side view of assembly after assembling all the details of machine parts Convert assembly into details Assembly drawing of Nut and bolt, footstep bearings, Plummer block, etc. 							

5	Introduction to Computer-Aided Drawing: Role of CAD in design and development of new products, Advantages of CAD. Creating two-dimensional drawing with dimensions using suitable software (Minimum 2 exercises mandatory) Introduction to Solid Modelling: Creating 3D models of various components using suitable modelling software (Minimum 2 exercises mandatory)	26						
	Total	90						
	List of Textbooks/Reference Books							
1	Bright, Steven. AutoCAD Fundamentals: A Comprehensive Guide on Enginee and Modeling (2020)	ring Drawing						
2	Rathnam, K. A First Course in Engineering Drawing; Springer (2017)							
3	Agrawal, Basant. Engineering Drawing; McGraw-Hill Education (2015)							
4	Bhatt, N. D. Engineering Drawing by N. D. Bhatt.; 11 th Ed.; C. Publishing Hot (2011)	use Pvt. Ltd.						
5	Shah, M. B.; Rana, B. C. Engineering Drawing; 2 nd Ed.; Pearson Education (20	14)						
6	Giesecke, Frederick E.; Lockhart, Shawna; Goodman, Marla; Johnson, Cindy Drawing with Engineering Graphics; 15 th Ed.; Pearson Prentice Hall (2016)	M. Technical						
7	Dubey, N. H. Engineering Drawing; 15 th Ed.; Nandu (2015)							
	Course Outcomes (Students will be able to)							
CO1	prepare multi view orthographic projections of objects by visualizing them positions. (K3)	in different						
CO2	draw sectional views and develop surfaces of a given object. (K3)							
CO3	prepare pictorial drawings using the principles of isometric projections to visuali three dimensions. (K3)	ze objects in						
CO4	prepare assembly drawing. (K3)							
CO5	obtain Multiview projections and solid models of objects using CAD tools (K3)							

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K3	3	2	2	2	2	3	3	3	1	2	3	2	3	1
CO3	K3	3	3	2	2	1	1	3	3	3	3	3	2	2	3
CO4	K3	3	3	2	2	2	3	0	2	3	3	3	2	3	1
CO5	K3	3	2	2	0	2	3	3	3	1	3	0	2	3	3

	Course Code:	Course Title:	Cr	edits	= 2			
	CHP1343	Physical and Analytical Chemistry Laboratory	L	Т	Ρ			
	Semester: I	Total Contact Hours: 60	0	0	4			
		List of Prerequisite Courses						
Star	ndard XII th Chemistry	y Laboratory courses						
	Li	ist of Courses where this course will be prerequisite						
This		This knowledge will be required in Applied Chemistry subjects lat	er.					
	Descri	ption of relevance of this course in the B. Tech. Program						
		iliar with laboratory experimental skills, plan and interpretation vance of principles of physical chemistry in chemical processes	of ex	perim	ental			
Sr. No.		Course Contents (Topics and Subtopics)		equir Hours				
1	Experiments based on chemical reaction kinetics, phase equilibria and electrolyte systems, surface and interfacial phenomena such as surface tension and CMC measurements							
		Total		60				

	List of Text Books/ Reference Books
1	Practical physical Chemistry – B. Viswanthan and P. S. Raghavan
2	Practical physical Chemistry- Alexander Findlay
	Course Outcomes (students will be able to)
CO1	identify and determine physicochemical parameters using simple tools.(K3)
CO2	interpretation of data and drawing scientific conclusions, dryers, etc.(K4)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	2	3	3	2	3	3
CO2	K4	3	3	1	3	1	2	3	1	3	3	0	2	3	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

Semester II

	Course Code:	Course Title:	Cre	dits	= 3				
	CHT1401	Analytical Chemistry	L	Т	Ρ				
	Semester: II	Total Contact Hours: 45	2	1	0				
		List of Prerequisite Courses							
Standa	ard XII Chemistry								
		t of Courses where this course will be prerequisite							
Physic		Chemistry Laboratory (CHP1343), other Chemistry Courses							
		ion of relevance of this course in the B. Tech. Program							
analyti	cal method and	ne students to key concepts of chemical analysis – sampling data analysis. It presents basic techniques like specti idents should be able to select an appropriate analytical technic	rosco	ру а	and				
	• • •	strengths and limitations.	lao a	na ap	, piy				
Sr.			Re	quir	ed				
No.		Course Contents (Topics and Subtopics)		lour					
	Introduction to C	hemical Analysis, Terminology (technique/method/procedure							
1	/protocol), Broad Practices (GLP)	d classification of analytical techniques, Good Laboratory		5					
2				8					
3	Data Analysis: Errors – Systematic and random errors, statistical treatment of experimental results (F, Q and t tests, rejection of data, and confidence intervals), least square method, correlation coefficients								
4	Spectroscopic M - UV-visible spec - Fluorescence s		8						
5	Electrochemical			8					
6	Chromatographic applications of	c Methods: General principle, instrumentation and - Gas chromatography (GC), High-performance liquid (HPLC), Ion-exchange chromatography, Size-exclusion		10					
		Total		45					
		List of Textbooks/Reference Books							
1		al Chemistry by David Harvey, McGraw-Hill, 1999.							
2		lysis by R. A. Day and A. L. Underwood, Prentice Hall of India							
3	Wadsworth Publ								
4		Analytical Chemistry by D. A. Skoog, D. M. West, F. James age Learning, 2014	Holle	r and	IS.				
5	Principles of Ins Cengage Learnir	trumental Analysis by D. A. Skoog, F. James Holler and S ng, 2007	. R.	Crou	ıch,				
		Course Outcomes (Students will be able to)							
CO1	Apply the knowle	edge of sampling, data analysis and select proper analytical me	ethoc	l (K3)				
CO2		iples of UV Visible and Fluorescence spectroscopic methods ((K2)						
CO3		iples of electrochemical methods (K2)							
CO4	Explain the princ	iples of chromatographic methods (K2)							

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	0	3	3	0	2	3	3
CO2	K2	3	1	0	1	1	0	3	3	2	3	3	0	2	2

CO3	K2	3	2	1	2	0	3	3	3	3	2	3	1	3	2
CO4	K2	3	2	1	1	1	3	2	3	3	3	3	1	1	2
Course	K3	3	2	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code: Course Title:								
	CHT1342	Physical Chemistry - II	L	dits T	P				
	Semester: II	Total Contact Hours: 45	2	1	0				
		List of Prerequisite Courses							
Standa	rd XII Chemistry, P	Physical Chemistry - I (CHT1341)							
	List	of Courses where this course will be prerequisite							
Other (lied Chemistry courses							
	Descripti	on of relevance of this course in the B. Tech. Program							
Studen	ts should learn to	appreciate the relevance of kinetic studies and parameters	affec	ting	the				
	-	g of kinetic principles should be applied towards understand	-						
		heir mechanistic studies. The concept of interfaces and	surfa	ces	are				
	nental in conveying	the applications and importance of disperse systems.	1						
Sr. No.	C	Course Contents (Topics and Subtopics)		quire lours					
	Introduction - cor	ncept of reaction rates and order, experimental methods in							
1	kinetic studies, dif	ferential and integral methods to formulate rate equations of		3					
'		ond order reactions		5					
		hods of kinetic studies							
		ction mechanism - rate determining step, steady state							
	approximation								
2	•	s- parallel, consecutive and reversible reactions		6					
		hermal, photochemical chain reactions, polymerization							
	reactions								
		xperimental techniques alysis – homogeneous acid / base catalysis (specific and							
3	-	ysis), enzyme catalysis (Michalis-Menten kinetics)		4					
	-	face – Adsorption isotherms, kinetics of surface reactions-							
4		Rideal models of surface reactions		4					
		on rates - Theory of unimolecular reactions, collision theory							
5		te theory, Effect of temperature, Solvent effects on reaction		6					
	rates								
0	Surface and interf	acial Chemistry – introduction, surface tension and surface		4.0					
6	free energy, meth	ods of determining surface and interfacial tensions		10					
		of surfaces - surface excess, Gibbs adsorption equation,							
7	curved surfaces-	bubbles, droplets and foams, Kelvin, Young Laplace and		4					
		ns, homogeneous nucleation							
8		olid-liquid interfaces – contact angle, wetting and spreading,		4					
, v		esion, contact angle measurements and hysteresis		•					
-		pes, adsorption at surfaces and interfaces, surfactant							
9		ors affecting aggregation phenomena, applications of		4					
		ixed surfactant systems							
		ration, stability, characterization, surface charges and							
10	electrical double la	ayer nodynamics and stability of emulsions, microemulsions and		5	ſ				
	foams, HLB value								
		Total		45					
		List of Textbooks/Reference Books	1						
1	•	ry (11th edition) by P. W. Atkins, J. de Paula and J. Ke	eeler,	Oxf	ord				
	University Press, 2		00-						
2		(3rd edition) by Keith J. Laidler, New York : Harper & Row, 1			41				
3		olloid and Surface Chemistry (4th edition) by Duncan Shaw,	Butte	erwo	rth-				
	Heinemann 2013.		D =	4					
4		es, and Colloids: Principles and Applications (2nd edition) by	Drew	v iviye	ers,				
	John Wiley & Son	S, IIIC., TAAA							

5	Surfactants and Interfacial Phenomena (4th edition) by M. J. Rosen, John Wiley & Sons,
5	Inc., 2012
	Course Outcomes (Students will be able to)
C01	comprehend fundamental knowledge in chemical kinetics with basics of order, molecularity
001	and temperature effect (K2)
CO2	examine kinetics for complex, fast as well as surface reactions and comprehend different
002	theories in kinetics (K4)
CO3	comprehend fundamental knowledge and thermodynamics in surface and interfacial
003	chemistry (K3)
CO4	evaluate the behavior of surface-active agents and disperse systems based on the
004	knowledge of interfacial phenomena (K4)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	1	2	0	3	3	3	3	3	3	0	3	2
CO2	K4	3	1	2	3	2	3	3	3	3	1	3	2	3	3
CO3	K3	3	3	0	2	2	3	3	2	2	3	3	1	3	2
CO4	K4	3	2	2	3	2	0	3	3	3	3	2	2	3	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 3						
	CHT1138	Organic Chemistry - II	L	Т	Ρ						
	Semester: II	Total Contact Hours: 45	2	1	0						
		List of Prerequisite Courses									
Organi	c Chemistry - I (C	HT1137)									
	Lis	t of Courses where this course will be prerequisite									
Other (Chemistry and App	plied Chemistry courses									
	Descript	tion of relevance of this course in the B. Tech. Program									
To acq	uaint the students	s with concepts related to aromatic, heteroaromatic and pericy	clic r	eacti	ons						
so that	they are perfectly	y aligned to apply the same for the future courses and in their	prof	essio	onal						
career	1										
Sr.		Course Contents (Topics and Subtopics)		equir Hour:							
No.											
1	Nitro and amino		5								
		ity of aminoarenes, diazotisation reactions	 								
0		philic substitution reactions	_								
2		tion mechanism; elimination – addition mechanism (benzyne),		5							
	Sandmeyer reac Pericyclic Reacti		├──								
3	Symmetry of mo 1,3,5-hexatriene Woodward-Hoffn electrocyclic read systems; cycload systems, 2+2 ad reactions; sigma hydrohen, sigm	blecular orbitals, frontier orbitals of ethylene, 1,3-butadiene, and allyl system, classification of pericyclic reactions; mann correlation diagrams, FMO and PMO approaches; ction -conrotatory and disrotatory motions of 4n, 4n+2 and allyl ddition -antara facial and suprafacial addition, 4n and 4n+2 ddition of ketenes, 1,3 dipolar cycloadditions and cheleotropic tropic rearrangements - suprafacial and antarafacial shifts of atropic shifts involving carbon moieties, 3,3- and 5,5- rangements, Claisen, Cope and Aza-Cope rearrangements,		13							
4	Heteroaromatic of	compounds		10							

	IUPAC nomenclature, structures and common names, comparison with	
	benzenoid compounds, reactivity and synthesis – pyrroles, furans, thiophenes	
	and pyridines	
	Named Organic reactions	
	Perkin reaction (Mauvine synthesis-dyes), Fischer indole synthesis, (dyes),	
5	Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta	12
5	polymerisation (polymer), Multicomponent reactions, Mailard reaction (foods),	12
	Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reactions,	
	Prilezhaev reaction	
	Total	45
	List of Textbooks/Reference Books	
4	Clayden, J., Greeves, N., Warren, S.; Organic Chemsitry; 2 nd ed.; Oxford Uni	versity Press
1	(2012)	
_	Graham Solomons, T. W.; Fryhle, Craig B.; Snyder, Scott A. Organic Chemis	stry; 12 th Ed.;
2	John Wiley & Sons. Inc. (2016)	
•	Smith, M. B.; March's Advanced Organic Chemistry: Reactions, Mechanisms a	nd Structure;
3	7th ed.; Wiley, India (2015)	
	Carey F. A., Sundberg, R. J. Advanced Organic Chemistry: Part A: S	tructure and
4	Mechanisms; 5 th ed.; Springer (2005)	
_	Carey F. A., Sundberg, R. J.; Advanced Organic Chemistry: Part B: Reaction ar	nd Synthesis;
5	5 th ed.; Springer (2007)	-
-	Wade, L. G.; Simek, J. W.; Singh, M. S. Organic Chemistry; 9th Ed.; Pearso	on Education
6	(2019)	
7	Eliel, E. L. Stereochemistry of Carbon Compounds; Mcgraw-Hill (2001)	
8	Bruice, Paula, Y. Organic Chemistry; 8th Ed.; Pearson Education (2020)	
	Course Outcomes (Students will be able to)	
CO1	Explain the aromatic chemistry and interpret the outcome of general transformation	ations (K3)
000	Appreciate and visualize the reactions involving radicals such as cyclization	ns, pericyclic
CO2	reactions in synthesis (K3)	
	Understand the importance of heterocycles, learn the properties and synt	hetic routes,
CO3	interpret IUPAC of compounds and decipher outcomes of various transformati	
	heterocycles (K3)	5
	Apply the knowledge obtained through the course to predict the outcome of r	eactions and
CO4	devise solutions to unknown problems (K3)	-
L		

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	0	3	3	2	3	3
CO2	K3	3	3	2	2	1	3	3	3	3	3	3	2	0	3
CO3	K3	3	3	2	1	2	2	1	3	2	3	3	2	3	3
CO4	K3	3	2	0	2	2	3	3	3	3	3	3	1	3	3
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 3						
	PYT1103	Applied Physics - II	L	Т	Ρ						
	Semester: II	Total Contact Hours: 45	2	1	0						
		List of Prerequisite Courses									
Standa		plied Physics – I, Physics Laboratory									
	List	t of Courses where this course will be prerequisite									
This is		ourse. This knowledge will be required in almost all subjects la	ter o	n.							
		ion of relevance of this course in the B. Tech. Program									
		om this course is required for understanding various chemica	-		-						
		troduced in courses such as momentum transfer, reaction	engi	neer	ing,						
-	tion processes, th	ermodynamics, heat transfer, etc.	_								
Sr. No.		Course Contents (Topics and Subtopics)		quir Iour:							
	Quantum Mecha										
	Introduction to qu										
1	•	photoelectric effect, Compton effect, de Broglie hypothesis,		25							
	•	ality, Born's interpretation of the wave function, verification		-							
		uncertainty principle, Schrodinger wave equation, particle in									
	box, quantum harmonic oscillator, hydrogen atom (no detailed derivation)										
		lagnetic Properties of Materials									
		e 'del' operator and vector calculus, revision of the laws of									
		ectric current and the continuity equation, revision of the laws	S								
2	of magnetism.	neability and dielectric constant, polar and non-polar									
2	•	al fields in a solid, Clausius-Mossotti equation, applications		20							
	of dielectrics.										
		ermeability and susceptibility, classification of magnetic									
	•	agnetism, magnetic domains and hysteresis, applications.									
		Total		45							
		List of Textbooks/Reference Books	I								
1	Physics : Vols. I	and II – D. Halliday and R. Resnick, Wiley Eastern									
2	Lectures on Phys	sics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and									
2	M. Sands, Naros										
3	Concepts of Moc	lern Physics – A. Beiser, McGraw-Hill.									
4		ics – A. J. Dekker, 1957, MacMillan India.									
5		Modern Physics – A. Beiser, 1969, McGraw-Hill.									
		Course Outcomes (Students will be able to)									
CO1		im mechanics calculations (K3)									
CO2		rms related to properties of materials such as, permeability, pol	ariza	ition,	etc						
	(K2)										
CO3		basic laws related to quantum mechanics as well as magnetic	and c	lieleo	:tric						
	properties of mat	erials (K2)									

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO3	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

	Course Code:		Cre	dits	= 4
	MAT1102	Course Title: Applied Mathematics – II	L	Т	Ρ
	Semester: II	Total contact hours: 60	3	1	0
		List of Prozonuisite Courses			
	Standard Mathematics, App	List of Prerequisite Courses			
100 0		rses where this course will be prerequisite			
This is		urse. This knowledge will be required in almost all			
	ts later.				
		elevance of this course in the B. Tech. Program	1		
This is	a basic Mathematics cour	rse. This knowledge will be required in almost all sub	jects	later	on.
	. .	or solving various mathematical equations that need to			
		purses such as MEBC, momentum transfer, reaction	engi	neer	ing,
separa	ation processes, thermodyr				
1	Course Cor Numerical Methods - I:	ntents (Topics and subtopics)	F	lour: 15	5
I		ear equations (Gauss-elimination, LU-decomposition		15	
	etc.)				
	,	solving non-linear algebraic / transcendental etc.			
	Newton's method, Secan	t, Regula Falsi methods.			
	Numerical solution set of	linear algebraic equations: Jacobi, Gauss Siedel, and			
	under / over relaxation me	ethods			
2	Numerical Methods - II:			15	
	Forward, Newtons backw	lation for equal and non-equal spaced data (Newtons			
		pezoidal rule, Simpson's Rule)			
	• •	olution of initial values problems using RK method,			
	Euler's method and Taylo				
3	Differential Equations -			15	
	Differential Equations: So	lution of Higher order ODE with constant and variable			
	coefficients and its applic	ations to boundary and initial value problems, Series			
		quations, Bessel functions, Legendre Polynomials,			
	Error function.			4 =	
4	Differential Equations –			15	
	(both ODEs PDEs).	ansforms and their application in differential equation			
		ons, Classification of higher order PDEs, Solution of			
	parabolic equation using	-			
		Total		60	
		st of Textbooks/ Reference books			
1	, ,	ngineering Mathematics (8th Edition), John Wiley (19	99). (0	Offici	ally
	prescribed)				
2		in, Advanced Engineering Mathematics Narosa.		•	
3		r and R K Jain, Numerical Methods: For Scientific and	ı ⊨ng	inee	ing
4	Computation, New Age Ir	riternational Publication rima, Elementary Differential Equations (8th Edition) 104	n \//	ilev
4	(2005).		, 501	۷۷	пеу
5	· · /	Brown, Fourier series and boundary value problems	(7th	Editio	on).
•	McGraw-Hill (2006).		(. .		,,
	· /				
	Course	Outcomes (students will be able to)			
CO 1	solve system of linear a	lgebraic equations.			
CO 2	0				
CO 3	-	by analytical methods.			
CO 4	solve initial value proble	ems using numerical methods.			

CO 5 apply Fourier series and Laplace transform techniques to solve ODE and PDE.

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K3	3	3	2	3	2	3	3	3	3	3	3	2	3	2
CO3	K4	3	2	1	2	1	3	3	2	3	3	3	1	3	3
CO4	K3	3	3	3	2	2	2	3	3	3	3	3	2	3	2
CO5	K3	3	2	2	3	2	3	3	3	2	3	3	2	3	3
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

	Course Code:	Course Title:	Cr	= 4	
	CET1507	Process Calculations	L	Т	Р
	Semester: II	Total Contact Hours: 60	2	2	0
		List of Prerequisite Courses			
Standa	rd XII Mathematics,	Chemistry, Physics			
	Li	st of Courses where this course will be prerequisite			
This is a	a basic Course. This	s knowledge will be required in ALL subjects later.			
	Descri	ption of relevance of this course in the B. Tech. Program			
this co It can l	urse is required for i	ious concepts used in Chemical Engineering to the students. Th n ALL B. Tech. courses in the subsequent semesters including th s situations such as process selection, economics, sustainability	ne pro	oject v	vork.
Sr.		Course Contents (Tenics and Subtenics)	R	equir	ed
No.		Course Contents (Topics and Subtopics)		Hour	S
1		mical process calculations, Overview of single- and multistage pt of process flow sheets		2	
2	Revision of Units a techniques	nd Dimensions, Dimensional analysis of equations, Mathematical		4	
3	Mole concept, Con	nposition relationship, Types of flow rates		2	
4	Material balance i processes	n non-reacting systems: Application to single- and multistage		8	
5	Stoichiometry			2	
6	Material balance processes	in reacting systems: Application to single- and multistage		6	
7	Behavior of gases	and vapors		4	
8	Introduction to Psy	chrometry, Humidity and air-conditioning calculations.		6	
9	Calculation of X-Y	diagrams based on Raoult's law.		2	
10	Applications of ma	terial balances to multiphase systems		6	
11	Basic concepts of	types of energy and calculations		2	
12	Application of ener	gy balance to non-reacting systems		6	
13	Application of ener	gy balance to reacting systems		6	
14	Fuels and combus	tion		4	
		Total		60	
		List of Text Books/ Reference Books			
1		ples of Chemical Processes, Felder, R.M. and Rousseau			
2		s Principles, Hougen O.A., Watson K. M.			
3		nd Calculations in Chemical Engineering, Himmelblau,			
4	Stoichiometry, Bh	att B.I. and Vora S.M.			

	Course Outcomes (students will be able to)
CO1	convert units of simple quantities from one set of units to another set of units (K2)
CO2	calculate quantities and /or compositions, energy usages, etc. in various processes and process equipment such as reactors, filters, dryers, etc. (K3)
CO3	apply material balances in multiphase systems (K3)
CO4	apply energy balance to various systems (K3)

	Mapping of Course Outcomes (Cos) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	0	2	1	3	3	3	3	3	3	1	3	2
CO2	K3	3	3	2	2	2	3	3	3	3	3	2	2	3	3
CO3	K3	3	1	2	2	1	3	3	3	2	3	3	1	3	3
CO4	K3	3	3	2	0	2	3	3	3	3	3	3	2	2	3
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cr	edits	= 2
	PYP1101	Physics Laboratory	L	Т	Р
_	Semester: II	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses	<u> </u>		
Applied F	Physics - I				
	List	t of Courses where this course will be prerequisite			
This is	s a basic physics Lal	boratory course. This knowledge will be required in almost all s	ubjec	ts late	er on.
	Descript	ion of relevance of this course in the B. Tech. Program			
		various concepts by doing experiments on different topics. This		-	
		ubjects later on. This knowledge is also required for unders		•	
		pts that will be introduced in courses such as momentum tr	ansfe	r, rea	ction
-	ring, separation proc	cesses, thermodynamics, heat transfer, etc.			
Sr.	C	Course Contents (Topics and Subtopics)		equir	
No.				Hour	S
	Viscosity			5	
	Thermistor			6	
	Thermal conductivity			5	
	Ultrasonic interferom	neter		6	
-	Photoelectric effect			5	
	Hall effect			6	
	Newton's rings			5	
	Dispersive power of	prism		8	
-	Laser diffraction			8	
10 I	Resolving power of g			6	
		Total		60	
		List of Text Books/ Reference Books			
1	•	d II – D. Halliday and R. Resnick, Wiley Eastern			
2	•	s: Vols. I, II and III – R. P. Feynman, R. B. Leighton and			
	M. Sands, Narosa.				
3	•	n Physics – A. Beiser, McGraw-Hill.			
4		ern Optics – G. R. Fowles ,Dover Publications.			
5	•	nunication – G. Keiser, McGraw-Hill.			
6		ments with LASERs – R. S. Sirohi, Wiley Eastern			
7	Optoelectronics – J	. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India.			

8	Ultrasonics: Methods and Applications – J. Blitz, Butterworth
9	Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH.
	Course Outcomes (students will be able to)
CO1	Apply various laws which they have studied through experiments (K3)
CO2	Measure transport properties like viscosity, conductivity, etc.(K4)
CO3	Explain the application of acoustic cavitation (K2)

		Ma	apping	g of Co	ourse	Outco	mes (COs)	with P	rograi	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	1	3	3	3	3	3	3	2	3	3
CO2	K4	3	3	2	3	2	3	3	2	3	3	3	0	2	3
CO3	K2	3	2	1	2	0	3	3	3	3	1	3	1	3	2
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 2
	CHP1132 Organic Chemistry Laboratory Semester: II Total Contact Hours: 60 List of Prerequisite Courses d'XII th Organic Chemistry Laboratory List of Courses where this course will be prerequisite Applied Chemistry Practicals Description of relevance of this course in the B. Tech. Progratures is relevant for training the students for working with binary mixtures. The laboratory training is crucial for the students to careactions leading to separation of crude products followed by utilization and/or distillation or related methods. Course Contents (Topics and Subtopics) a) Principles of qualitative separation of organic mixtures using physic properties, chemical properties and their combination b) Principles of qualitative separation of organic mixtures using physic properties, chemical properties and their combination b) Separation of solid-solid water insoluble binary organic mixtures by Separation of solid-solid partly water soluble binary organic mixtures by Separation of solid-solid mixtures by distillation c) Separation of liquid-liquid mixtures by solvent extraction Cuist of Textbooks/Reference Books Arthur, Vogel. Textbook of Practical Organic Chemistry, 5 th edition, put group Ltd, 1989	L	Т	Ρ	
	Semester: II	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
Standa					
All the					
expose physic organi	ed to basics of org ochemical properti c reactions lead	ganic separations and identification of organic compounds be les. The laboratory training is crucial for the students to carry o ing to separation of crude products followed by purifi	ased ut wo	on t ork-u	heir p of
				equir Iour:	
1				4	
I	propertie	s, chemical properties and their combination		4	
				5X4	
_				2X4	
2				2X4	
				2X4	
	e) Separation of	Iquid-liquid mixtures by solvent extraction Total		2X4	
				60	
1			ers L	ongr	nan
2		B.C. Saunders, Practical Organic Chemistry, 4 th edition publish	ned b	y Or	ient
3	John Wiley & Sor	ns, 2006.	dent	s Gu	ide.
CO1					
CO2					
CO3			ely an	d	

	Ма	apping	g of Co	ourse	Outco	mes (COs)	with P	rogra	mme O	utcome	es (POs)		
	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
	K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4

CO1	K3	3	3	2	2	2	3	3	3	3	3	3	0	3	3
CO2	K4	3	3	2	3	2	3	3	0	3	3	3	2	2	3
CO3	K3	3	1	2	1	2	2	3	3	3	3	1	2	3	1
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cr	edits	= 2
	HUP1101	Communication Skills	L	Т	Р
	Semester: II	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses	1 1		
Standaı	rd XII English				
	Li	st of Courses where this course will be prerequisite			
All					
	Descri	otion of relevance of this course in the B. Tech. Program			
	•	e for the effective functioning of an Engineer and a Technolgist. urses and professional career.	Comr	nunic	ation
Sr. No.		Course Contents (Topics and Subtopics)		equir Hour	
1	Development of co	mmunication skills in oral as well as writing		10	
2	The writing skills sl writing, letter drafti	hould emphasize technical report writing, scientific paper ng, etc.		14	
3	The oral communic	cation skills should emphasize presentation skills.		10	
4	Use of audio-visua presentation	I facilities like powerpoint, LCD. for making effective oral		14	
5	Group Discussions	3		12	
		Total		60	
		List of Text Books/ Reference Books			
1	Elements of Style	- Strunk and White			
		Course Outcomes (students will be able to)			
CO1	-	ror free technical reports in MS Word or equivalent software (K3)			
CO2	Make power point	t slides in MS PowerPoint or equivalent software (K3)			

		Ma	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcome	es (POs)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	1	2	3	3
CO2	K3	3	3	2	0	2	3	1	3	3	2	3	2	3	3
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

Semester III

	Course Code:	Course Title:	Cre	dits	= 3
	BST1110	Basics of Biology and Applications to Technology	L	Т	Ρ
	Semester: III	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Standa	ard XII Biology				
	Lis	t of Courses where this course will be prerequisite			
		to Chemicals, Pharmaceuticals, Polymers, cosmetics, Lubrica	ants,		
Textile					
		tion of relevance of this course in the B. Tech. Program			
certain techno	terminologies to	urse will help a student understand basics of Human biolog o enable them to read contemporary research pertaining ents. The course will help a student to understand the safety ev ory guidelines	to ir	npor	tant
		Course Contents (Topics and Subtopics)		equir Iour	
1	etc. Definitions Homoeostasis, H that make the hu	cs of Human Anatomy and Physiology, the terminologies used of Anatomy, Physiology, Histology, Biochemistry, Health, Disease, Toxicity, Safety, Genotoxicity, etc. Systems Iman body, the rationale behind introducing the subject to the ents of Pharma, foods, Polymers, Surface coatings, Oils,		9	
2	functions and its division, cell dea	cell functioning as a whole unit and its organelles with their s applications to technology. An overview of normal cell ath by apoptosis, necrosis, Cancerous growth, metabolites/ on, cellular secretions, different types of cells, cell repair,		9	
3	Overview of I technological app	o		6	
4	using cellular exp	tions: design some simple experiments to evaluate toxicity periments, organisms, animals etc. OECD guidelines. Concept and industrial relevance. (oral, dermal, inhalation)		6	
5		on in terms of mortality, Genotoxicity, hypersensitivity (allergy), as per various international guidelines namely, ICH, OECD, ew.		10	
7	Irritation potentia	l evaluation of Lubricants, surfactants, excipients, etc.		5	
		Total		45	
		List of Textbooks/Reference Books			
1	-	and Physiology R. K. Goyal, Ahmedabad, India.			
2		. P. Rang, M. M. Dale, J. M. Ritter			
3		's Anatomy and Physiology in Health and Illness Anne Waugh	and	All	
4	-	s of OECD, ISO, ICH			
001		Course Outcomes (Students will be able to)	(1/0		
CO1		nd and explain the basic concepts and terminologies of Biology		,	<u></u>
CO2	Appreciate inter	disciplinary nature of biology and will be able to design and exercise or the second sec	ecute	e sim	pie
CO3	understand at	experiments (K3) pout the concept of toxicity/safety and its relevance to technolo	gy a	nd its	6

		Ma	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	1	2	0	3	3	3	3	3	3	1	3	2
CO2	K3	3	3	2	2	2	3	1	3	3	2	1	2	2	3

CO3	K2	3	1	0	2	1	3	3	3	0	3	3	1	3	2
Course	K3	3	3	2	2	2	3	3	З	3	3	3	2	З	3

	Course Code:	Course Title:	Cre	dits	= 3
	GET1110	Basic Mechanical Engineering	L	Т	Ρ
	Semester: III	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
None					
		ist of Courses where this course will be Prerequisite			
	•••	ET1704), Engineering Mechanics and Strength of Materials and Technology (HUT1106)	(GE	T11 ⁻	17)
		tion of relevance of this course in the B. Tech. Programme			
	cquaint the studen nicals	nts with synthesis, properties and applications of various indust	rial i	norga	ani
Sr. No.		Course Contents (Topics and subtopics)		equir Iour:	
1		Thermodynamics: First Law of Thermodynamics, Steady-flow Second Law of Thermodynamics		3	
2	Properties – Enth	team and Boilers: Steam formation, Types of steam, Steam alpy, Simple numerical for finding enthalpy and dryness fraction assification, Working principle of Cochran, Babcock & Wilcox, etc.		6	_
3	with P-V diagram	lassification, Working of 2-stroke, 4-stroke C.I. and S.I. Engines ns, Definitions and simple numerical for determining indicated ver, Mechanical efficiency, Indicated thermal efficiency, and Brake		6	
4		Classification of Prime movers, Working principle of steam, gas es, Concept of impulse and reaction steam turbines		4	
5	stage and multista	Classification of compressors, Reciprocating compressors, Single- age compressors, P-V diagram, Rotary compressors, Fan, Blower Centrifugal and axial compressors, Application of compressors		4	
6	-	cation of pumps, Reciprocating pumps, Centrifugal pumps, Axial nps, Maintenance of pumps		4	
7	Nomenclature, I	OP of refrigerator and heat pumps, Classification of refrigerants, Properties desired by refrigerants, Vapour compression le, Methods of increasing COP of VCRS, Vapour absorption ems		5	
8		gy: Role and importance of nonconventional and alternate energy solar, wind, ocean, bio-mass and geothermal		4	
9	and gear drives, I	f Power: Introduction to various drives such as belt, rope, chain Introduction to mechanical elements such as keys, couplings and r transmission (No numericals)		5	
10	iron, tool steels a Polymers – Therr Ceramics – Glass	Applications of Engineering Materials: Metals –ferrous, cast- nd stainless steels and non-ferrous aluminium, brass, bronze moplastic and thermosetting polymers s, optical fibre, glass, cermets re-reinforced composites, metal-matrix composites		4	
		Total List of Text Books/ Reference Books		45	

1	Nag, P. K. Engineering Thermodynamics; 5 th Ed.; McGraw Hill Education (2013)						
2	Morse, Frederick T. Power Plant Engineering; 3rd Ed.; Van Nostrand Reinhold Inc. (1953)						
3	Ballaney, P. L. Thermal Engineering: Engineering Thermodynamics & Energy Conversion Techniques; 5 th Ed.; Khanna Publishers (1966)						
4	Lal, J. Hydraulic Machines Including Fluidics; 6 th Ed.; Metropolitan Book Co. Pvt. Ltd. (2016)						
5	Twidell, John; Weir, Tony. Renewable Energy Resources; 3 rd Ed.; Routledge (2015)						
6	Rai, G. D. Non-conventional Energy Sources; Khanna (1988)						
7	Arora, C. P. Refrigeration and Air Conditioning; 4th Ed.; McGraw Hill (2021)						
8	Rattan, S. S. Theory of Machines; 5th Ed.; McGraw Hill (2019)						
	Course Outcomes (Students will be able to)						
CO1	discuss the steam formation process and its properties. (K2)						
CO2	understand basics of heat transfer, refrigeration and I. C. Engines. (K2)						
CO3	understand mechanism of power transfer through belt, rope and gear drives and understand the properties of common engineering materials and their applications in engineering industry. (K3)						
CO4	explain the working principles of power-absorbing devices such as pumps and compressors and explain need and importance of various renewable energy sources. (K2)						

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K2	3	1	0	2	1	3	1	3	3	3	3	1	3	2
CO3	K3	3	3	2	2	2	3	3	3	3	2	3	2	2	3
CO4	K2	3	2	1	2	0	3	3	2	3	3	3	1	3	2
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Code:		Credits = 4				
	DYT 1101 Course Title: Technology of Intermediates I		L	Т	Ρ			
	Semester: III	Total Contact Hours: 60	3	1	0			
	List of Prerequisite Courses							
HSC (HSC (Science)							
	Lis	t of Courses where this course will be prerequisite						
All Dye	estuff and Interme	diates Special Courses						
	Descript	tion of relevance of this course in the B. Tech. Program						
To ma	ake the students u	understand chemistry various intermediates used for chemic	al ind	dustr	y in			
genera	general and Dyestuff industry.							
To ma	To make them understand the unit processes and their relevance in chemical industries.							
To ena	able them to anal	yses and identify the proper synthetic and industrial method	l and	cho	ose			
	accordingly the further processes to make intermediates.							
	To develop in them capacity understand proper selection of the chemical processes based on							
econo	economy and ecological aspects							
		Course Contents (Topics and Subtopics)			Required			
			ŀ	lour	s			
	Chemical feedsto		04					
1	a. Fossil feedstoo							
	b. Petroleum and coal based raw materials							
	c. Importance of BTX							

2 a. Electrophilic aromatic substitutions 04 b. Orientation in aromatic substitutions 16 A. Basic Unit processes 16 A. Basic Unit processes 16 A. Basic Unit processes 16 B. Sulphonation 16 D. Nitration Reduction C. Reduction 16 Hatagenation 16 B. Sulphonation: 17 (i) Reaction phenomenon and conditions 17 (ii) Work up and Material of construction 17 (iv) Substitution in benzene and substituted benzene 18 (v) Plant and process flow 19 (v) Safety and process control parameters 11 C. Nitration: 1 3 (i) Reaction phenomenon and conditions (ii) Work up and Material of construction 10 (iv) Substitution in benzene and substituted benzene 10 (v) Plant and process control parameters, Run away reactions 10 D. Reduction: 10 Reduction methods (ii) Reduction methods 10 10 (ii) Reduction and MOC 10 10 4 Naphthalene In			
b. Orientation in aromatic substitutions 16 h. Resic Unit processes a. Sulphonation b. Nitration c. Reduction d. Resic Unit processes a. Sulphonation b. Nitration c. Reduction d. Halogenation B. Sulphonation b. Nitration c. Reduction d. Halogenation B. Sulphonating agents and solvents (ii) Work up and Material of construction (i) Substitution in benzene and substituted benzene (v) Plant and process flow (v) Safety and process control parameters C. Nitration: (i) Reaction phenomenon and conditions (ii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (v) Plant and process flow (v) Plant and process flow (v) Plant and process control parameters, Run away reactions D. Reduction: (i) Reducing agents (ii) Reduction methods (iii) Reduction methods (iii) Reduction dest method for Benzene and substituent (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction philte and Electrophilic substitution (ii) Reactions possible and criterion for the same Technology and Reactions of naphthalene 10 a. Nomenclature, Reactions, Reactivity rules 118 a. Synthe		Chemistry of Benzenoid intermediates-	08
Introduction of Functional groups into benzene and technology involved 16 A. Basic Unit processes a. Sulphonation b. Nitration c. Reduction d. Halogenation (i) Reaction phenomenon and conditions (ii) Reaction phenomenon and conditions (ii) Sulphonating agents and solvents (iii) Work up and Material of construction (v) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters C. Nitration: (i) Reaction phenomenon and conditions (ii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process flow (vi) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Substitution in benzene and substituted benzene (v) Substitution in benzene and substituted benzene (v) Safety and process control parameters, Run away reactions D. D. Reduction: (i) Reduction methods (iii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E E. Halogenation (i) Reaction and MOC 04 a. Nomenclature, Reactions, Reactivity rules 04 a. Synthesis of na	2		
A. Basic Unit processes a. Sulphonation b. Nitration c. Reduction d. Halogenation B. Sulphonatina gents and solvents (ii) Reaction phenomenon and conditions (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Substitution in benzene and substituted benzene (v) Safety and process flow (vi) Safety and process control parameters C. Nitration: 3 (i) Reaction phenomenon and conditions (ii) Work up and Material of construction (v) Substitution in benzene and substituted benzene (v) Vlant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction methods (iii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Reaction and MOC 4 Nomenclature, Reactions, Reactivity rules 5 b. Substitution pattern 6 b. Subphhalene intermediates 7 trabionation (i) Reaction pattern en <		b. Orientation in aromatic substitutions	
a. Sulphonation b. Nitration c. Reduction d. Halogenation B.Sulphonation: (i) Reaction phenomenon and conditions (ii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (v) Plant and process flow (v) Stately and process control parameters C. Nitration: 3 (i) Reaction phenomenon and conditions (ii) Work up and Material of construction (iv) Stately and process control parameters C. Nitration: 3 (i) Reaction phenomenon and conditions (iii) Work up and Material of construction (iv) Stately and process control parameters, Run away reactions D. Reduction: (v) Safety and process control parameters, Run away reactions D. Reduction methods (iii) Reduction methods (iii) Selection of best method for Benzene and substitutent (v) Process and workup (v) Safety aspect E. Halogenation (i) Reaction and MOC 4 Naphthalene intermediates a. Synthesis of naphthalene b. Subph			16
b. Nitration c. Reduction d. Halogenation d. Halogenation (i) Reaction phenomenon and conditions (ii) Sulphonating agents and solvents (ii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (v) Plant and process control parameters C. Nitration: (i) Reaction phenomenon and conditions (ii) Nitrating agents and solvents (iii) Work up and Material of construction (v) Stafety and process control parameters, Run away reactions D. Reduction: (i) Reduction process control parameters, Run away reactions D. Reduction: (i) Reduction enthods (iii) Selety and process control parameters, Run away reactions D. Reduction: (i) Reduction methods (ii) Reduction of best method for Benzene and substituent (iv) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution 04 (i) Reaction and MOC a. Nomenclature, Reactions, Reactivity rules 18 5 Substitution pattern 10 6 Nutration 10 7 Chemistry: Naphthalene Intermediates 18 6 Substitution pattern 10 7			
c. Reduction d. Halogenation B. Sulphonating agents and solvents (i) Reaction phenomenon and conditions (ii) Subponating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters C. Nitration: 3 (i) Reaction phenomenon and conditions (iii) Nitrating agents and solvents (iii) Nitrating agents and solvents (iii) Nitrating agents and solvents (iii) Nitrating agents and solvents (iii) Nitrating agents and solvents (iii) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction methods (ii) Reduction methods (iii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Process and workup (v) Safety aspect E. Halogenation (i) Reaction and MOC 04 a. Nomenclature, Reactions, Reactivity rules 18 5 a. Synthesis of naphthalene 18 5 Substitution pattern 10 a. Numericature, Reactions of naphthalene 10			
d. Halogenation B.Sulphonation: (i) Reaction phenomenon and conditions (ii) Subptonating agents and solvents (iii) Work up and Material of construction (v) Plant and process flow (v) Safety and process control parameters C. Nitration: 3 (i) Reaction phenomenon and conditions (ii) Nitrating agents and solvents (iii) Work up and Material of construction (iv) Safety and process control parameters D. Nitrating agents and solvents (iii) Work up and Material of construction (v) Safety and process control parameters, Run away reactions D. Reduction: (i) Reducing agents (ii) Reduction methods (iii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene b. Subphonation		b. Nitration	
B.Sulphonation: (i) Reaction phenomenon and conditions (ii) Sulphonating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters C. Nitration: 3 (i) Reaction phenomenon and conditions (ii) Nitrating agents and solvents (iii) Nork up and Material of construction (v) Safety and process flow (vi) Safety and process flow (vi) Safety and process control parameters, Run away reactions D.Reduction (v) Safety and process control parameters, Run away reactions D.Reduction methods (ii) Reduction methods (iii) Selection of best method for Benzene and substituent (v) Safety aspect E.Halogenation (i) Reaction and MOC 4 Naphthalene Introduction 04 a. Nomenclature, Reactions, Reactivity rules 04 a. Synthesis of naphthalene 18 5 b. Substitution pattern 10 c. Reactions possible and criterion for the same 10 a. Nitration 10 10 a. Nitration 10 60 List of Textbooks/Reference Books 10 a.		c. Reduction	
(i) Reaction phenomenon and conditions (ii) Subplonating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters 2 C. Nitration: (i) Reaction phenomenon and conditions (ii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reducing agents (ii) Reduction methods (iii) Selection of best method for Benzene and substituent (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules 5 a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene a. Nitration b. Substitution (key poi		d. Halogenation	
(ii) Sulphonating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters 2 C. Nitration: 3 (i) Reaction phenomenon and conditions (ii) Nitrating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction methods (iii) Reduction and MOC 4 Naphthalene Introduction (i) Reaction and MOC 4 Naphthalene Introduction a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene a. Normenclature, Reactions of naphthalene b. Subphonation c. Halogenation		B.Sulphonation:	
(iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters 3 (i) Reaction phenomenon and conditions (ii) Nitrating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction methods (ii) Selection of best method for Benzene and substituent (v) Process and workup (v) Safety aspect E. Halogenation (i) Reaction and MOC 4 Naphthalene Introduction a. Synthesis of naphthalene b. Susphthalene intermediates a. Synthesis of naphthalene b. Susphonation c. Reactions possible and criterion for the same Technology and Reactions of naphthalene b. Sulphonation c. Halogenation d. Reduction (Key points are similar to benzene) Total 6 J. Industrial organic chemistry. Weissermal K., ArpeH.J.V		(i) Reaction phenomenon and conditions	
(iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters 2 C. Nitration: 3 (i) Reaction phenomenon and conditions (ii) Wirating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction methods (iii) Reduction methods (iii) Reduction methods (iii) Reduction methods (iii) Reaction and MOC E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (i) Reaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules 5 6 61 7 7 8 9 9 9 9 10 10 10 10 11 <td></td> <td>(ii) Sulphonating agents and solvents</td> <td></td>		(ii) Sulphonating agents and solvents	
(v) Plant and process flow (vi) Safety and process control parameters 2. Nitration: 3 (i) Reaction phenomenon and conditions (ii) Nitrating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction methods (iii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules chemistry: Naphthalene (i) Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene b. Sulphonation c. Halogenation d. Reduction d. Reduction d. Reduction c. Halogenation d. Reduction possible and criterion for the same c. Reactions possible and		(iii) Work up and Material of construction	
(vi) Safety and process control parameters 2. Nitration: 3 (i) Reaction phenomenon and conditions (ii) Nitrating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction methods (iii) Selection of best method for Benzene and substituent (v) Process and workup (v) Safety aspect E. Halogenation (i) Beaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules Chemistry: Naphthalene intermediates b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene b. Sulphonation c. Halogenation (Key points are similar to benzene) Total 6 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesit of Synthesit on A., NY 1995 4 Chemistry of Synthesic on A., NY 1		(iv) Substitution in benzene and substituted benzene	
C. Nitration: (i) Reaction phenomenon and conditions (ii) Nitrating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reducing agents (ii) Reduction methods (iii) Selection of best method for Benzene and substituent (v) Yafety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC A Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules Chemistry: Naphthalene intermediates a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene b. Sulphonation c. Halogenation d. Reduction d. Reduction d. Reduction c. Halogenation c. Bactions possible and criterion for the same c. Reactions of naphthalene b. Sulphonation c. Halogenation d. Reduction </td <td></td> <td>(v) Plant and process flow</td> <td></td>		(v) Plant and process flow	
3 (i) Reaction phenomenon and conditions (ii) Nitrating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reducing agents (ii) Reduction methods (iii) Selection of best method for Benzene and substituent (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 04 4 Naphthalene Introduction 5 a. Synthesis of naphthalene 5 b. Substitution pattern c. Reactions possible and criterion for the same 10 a. Nitration b. Sulphonation 6 b. Sulphonation c. Halogenation (Key points are similar to benzene) List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesic, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of synthetic Oyes, Lubs H. A., NY 1995		(vi) Safety and process control parameters	
(ii) Nitrating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction gents (ii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules Chemistry: Naphthalene intermediates a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene a. Nitration b. Sulphonation c. Halogenation (Key points are similar to benzene) List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of synthetic Oyes, Lubs H. A., NY 1995		C. Nitration:	
(ii) Nitrating agents and solvents (iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction gents (ii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules Chemistry: Naphthalene intermediates a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene a. Nitration b. Sulphonation c. Halogenation (Key points are similar to benzene) List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of synthetic Oyes, Lubs H. A., NY 1995	3		
(iii) Work up and Material of construction (iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction methods (iii) Selection of best method for Benzene and substituent (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules Chemistry: Naphthalene intermediates a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene a. Nitration b. Sulphonation c. Halogenation (Key points are similar to benzene) List of Textbooks/Reference Books 1 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of Synthetic Oyes, Lubs H. A., NY 1995 <td>-</td> <td></td> <td></td>	-		
(iv) Substitution in benzene and substituted benzene (v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reducing agents (ii) Reduction methods (iii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules 5 a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene b. Subphonation c. Halogenation (Key points are similar to benzene) List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 <			
(v) Plant and process flow (vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reducing agents (ii) Reduction methods (iii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 04 A Naphthalene Introduction 04 a. Nomenclature, Reactions, Reactivity rules 04 s Synthesis of naphthalene 18 s Substitution pattern 18 c. Reactions possible and criterion for the same 10 a. Nitration 10 b. Substitution pattern 10 c. Reactions possible and criterion for the same 10 a. Nitration 10 b. Subphonation 10 c. Halogenation 60 List of Textbooks/Reference Books 60 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952			
(vi) Safety and process control parameters, Run away reactions D. Reduction: (i) Reduction agents (ii) Reduction of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactivity rules Chemistry: Naphthalene intermediates a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene b. Sulphonation c. Halogenation d. Reduction d. Reduction d. Reduction c. Halogenation d. Reduction (Key points are similar to benzene) Total 60 List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995			
D. Reduction: (i) Reduction gagents (ii) Reduction methods (iii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 04 A Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules 04 a. Nomenclature, Reactions, Reactivity rules 04 a. Synthesis of naphthalene 18 s. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene 10 a. Nitration b. Subphonation c. Halogenation (Key points are similar to benzene) Chemistry: Chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 60 List of Textbooks/Reference Books 1 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952			
(i) Reducting agents (ii) Reduction methods (iii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction 04 a. Nomenclature, Reactions, Reactivity rules 04 5 Chemistry: Naphthalene intermediates 18 a. Synthesis of naphthalene 18 b. Substitution pattern c. Reactions possible and criterion for the same 10 6 b. Sulphonation 10 a. Nitration b. Sulphonation 60 c. Halogenation Chemistry of Textbooks/Reference Books 60 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 60 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 60 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4			
(ii) Reduction methods (iii) Selection of best method for Benzene and substituent (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules Chemistry: Naphthalene intermediates a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene a. Nitration b. Sulphonation c. Halogenation (Key points are similar to benzene) List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952		D. Reduction:	
(iii) Selection of best method for Benzene and substituent (iv) Process and workup (iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 04 A Naphthalene Introduction 04 a. Nomenclature, Reactions, Reactivity rules 04 a. Nomenclature, Reactions, Reactivity rules 18 a. Synthesis of naphthalene intermediates 18 a. Synthesis of naphthalene 10 b. Substitution pattern 10 c. Reactions possible and criterion for the same 10 a. Nitration 10 b. Sulphonation 10 c. Halogenation 60 Utitation 10 b. Sulphonation 60 c. Halogenation 60 c. Halogenation </td <td></td> <td></td> <td></td>			
(iv) Process and workup (v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction a. Nomenclature, Reactions, Reactivity rules 5 Chemistry: Naphthalene intermediates a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same Technology and Reactions of naphthalene a. Nitration b. Sulphonation c. Halogenation d. Reduction (Key points are similar to benzene) Corganic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 Corganic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995			
(v) Safety aspect E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction 04 a. Nomenclature, Reactions, Reactivity rules 04 5 Chemistry: Naphthalene intermediates 18 5 Chemistry: Naphthalene intermediates 18 5 Synthesis of naphthalene 10 6 Technology and Reactions of naphthalene 10 a. Nitration Industriation 10 b. Sulphonation C. Halogenation 60 Cheduction Key points are similar to benzene) 60 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 60 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 60 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4		(iii) Selection of best method for Benzene and substituent	
E. Halogenation (i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 04 A Naphthalene Introduction 04 a. Nomenclature, Reactions, Reactivity rules 04 5 Chemistry: Naphthalene intermediates 18 a. Synthesis of naphthalene 18 a. Synthesis of naphthalene 10 b. Substitution pattern 10 c. Reactions possible and criterion for the same 10 a. Nitration 10 b. Sulphonation 10 c. Halogenation 60 Very points are similar to benzene) 60 List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952		(iv) Process and workup	
(i) Basic nucleophilic and Electrophilic substitution (ii) Reaction and MOC 4 Naphthalene Introduction 04 a. Nomenclature, Reactions, Reactivity rules 04 5 Chemistry: Naphthalene intermediates 18 5 Substitution pattern 18 c. Reactions possible and criterion for the same 10 a. Nitration 10 b. Sulphonation 10 c. Halogenation 60 (Key points are similar to benzene) 60 List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952		(v) Safety aspect	
(ii) Reaction and MOC 04 A Naphthalene Introduction 04 a. Nomenclature, Reactions, Reactivity rules 04 Chemistry: Naphthalene intermediates 18 a. Synthesis of naphthalene 18 b. Substitution pattern 10 c. Reactions possible and criterion for the same 10 a. Nitration 10 b. Sulphonation 10 c. Halogenation 10 d. Reduction 60 List of Textbooks/Reference Books 60 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952		E. Halogenation	
4 Naphthalene Introduction 04 a. Nomenclature, Reactions, Reactivity rules 04 5 Chemistry: Naphthalene intermediates 18 5 a. Synthesis of naphthalene 18 5 b. Substitution pattern 10 c. Reactions possible and criterion for the same 10 6 Technology and Reactions of naphthalene 10 a. Nitration b. Sulphonation 10 c. Halogenation d. Reduction 60 Very points are similar to benzene) 60 60 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 60 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4		(i) Basic nucleophilic and Electrophilic substitution	
4 a. Nomenclature, Reactions, Reactivity rules 18 5 Chemistry: Naphthalene intermediates 18 5 b. Suptilution pattern 18 c. Reactions possible and criterion for the same 10 a. Nitration 10 b. Sulphonation 10 c. Halogenation 10 d. Reduction 60 Total 60 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 Ghemistry of Synthetic Dyes, Lubs H. A., NY 1995 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952		(ii) Reaction and MOC	
a. Nomenclature, Reactions, Reactivity rulesa. Nomenclature, Reactions, Reactivity rulesfChemistry: Naphthalene intermediatesa. Synthesis of naphthaleneb. Substitution patternc. Reactions possible and criterion for the samefTechnology and Reactions of naphthalenea. Nitrationb. Sulphonationc. Halogenationd. Reduction(Key points are similar to benzene)1Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 19932Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 20043Chemistry of Synthetic Dyes, Lubs H. A., NY 19954Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952	1	Naphthalene Introduction	04
5a. Synthesis of naphthalene b. Substitution pattern c. Reactions possible and criterion for the same6Technology and Reactions of naphthalene a. Nitration b. Sulphonation c. Halogenation d. Reduction (Key points are similar to benzene)106Total606List of Textbooks/Reference Books601Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993602Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004603Chemistry of Synthetic Dyes, Lubs H. A., NY 199560	4	a. Nomenclature, Reactions, Reactivity rules	
5b. Substitution pattern c. Reactions possible and criterion for the same6Technology and Reactions of naphthalene a. Nitration b. Sulphonation c. Halogenation d. Reduction (Key points are similar to benzene)106Total606List of Textbooks/Reference Books601Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993602Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004603Chemistry of Synthetic Dyes, Lubs H. A., NY 199560		Chemistry: Naphthalene intermediates	18
b. Substitution patternc. Reactions possible and criterion for the sameTechnology and Reactions of naphthalenea. Nitrationb. Sulphonationc. Halogenationd. Reduction(Key points are similar to benzene)List of Textbooks/Reference Books1Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 19932Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 200434Chemistry of Synthetic Dyes, Lubs H. A., NY 1952	F	a. Synthesis of naphthalene	
c. Reactions possible and criterion for the same10Image: A constraint of the same o	5	b. Substitution pattern	
 a. Nitration b. Sulphonation c. Halogenation d. Reduction (Key points are similar to benzene) Total 60 List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952 			
6b. Sulphonation c. Halogenation d. Reduction (Key points are similar to benzene)67Total60List of Textbooks/Reference Books1Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 19932Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 20043Chemistry of Synthetic Dyes, Lubs H. A., NY 19954Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952		Technology and Reactions of naphthalene	10
6 c. Halogenation d. Reduction d. Reduction (Key points are similar to benzene) 60 List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 60 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 60 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 60 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952 60		a. Nitration	
6 c. Halogenation d. Reduction d. Reduction (Key points are similar to benzene) 60 List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 60 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 60 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 60 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952 60	•	b. Sulphonation	
d. Reduction (Key points are similar to benzene)60Total60List of Textbooks/Reference Books1Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 19932Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 20043Chemistry of Synthetic Dyes, Lubs H. A., NY 19954Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952	6		
(Key points are similar to benzene)60Total60List of Textbooks/Reference Books1Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 19932Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 20043Chemistry of Synthetic Dyes, Lubs H. A., NY 19954Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952			
Total 60 List of Textbooks/Reference Books 1 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952			
 Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952 			60
 2 Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952 			
 3 Chemistry of Synthetic Dyes, Lubs H. A., NY 1995 4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952 			
4 Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952			
5 Organic Chemistry Clayden Oxford Univ Press 2001			
	5	Organic Chemistry, Clayden, Oxford Univ. Press, 2001	
Course Outcomes (Students will be able to)		Course Outcomes (Students will be able to)	

CO1	Understand the basics of dyestuff industry in terms of raw materials utilized (K2)
CO2	Apprehend basic benzene and naphthalene chemistry. (K2)
CO3	Analyze the various methods for synthesis of different intermediates used in dyes (K2)
CO4	Know the various technology and safety aspects for reactions. (K2)
CO5	Identify the substrates and chemistry to synthesize desired product (K2)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		Р О 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PO1 3	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	2	2	1	1	0	1	0	0	0	0	2	0	2	2
CO2	K2	2	2	1	1	0	1	0	0	0	0	2	0	2	2
CO3	K2	2	3	3	3	0	1	0	0	0	0	2	0	2	2
CO4	K2	3	2	3	3	0	3	2	0	0	0	2	0	2	2
CO5	K2	2	3	2	3	0	2	2	0	-	0	2	0	2	2

	Course Code:	Course Title:	Cre	dits	= 3
	CET1704	Material Technology	L	Т	Ρ
	Semester: III	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Applie	d Physics – I (<mark>PY</mark>	T1101), Applied Physics – I (PYT1103)			
		List of Courses where this course will be prerequisite			
Equip: Econo	•	nal Year Project, Process Development and Engineering, Project Er	ngine	ering	and
	[Description of relevance of this course in the B. Tech. Program			
	ion of Material of eering materials,	^c Construction for a given application, Maintenance and corrective measu Troubleshooting	ures f	or va	rious
Sr. No.		Course Contents (Topics and subtopics)		equiro Hours	
1		aterials: Classification, Fundamentals of Engineering properties of a diagrams, Study of ferrous and nonferrous materials	12		
2	Composite and	smart materials	03		
3	Structure-Prope of material prope	rty Relationship: Subatomic to macroscopic level, Modification and control erties	10		
4	Theory of Failure	e of Materials: Fracture, creep and fatigue		08	
5	Polarization, Me	ineering: Electrochemical principles, different types of corrosion, echanisms of corrosion control and prevention, Preventive coatings. rior of industrial materials		08	
6.	Criteria for selec	tion of materials in Chemical Process industry		04	
		Total		45	
		List of Textbooks			
1	The Essence of	Materials for Engineers, Robert W. Messler, Jr.			
2		e and Engineering, Raghavan V.			
3		e and Engineering, Van Vlack L.H.			
4	Engineering Mat	erials and Applications, Flin R.A., Trojan P.K.			
		List of Additional Reading Material/Reference Books			
1	Material Science	and Engg, Callister			

2	Mechanical Metallurgy, Dieter										
	Course Outcomes (students will be able to)										
CO1	resolve the issues related to mechanical failure (K3)										
CO2	troubleshoot corrosion-related industrial problems (K3)										
CO3	learn from incidences (LFI) (K2)										

		Ма	pping	of Co	urse (Outcor	nes (C	Cos) w	ith Pr	ogram	me Ou	tcomes	s (Pos)		
		P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	1	3	2	3	3
CO2	K3	3	3	2	0	2	3	3	2	3	3	0	2	2	3
CO3	K2	3	2	1	2	1	2	3	3	3	2	3	1	3	2
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code: Course Title: SPL3:Chemistry of Oleochemicals and Surfa	ictants	Cre	dits	= 4				
	List of Courses where this course will be prerequisite Dils, Oleochemicals& Surfactants Special Courses ption of relevance of this course in the B. Tech. (Oils, Oleochemicals& Surfactants Programme a will be able to understand the industrial chemistry of Surfactants and Oleochemicals. They will pect to techniques of synthesis of oleochemicals and surfactants, colloidal behavior, enon, and related analytical tools. Course Contents (Topics and subtopics) Oleochemical and Surfactant raw materials and their derivatives as feedstock for Chemical Industries, Worldwide Statistics of Oleochemical and Surfactant Industries Different techniques of synthesis of Fatty Acid Methyl Esters (FAME), Glycerol and Fatty Alcohols, Fatty Amines, Amides, and Nitriles and their physical and chemical characteristics								
			3	1	0				
HSC (S	,								
	List of Courses where this course will be prerequisite								
All the C	Dils, Oleochemicals& Surfactants Special Courses								
Descri		ants Te	echr	olo	ју)				
with res	spect to techniques of synthesis of oleochemicals and surfactants, colloidal beha								
Sr. No.				chin ours					
1.									
2.	Alcohols, Fatty Amines, Amides, and Nitriles and their physical and chem	-							
3.	Introduction to the nature of colloidal solutions, Surface Tension and Energy, Definition and classification of surfactants, Hydrophilic and hydrophobic groups and I balance, Theory of Surface Actions.	HLB		06					
4.	Self-assembly and packing features of surfactants (bi and multilayers, direct & reverse micelles, vesicles, Microemulsions). Thermodynamics of Adsorption and Micellizat structure of micelles			06					
5.	Different surface activity phenomenon: Emulsification & de-emulsification, foar & defoaming, Solubilisation, Dispersion, Wetting, Detergency Prediction of emulsion type from packing geometry, general phase behaviour Solubility–Temperature Relationship for Surfactants, phase inversion, Kraft and Cl point	and		08					
6.	Synthesis, analysis and applications of Anionic surfactants: Sulphonates (FAME AOS, LABS, Paraffin S., Ester & Amide S.), Sulphates (Alcohol & Alcohol e sulphates, TRO, Sulphated MG, Sulphated Alkanolamides), N-acylated amino ac Alkyl Phosphates, Sulphosuccinates etc.	ther cids,		12					
7.	Synthesis, analysis and applications of Nonionic Surfactants: Fatty Alcohol eth	ers,		80					

	Alcohol Polyglycol Ethers, Alkyl phenol ethers, Mono and diglycerides, Lecithin, Polyol esters (TWIN, SPAN, Sucrose polyester), Alkanolamides etc. Polymeric and Gemini Surfactants								
8.	Synthesis, analysis and applications of Cationic and Amphoteric Surfactants: Alkoxylated amines, Amine oxide, 2-Alkyl imidazoline, N-alkyl-β-Alanine, Quaternary Ammonium Compounds, Betains, Sulphobetains etc. Speciality Fluorocarbon and Silicone Surfactants	08							
	Total	60							
	List of Text Books/ Reference Books								
1.	Synthetic Detergents, Davidson, A. S.; Milwidsky, B. 7th Ed. John Wiley and Sons, New Y	′ork, (1987).							
2.	Handbook of Surfactants, Porter, M. R., Springer Science and Business Media (1993).								
3.	<u>Surfactants in Consumer Products: Theory, Technology</u> and Applications, Ed. J. <u>Fal</u> Verlag, Berlin (1987).	<u>be</u> , Springer-							
4.	Industrial Applications of Surfactants-II, D. R. Karsa, Royal society of Chemistry (1990).								
5	Bailey's Industrial Oil and Fat Products, D. Swern, ed., Vol. I (1979), Vol. 2 (1982), 4 th ec & Sons, Inc., New York,.	l., John Wiley							
6	Bailey's Industrial Oil and Fat Products, Sixth Edition Vol. 6: Industrial and Nonedible F Oils and Fats, Ed. FereidoonShahidi, Wiley Interscience Publication (2005).	Products from							
7	Fatty Acids in Industry, R. W. Johnson, and E. Fritz, eds., Marcel Dekker, Inc., New York	, (1989).							
8	Richard M.; Marilyn E. K.; Pashley. Applied Colloid and Surface Chemistry, <i>John Wiley a</i> Chichester, UK (2004).	and Sons Ltd,							
9	Richard M.; Marilyn E. K.; Pashley. Applied Colloid and Surface Chemistry, <i>John Wiley a</i> Chichester, UK (2004).	and Sons Ltd,							
	Course Outcomes (Students will be able to)								
CO1	Understand the technical significance of Oleochemical and Surfactant Industries. (K2).								
CO2	Conceptualize and develop the different modes of derivatizations of oleochemical and su its applications (K5).	irfactants and							
CO3	Analyse and illustrate the HLB, diverse interfacial phenomenon, molecular aggregatior behaviour of surfactants.(K4)								
CO4	Ability to identify and interpret the role of surfactants as specialty and high performance chemicals. (K5)								
CO5	Ability to design the synthesis of surfactant (K4)								

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO							PO9	PO10	PO11	PO12	PSO1	PSO2			
		K3	K4	K6	K5	K6	K3	K3+Psy	K3	K3+A	K2+A	K3	K6+A+Psy	K3	K4
CO1	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
CO4	K5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Course	K6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Course Title: Colour Physics and Colour Harmony	Credits = 3

	Course Code: PYT 1202		L	Т	Ρ							
	Semester: III	Total Contact Hours: 45	2	1	0							
		List of Prerequisite Courses										
Organ		nology of Intermediates I										
Oslava		t of Courses where this course will be prerequisite										
	•	dditives for Polymers, Additives for Coatings, Pigment Sy eing, Technology of Textile Printing, Technology of Garment M										
	cessing.	enig, reennology of rexult rinning, reennology of earlient in			ng.							
		tion of relevance of this course in the B. Tech. Program										
studer		to understand the mechanism behind visibility of different of ware of different technics and terms of colour physics that car										
	Course Contents (Topics and Subtopics)											
1	Introduction: C attributes	olour as a concept, its definition, geometric and chromatic		3								
2	Radiation and illumination:SPD, CT andCCT; Sources and illuminants;6Need for artificial sources – various ways of producing light and different artificial sources; efficacy and colour rendering properties of sources.6											
3	Interaction of radiation with matter : gloss and diffused reflectance, travel, flip and flop colour,polar diagrams; absorption of light in sample-various transitions in dye molecule, Beer – Lambert law and its verification, deviation from Beer – Lambert law, Additivity of absorbances, mixture analysis, various instruments used for the purpose; absorbance and scattering in the sample – KubelkaMunk theory.											
4	-	blour in eye \ brain : various colour coding processes at retina colour constancy, colour theories, anomalous colour visions,		6								
5	and1964CIE sy	ation: Additive-substractive mixing, Grassmann's law,1931 stem-XYZ and L*a*b*colour spaces, colour difference ellcolour order system		8								
6		rediction: Single constant Kubelka – Munk theory of colourant recepie prediction; Modern computerised methods of colour		6								
7	colour contrasts- intensity, value,			8								
		Total List of Textbooks/Reference Books		45								
1	Colour Physics f	or Industry, R. McDonald, West Yorkshire, 1997.										
2		ciplinary Approach; Zollinger Heinrich Zurich, Verlag Helvetica C	hem	icaA	cta,							
3		nce of Dyes and Pigments, R. McLaren Bristol, Adam Hilger Lt	d., 19	983								
4		Technology, Johnson R. M., Sartzman M, American Chem			əty,							
5	Coloring of Plast	ics: Fundamentals by Robert A. Charvat John Wiley & Sons, 1	1-Ma	ar-20	05							
6		cs: theory and practice by M.Ahmad Van Nostrand Reinhold, 1										
		Course Outcomes (Students will be able to)										

CO1	Understand the colour perception and the effect of various parameters on it and various visual and colour processes in human beings (K1,K2)
CO2	Understand various visual and colour processes in human beings. (K1,K2)
CO3	Understand various systems to specify uniquely a colour stimulus and use them to do so.(K1,K2,K3)
CO4	Use knowledge of such colour systems to predict recipe (K2, K3)
CO5	Understand colour harmony to study various colour contrasts. (K1, K2)
CO6	Understand various colour harmony theories and the use of colour wheel. (K1, K2, K3)

	I	Mapp	ing o	f Cour	se Ou	Itcom	es (CC	Ds) wi	th Pro	gram	me Out	comes	(POs)		
		P 0 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PS O2
		K3	K4	K6	K5	K6	К3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	2	3	3	3	2	2	2	1	1	0	3	2	3	3
CO2	K2	2	3	3	3	2	2	2	1	1	0	3	2	3	3
CO3	K3	3	3	3	3	2	2	2	1	1	0	3	2	3	3
CO4	K3	3	3	3	3	2	2	2	1	2	1	3	2	3	3
CO5	K3	2	3	3	3	3	3	2	1	2	1	3	2	3	3
CO6	K3	2	3	3	3	3	3	3	1	2	1	3	2	3	3
Cours e	K3	3	3	3	3	3	3	3	1	2	1	3	3	3	3

	Course Code:	Course Title:	Cre	dits	= 2					
	DYP 1001	Analysis of Inorganic Raw Materials used in Dyestuff	L	LT						
		industries								
	Semester: III	Total Contact Hours: 60	0	0	4					
		List of Prerequisite Courses								
Organ		nology of Intermediates I								
		t of Courses where this course will be prerequisite								
All dye	estuff technology c									
	Descrip	tion of relevance of this course in the B. Tech. Program								
Stude	ents will understand	the significance of uses of these inorganic raw materials in the cher	nical	indus	try					
			ed s							
1	dyestuff industry sodium sulphide	olumetric titrations of inorganic raw materials used in the – sodium sulphite, sodium bisulphite, sodium metabisulphite, e, sodium hydrosulphite, Rongalite C, bleaching powder, pride, iron powder, zinc dust, hydrogen peroxide, manganese hitrite		60						
		Total		60						
	·	List of Textbooks/Reference Books								
1	MENDHAM R C.	c of quantitative chemical analysis, G. H. JEFFERY J. I DENNEY, Longman Scientific & Technical, 5 th Edition	BASS	SETT	J.					
		Course Outcomes (Students will be able to)								

CO1	Estimate the amount of inorganic compounds present (K4)
CO2	Check the purity of compound (K3)
CO3	Understand the controlling and quantitative analysis of reducing agents (K2)
CO4	Analyse and identify the classes of metal containing reducing and oxidizing agents (K4)
CO5	Identify the reducing and oxidizing agents used for synthesis (K4)

		Мар	oing c	of Cou	rse O	utcom	nes (C	Os) w	ith Pro	ogram	ime Ou	tcome	s (POs))	
		P 0 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PO1 3	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K4	2	2	2	3	3	3	2	2	3	1	2	3	3	2
CO2	K3	2	2	2	3	3	3	2	2	3	1	2	3	3	2
CO3	K2	2	2	2	3	3	3	2	2	3	1	2	3	3	3
CO4	K4	3	3	3	3	3	3	2	2	2	1	2	3	3	3
CO5	K4	3	3	3	3	3	3	2	2	3	1	2	3	3	3
cour se	K4	3	3	3	3	3	3	2	2	3	1	2	3	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0- No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

	Course Code: PYP 1203 Course Title: Colour Physics				= 2
	PYP 1203	L	Т	Ρ	
	Semester: III	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
Organ		nology of Intermediates I			
		t of Courses where this course will be prerequisite			
	ology of Textile Dy	•			
	ology of Textile Pr	inting			
	mental dyeing				
Experi	ments in Printing				
Techn		Manufacturing. & Processing			
	Descript	tion of relevance of this course in the B. Tech. Program			
Studer	nts will be trained	d to determine various parameters related to colour physic	s wł	nich	are
applica	able in different fie	lds.			
		Course Contents (Topics and Subtopics)		equir Iour:	
1	Determination of colorimeter.	f unknown concentration of a dye in solution by Dubosque		6	
2	Verification of B spectrophotomet	B-L law (dependence of absorbance on concentration) by er.		6	
3	Mixture analysis	using spectrophotometer.		6	
4	Determination of	gloss of various samples using gloss meter		6	
5		color of various textile samples in terms of Lovibond primaries co-ordinates using Lovibondtintometer		6	
6	Specification of computer.	color of a textile sample in terms of 'Lab' at using color		6	

7	Finding color differences (ΔE) between set of samples vis a vis dye solution concentration	6
8	Finding color differences (ΔE) between set of samples vis a vis time of exposure.	6
9	Determination of colors of samples in terms of Munsell color system using Munsell Color Tree	6
10	Recipe prediction and matching of colored samples using CCM.	6
	Total	60
	List of Textbooks/Reference Books	
1	Colour Physics for Industry, R. McDonald, West Yorkshire, 1997.	
2	Coloring of plastics: theory and practice by M.Ahmad Van Nostrand Reinhold, 1	979
	Course Outcomes (Students will be able to)	
C01	To understand colour specifying systems and schemes of quantification of colo	ur.(K2)
CO2	To measure the intensity of the transmitted light and correlate it with concept of and colour	chromophore
CO3	To use instruments to uniquely specify a colour in terms of nos.	
CO4	To explain various concepts of colour mixing, sources etc.	

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PO1 3	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	3	3	2	3	2	2	2	2	2	2	3	2	2	2
CO2	K3	3	3	3	3	3	3	2	2	2	3	3	3	3	3
CO3	K4	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	K5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Cours e	K5	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Semester IV

	Course Code:	Cre	dits	= 3					
	GET1117	Engineering Mechanics and Strength of Materials	L	Т	Ρ				
	Semester: IV	Total Contact Hours: 45	2	1	0				
		List of Prerequisite Courses							
Stand		Mathematics, Applied Mathematics - I and - II, Applied Physics -							
		t of Courses where this course will be Prerequisite							
Mater	rial Technology, Strei	ngth of Materials, Environment Science and Technology							
		ince of this course in the B. Tech. (Pharm. Chem. Tech.) Pro	<u> </u>						
Mater be co the co gravit occur disad will be applic	rials. As a practicing nsidered along with the onditions of equilibriu by and moment of in- ring in various compo- vantages of various ge acquainted with diffe- cations and several	dents to understand use of basics of Applied Mechanics and Engineer and Technologist, the students will relate different type heir quantification during design of equipment. It will also help in u um and their application for analysing the problems, importance ertia in Engineering Design, study of different types of stresse bonents of the structure including in thin cylindrical shells., adv geometric sections available for Engineering design. In addition, ferent advance fibre polymer composite materials used in indust performance- enhancing construction chemicals. In summa oficient Design Engineer and Technologist.	s of f nders of c s and vanta the s ry for	forces stance centre d stra ges a stude	s to ding e of ains and ents ous				
Sr. No.		Course Contents (Topics and subtopics)		quir lours					
	Concepts of forces.	their types, Resolution of forces, Composition of forces, Steps	-		,				
1		ign, Different types supports and free body diagram		4					
2	Equilibrium of rigid bodies - Conditions of equilibrium Determinant and indeterminate structures Equilibrium of beams, trusses and frames Problems on analysis of beams and truss.								
3	Parallel axis theore Problems of finding figures	and moment of Inertia (Second moment of area) its use m g centroid and moment of Inertia of single figures, composite theorem, Polar M.I., Radius of gyration.		5					
4	cantilever, simply s	Bending Moment - Basic concept, S.F. and B.M. diagram for upported beams (with or without overhang) centrated and U.D. loads.		4					
5	elasticity, Modulus Thermal stresses a Problems based on Basics of Engineer	ns - Tensile and compressive stresses, Strains, Modulus of of rigidity, Bulk modulus nd strains stresses and strains ing Design - Steps in the engineering design, Importance of 0 and 3-D analysis and interpretation of results. Design		6					
6	Theory of Bending	- Assumptions in derivation of basic equation, Basic equation, ending stress distribution		3					
7	Problems on shear distribution for stand Problems of Shear	r stress - Concept, Derivation of basic formula Shear stress dard shapes stress distribution		3					
8	and simply support Macaulay's method		er 4						
9	cylinders Problems on thin cy	ders - Concept of radial, longitudinal stresses, behaviour of thin /lindrical and spherical shells cylinders (Theory only)	4						

10	Natural Materials, Manmade Materials Composite Materials – Types of composite materials and their uses in various industrial applications Different types of performance enhancing and special purpose construction chemicals Plasticizers and super-plasticizers Recycling of waste – value addition Testing of Materials and its relevance	6
	Total	45
	List of Text Books/ Reference Books	
1	Thadani, B. N. Engineering Mechanics; Asia Publishing House (1966)	
2	Popov, Egor P. Introduction to Mechanics of Solids; Macdonald (1968)	
3	Beer. Mechanics of Materials; 7th Ed.; Mc Graw Hill India (2016)	
4	Dadhe, V. G.; Jamdar, M. G.; Walavlkar, Y. N. Fundamentals of Applied Mech Prakashan (1989)	·
5	Timoshenko, S.; Young, D. H.; Rao, J. V.; Pati, Sukumar. Engineering Mechan McGraw Hill Education (2017)	nics; 5 th Ed.;
6	Singer, Ferdinand L.; Pytel, Andrew. Strength of Materials; 4 th Ed.; Harper Colir (2012)	ns Publishers
7	Kaw, Autar K. Mechanics of Composite Materials; 2 nd Ed.; CRC Press (2006)	
8	Shetty, M. S.; Concrete Technology: Theory and Practice; S. Chand & Co. Ltd. (200)5)
	Course Outcomes (Students will be able to)	
CO1	quantify the actions and able to find reactions by applying conditions of equilibrium Centroid and Moment of Inertia for various cross sections used in engineering struct plane areas and be able to draw the Shear Force and Bending Moment diagram types of beams under simple and complex loading (K3)	ctures and for
CO2	calculate the forces, reactions, stresses, strains in components of the bodies of engineering structure (K3)	of a complex
CO3	find out the Bending Stresses at different positions and Shear Stress distribution acr section at various points and calculate the Slope and Deflection at different points and complex loading (K3)	under simple
CO4	explain various materials used in various applications in engineering. cement Concrete, Chemicals used to alter the properties of concrete (K2)	composite -
CO5	Ability to document the technical report .(K2)	

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	1	3	2	3	3
CO2	K3	3	3	1	2	1	3	3	2	3	3	3	2	1	3
CO3	K3	3	2	2	2	2	3	2	3	3	3	0	2	3	3
CO4	K2	3	2	0	2	1	3	3	3	3	3	3	1	3	2
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cr	s = 4	
	CET1105	Transport Phenomena	L	Т	Ρ
	Semester: IV	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
۲II th St	andard Physics	and Mathematics			
		List of Courses where this course will be prerequisite			
This is	s a basic cours	se required in special subjects that deal with flow offluids, he	at an	d ma	ISS
ransfe	er, etc.				
		Description of relevance of this course in the B. Tech. Program			
		roduces concepts of momentum, heat and mass transfer to stude			
		n as pressure, momentum, energy are introduced as well. Law			
		mentum, energy, mass are taught. Applications of these laws			
-	-	hnological situations and process equipments are explained with	the	help	of
	eral problems.				
Sr.	Cour	se Contents (Topics and subtopics)		equi	
No.				Hou	ſS
1		d Applications to Engineering importance		4	
2		Bernoulli's Equation, Pressure-drop in pipes and Fittings, Meters,		10	
	-	achinery such as pumps		4	
3		cs, Flow through fixed and fluidized Beds		4	
4		ontinuity and Motion in laminar flows and its applicationsfor simple		6	
		d Poiseuille flow applications			
5	coefficient	on, Convective heat transfer and concept of heat transfer		4	
		Constructional Aspects of Exchangers: Types of flows -			
	-	unter-current and cross flows, Log mean temperature difference,			
6		d Shell and tube heat exchangers		10	
U		other heat exchangers like, PHE, finned tube heat exchangers,		10	
	graphite block,				
7		spects in agitated tanks, Condensers, Reboilers and evaporators		6	
		of Mass Transfer: Molecular diffusion in fluids, concept ofmass			
8		ents, and interface mass transfer		4	
•	Theories of ma	ass transfer, Analogies for heat and mass transfer, Empirical			
9	correlations			4	
10	Mass transfer a	pplications in simple 1-D situations		8	
	•	Total		60	
		List of Text Books/ Reference Books			
1	Transport Pher	nomena, Bird R.B., Stewart W.E., Lightfoot E.N.			
2	Fluid Mechanic	s, Kundu Pijush K.			
3	Fluid Mechanic	cs, F. W. White			
4	Unit Operation	s of Chemical Engineering, McCabe, Smith			
		Course Outcomes (students will be able to)			
CO1	calculate friction	on factor, pressure drop, power (K3)			
CO2		and power required for pumps(K3)			
		transfer coefficients and do basicsizing of double pipe and shell	and t	ube	heat
CO3	exchangers (K	e			
CO4		transfer coefficients and estimate mass transfer rates in simple situ	Jatior	ns (K	3)
		·			

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K3	3	3	1	2	1	3	1	3	3	3	1	2	3	3
CO3	K3	3	1	2	2	2	2	3	2	3	3	3	2	2	3

CO4	K3	3	3	2	0	2	3	3	3	3	2	3	0	3	3
Course	K3	3	3	2	2	2	3	3	З	3	3	3	2	З	3

	Course Code:	Course Title:	Cre	dits	= 3					
	GET1105	Electrical Engineering and Electronics	L	Т	Ρ					
	Semester: IV	Total Contact Hours: 45	2	1	0					
		List of Prerequisite Courses								
Standa	ard XII Physics and	d Mathematics courses								
	List	t of Courses where this course will be prerequisite								
Various	s Technology Cou	rses and Professional Career								
	Descript	tion of relevance of this course in the B. Tech. Program								
In this of	course, students v	vill get an insight to the importance of Electrical Energy in Che	mica	Pla	nts.					
The stu	udents will underst	tand basics of electricity alongside basic knowledge about Trai	nsfori	mer a	and					
selection	on of different type	es of drives for a given application process. They will get basic l	know	ledge	e of					
electro	nic devices and th	eir applications in Power supplies, amplifiers and other circuits								
Sr. No.		Course Contents (Topics and Subtopics)		quir lours						
	Basic Laws: Kirc	hoff's current and voltage law, Simple series and parallel								
1	connections, star	r and delta transformation. Mesh and nodal analysis, Basic		6						
	elements R, L an	nd C. Concept of self and mutual inductance								
2		ns: super position, Thevenin's theorems		3						
		als: Equations of alternating voltages and currents, cycle,								
		period, amplitude, peak value average value, R.M.S. value,								
3										
		nce in series RLC circuits, Power, power factor, series and								
	parallel circuits									
4		stems: Star and delta connections, relationship between line		5						
		ges and currents, Power in three phase circuits								
_		roduction, principle of operation, e.m.f. equation, phasor		_						
5	-	ransformer, transformer on no load, Transformer under load,		5						
0	Introduction to do	ses, efficiency, regulation		_						
6				5						
7		ifiers: P-N junction diode characteristics, Zener diode, Half ve rectifiers, their waveforms, brief introduction to filters		4						
		transistor: Current components. Modes of operation, Input								
8		acteristics, Regions of operation, Transistor as an amplifier,		6						
0	classification of a			0						
9		ni junction transistor, Characteristics, UJT relaxation oscillator		3						
		rectifier, controlled rectification, characteristics, methods of								
10	turning-on. Appli			3						
	5 PP**	Total		45						
	L	List of Textbooks/Reference Books	1	-						
1	Electrical Engine	ering Fundamentals by Vincent Deltoro								
2		es and circuits by Boylstead, Nashelsky								
3		nes by Nagrath, Kothari								
4		nes by P.S. Bhimbra								
5		ology by B. L. Theraja, A.K.Therajavol I,II,IV								
6		eir applications by M. Ramamurthy								
		s by P.S. Bhimbra								
7										
		Course Outcomes (Students will be able to)								
		Course Outcomes (Students will be able to) c concepts of D.C circuits. Solve basic electrical circuit problem	ns (K:	3)						

CO3	Explain the basic concepts of transformers & motors used as various industrial drives (K2)
CO4	Explain the basic concepts of electronic devices and their applications (K2)

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K2	3	2	0	2	1	3	3	3	3	2	3	0	3	2
CO3	K2	3	2	1	2	0	3	3	2	3	3	3	1	3	2
CO4	K2	3	0	1	2	1	2	3	3	1	3	1	1	2	2
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 4
	DYT 1102	Technology of Intermediates-II	L	T	Ρ
	Semester: IV	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
Organi	•	nology of Intermediates I			
	LIS stuff technology c	t of Courses where this course will be prerequisite			
All uye		tion of relevance of this course in the B. Tech. Program			
To ma		understand chemistry various intermediates used for chemica	al inc	luctry	/ in
		ustry in particular.		lusity	/ 111
To ma	ke them understar	nd the unit processes and their relevance in chemical industrie	s.		
		lyze and identify the proper synthetic and industrial method rocesses to make intermediates.	and	cho	ose
	velop in them cap my and ecological	pacity understand proper selection of the chemical process aspects.	es ba	ased	on
		Course Contents (Topics and Subtopics)		quir lour:	
1	Chemistry of Nap	bhthalene		03	
	Unit Processes:			20	
	a. Friedel Craft's	Reaction			
	b. Oxidation				
2	c. Ammonolysis				
	d. Hydrolysis				
	e. Diazotization a	and coupling			
	d. Bucherer Read	ction, Reverse			
3	Synthesis of na derivatives	phthol, naphthylamine sulphonic acids, Bon acid and its		20	
4	Case studies			05	
5	Active Methylene	compounds		05	
6	Technology and	safety aspects		03	
7	Separation techn	iques and agitation system		05	
		Total		60	
		List of Textbooks/Reference Books			

1	Industrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 1993
2	Organic synthesis, Smith M B, Tata McGrow Hill, NY, 2nd Ed, 2004
3	Chemistry of Synthetic Dyes, Lubs H. A., NY 1995
4	Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952
5	Organic Chemistry ,Clayden, Oxford Univ. Press, 2001
	Course Outcomes (Students will be able to)
CO1	Understand the basics of Naphthalene chemistry (K2)
CO2	Conceptualize basic unit processes for naphthalene and benzene (K2)
CO3	Analyze the various methods for synthesis of different intermediates used in dyes (K2)
CO4	Master the various technology and safety aspects for reactions. (K2)
CO5	<i>Know</i> various separation techniques used commercially and agitation systems for processes (K2)

	I	Mapp	ing o	f Cour	rse Ou	Itcom	es (CC	Ds) wi	th Pro	gram	me Out	comes	(POs)		
		P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PS O2
		K3	K4	K6	K5	K6	К3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	2	2	2	2	1	1	1	0	0	0	3	0	2	2
CO2	K2	2	2	2	2	1	1	1	0	0	0	3	0	2	2
CO3	K2	2	2	2	2	2	2	2	0	0	0	3	0	2	2
CO4	K2	3	3	3	3	3	2	2	1	0	0	3	0	3	3
CO5	K2	3	3	3	3	3	2	2	1	0	0	3	1	3	3
Cours e	K2	3	3	3	3	3	2	2	1	0	0	3	1	3	3

	Course Code:	Course Title: Chemical and Physical Constituents of	Cre	dits	= 3
	DYT 1202	Colorants	L	Т	Ρ
	Semester: IV	Total Contact Hours: 45	2	1	0
	·	List of Prerequisite Courses			
	HSC (Science)	and Chemistry of intermediates-I and Chemistry of intermediate	es-II		
	Lis	t of Courses where this course will be prerequisite			
		All dyestuff technology specialized courses.			
	Descript	tion of relevance of this course in the B. Tech. Program			
Stu	dents will be able t	o understand the relation between the chemical structure and t	the c	oloui	
		Course Contents (Topics and Subtopics)		equir Iour:	
1	shift, blue shift, h	in organic molecules. Chromatic and achromatic colors. Red yperchromic effect, solvatochromism, halochromism. aw, absorptivity, oscillator strength, , and half band width.		03	
2	chemical structur	color and constitution - empirical correlations between the res and their color. Chromophores, auxochromes, distribution ns. $n \rightarrow \pi^*$, donor-acceptor, acyclic and cyclic polyene, and pmogens		03	

3	Resonance theory of color, failures of resonance theory. Steric effects in	03
	electronic absorption spectra – some general considerations.	
	Perturbational molecular orbital theory: Alternation of the electronegativity of	03
	an atom in an even alternant system. Alteration of the electronegativity of an	
4	atom in an odd alternate system, Dewar rules. Other empirical approaches to	
	substituent effects, Mesomeric and field effects, Correlation between the	
	frequency shift of a substitution and the Hammett substituent constant	
	Simple donor-acceptor chromogens: general characteristics – donor group,	03
5	unsaturated bridge, acceptor group. The carbonyl acceptor - merocyanine	
	types of compounds.	
6	Complex donor-acceptor chromogens: classes of complex acceptor residues,	03
U U	donor substituted quinones.	
	Donor substituted azo compounds. Color and constitution of simple azo dyes.	
	Steric effects, and azo-hydrazonetautomerism in azo dyes	
7	Color and chemical constitution of indigoid dyes. Introduction to cross-	03
1		03
	conjugated chromophores. Chromogens based on acycyclicand cyclic polyene	
	systems: general characteristics with examples. Cyanine type chromogens.	
8	Di- and triaryl methane colorants, heterocyclic analogues of di- and triaryl	03
	methane colorants. Simple color and constitution relationships.	
9	Essentials of computational colour chemistry – brief introduction to one particle	03
	system. Schrodinger equation. Particle in a box.	
10	Two particle system, Many particle systems – HartreeFock theory. Basis sets.	03
11	Electronic Structure theory. Molecular orbitals and light absorption.	03
	Semiempirical methods,	
12	Limitations of HartreeFock method, Computational complexities in post	03
	HartreeFock (wavefunction based methods).	
13	Introduction to Density Functional Theory and its application in colour	03
	chemistry	
14	Excited State calculations, Configuration Interaction Singles.	03
15	Time Dependent Density Functional Theory.	03
	Total	45
	List of Textbooks/Reference Books	
1	Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E Krieger Publis	shing
2	Company, New York, 1977	
3	Chemistry of Synthetic Dyes – Vol I, Venkataraman, K., Academic Press, 1952	
4	Chemistry of Synthetic Dyes – Vol III, Venkataraman, K., Academic Press, 1972	2
5	Colour and Chemical Constitution of Organic Dyes, Griffiths J., Academic Press	
6	Quantum Chemistry, Chandra A. K., Tata McGraw Hill, 1979	
	Course Outcomes (Students will be able to)	
CO1	Understand the constitution of different colorants. (K2)	
CO2	Analysis the correlation of proposed absorption and observed absorption. (K2)	
CO3	Identify the colour changes with different classes of molecules. (K2)	
CO4	Understand the detail properties of colour changes with respective structural ch	nanges (K2)
CO5	Assess the technical importance of colour chemistry (K2)	

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P 0 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PO1 3	PS O2
		K3	K4	K6	K5	K6	K3	K3	K3	K3	K2+	K3	K6+	K3	K4
								+S		+A	A		A+P		
CO1	K2	2	2	2	2	0	0	0	0	0	0	3	0	2	2
CO2	K2	2	2	2	2	1	0	0	0	0	0	3	0	2	2

CO3	K2	2	2	2	2	1	1	1	1	1	1	3	1	3	2
CO4	K2	3	3	3	3	1	2	2	2	2	2	3	1	2	3
CO5	K2	2	2	2	2	1	2	2	2	2	2	3	1	3	3
Cours	K2	3	3	3	3	2	2	2	2		2	3	1	3	3
е						2	2	2	2	2	2	0			

	Course Code:	Course Title: Technology of quinonoid intermediates	Cre	dits	= 3
	DYT 1107		L	Т	Ρ
	Semester: IV	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses	•		
HSC (Science) and Chei	mistry of intermediates-I and Chemistry of intermediates-II			
	Lis	t of Courses where this course will be prerequisite			
All dye	estuff technology s	pecialized courses.			
		tion of relevance of this course in the B. Tech. Program			
The st	udents will be intro	oduced to the different chemical and technological aspects of a	acces	sing	the
interm	ediates of anthraq	uinone based dyes.			
		Course Contents (Topics and Subtopics)		quir	
			F	lour	5
1	Introduction to A	nthraquinone chemistry, Synthesis, mechanism, sources of		15	
	Anthraquinones				
2		nraquinone and anthraquinone derivatives		15	
3		hraquinone: Sulphonation, Nitration, Halogenation, Bucherer		15	
	Reaction				
		Total		45	
		List of Textbooks/Reference Books			
1		c Chemistry, Weissermal K., Arpe H. J., VCH, Weinheim, 1993	3		
2		ry, Clayden, Greeves, Warren, Oxford University Press, 2001			
3	FIAT 1313				
4	Material of Const				
5	Unit Operations,				
6		thetic Dyes – Vol I, Venkataraman, K., Academic Press, 1952			
7		oplication of Dyes, Rys and Zollinger			
8		f Synthetic Dyes – Vol II, Venkataraman K., Academic Press			
9		f Synthetic Dyes – Vol IV, Venkataraman K., Academic Press			
10	-	f Synthetic Dyes – Vol VI, Venkataraman K., Academic Press		. I	0
11		Synthetic Dyes and Pigments, Lubs H. A., Robert E. Krieger F			
12	Weinheim, 2003	– Chemistry, Properties, Applications, Hunger K. (Ed),	VVII	ey-v	JН,
		Course Outcomes (Students will be able to)			
CO1		different terminologies related to AQ (K2)			
CO1		blain the Chemistry and technology of AQ based compounds (K2)		
CO2		Q in pigments and dyes (K3)	i\∠)		
CO3		esis of various commercially important products (K2)			
	-				
CO5	Develop methods	s for the synthesis of quinonoid intermediates (K3)			

Ма	app	ing o	of Cou	rse O	utcom	ies (C	Os) w	ith Pro	ogram	ime Ou	Itcome	s (POs))	
F C	>) 	PO 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO1 0	PO1 1	PO1 2	PO1 3	PS O2

		K3	K4	K6	K5	K6	K3	K3	K3	K3	K2+	K3	K6+	K3	K4
								+S		+A	А		A+P		
CO1	K2	2	2	2	2	0	1	1	0	0	0	3	0	2	3
CO2	K2	2	2	2	2	0	1	1	0	0	0	3	0	2	3
CO3	K3	3	3	3	3	1	1	1	1	2	1	3	1	3	2
CO4	K2	3	3	3	3	2	2	2	1	2	1	3	1	2	3
CO5	K3	3	3	3	3	2	2	2	1	2	1	3	1	3	3
cour	K3	3	3	3	3	2	2	2	1		1	3	1	3	3
se						2	2	2	I	2		5			

Various Technolog De In this course, stud The students will u selection of differe electronic devices Suitable no Suitable no S	Code:	Course Title:	Cre	dits	= 2
Standard XII Phys Various Technolog De In this course, stud The students will u selection of differe electronic devices 1 Suitable ne 1 Superposition 2 Thevenin's 3 Series RL 4 Resonance 5 H.W. and I 6 Cathode R 7 Input and G 8 Load Test 9 Three pha 10 Three pha 11 Study of U 12 Design of I 13 Load Test 14 Study of T 13 Load Test 14 Study of T 13 Load Test 14 Study of T 15 Electrical R 2 Electrical R 3 Electrical R 14 Electrical R 5 Electrical R 6 Thyristors	106	Electrical Engineering and Electronics Laboratory	L	Т	Ρ
Various Technolog De In this course, stud The students will u selection of differe electronic devices Suitable no Suitable no S	er: IV	Total Contact Hours: 60	0	0	4
Various Technolog De In this course, stud The students will u selection of differe electronic devices Suitable no Suitable no S		List of Prerequisite Courses	1		
Various Technolog De In this course, stud The students will u selection of differe electronic devices Suitable no Suitable no S	sics and	Mathematics courses			
In this course, stud The students will uselection of differe electronic devices Suitable not Suitable not Suitable not Suitable not Superposit Cathode R Thevenin's Series RL Resonance H.W. and I Cathode R Three pha Not ree pha Not ree pha Not ree pha Not ree pha Not ree pha Study of U Cathode R Superposit		of Courses where this course will be prerequisite			
In this course, stud The students will u selection of differe electronic devices Suitable m 1 Superposit 2 Thevenin's 3 Series RL 4 Resonanc 5 H.W. and 1 6 Cathode R 7 Input and 0 8 Load Test 9 Three pha 10 Three pha 10 Three pha 11 Study of U 12 Design of 13 Load Test 14 Study of T 14 Study of T 14 Study of T 2 Electrical R 2 Electrical R 3 Electrical R 4 Electrical R	ogy Cou	rses and Professional Career			
The students will u selection of differe electronic devices Suitable no Suitable no Suitab	Descript	ion of relevance of this course in the B. Tech. Program			
selection of differe electronic devices Suitable no 1 Superposit 2 Thevenin's 3 Series RL 4 Resonance 5 H.W. and 1 6 Cathode R 7 Input and 0 8 Load Test 9 Three pha 10 Three pha 10 Three pha 10 Three pha 11 Study of U 12 Design of 13 Load Test 14 Study of T 14 Electrical R 2 Electronic 3 Electrical R 4 Electrical R	udents w	vill get an insight to the importance of Electrical Energy in Che	emica	l Plai	nts.
electronic devices Suitable no Suitable no Superposir Control Superposir Control Superposir Control Superposir Control Superposir Superposite Superpo	underst	and basics of electricity alongside basic knowledge about Tra	nsfor	mer a	and
Suitable no1Superposit2Thevenin's3Series RL4Resonanc5H.W. and I6Cathode R7Input and 08Load Test9Three pha10Three pha11Study of U12Design of I13Load Test14Study of T2Electrical R2Electronic3Electrical R4Electrical R5Electrical T6Thyristors	• •	s of drives for a given application process. They will get basic		ledge	e of
1Superposit2Thevenin's3Series RL4Resonance5H.W. and I6Cathode R7Input and I8Load Test9Three pha10Three pha11Study of U12Design of I13Load Test14Study of T2Electrical R2Electronic3Electrical R4Electrical R5Electrical R6Thyristors	s and th	eir applications in Power supplies, amplifiers and other circuit			
1Superposit2Thevenin's3Series RL4Resonance5H.W. and I6Cathode R7Input and I8Load Test9Three pha10Three pha11Study of U12Design of I13Load Test14Study of T2Electrical R2Electronic3Electrical R4Electrical R5Electrical R6Thyristors		Course Contents (Topics and Subtopics)		quir	
1Superposit2Thevenin's3Series RL4Resonance5H.W. and I6Cathode R7Input and I8Load Test9Three pha10Three pha11Study of U12Design of I13Load Test14Study of T2Electrical R2Electronic3Electrical R4Electrical R5Electrical R6Thyristors			F	lours	\$
2Thevenin's3Series RL4Resonanc5H.W. and I6Cathode R7Input and G8Load Test9Three pha10Three pha11Study of U12Design of I13Load Test14Study of T2Electrical R2Electronic3Electrical R4Electrical R5Electrical R6Thyristors		periments out of the following will be conducted -			
3Series RL4Resonance5H.W. and I6Cathode R7Input and 08Load Test9Three pha10Three pha11Study of U12Design of I13Load Test14Study of T2Electrical R2Electronic3Electrical R4Electrical R5Electrical R6Thyristors				5	
4Resonance5H.W. and I6Cathode R7Input and 08Load Test9Three pha10Three pha11Study of U12Design of13Load Test14Study of T2Electrical R2Electronic3Electrical R4Electrical R5Electrical R6Thyristors		em		5	
5H.W. and I6Cathode R7Input and 08Load Test9Three pha10Three pha11Study of U12Design of I13Load Test14Study of T2Electrical R2Electronic3Electrical R4Electrical R5Electrical R6Thyristors				4	
6Cathode R7Input and 08Load Test9Three pha10Three pha11Study of U12Design of 013Load Test14Study of T2Electrical R2Electronic3Electrical R4Electrical R5Electrical R6Thyristors				5	
 7 Input and 0 8 Load Test 9 Three pha 10 Three pha 11 Study of U 12 Design of 1 13 Load Test 14 Study of T 14 Study of T 14 Electrical E 2 Electronic 3 Electrical I 4 Electrical I 5 Electrical T 6 Thyristors 				4	
8Load Test9Three pha10Three pha11Study of U12Design of13Load Test14Study of T2Electrical F2Electronic3Electrical F4Electrical F5Electrical F6Thyristors	•	•		5	
 9 Three pha 10 Three pha 11 Study of U 12 Design of 13 Load Test 14 Study of T 14 Study of T 14 Electrical F 2 Electronic 3 Electrical F 4 Electrical F 5 Electrical T 6 Thyristors 	-	characteristic of npn transistor in CE mode		4	
10Three pha11Study of U12Design of13Load Test14Study of T1Electrical E2Electronic3Electrical I4Electrical I5Electrical T6Thyristors				4	
11Study of U12Design of13Load Test14Study of T1Electrical E2Electronic3Electrical F4Electrical F5Electrical T6Thyristors				4	
12Design of13Load Test14Study of T1Electrical E2Electronic3Electrical I4Electrical T5Electrical T6Thyristors				4	
13Load Test14Study of T1Electrical E2Electronic3Electrical I4Electrical T5Electrical T6Thyristors				4	
14Study of T1Electrical E2Electronic3Electrical F4Electrical F5Electrical T6Thyristors		laxation oscillator		4	
1Electrical E2Electronic3Electrical I4Electrical I5Electrical I6Thyristors		hase induction motor		4	
2Electronic3Electrical I4Electrical I5Electrical I6Thyristors	Inermo	•		4	
2Electronic3Electrical I4Electrical I5Electrical I6Thyristors		Total List of Textbooks/Reference Books		60	
2Electronic3Electrical I4Electrical I5Electrical I6Thyristors	Enging	ering Fundamentals by Vincent Deltoro			
3Electrical I4Electrical I5Electrical I6Thyristors	-	s and circuits by Boylstead, Nashelsky			
4 Electrical 5 Electrical 6 Thyristors		es by Nagrath, Kothari			
5 Electrical 6 Thyristors		es by P.S. Bhimbra			
6 Thyristors		logy by B. L. Theraja, A.K.Therajavol I,II,IV			
-		eir applications by M. Ramamurthy			
,		s by P.S. Bhimbra			
		Course Outcomes (Students will be able to)			
CO1 Explain co		of basic working of D.C circuits (K2)			

CO2	Explain the basic applications of single phase and three phase AC supply and circuits (K2)
CO3	Explain the working and utility of transformers and motors used as various industrial drives (K2)
CO4	Apply the basic principles in electronic devices and circuits (K3)

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	1	2	0	3	3	3	3	3	3	1	3	2
CO2	K2	3	2	1	1	1	3	3	3	3	3	3	0	2	2
CO3	K2	3	2	0	2	1	3	3	3	2	2	3	1	3	2
CO4	K3	3	3	2	2	2	3	3	2	3	3	3	2	3	3
Course	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 2
	MAP1201	Computer Applications Laboratory	L	Т	Ρ
	Semester: IV	Total Contact Hours: 64	0	0	4
		List of Prerequisite Courses			
HSC S	Standard Mathematics,	Applied Mathematics – I (MAT1101)			
		Courses where this course will be prerequisite			
This is	a basic Mathematics of	course. This practical knowledge will be required in severa	l sub	jects	;
later.					
		of relevance of this course in the B. Tech. Program			
		e basics of Python programming and get exposure to			
		nd Excel for numerical computations and statistical		-	
•	• • • •	e students will also explore R-programming for Regress			
	• • • •	of standard statistical inference. B. Tech programme requ			
	-	computer programmes to solve various problems in Eng	jinee	ring a	and
Techn	ology fields.	Contents (Tanias and subtanias)		1	
		Contents (Topics and subtopics)		lours	5
1		adsheet Programmes, Use of formulae and Plotting nd Data Plotting in Excel		4	
2		tics and Hypothesis Testing with Spreadsheet		4	
3		Linear and Non-Linear Equations in Excel		4	
4		R and R Studio, Data Management in R		4	
5		Exploring Probability Distribution Function in R		4	
6	Hypothesis Testing in			4	
7	Basic Regression Ana			4	
	-	n, Installation of Python and jupyter notebook through			
8		in Python, Exploring math and cmath modules		4	
		onaries in Python, if else and elif statements, Creating			
9	functions (using def a			4	
	,	oops in Python, Use of break and continue statements			
10	•	g Python programmes using loops		4	
11		mme to solve problems in basic numerical analysis such			
	root finding, Numerica	I solutions of linear equations, Numerical integration, etc.		4	
12	Use of Numpy and Sc	ipy to deal with vectors, matrices and their operations		4	
13	Use of Numpy and Sc	iPy continued		4	
14	Plotting graphs using	matplotlib		4	
15	Use of Pandas for dat	a processing and analysis		4	
16	Linear and multilinear	regression using Python		4	

	Total	64
	List of Textbooks/ Reference Books	
1	Carlberg, Conrad George. Statistical analysis: Microsoft Excel 2016; Que (2018	s).
2	Langtangen, Hans Petter. A Primer on Scientific Programming with Python; 5 th E Verlag Berlin Heidelberg (2016)	d.; Springer-
3	Thareja, Reema; Python Programming - Using Problem Solving Approach; Oxfor Press (2017)	ord University
4	Beazley, David; Jones, Brian K. Python Cookbook: Recipes for Mastering Pytho Media (2013)	on 3; O'Reilly
5	VanderPlas, Jack; Python Data Science Handbook: Essential Tools for Workir 1 st Ed.; O'Reilly Media (2016)	ng with Data;
6	Dalgaard, Peter; Introductory Statistics with R; 2 nd Ed.; Springer (2008)	
7	Navarro, Daniel; Learning Statistics with R (2013)	
8	Dennis, Brian; The R Student Companion; CRC Press (2012)	
9	Verzani, John; Using R for Introductory Statistics; 2 nd Ed.; CRC Press (2014)	
	Course Outcomes (Students will be able to)	
CO1	perform descriptive statistical analysis using Excel (K3)	
CO2	perform basic statistical tests using R (K3)	
CO3	perform linear regression using R (K3)	
CO4	write Python programs to implement basic numerical methods (K4)	
CO5	perform data processing and regression analysis using Python (K4)	

	Mapping of Course Outcomes (Cos) with Programme Outcomes (Pos)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	0	3	3	3	3	3	3	2	3	3
CO2	K3	3	3	2	1	2	3	3	3	3	3	1	2	0	3
CO3	K3	3	1	2	2	2	2	3	0	3	2	3	2	3	3
CO4	K4	3	3	0	3	2	3	3	3	3	3	3	0	3	3
CO5	K4	3	3	2	3	2	3	3	2	3	3	3	2	3	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

Semester V

Chemical	Course Code:	Course Title:	Cre	dits	
Reaction	CET1401	Chemical Engineering Operations	L	Т	Ρ
	Semester: V	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Process C		507), Transport Phenomena (CET1105)			
		of Courses where this course will be prerequisite			
This is a b		equired in many other courses that involve physical processes			
		on of relevance of this course in the B. Tech. Programme			
		gineering course. The principles learnt in this course are requir	ed in	almo	st al
the forthc	oming courses and	throughout the professional career of students.			
Sr. No.		Course Contents (Topics and Subtopics)		equi Hour	
1	Distillation colum	damentals of flash-, batch- and continuous distillation, ns internals, Steam and azeotropic distillation		12 – <i>'</i>	15
2		raction: Solvent selection, Construction of ternary diagrams, ns, Types of extraction equipment		6	
3		hase diagram (temp/solubility relationship), Evapo-rative and ation, Introduction to different types of crystallizers		5	
4	pressure filtratior	nism of filtration, Basic equation, Constant volume, Constant n, Rate expressions with cake and filter cloth resistances, d incompressible cakes, Introduction to various types of filters		5	
5		echanism, Drying rate curves, Estimation of drying time, ypes		5	
6	understanding pra other separatior	her Aspects of Unit Operations: Content will be aimed towards actical and safety aspects of unit operations and/or introducing n processes like: adsorption/ion exchange, membrane as absorption, etc.		9 – 6	6
7	from industry or e	Studies: Interactive discussion with experienced professionals equipment vendors with emphasis on applicability, importance f different unit operations		3	
		Total		45	
		List of Text Books/ Reference Books			
1		Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemic y and separation processes. Butterworth-Heinemann, Woburn,		ginee	ering
2		ey, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hob		N.J.	
3	-	0. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, M			
4		h, J., Harriott, P., 2004. Unit Operations of Chemical Engineering eering/Math, Boston.	, 7 ed	. McG	Graw
5	Green, D., Perry, F Hill Professional, E	R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition Edinburgh.	, 8 ed	. McG	Graw
6	Dutta, B.K., 2007. Ltd, New Delhi.	Principles of Mass Transfer and Separation Process. Prentice-I	Hall of	India	a Pvi
		Course Outcomes (students will be able to)			
CO1	perform basic sizir	ng of continuous and batch distillation columns (K3)			
CO2		ata and select systems based on requirements, estimate filtratio erstand filter aids and their usage (K4)	n area	a for g	giver
CO3		strial crystallization, filtration and drying equipment (K2)			
CO4	describe the need and membrane (K	and importance of other separation processes like adsorption 2)	n, ion	exch	ange
CO5	```	of unit operation in chemical industries (K3)			

			-				Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2							
	K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4							

CO1	K3	3	3	2	2	1	3	3	3	3	3	0	2	3	3
CO2	K4	3	3	2	3	2	3	2	3	3	2	3	2	3	3
CO3	K2	3	2	0	2	1	3	3	2	3	3	3	1	3	2
CO4	K2	3	2	1	2	0	3	3	3	3	1	3	1	2	2
CO5	K3	3	3	2	2	2	1	3	3	1	3	3	2	3	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 3
	CET1212	Chemical Reaction Engineering	L	Т	Ρ
	Semester: V	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Physic	cal Chemistry – I and	d – II, Transport Phenomena			
		List of Courses where this course will be prerequisite			
Enviro	nmental Engineerin	g and Process Safety, Chemical Project Economics			
		scription of relevance of this course in the B.Tech. Program			
releva petroc interm Bioche	nt but not limited hemicals, Pulp & ediates, Oils, oleo	with the utilization of chemical reactions on a commercial scale. This to the following industries: Inorganic chemicals, organic chemicals paper, Pigments & paints, rubber, plastics, synthetic fibres, Foc chemicals, and surfactants, Minerals, clean sing agents, Polymer mology, Pharmaceuticals and drugs, Microelectronics, energy from co es, Metals	s, pet ods, I s and	roleu Dyes d tex	m & and tiles,
Sr. No.		Course Contents (Topics and Subtopics)		equire Iours	
1	Kinetics of homog reactors including c	eneous reactions, Interpretation of batch reactor data, Single ideal design aspects		10	
2	Multiple reactions,	Temperature and pressure effects		5	
3	Introduction to Non	-ideal flow, RTD measurements, Models to predict conversions		5	
4	•	d Heterogeneous Catalysis, Kinetics of Solid Catalyzed Reactions. id catalytic reactors		15	
5	Introduction to mult	iphase reactors		5	
6	Mass Transfer with	Chemical Reactions: Regimes of operation and Model contactors		5	
		Total		45	
		List of Textbooks			
1	Elements of Chemi	cal Reaction Engineering – H. Scott Fogler			
		List of Additional Reading Material / Reference Books			
1	Heterogeneous Re	actions, Vol.I and II – L.K. Doraiswamy, M.M.Sharma			
		Course Outcomes (students will be able to)			
		the principles of various types of reactors (K3)			
		eactions based on given reaction scheme (K3)			
CO3		ponents of reactors used in industrial practice (K3)			
CO4	compare various re	actors and select an appropriate reactor for a given situation (K4)			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	1	3	3	3	3	3	3	2	3	3
CO2	K3	3	2	2	2	2	1	3	0	3	3	2	0	3	3
CO3	K3	3	3	2	1	2	3	3	3	3	3	3	2	3	3
CO4	K4	3	3	2	3	0	2	3	3	1	3	3	1	3	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0− No Contribution K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

B.TECH CURRICULUM | Department of Dyestuff Technology, ICT Mumbai

	Course Code:	Course Title:	Cre	dits	= 4								
	DYT 1103	Technology of Azo Colorants	L	Т	Ρ								
	Semester: V	Total Contact Hours: 60	3	1	0								
		List of Prerequisite Courses											
HSC (,	ry of intermediates-I and Chemistry of intermediates-II											
		t of Courses where this course will be prerequisite											
All Dye		diates Special Courses											
	Descript	tion of relevance of this course in the B. Tech. Program											
	•	o make the students learn about the azo chromophore, their s	•										
		everal dyes related to azo chromophore. The course will a											
		s of several azo dyes as well as their synthesis routes and th			ural								
import	ance along with th	e recent trends in the azo dyes as well as their technical impo											
		Course Contents (Topics and Subtopics)		quir									
			F	lours	5								
	Classification of o												
	Application of dy	es		~ .									
1	Textile fibres	and the second		04									
		Dyes classified according to dyeing properties Acid, acid-mordant, basic, direct, vat, sulphur, reactive, disperse											
		nt, basic, direct, vat, sulphur, reactive, disperse											
	Direct dyes												
	Dyeing of cotton Chemical constitu												
2	Examples of bisa		08										
Z	Manufacture of d		08										
	Chemical constitu												
	Drawbacks of dir												
	Reactive dyes			18									
		ive dyeing as a way of improving wash fastness		10									
	History of reactiv												
	Proof of fibre-dye	•											
3		ased on cyanuric chloride											
	Reactive dyes ba	ased on vinyl sulphone											
	Other reactive sy	rstems											
	Bi-functional read	ctive dyes											
	Manufacture of re	eactive dyes											
	Acid dyes			10									
	Dyeing of wool												
	Monoazo acid dy												
4		ized o-aminophenols											
-		n complexes of mordant azo dyes											
	Neutral dyeing m	•											
		for leather dyeing											
		etal-dye complexes											
5	Trisazo and poly	kisazo dyes		4									
	Disperse dyes	hehie filmen		16									
	Dyeing of hydrop	מיזמוי טומטויי											
	Ionamines	dianaraa duga											
6	Development of o												
		e of disperse azo dyes manufacture of diazo components											
		veakly basic aromatic amines											
		id manufacture of coupling components											
	· reputation of al												

	Hv	droxv	ethvla	tion ar	nd han	dlina	of ethy	lene d	xide						
	-	•	•	f dispe		-	•								
				•		•		onents							
							То	tal						6	0
					Lis	t of Te	extbo	oks/Re	eferen	ce Bo	oks				
1	Ch	emist	ry of S	Synthe	tic Dye	es, Lul	bs H. A	4., NY	1995						
2	Ch	emist	ry of s	ynthet	ic dye	s vol l	, Venk	atram	an K.,	NY 19	952				
3	Ch	Chemistry of azo colorants Vol I and Vol II- P. Zollinger													
	_1	Course Outcomes (Students will be able to)													
CO1	Exp	Explain the and define the classes of dyes, substrates (K2)													
CO2	Un	Understand the variety and chemistry of dyes and their application (K2)													
CO3	Ov	erviev	v of re	cent ti	rends	in the	field o	f dyes	conta	ining a	azo grou	ups (K2	2)		
CO4	Dif	ferent	<i>iate</i> th	e Tec	hnique	es of d	iazotiz	ation	and va	ariation	ns avail	able (K	2)		
CO5	De	s <i>ign</i> tl	he syr	nthesis	s of no	vel az	o base	ed dye	s (K3)			i			
		Марр	oing c	of Cou	rse O	utcon	nes (C	Os) w	ith Pro	ogram	nme Ou	Itcome	s (POs)		
		Ρ	-						D O		504	D Q4	DO4	PS	PS
		Ο	PO	PO	PO	PO	PO	PO 7	PO	PO	PO1	P01	PO1	01	02
		1	2	3	4	5	6	7	8	9	0	1	2		
		K3	K4	K6	K5	K6	K3	K3	K3	K3	K2+	K3	K6+	K3	K4
	+S +A A A+F											A+P			
CO1	K2	2	2	2	2	0	0	0	0	0	0	3	0	2	3
CO2	K2	2	2	2	2	0	0	0	0	0	0	3	0	2	3
CO3	K2	2	3	2	3	1	1	1	1	0	0	3	0	3	2
						1	1	1		1	L		L		I

K2

K3

CO4

CO5

	Course Code:	Course Title:	Cre	dits	= 3
	DYT 1207	Chemistry and Technology of Quinonoid colorants	L	Т	Ρ
	Semester: V	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
HSC (Science)				
	List	t of Courses where this course will be prerequisite			
Dyes s	students				
	·	tion of relevance of this course in the B. Tech. Program			
	-	iliarize with the different quinonoid colorants, their synthesis ar	-	-	
	•	ble to understand the importance of anthraquinone scaffold in		•	
	•	Il be able to successfully outline the synthetic schemes of seve	ral qu	uinor	noid
colora	nts.				
		Course Contents (Topics and Subtopics)		quir	
			F	lour	5
1		nthraquinone chemistry, Synthesis, mechanism, sources of		10	
	Anthraquinones			40	
3	•	hraquinonoid, Indigoid, polycyclic Quinonoids vat dyes		10	
4		eactive dyes, Acid dyes based on Quinonoid systems		15	
5	Vat dyes and pig			5	
	Synthesis and tee	chnology for unit processes, material of construction, Work up		5	
		Total		45	
		List of Textbooks/Reference Books			
1	-	c Chemistry, Weissermal K., Arpe H. J., VCH, Weinheim, 1993	}		
2	Organic Chemist	ry, Clayden, Greeves, Warren, Oxford University Press, 2001			

3	FIAT 1313
4	Material of Construction, Lee
5	Unit Operations, McCabe, Smith
6	Chemistry of Synthetic Dyes – Vol I, Venkataraman, K., Academic Press, 1952
7	Synthesis and Application of Dyes, Rys and Zollinger
8	The Chemistry of Synthetic Dyes – Vol II, Venkataraman K., Academic Press
9	The Chemistry of Synthetic Dyes – Vol IV, Venkataraman K., Academic Press
10	The Chemistry of Synthetic Dyes – Vol VI, Venkataraman K., Academic Press
11	The Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E. Krieger Publishing Co
12	Industrial Dyes – Chemistry, Properties, Applications, Hunger K. (Ed), Wiley-VCH,
12	Weinheim, 2003 ICT
	Course Outcomes (Students will be able to)
CO1	Define and state different terminologies related to AQ (K2)
CO2	Describe the Chemistry and technology of AQ based compounds (K2)
CO3	Application of AQ in pigments and dyes (K2)
CO4	Outline the synthesis of various commercially important products (K3)
CO5	Propose methods for the synthesis of quinonoid dyes (K3)

	N	lappi	ng of	Cours	se Ou	tcome	s (CO	s) wit	h Pro	gramn	ne Out	comes	(POs)		
		Р О 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	2	2	2	2	0	1	0	0	0	1	3	0	2	3
CO2	K2	2	2	2	2	1	1	1	1	1	1	3	1	2	3
CO3	K2	3	3	3	3	2	2	2	1	1	1	3	2	3	2
CO4	K3	3	3	3	3	2	2	2	1	1	1	3	2	2	3
CO5	K3	3	3	3	3	2	2	2	1	1	1	3	2	2	3
Course	K3	3	3	3	3	2	2	2	1	1	1	3	2	3	3

	Course Code:	Course Title: Structural Elucidation of Organic	Cre	dits	= 3
	DYT 1206	Molecular Spectroscopy	L	Т	Ρ
	Semester: V	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Basic	HSC (Science)				
	Lis	t of Courses where this course will be prerequisite			
All dye	estuff technology c	ourses			
	Descript	tion of relevance of this course in the B. Tech. Program			
The st	udents will learn th	ne basics of molecular spectroscopy and will be able to elucida	te the	е	
molec	ular structure of un	known molecules by analyzing the several spectroscopic data	l .		
		Course Contents (Topics and Subtopics)		quir lours	
1	Introduction to sp UV-Visible spect	pectral methods of analysis. roscopy.		05	
2	Shielding and de Anisotropy, Spin-	c Resonance Spectroscopy: Principles, some basic terms. -shielding , chemical shift in ¹ H-NMR spectroscopy, Magnetic -Spin coupling and splitting in ¹ NMR spectroscopy, Coupling s of ¹ H-NMR spectrum.		10	

3	IR-Spectroscopy: Basic theory, fingerprint region, treatment to identify functional groups, structure elucidation.	10
4	Mass spectroscopy: Basic terms and nitrogen rule. Mass Spectral Data, Representation of fragmentation process, factors governing fragmentation process, examples of common types of fragmentation.	05
5	Combined use of IR, NMR and Mass spectroscopy for structure elucidation.	10
6	Utility of all chromatographic techniques like GC, HPLC and HPTLC in organic chemistry. Some other advance techniques like GC-MS and LC-MS for self-study. X-RAY diffraction and scanning and similar techniques.	05
	Total	45
	List of Textbooks/Reference Books	
1	Basic principles, sample preparation and related methods by Elsa Lundanes, Leo Tyge Greibrokk	on Reubsaet,
2	Introduction to Spectroscopy by Donald L.Pavia, Gary M. Lampman, George S R.Vyvyan	.Kriz, James
3	Spectroscopic identification of Organic Compounds by Robert M.Silverst X.Webster, David Kiemle	ein, Francis
	Course Outcomes (Students will be able to)	
CO1	Understand the basic concepts of spectroscopy (K2)	
CO2	Demonstrate the knowledge in analyzing the UV and IR spectra (K2)	
CO3	Analyze the NMR spectra (K3)	
CO4	Solve complicated spectral problems (K4)	
CO5	Assess the mass spectroscopic spectra (K4)	

	I	Napp	ing o	f Cour	se Ou	Itcom	es (CC	Ds) wi	th Pro	gram	me Out	comes	(POs)		
		P 0 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	3	3	3	3	2	1	0	1	1	0	3	0	2	3
CO2	K2	3	3	3	3	2	1	0	1	1	0	3	0	2	3
CO3	K3	3	3	3	3	2	1	0	1	1	0	3	0	2	3
CO4	K4	3	3	3	3	2	1	0	1	2	2	3	2	3	2
CO5	K4	3	3	3	3	2	2	0	1	2	2	3	2	3	3
Cours e	K4	3	3	3	3	2	2	0	1	2	2	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 4
	MAT1106	Design and Analysis of Experiments	L	Т	Ρ
	Semester: V	Total Contact Hours: 60	2	2	0
		List of Prerequisite Courses			
HSC S	Standard Mathematic	cs, Applied Mathematics – I (MAT1101), Computer Applicatio	ns		
Labora	atory (MAP1201)				
	List	of Courses where this course will be prerequisite			
All sub	sequent technology	and science courses			
	Descriptio	on of relevance of this course in the B. Tech. Program			
This c	ourse is required for	r graduating technocrats to function effectively and efficiently	/ in I	ndus	stry
Acade	mia and other Profe	ssional Spheres.			
Sr. No.	С	Course Contents (Topics and subtopics)		equir Iour	
	Module I (Statisti	cal Theory of Design of Experiments)			
	Fundamental Pri	nciples of Classical Design of Experiments: Strategy of			
1	Experimentation, 7	Typical applications of experimental design, Basic principles,		2	
	Guidelines for des	igning experiments			
-	Review of Probab	bility and Basic Statistical Inference: Concepts of random			
	variable, Probabili	ty, Density function cumulative distribution function, Sample			
2	and population, N	Measure of central tendency, Mean, median and mode,		4	
	Measures of varia	bility, Concept of confidence level, Statistical Distributions:			
	Normal, Log Norm	al & Weibull distributions, Hypothesis testing			
	-	n a Single Factor: Analysis of Variance -			
		el and Random effect model, Model adequacy checking,			
3	-	onal contrasts, Regression Models and ANOVA, Violation of		8	
U	• •	tion: Kruskal-Wallis test		U	
		designs, Latin square designs, Balanced incomplete block			
	designs				
4	-	s: Definition, Estimating model parameters, Fitting response		4	
	curves and surface				
	-	nalysis using Software (R/Python))			
-		esign, Blocking and confounding in the 2 ^k Factorial design,		0	
5		2 ³ designs, Blocking and confounding in the 2k Factorial		8	
	Design	nothede Control Composite Design (CCD)		4	
6		nethods, Central Composite Design (CCD)		4	
7	R	ics, Probability Distribution and Testing of Hypothesis using		6	
	Regression tech	niques, Diagnostic checks, ANOVA using R and			
8	implementation of			6	
		alanced Incomplete Block Designs and data analysis using			
9	R	,		6	
10	Analysis of factoria	al designs using R, Understanding output and interpretation		6	
11		Data analysis and interpretation.		6	
		Total		60	
		List of Textbooks/ Reference Books			
1		glas C. Design and Analysis of Experiments; 9th Ed.; John W	/iley	& Sc	ons
	Inc. (2017)			• .	_
2		, J. S.; Hunter, W. G. Statistics for Experimenters: Design, Inr	lovat	lion,	and
	Discovery; 2 nd Ed.		(0.2.1		
3	Lawson, John. De	sign and Analysis of Experiments with R; 1st Ed.; CRC Press			_ ;
•	D I D	Verdooren, R.; Gebhardt, A. Optimal Experimental Design w			

5	Unpingco, J. Python for Probability, Statistics, and Machine Learning; 2 nd Ed.; Springer (2019)
6	Anderson-Cook, Christine M.; Montgomery, Douglas C.; Myers, Raymond H. Response Surface Methodology: Process and Product Optimization using Designed Experiments; 4 th Ed.; Wiley (2016)
7	Montgomery, Douglas C. Introduction to Statistical Quality Control; 7th Ed.; Wiley (2009)
8	Lazić, Živorad R. Design of Experiments in Chemical Engineering: A Practical Guide; 1 st Ed.; Wiley-VCH (2005)
	Course Outcomes (Students will be able to)
CO1	Explain the basic principles of design of experiments (K2)
CO2	perform statistical analysis of single experiments and do post hoc analysis (K3)
CO3	conduct experiment and analyse the data using statistical methods (K4)
CO4	choose an appropriate design given the research problem (K5)
CO5	perform statistical analysis of different designs using R and interpret the results (K5)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	1	2	0	3	3	3	3	3	1	1	3	2
CO2	K3	3	3	2	2	2	3	3	3	0	3	3	2	3	3
CO3	K4	3	2	2	3	2	3	1	3	3	2	3	2	2	3
CO4	K5	3	3	3	3	3	3	3	3	3	3	0	3	3	3
CO5	K5	3	1	3	3	3	3	3	2	3	3	3	3	0	3
Course	K5	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title: Analysis of Intermediates, Dyes and	Cre	dits	= 4								
	DYP 1002	Fibers	L	Т	Ρ								
	Semester: V	Total Contact Hours: 120	0	0	8								
	· · · · · ·	List of Prerequisite Courses			-								
HSC (Science)												
	List	t of Courses where this course will be prerequisite											
All the	Dyes Special Cou	Irses											
	Descript												
The st	udents will be train	nts will be trained to analyse several intermediates of dyes, dyes and fibres											
tests.													
		Re	ed										
		Course Contents (Topics and Subtopics)	Hours										
1	-	purity of amine by the method of Diazotization- aniline,		8									
	sulphanilic acid, o	chloroanilines, toluidines, anisidines, etc											
2		nents- Estimation of phenols and naphthols by bromination –		8									
	phenol, 2-naphth												
3		phtholsulphonic acids and aminonaphtholsulphonic acids by		24									
Ŭ		Schaffer acid, R salt, gamma acid, J acid, etc											
4		es by reduction – Sunset Yellow, Ponceau 4R, Orange II,		16									
-	Tartrazine, etc												
5		yes – acid, basic, direct, acid mordant, vat, sulphur		16									
6		bres – cotton, wool, silk, nylon, polyester	20										
7	-	purity of amine by the method of Diazotization- aniline,	e, 20										
,	sulphanilic acid, o	chloroanilines, toluidines, anisidines, etc		20									

8	Coupling experiments- Estimation of phenols and naphthols by bromination – phenol, 2-naphthol, R-acid, etc	8
	Total	120
	List of Textbooks/Reference Books	
1	Chemistry of Synthetic Dyes – Vol I, Venkataraman, K., Academic Press, 1952	
2	Synthesis and Application of Dyes, Rys and Zollinger	
3	The Chemistry of Synthetic Dyes – Vol II, Venkataraman K., Academic Press	
4	The Chemistry of Synthetic Dyes – Vol IV, Venkataraman K., Academic Press	
5	The Chemistry of Synthetic Dyes – Vol VI, Venkataraman K., Academic Press	
6	The Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E. Krieger P	ublishing Co
	Course Outcomes (Students will be able to)	
CO1	Analyse the purity of the amines used for dye synthesis. (K3)	
CO2	Check the presence of coupling components purity required for final dye synthe	sis. (K2)
CO3	Understand the presence of diazo groups and reducible groups in the given d	ye structure.
003	(K2)	
CO4	Analyse and identify the classes of dyes from the application-oriented perspecti	ve. (K3)
CO5	Identify the substrates and chemistry of the fibres for dye affinity. (K3)	

	I	Mapp	ing o	f Cour	se Ou	Itcom	es (CC	Ds) wi	th Pro	gram	me Out	comes	(POs)		
		P 0 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	К3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K3	2	3	3	3	2	2	2	0	2	1	3	3	3	2
CO2	K2	3	3	3	3	3	2	2	0	2	1	3	3	3	2
CO3	K2	3	3	3	3	3	2	1	0	2	1	3	3	2	3
CO4	K3	3	3	3	3	3	2	1	0	2	1	3	3	3	3
CO5	K3	3	3	3	3	3	2	1	0	2	1	3	3	3	3
Cours e	K3	3	3	3	3	3	2	2	0	2	1	3	3	3	3

	Course Code:		Cre	dits	= 2
	DYP 1013	Course Title: Chromatographic techniques	L	Т	Ρ
	Semester: V	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
HSC (Science)				
	Lis	t of Courses where this course will be prerequisite			
All the	Dyes Special Cou	Irses			
	Descript	tion of relevance of this course in the B. Tech. Program			
		ntroduced to the several chromatographic techniques esse		for	the
monito	pring, separation a	nd purification of organic molecules after chemical transformat	ions.		
		Course Contents (Topics and Subtopics)		equir lours	
1	mixture of two	 preparation of TLC plate, finding rf value, separation of a coloured organic compounds, detection of colourless aration of a mixture of a coloured and colourless compound ss compounds 		20	
2	Separation and p techniques.	urification of organic compounds by column chromatographic		24	
3	Use of flash chro	matography for separation of mixture of organic molecules		16	

	Total	60
	List of Textbooks/Reference Books	
1	A text book of Practical Organic Chemistry including Qualitative Organic Analys	sis by Arthur
	Israel Vogel, Ed-3, Year 1984	
2	Chromatography: Basic principles, Sample preparations and Related Method	ods by Elsa
2	Lundanes, Leon Reubsaet, Tyge Greibrokk	
	Course Outcomes (Students will be able to)	
CO1	Understand the principle behind chromatographic techniques - TLC, paper and	
001	column – used for the separation of organic compounds (K2)	
CO2	Learn to use the appropriate techniques for a given separation scenario (K2)	
CO3	Conduct these processes in the lab independently for the separation of two or m	nore
CU3	organic compounds that may or may not be coloured (K3)	
CO4	Apply these techniques whenever separation of organic compounds needs to be	e done (K4)
CO5	Develop methods for the separation using automated systems (K4)	

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) Ρ PS PS **PO1** PO PO PO PO PO PO PO PO **PO1 PO1** K6 K3 K3 K3 K2+ K3 K6+ K3 K4 K4 K6 K5 K3 K3 A+P +S +A А CO1 K2 CO2 K2 K3 CO3 CO4 K4 K4 CO5 cours K4 е

Semester VI

	Course Code:	Course Title:	Cre	dits	= 4
	DYT 1105	Technology of Sulphur and Cationic Colorants	L	Т	Ρ
	Semester: VI	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
HSC (Science)				
	List	t of Courses where this course will be prerequisite			
All the	Dyes Special Cou	irses			
	Descript	tion of relevance of this course in the B. Tech. Program			
Studer	nts will be able to ι	understand the chemistry and Technology of Sulphur and Cation	onic		
Colora	nts.				
		Course Contents (Topics and Subtopics)		quir lours	
1		ethod of application, method of formation. Intermediates used re of Sulphur dyes. nur Dyes		20	
2	basic dyes. Cor properties of pen			10	
3	Synthesis. Dis	asic dyes. Diphenylmethane and ketone-imine class. ubstituted triohenylmethane dyes and trisubstittued dyes.typical synthesis and manufacturing methods.		15	
4	•	acrylic fibres, rating dyes. Oxidative coupling methods. procyclic intermediates.		15	
		Total		60	
		List of Textbooks/Reference Books			
1	Chemistry of Sy Company, New Y	nthetic Dyes and Pigments, Lubs H. A., Robert E Kriege /ork, 1977	er Pu	ıblish	ing
2	Chemistry of Syn	thetic Dyes – Vol II, Venkataraman, K., Academic Press, 1952	2		
3		thetic Dyes – Vol IV, Venkataraman, K., Academic Press, 197			
4		 Synthesis, Properties and Applications of Dyes and Pigments heim – VCH, 1991 	s, Zol	linge	r
		Course Outcomes (Students will be able to)			
CO1		constitution of Sulphur dyes. (K2)			
CO2		ctural diversities in cationic dyes. (K2)			
CO3	•	plour changes with different classes of cationic dyes. (K2)			
CO4		e process in the manufacture of Sulphur dyes. (K2)			
CO5	Assess the techn	ical importance of cationic dyes and their manufacture. (K2)			

		Марр	oing c	of Cou	rse O	utcom	nes (C	Os) w	ith Pro	ogram	ime Ou	tcome	s (POs))	
		Р О 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	1	2	2	2	1	0	1	0	0	0	2	0	2	3
CO2	K2	2	2	3	3	1	0	1	0	0	0	2	0	2	3
CO3	K2	1	3	3	3	1	0	1	0	0	0	2	0	2	3
CO4	K2	3	3	3	3	3	3	2	2	1	1	3	1	3	2
CO5	K2	3	3	3	3	3	3	2	2	1	1	3	2	3	2
	K2	3	3	3	3	3	2	2	2	1	1	3	2	3	3

	Course Code:		Cre	dits	= 4
	DYT 1203	Course Title: Fluorescent Colorants	L	Т	Ρ
	Semester: VI	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
HSC (Science)				
	Lis	t of Courses where this course will be prerequisite			
All Dye	estuff and Intermed	diates Special Courses			
	Descript	tion of relevance of this course in the B. Tech. Program			
		nderstand physics and chemistry of fluorescent colorants used			
	•	understand the structure and synthesis of fluorescent colorant			
	•	ntify the proper synthetic and industrial method and choose ac a fluorescent dyes.	cordi	ngly	the
		Course Contents (Topics and Subtopics)		quir lour:	
	Introduction to I	uminescence phenomena. Various terms like intersystem		12	
	crossing, interna	I conversion, Stokes shift, and fluorescence quantum yield.			
1	•••	agrams. Singlet and triplet states.Franck-Condon principle,			
		antum mechanically allowed transitions.			
	Charge transfer r				
2		ptical whiteners and fluorescent dyes		16	
3		rbostyryl based optical whiteners and fluorescent dyes		12	
4		hthaliminde, benzanthrone, and azabenzanthrone based		08	
•	fluorophores				
		uorescent dyes, Cyanine dyes, xanthenes, oxazines, and			
5	similar dyes.			12	
	BODIPY and the	5			
		Total		60	
		List of Textbooks/Reference Books			
1		scence: Principles and Applications by B Valeur, Wiley VCH			
2		prescence Spectroscopy J R Lackowiz, Springer			
		Course Outcomes (Students will be able to)			
CO1		pasics of fluorescence (K2)			
CO2		he basic fluorophores. (K2)			
CO3	-	ous fluorophores for optical whitening, and functional applicatio	ns (ŀ	(3)	
CO4		s aspects of water-soluble fluorescent dyes in biology. (K2)			
CO5	Identify the synth	etic route for a desired fluorescent dye (K2)			

	I	Иарр	ing of	f Cour	se Ou	Itcom	es (CC	Ds) wi	th Pro	gram	me Out	comes	(POs)		
		P 0 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	2	2	2	2	1	1	0	0	0	0	2	0	2	3
CO2	K2	2	2	2	2	2	1	0	0	0	0	2	0	2	3
CO3	K3	2	3	3	2	2	1	2	0	2	2	2	2	3	2
CO4	K2	2	2	2	3	2	1	2	0	1	1	2	1	2	3
CO5	K2	2	3	3	3	2	2	2	1	2	2	3	2	3	3
Cours e	K3	2	3	3	3	2	2	2	1	2	2	3	2	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0- No Contribution

	Course Code:	Course Title:	Cre	dits	= 3
	TXT 1215	Technology of Dyeing and Printing	L	Т	Ρ
	Semester: VI	Total Contact Hours: 45	2	1	0
	1	List of Prerequisite Courses			L
HSC (Science)				
	List	of Courses where this course will be prerequisite			
Chem	istry and Applicatio	n of Colorants			
	Descript	ion of relevance of this course in the B. Tech. Program			
To ma	ke the students un	derstand chemistry various substrates and their coloration pro	cess	es.	
To ma	ke them understan	d the dyeing processes and the machineries involved			
	able them to unders	stand the properties of substrates in relation to the properties	of dy	es u	sed
To de divers	-	city understand proper selection of the colorants based on th			
		Course Contents (Topics and Subtopics)		equir lours	
1	General consideration to important textile	ations of the application of different classes of synthetic dyes e fibres		08	
2	Introduction to ph	ysicochemical principles involved in dyeing.		02	
3	Dye Class specifi	c dyeing methods and dyeing machinery		15	
4		abrics for Dyeing and printing, Ingredients of Print Paste, edients of Print paste		10	
5	Basic Styles of Pr	rinting		10	
6	Methods of Printir	ng		10	
7	Fastness requirer coloured fabrics	ments of		5	
		Total		45	
	I	List of Textbooks/Reference Books			
1	Experimental Dye	eing by Giles, SDC			
2	Textile Dyeing, V	A Shenai			
3	Textile Printing, V	' A Shenoi			
4	Textile Fibres V A	Shenoi			
		Course Outcomes (Students will be able to)			
CO1		e the applications of different classes of synthetic dyes with es involved in dyeing, preparation of fabric for dyeing and print			sio-
CO2		g machinery. (K2)			
CO3		nd the function of the ingredients used in printing paste. (K2)			
CO4		explain basic styles of printing. (K2)			
CO5	understand and d	lescribe methods of printing. (K2)			

	I	Napp	ing o	f Cour	se Ou	Itcom	es (CC	Ds) wi	th Pro	gram	me Out	comes	(POs)		
		P 0 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS 01	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	3	3	3	3	3	3	2	2	2	2	2	2	2	2
CO2	K2	3	3	3	3	3	3	2	2	2	2	2	2	2	2
CO3	K2	3	3	3	3	3	3	2	2	2	2	2	2	2	2
CO4	K2	3	3	3	3	3	3	2	2	2	2	2	2	2	2

CO5	K2	3	3	3	3	3	3	2	2	2	2	2	2	2	2
Cours e	K2	3	3	3	3	3	3	2	2	2	2	2	2	2	2

	Course Code:	Course Title:	С	redit	s = 3		
	HUT1103	Industrial Psychology and Human Resource	L	Т	Р		
		Management					
	Semester: VI	Total Contact Hours: 45	2	1	0		
		List of Prerequisite Courses					
None							
		of Courses where this course will be prerequisite					
Technolo		orthcoming semesters					
		ion of relevance of this course in the B. Tech. Program					
This cour	se equips students	with human resource management skills to be able to functio	n				
	ſ	effectively in their professional careers.					
		Course Contents (Topics and Subtopics)	F	-			
1	Introduction and C			2			
	Management The						
2		ber, Hawthorne; Basic types of structures; Span of Control,		4			
	_	rity, Responsibility	<u> </u>				
3	Recruitment			3			
-		erent methods of attracting candidates		_			
4	Selection			2			
		s, Interviews, Induction		Require Hours 2 4 3 2 4 3			
	Performance Man	•					
5	• ·	ess, Performance appraisal methods, Appraisal interviews,		3			
	Rating errors						
	Training & Develo	•					
6		g needs, Training methods (on the job and off the job		3			
	techniques), Evalu	-					
	Change Managen						
7		e, Theories of change management, Hurdles to change,		3			
	Olmosk change st						
8	Knowledge Manag	-		3			
0		tance and benefits of Knowledge Management, Framework		0			
	Motivation Theorie						
9		notives, Various theories (Maslow, Herzberg, ERG, Vroom,		4			
	Equity and Nohria	•					
10	Leadership Theor			3			
		del, Hersey Blanchard Model, Michigan Model		5			
11	Organizational Cu			3			
		Understanding and influencing cultures		5			
12	Conflict Managem			3			
14	•	Types of conflict and sources of conflicts, Conflict resolution		0			
13	Power & Politics			3			
10		Politicking strategies		5			
14	Personality			2			
		nality, Behaviour and personality styles					
15	Perception			3			
10	Persception versu	is sensation, Perceptual process, Perceptual errors					
		Total		45	5		

	List of Textbooks/Reference Books							
1	Innovation and Entrepreneurship, Peter Drucker							
2	Essentials of organizational Behaviour, Srephen Robbins							
3	Organizational Behaviour, Luthans							
4	Select HBR cases and articles for review							
5	Innovation and Entrepreneurship, Peter Drucker							
	Course Outcomes (Students will be able to)							
CO1	explain the fundamental concepts of industrial psychology and human resource management							
COT	(K2)							
CO2	analyze practical solutions (K4)							
CO3	provide applicable solutions (K3)							

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	1	2	0	3	3	3	3	3	3	1	3	2
CO2	K4	3	3	1	3	2	3	2	3	3	3	1	2	3	3
CO3	K3	3	3	2	2	2	3	3	3	2	3	3	2	1	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code: Course Title:									
	HUT1106	Environmental Science and Technology	L	Т	Ρ					
	Semester: VI	Total Contact Hours: 45	2	1	0					
		List of Prerequisite Courses								
Variou	is Technology Cou	rses in previous semesters								
	Lis	t of Courses where this course will be prerequisite								
Variou	•••	rses in the forthcoming semesters								
		tion of relevance of this course in the B. Tech. Program								
appreo be exp	ciating impact of ch posed to the nitty-	ul for the future Chemical Engineers and Technologists for as nemical processes and technologies on the Environment. The gritties of the impact of design principles on the Environme	stud nt. T	lents horo	will ugh					
	•	technology aspects is going to help in innovative solutions	with	posi	tive					
impac	t on the environme	nt.								
		Required Hours								
1	Introduction to a Environment (H quality, noise, wa	3								
2	Environmental in	3								
3	Pollution prevent	Ilution prevention in chemical manufacturing, effluent valorization								
4	Air pollution; A dispersion mode control, fugitive e	4								
5	Wastewater treat specific water co	4								
6	Inherent safety; M Italy; Pasadena Wentworth, Geor	5								
7	Toxicology; Indus	strial hygiene	nygiene 2							
8	-	Toxic release and dispersion models		5						
9	Fires and explosi	3								

10	Chemical reactivity	2									
11	Reliefs and reliefs sizing; Hazard identification; Risk assessment	4									
	C	-									
12	Safety procedures and designs	4									
13	Some case histories	4									
	Total	45									
	List of Textbooks/Reference Books										
1	Environmental Studies by R. Rajagopalan, Oxford University Press.										
2	Essentials of Environmental Studies by Kurian Joseph & Nagendran, Pearson										
3	Education Renewable Energy by Godfrey Boyle, Oxford Publications										
4	Perspective of Environmental Studies, by Kaushik and Kaushik, New Age										
5	International Environmental Studies by. Anandita Basak, Pearson Education										
6	Textbook of Environmental Studies by Dave and Katewa, Cengage Learning										
7	Environmental Studies by Benny Joseph, Tata McGraw Hill										
8	Textbook of Environmental studies by Erach Books Bharucha, University Press.										
	Course Outcomes (Students will be able to)										
CO1	calculate BOD / COD for a given composition of effluent stream, Estimation of b	io Kinetics.									
CO2	calculate adiabatic lapse rate and determine conditions for suitability of	atmospheric									
602	dispersion, effective stack height, chimney design.										
CO 2	calculate concentrative of pollutant at any point in the neighbourhood of em	ission given									
CO3	atmospheric conditions like wind, dispersion, environmental factors, etc.	-									
004	calculate size/time/power required for primary clarifier, secondary treatm	ent, tertiary									
CO4	treatment, sizing of different types of Biological treatments etc										
0.05	identify hazards in a given process and assess the same and provide solutions	for operating									
CO5	safely.										

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		M	appin	g of C	ourse	Outco	omes	(COs)	with F	Progra	mme O	utcom	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K3	3	3	2	2	2	3	3	2	3	3	3	2	3	3
CO2	K3	3	3	2	2	0	3	3	3	3	3	3	1	3	3
CO3	K3	3	3	0	2	2	3	1	3	3	1	3	2	2	3
CO4	K3	3	1	2	2	2	3	3	3	3	3	0	2	3	3
CO5	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	С	redit	ts = 3							
	DYP 1006	Seminar	L	Т	Р							
	Semester: VI	Total Contact Hours: 60	0	0	4							
	List of Prerequisite Courses											
All the	All the previous dyestuff technology courses											
	List of Courses where this course will be prerequisite											
All the	All the B.Tech (dyestuff technology) courses in this semester and the subsequent semesters.											
	Descri	iption of relevance of this course in the B. Tech. Program										
The co	ourse is intended to	o develop student's ability to read, understand any given topic r	elate	d to c	lyestuff							
techno	ology, collect literat	ture, write a scientific report on that topic based on the provide	ed gui	delin	ies and							
preser	nt the scientific me	rits and demerits of the matter. Students shall prepare critical re	views	s of s	elected							
topics	in Chemical Tech	nology and allied subjects and submit in the form of standa	rd typ	oed i	eports.							
Studer	nts shall also make	e oral presentations of the reviews.										
		Course Contents (Tenics and Subtenics) Required										
		Course Contents (Topics and Subtopics)		Ηοι	ırs							
1	Any topic related to dyestuff technology. 60											

	Total	60
	List of Textbooks/Reference Books	·
1	nil	

	Course Outcomes (Students will be able to)
CO1	Develop a protocol for literature survey about a certain topic (K4)
CO2	Evaluate the literatures and interpret the scientific content (K5)
CO3	Apply the concept of dyestuff technology on a selected topic (K3)
CO4	Develop skills for presenting a scientific topic in dyestuff technology (K6)
CO5	Develop skills for writing a scientific document (K6)

		Ма	apping	g of Co	ourse	Outco	omes (COs)	with P	rogra	mme O	utcome	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K4	3	3	1	3	2	3	3	3	3	3	3	2	3	3
CO2	K5	3	2	3	3	3	0	3	3	3	3	2	3	3	3
CO3	K3	3	3	2	2	2	3	3	2	3	3	3	1	3	3
CO4	K6	3	1	3	3	0	3	3	3	1	3	0	3	3	3
CO5	K6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Course	K6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Occurse Titles Presenting of intermediates	Cre	dits	= 2								
	DYP 1014	Course Title: Preparation of intermediates	L	Τ	Ρ								
	Semester: VI	Total Contact Hours: 60	0	0	4								
		List of Prerequisite Courses											
HSC (Science)												
	List	t of Courses where this course will be prerequisite											
All pra	ictical courses in su	ubsequent semesters											
	Descript	ion of relevance of this course in the B. Tech. Program											
Stude	nts will be trained to	o synthesize all the kinds of intermediates required for the synt	hesis	s of d	yes								
and pi	gments.		-										
		Require											
		Course Contents (Topics and Subtopics)											
1		me fast bases and benzene intermediates		20									
2		me naphthalene intermediates	20										
3	Preparation of 1-	chloro-, 1,5-dinitro- and 1,4-diaminoanthraquinone		20									
		Total		60									
	•	List of Textbooks/Reference Books											
1	Fundamental Pro	ocesses Of Dye Chemistry by Hans Eduard Fierz-David And L	ouis	Blan	gey								
		Course Outcomes (Students will be able to)											
CO1		nesis of different dye intermediates (K3)											
CO2	Purify and isolate	the intermediates (K3)											
CO3		echniques of synthesis of different intermediate isomers (K2)										
CO4	• ·	esis of dye intermediates (K3)											
CO5	Apply the theored dye intermediates	tical knowledge in the practical synthesis, separation, and is s (K4)	olatic	on of	the								

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

		P 0 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K3	2	3	3	2	3	2	2	0	2	0	3	3	2	3
CO2	K3	3	3	3	2	3	3	2	0	2	0	3	3	2	3
CO3	K2	2	3	3	2	3	3	2	0	2	0	3	3	3	2
CO4	K3	2	3	3	2	2	3	2	1	2	2	3	3	3	3
CO5	K4	3	3	3	3	3	3	3	2	3	2	3	3	3	3
Cours e	K4	3	3	3	3	3	3	3	2	3	2	3	3	3	3

	Course Code:	Course Title: Experimental dyeing	Cre	dits	= 2							
	DYP 1003	Course The: Experimental dyeing	L	Т	Ρ							
	Semester: VI	Total Contact Hours: 60	0	0	4							
		List of Prerequisite Courses										
HSC (Science)											
	Lis	t of Courses where this course will be prerequisite										
All pra	ctical courses in s	ubsequent semesters										
	Descript	tion of relevance of this course in the B. Tech. Program										
		the significance of uses all the kinds of dyes used in the colorati	on o	r vari	ous							
textile	substrates											
		Course Contents (Topics and Subtopics)		equir Iour:								
	Application onior	Г		5								
1	textile substrates	Application anionic, cationic and non-ionic colorants to synthetic and natural 60										
		Total		60								
		List of Textbooks/Reference Books		00								
1	Chemistry of Syr	thetic Dyes – Vol I, Venkataraman, K., Academic Press, 1952										
2		oplication of Dyes, Rys and Zollinger										
3		f Synthetic Dyes – Vol II, Venkataraman K., Academic Press										
4		f Synthetic Dyes – Vol IV, Venkataraman K., Academic Press										
5		f Synthetic Dyes – Vol VI, Venkataraman K., Academic Press										
6		f Synthetic Dyes and Pigments, Lubs H. A., Robert E. Krieger F	Publis	shina	Со							
		Course Outcomes (Students will be able to)										
CO1		ble dyes to hydrophilic substrates (K3)										
CO2		luble dyes to hydrophilic substrates (K3)										
CO3	Ability to categor	ize the dyes according to the substrates. (K4)										
CO4	Analyse and ider	ntify the dyes on textiles (K4)										
CO5	Identify the requi	rements of the dyes as against the suitability of substrates for	dyeir	ng (K	4)							
1	·											

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P 0 1	PO 2	PO 3	РО 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K3	2	3	3	3	3	2	0	0	2	0	3	2	3	3

CO2	K3	2	3	3	3	3	2	0	0	2	0	3	2	3	2
CO3	K4	2	3	3	3	3	2	0	0	2	0	3	2	3	2
CO4	K4	2	3	3	3	2	2	1	0	2	0	3	2	2	3
CO5	K4	2	3	3	3	3	2	2	1	2	1	3	2	2	2
Cours	K4	2	3	3	a	3	2	2	1		1	3	2	3	3
е			5	5	3	5	2	2	1	2	1	5	2		

Semester VII

	Course Code:	Course Title:	Cre	dits	= 3
	CET1703	Chemical Process Control	L	Т	Ρ
	Semester: VII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Mate	erial and Energy Bala	ance Calculations, Applied Mathematics, Chemical E	ngine	erin	g
Oper	rations, Chemical Reac	tion Engineering			
	List	of Courses where this course will be prerequisite			
Cher	mical Engineering Labor	atory, Projects			
		of relevance of this course in the B. Tech. Program			
		critical role in the context of actual operation of a process p			
	-	ering courses focus on the steady state operation. In			
	-	inuously subjected to various disturbances which deviates t			
		ate. This course specifically prepares students to assess to them with the tools available to tackle these situations.	ne in	paci	01
<u>Such</u>		irse Contents (Topics and Subtopics)	R	equi	ed
No.				Hour	
		iples of measurement; Pressure, Temperature, Level, Flow			
1		asuring devices; Introduction to controllers (PLC, digital		9	
	. ,.	action to control valves, Types of control valves, Control			
	valve characteristics	dynamics, Concept of dynamic response, Linear systems,			
2		her order system, Systems with dead-time, Definition of		9	
-	-	function, Time constant, Gain of the process with practical		Ũ	
	examples Response of	of processes to standard inputs			
		ss Control: Set point, disturbance, closed loop and open			
3		k and feed-forward configurations, Poles and zeros of the		6	
Ũ	transfer functions			Ũ	
	`	ON/OFF, P, I and D), Effects of controller action on process			
4		ed-loop gain, controller gain effect of controller parameters edback systems, Notion of stability, Criteria for stability		6	
		ign: Introduction to controller design Identification of			
5		d and disturbance variables, Pairing of inputs and outputs		9	
-		pressure, flow, temperature, level and composition control		-	
	Criteria-based controll	er desian. heuristic controller desian. controller tunina			
6		ditional Advanced Control Systems: Cascade control, Ratio		6	
0		control, Selective control, Split-range control, Inferential		0	
	control				
		Total		45	
4	Chamical Drasase Ca	List of Text Books/ Reference Books			
1		ntrol: An Introduction to Theory and Practice, Stephanopole	us G	•	
2	U .	mulation, and Control for Chemical Engineers, Luyben W.L.			- I
3	F.J.	d Control, Seborg, D.E. and Mellichamp, D.A. and Edgar, T	.г. а	na D	oyle
1		aling Dasign and Simulation Requette R.W.			
4		eling, Design, and Simulation, Bequette, B.W.			
5		umentation Technology, Johnson, C.D.			
		se Outcomes (Students will be able to)			
1		nstrumentation and control elements for a particular process	s (K3)		
2		transfer function models for dynamics of processes (K4)	<u></u>	(175)	
3	-	amics and stability of processes based on mathematical ana	uysis	(K5)	
4	Design and tune proce		(1/2)		
5	Specity the required in	nstrumentation and control elements for a particular process	s (K3)		

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	0	3	3	3	2	3	3
CO2	K4	3	3	2	0	2	3	3	3	3	3	0	2	3	2
CO3	K5	3	2	3	3	1	3	1	3	3	1	3	3	3	3
CO4	K6	3	3	1	3	3	2	3	3	2	3	3	1	2	3
CO5	K3	3	1	2	2	2	3	3	3	3	3	3	2	3	3
Course	K6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Courses Titles Hetere availie interme distant and colorente	Cre	dits	= 3
	DYT 1204	Course Title: Heterocyclic intermediates and colorants	L	Т	Ρ
	Semester: VII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
HSC (Science)				
		t of Courses where this course will be prerequisite			
All dye	stuff technology c				
		tion of relevance of this course in the B. Tech. Program			
		oduced to the different heterocyclic scaffolds, their synthetic s			
		e utilization of several heterocyclic scaffolds for the synthesis	s of d	lyes a	and
colorai	nts will also be dis	cussed in details.			
		Course Contents (Topics and Subtopics)		equir Hour:	
	Chemistry of th	ree membered rings with one hetero atom - epoxides,	-	02	
1	•	isulphides, preparation and reactions			
		an, pyrrole and thiophene – Paal-Knorr synthesis, Hantzsch		08	
	•	erg synthesis. Electrophilic reactions, nucleophilic and radical			
2	•	action with bases, reactions of C-metallated, reaction with			
	reducing agents,	, electro cyclic reactions, photochemical reactions,oxy and			
	amino derivatives	s etc.			
	Chemistry of con	ndensed five-membered heterocycles - various syntheses of		10	
3	indoles, benzof				
		radical substitutions			
	Chemistry of	1,2 and 1,3 azoles. 2-Methylbenzoxazole, 2-		05	
4	methylbenzothia				
		radical substitutions, quarternaryazolium salts, side chain			
	reactivity	unidia autoridia and autoridia autor		05	
	• •	byridine, pyrimidine and pyridine oxide – Preparation. Actions, nucleophilic and radical substitutions, side chain		05	
	•	tions with oxidizing agents, reactions of c-metallated,			
5	•	ctions, photochemical reactions, oxy and aminopyridines,			
	-	byridine aldehyde, ketones, carboxylic acids and esters			
		inium salts, pyridine N-oxides etc.			
		blubiliz and isoquinoline – Skraup synthesis – 79olubiliz and		05	
	-	ethyaltion of quinaldine. Friedlander synthesis, Bischler-			
6	Napieralski synt	thesis – methyl isoquinoline, Pictet-Spengler synthesis.			
	Electrophilic read	ctions, nucleophilic and radical substitutions on 79olubiliz and			
		e chain reactivity of both of them.			
7		rtant heterocycles derivatives		05	
	•	intermediates and dyes: Fischer-indole synthesis, Skraup		05	
8	•	nes and thiazine dyes(cationic dyes), indigo and thioindigo			
Ĵ		nine, carbazole chemistry, vat dyes based on anthranthrone			
	type system				

	Total	45								
	List of Textbooks/Reference Books									
1	Heterocyclic Chemistry, 4th ed., Joule J. A. and Mills K., Blackwell Science, 200	0								
2	The Chemistry of Heterocycles – Structures, Reactions, Syntheses and Applica	tions,								
3	Eicher T., Hauptmann S. and Speicher A., Wiley-VCH GmbH & Co, KgaA, 2003									
4	4 Heterocyclic Chemistry – Vols I, II and III, Gupta R. R., Kumar M. and Gupta V., Springer,									
	Course Outcomes (Students will be able to)									
CO1	Identify the classes of heterocycles. (K2)									
CO2	Design synthetic route of different heterocycles. (K3)									
CO3	Propose the retrosynthetic pathway of different heterocycles. (K3)									
CO4	CO4 Understand the reactivity of different heterocycles. (K2)									
CO5	Assess the technical importance of heterocycles. (K3)									

	I	Марр	ing of	f Cour	se Ou	Itcom	es (CC	Ds) wi	th Pro	gram	me Out	comes	(POs)		
		Р О 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	1	1	2	1	1	0	2	0	0	0	3	0	2	3
CO2	K3	2	3	3	3	0	2	2	2	1	1	3	1	2	3
CO3	K3	2	3	3	3	2	2	2	2	2	2	3	2	2	3
CO4	K2	2	3	3	3	3	3	2	2	2	2	2	2	3	3
CO5	K3	3	3	3	3	3	3	2	3	2	2	3	2	3	2
Cours e	K3	3	3	3	3	3	3	2	3	3	2	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 3
	DYT 1205	Functional Applications of Organic Colorants	L	Т	Ρ
	Semester: VII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
HSC ((Science)				
	Lis	t of Courses where this course will be prerequisite			
All dye	estuff technology c	ourses			
	Descript	tion of relevance of this course in the B. Tech. Program			
The s	tudents will be inte	roduced to the concepts of functional organic colorants and	their	spe	cific
applic	ations as well as w	ill be exposed to the different classes of functional dyes and c	olora	nts.	
		Course Contents (Topics and Subtopics)		equir Hour:	
1	Introduction to fu	unctional dyes. Indicator dyes, dyes used in other analytical		10	
I	techniques, laser	dyes, liquid crystal dyes,			
2	Dyes in photogra	phy and electrophotograpy		10	
3	Dyes for ink jet p	rinting, thermal printing		05	
4	Dyes used in lig holography, Imag	ht harvesting devices like solar cells and other related uses, ging		05	
5	Non-linear optica	I properties of dyes and infrared absorbing dyes		05	
6	Quasi aromatic fl	uorescent compounds		05	
7	Colorants for Pho	otodynamic theory		05	
		Total		45	
		List of Textbooks/Reference Books			

1	Advances in Color Chemistry – Vol I, Peters A. T.								
2	Advances in Color Chemistry – Vol II, Peters A. T.								
3	Non-Textile Dyes, Freeman H. S.								
4	Coloring of Plastics: Fundamentals by Robert A. Charvat John Wiley & Sons, 11-Mar-2005								
5	Coloring of plastics: theory and practice by M.Ahmad Van Nostrand Reinhold, 1979								
6	Coloring of plastics: theory and practice by M.Ahmad Van Nostrand Reinhold, 1979								
	Course Outcomes (Students will be able to)								
CO1	Grasp broad idea about functional applications of dyes (K2)								
CO2	Understand underlying properties for their application in commercial product (K2)								
CO3	Know various colorants based on specific molecule engineering (K2)								
CO4	Apply the knowledge in planning the synthesis of functional dyes (K3)								
CO5	Design functional dyes based on the specific role (K4)								

	N	lappi	ng of	Cours	se Ou	tcome	s (CO	s) wit	h Prog	gramn	ne Out	comes	(POs)		
		Р О 1	PO 2	PO 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	1	2	2	2	1	1	2	0	1	1	3	0	3	2
CO2	K2	1	3	2	2	1	1	2	1	1	1	3	0	3	2
CO3	K2	2	3	2	2	1	2	2	0	1	1	3	0	2	3
CO4	K3	3	3	3	2	2	2	3	1	2	2	3	2	3	3
CO5	K4	3	3	3	3	2	2	3	1	2	3	3	3	3	3
Course	K4	3	3	3	3	2	2	3	1	2	3	3	3	3	3

	Course Code:	Course Title: In-plant Training	Cree	dits =	6
	DIF 1012		L	Τ	Ρ
	Semester: VII	Total duration: 12 weeks	0	0	0
		List of Prerequisite Courses			
	None				
	Li	st of Courses where this course will be Prerequisite			
	Project I (FDP 102	7), Project II (FDP 1024)			
D	escription of relev	vance of this course in the B. Tech. (Food Engg. & Tech.)) Prog	gramn	ne
develo	op skills for commur	b – 1. develop a systematic thinking about an industrial problenication, networking, personal grooming & amp; professional nd 3. develop the attitude for individual and teamwork.			hin an
Sr. No.		Course Contents (Topics and subtopics)			luired eeks
1	Engineering /Stor	l be involved in R & D/ manufacturing (QA / QC / Plant res and Purchase)/ marketing / finance/ consultancy/ Technic ering / Projects, etc.	cal		12

Oral presentation & written report of the in-plant training will be evaluated along with industry feedback.	
Total	12

	Course Outcomes (Students will be able to)
CO1	Apply the concept of project & production management in further planning (K3)
CO2	<i>Develop</i> critical thinking regarding the various operations involved in dyestuff technology and allied industry (K4)
CO3	Solve certain industrial challenges in dyestuff technology and allied field (K6)
CO4	Present and communicate an industrial problem effectively (K6)
CO5	Write a scientific report on the training (K6)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	2
CO3	K6	3	3	3	3	3	3	2	3	1	3	2	3	3	3
CO4	K6	3	3	2	3	3	3	3	0	3	3	3	3	2	3
CO5	K6	3	3	3	3	1	3	3	3	3	2	3	3	3	3
Course	K6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title:	Cre	dits	= 4								
	HUT1203	Industrial Management	L	Т	Ρ								
	Semester: VII	Total Contact Hours: 60	3	1	0								
		List of Prerequisite Courses											
None													
	List	t of Courses where this course will be prerequisite											
None													
	Descript	tion of relevance of this course in the B. Tech. Program											
This c	ourse is required for	or effective and holistic functioning of students in their professi											
		Course Contents (Topics and Subtopics)		equir Hour:									
1	Greiner's Model	Greiner's Model of Organization Life Cycle											
1	Organic and med	3											
	Marketing Manag												
2	Introduction, Po		7										
	strategies												
3		e 4Ps of Marketing		11									
	Product, Price, P												
		Operations Management		40									
4		ductivity, World class manufacturing, Business process		10									
	Quality Manager	anban, JIT, Poka Yoke system, Maintenance practices											
5	, ,	uality, Quality control ,acceptance sampling and SQC		6									
5		s, TQM, Insights into ISO-9000, ISO -14000,ISO-50000		0									
	Financial Manage												
6	•	em, Balance-sheet evaluation, Fund-flow analysis, financial		15									
÷	ratios an insight,	-											
7	Materials Manage			4									

	Value analysis, Purchasing and vendor development, Warehousing and	
	inventory control methods	
	Maintenance Management	
8	Classifications, Equipment and plant reliability and availability, Management of	4
	shut downs and turnarounds	
	Total	60
	List of Textbooks/Reference Books	
1	Industrial Management–I, Jhamb L. C. and Jhamb S.	
2	Industrial Management, Spriegel U.S.	
3	Operations Management for Competitive Advantage, Richard B. Chase, F. Ro	bert Jacobs,
5	Nicholas Acquilano	
4	World Class Manufacturing - A strategic Perspective, B.S. Sahay, K.B.C. Sat	xena, Ashish
	Kumar	
5	Management Finance, Varanasay Murthy	
6	Essentials of Management, Koontz	
7	Principles of Marketing, Kotler	
8	Quality Planning and Analysis, Juran	
9	Financial Management, Prasanna Chandra	
10	Financial Management, R. M. Srivastava	
11	Select HBR cases and articles for review	
	Course Outcomes (Students will be able to)	
CO1	explain the fundamental concepts of Marketing management and the various as	pects therein
000	(K2)	
CO2	describe the fundamental concepts of Finance and analyse the balance sheet (,
CO3	explain various productivity techniques that when combined with engineering kn	iowiedge can
	be applied successfully in the industry (K2)	a af
CO4	study real life practical problems, constraints and will be able to think in tern	ns of various
	alternative solutions (K3)	

		Ма	apping	g of Co	ourse	Outco	mes (COs)	with P	rogra	mme O	utcome	es (POs)		
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K2	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	K4	3	3	2	3	2	1	3	3	3	3	3	2	3	3
CO3	K2	3	2	0	2	1	3	3	2	3	3	0	1	3	2
CO4	K3	3	3	2	0	2	3	3	3	3	3	3	2	2	3
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits :	= 2						
	CEP1714	Chemical Engineering Laboratory	LT								
	Semester: VII	Total Contact Hours: 60	0	4							
		List of Prerequisite Courses									
	•	ET1507), Transport Phenomena (CET1105), Chemical Engineer eaction Engineering (CET1212)	ring O	perat	ions						
	L	ist of Courses where this course will be prerequisite									
Other	B. Tech. courses	n this and the last semester									
	Descr	iption of relevance of this course in the B. Tech. Program									

This course provides students the first-hand experience of verifying various theoretical concepts learnt in theory courses. It also exposes them to practical versions of typical chemical engineering equipments and servers as a bridge between theory and practice. This particular lab focuses on fluid dynamics, distillation, filtration, drying and sedimentation.

Sr.		Required							
No.	Course Contents (Topics and Subtopics)	Hours							
	4. C Experiments on fluid dynamics and best transfer								
1	4 - 6 Experiments on fluid dynamics and heat transfer	24							
2	3 - 5 Experiments on Chemical Engineering Operations	16							
3	2 – 4 Experiments on Reaction Engineering 12								
4	1 – 3 Experiments on process dynamics and control	8							
	Total	60							
	List of Text Books/ Reference Books								
1	McCabe W.L., Smith J.C., and Harriott P. Unit Operations in Chemical Engineerin	g, 2014							
2	Bird R.B., Stewart W.E., and Lightfoot, E.N. Transport Phenomena, 2007								
3	Coulson J.M., Richardson J.F., and Sinnott, R.K. Coulson & Richardson's Chemic	al Engineering:							
	Chemical engineering design, 1996.								
4	Green D. and Perry R. Perry's Chemical Engineers' Handbook, Eighth Edition, 200	07.							
	Course Outcomes (students will be able to)								
CO1	Learn how to experimentally verify various theoretical principles (K3)								
CO2	Visualize practical implementation of chemical engineering equipment (K4)								
CO3	Develop experimental skills (K4)								
CO4	Ability to document scientific and technical data								
CO5	Ability to demonstrate project management skill in performing the experiments								

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K4	3	3	2	1	2	3	3	0	3	3	3	2	2	3
CO3	K4	3	3	2	3	2	2	3	3	3	3	2	2	3	2
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Courses Titles Presention of dues	Cre	dits	= 2
	DYP 1511	Course Title: Preparation of dyes	L	Т	Ρ
	Semester: VII	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
HSC (Science)				
	Lis	t of Courses where this course will be prerequisite			
All dye	estuff technology c	ourses			
	Descript	tion of relevance of this course in the B. Tech. Program			
This c	ourse will impart th	e students with sufficient skills in synthesizing different classes	of d	yes tl	neir
purific	ation process as w	ell as their isolation techniques.			
		Course Contents (Topics and Subtopics)		equir Iour:	
1	•	zo dyes by employing various methods of diazotization – ith nitrosylsulphuric acid		20	
2	Preparation of a alkaline coupling	zo dyes with different coupling components - acidic and		16	
3	Preparation of sc	me metal complex azo dyes and azo pigments		12	

4	Preparation of some basic dyes, sulphur dyes and reactive dyes	12										
	Total 60											
	List of Textbooks/Reference Books											
1	1 Fundamental Processes Of Dye Chemistry by Hans Eduard Fierz-David And Louis Blangey											
	Course Outcomes (Students will be able to)											
CO1	Execute the synthesis of different class of dyes (K3)											
CO2	Able to purify and isolate the dyes (K3)											
CO3	Differentiate the methods of synthesis of different classes of dyes (K3)											
CO4	Design the synthesis of dye (K4)											
CO5	Develop practical skills in the synthesis, separation and isolation of the dye (K4)											

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
C01	K3	2	3	3	3	3	3	2	3	3	2	3	2	3	2
CO2	K3	2	3	3	3	3	2	2	2	2	2	3	2	3	2
CO3	K3	2	3	3	3	3	3	2	3	3	2	3	2	3	3
CO4	K4	3	3	3	3	3	3	2	3	3	0	3	2	2	3
CO5	K4	3	3	3	3	3	3	2	2	3	1	3	3	3	3
cours e	K4	3	3	3	3	3	3	2	3	3	2	3	3	3	3

	Course Code:	Cre	Credits = 2			
	DYP 1007	Course Title: Project -I	L	Т	Р	
	Semester: VII	Total contact hours: 60	0	1	4	
		List of Prerequisite Courses		-		
Semi	inar (DYP 1006)					
	Lis	st of Courses where this course will be Prerequisite	e			
Proje	ect II (DYP 1008)					
Desc	ription of relevance	e of this course in the B. Tech. (Dyestuff Technolog	gy) Progran	nme		
1.	. Develop a skill to	solve a research problem related to dyestuff technolog	ју			
1. 2.	. Develop skills for	presenting a research work effectively. The course pre	esents an op	•	nity to	
2	. Develop skills for		esents an op	en.	-	
	. Develop skills for	presenting a research work effectively. The course pre	esents an op	en. Req	nity to Juired	
2. Sr.	 Develop skills for the students for fin Teachers will com 	presenting a research work effectively. The course pre- ne-tuning their scientific communication skills, oral as w Course Contents (Topics and subtopics) municate various research project topics to all the stud	dents	en. Req	uired	
2. Sr.	Develop skills for the students for fir Teachers will com based on interest	presenting a research work effectively. The course pre ne-tuning their scientific communication skills, oral as v Course Contents (Topics and subtopics)	dents	en. Req	uired	
2. Sr.	Develop skills for the students for fin Teachers will com based on interest Technology.	presenting a research work effectively. The course pre- ne-tuning their scientific communication skills, oral as w Course Contents (Topics and subtopics) municate various research project topics to all the stud and facilities available and relevance to the area of Dy	dents vestuff	en. Req	uired	
2. Sr.	 Develop skills for the students for fin Teachers will com based on interest Technology. Each student based 	presenting a research work effectively. The course pre- ne-tuning their scientific communication skills, oral as w Course Contents (Topics and subtopics) municate various research project topics to all the stud and facilities available and relevance to the area of Dy sed on his/her interest and merit selects the research t	dents vestuff	en. Req Ho	uired	
2. Sr. No.	 Develop skills for the students for fin Teachers will com based on interest Technology. Each student bas is allotted a super 	presenting a research work effectively. The course pre- ne-tuning their scientific communication skills, oral as w Course Contents (Topics and subtopics) municate various research project topics to all the stud and facilities available and relevance to the area of Dy sed on his/her interest and merit selects the research to visor.	dents vestuff topic and	en. Req Ho	uired ours	
2. Sr. No.	 Develop skills for the students for fin Teachers will com based on interest Technology. Each student bas is allotted a super - Review of literatu 	presenting a research work effectively. The course pre- ne-tuning their scientific communication skills, oral as w Course Contents (Topics and subtopics) municate various research project topics to all the stud and facilities available and relevance to the area of Dy sed on his/her interest and merit selects the research t	dents vestuff topic and	en. Req Ho	uired ours	

	- Oral presentation & written report of the seminar will be evaluated.	
	Total	60
	List of Textbooks/Reference Books	
1	Relevant research articles, patents, review articles, conference proceeding, book books	chapters and

	Course Outcomes (Students will be able to)
CO1	Develop critical thinking to identify the research gap for the project (K5)
CO2	Formulate a scientific question and approach to solve it (K6)
CO3	Plan the experimental methodology for the project (K5)
CO4	Develop skills to communicate the research plan effectively (K6)
CO5	Develop skills for writing a scientific document on the research work (K6)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+S	K3	K4
CO1	K5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	K6	3	3	3	3	3	3	3	3	3	3	2	3	3	1
CO3	K5	3	2	3	3	3	3	3	1	3	3	3	3	3	3
CO4	K6	3	3	3	3	3	2	3	3	3	0	3	3	2	3
CO5	K6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Course	K6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0- No Contribution

K, knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

Semester VIII

B.TECH CURRICULUM | Department of Dyestuff Technology, ICT Mumbai

	Course Code:	Course Title:	Cr	edit	s = 3
	CET1504	Chemical Project Engineering and Economics	L	Т	Ρ
	Semester: VIII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
lateria	I and Energy Baland	ce Calculations, Equip Design and Drawing I, Energy Engineering, Indu	Istria	al	
ingine	ering Chemistry				
		List of Courses where this course will be prerequisite			
lome F	Papers I and II				
		Description of relevance of this course in the B Tech. Program			
his co	urse is required for t	the future professional career.			
Sr. No.		Course Contents (Topics and Subtopics)		equ Hou	ired Irs
1	currency fluctuation Design' including the and maintainability	e green field projects and global nature of the projects Impact of ons on Project justification and cash flows Concepts of 'Quality by typical design deliverables Understanding constructability, operability y during all stages of project execution et Engineering, various stages of project implementation		6	
2	Relationship betw Analysis. Elements of cost of Meaning of Admin Introduction to var	veen price of a product and project cost and cost of production, EV of production, monitoring of the same in a plant histrative expenses, sales expenses, etc. rious components of project cost and their estimation Introduction to n, location index and their use in estimating plant and machinery cost		8	
4	source of finance, Concept of interes system based on t Depreciation conc	debt:equity ratio, promoters, contributors, shareholders contribution, time value of money st, time value of money, selection of various alternative equipment or this concept, Indian norms, EMI calculations cept, Indian norms and their utility in estimate of working results of apital concept and its relevance to project		7	
5	operating profit, p evaluation: Cumu	ing results of proposed project. Capacity utilization, Gross profit, profit before tax, Corporate tax, dividend, Net cash accruals. Project lative cash flow analysis Break-Even analysis, incremental analysis, lysis, Discounted cash flow analysis		7	
6	Process Selection	, Site Selection, Feasibility Report		4	
7	Project: Concep conglomeration of Meaning, contents and Construction (EPCM).Mergers a	tion to Commissioning: milestones, Project execution as f technical and nontechnical activities, contractual details. Contract: s, Types of contract. Lump- sum Turnkey (LSTK),Eng, Procurement on(EPC),Eng, Procurement and Construction Management and Acquisitions		6	
8	Reading of balance reports	e sheets and evaluation of techno-commercial project		3	
9		harts and network diagrams		4	
	, ,	Total		45	
		List of Text Books/ Reference Books			
1	Chemical Project	Economics,MahajaniV.V.andMokashi SM.			
2		Economics for Chemical Engineers,Peters M.S.,TimmerhausK.D.			
3	•	I Equipment Cost Estimation, Kharbanda O.P.			
		Course Outcomes (students will be able to)			
CO1	calculate working	capital requirement for a given project (K3)			
CO2	-	quipment used in a plant total project cost (K3)			
CO3		w from a given project (K3)			
CO4		e project from given alternatives (K4)			
CO4		estones related to project concept to commissioning (K2)			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K3	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	K3	3	3	2	2	2	3	3	3	3	3	2	2	2	3
CO3	K3	3	3	1	0	2	3	1	3	3	3	3	2	3	2
CO4	K4	3	3	2	3	2	2	3	3	3	3	3	2	3	3
CO5	K2	3	2	1	2	1	3	3	3	3	0	3	1	3	2
Course	K4	3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 4						
	DYT 1106	Case Studies in Dyestuff Technology	L	Т	Ρ						
	Semester: VIII	Total Contact Hours: 60	3	1	0						
		List of Prerequisite Courses									
All the		taught in the previous semesters									
		t of Courses where this course will be prerequisite									
All the		gy special courses									
	-	tion of relevance of this course in the B. Tech. Program									
		duced to several practical aspects of the synthesis of dyestuff i									
		nents in the industry and the problem statements along with the	e solu	ution	will						
be dise	cussed.		1								
		Course Contents (Topics and Subtopics)		equir Iour:							
	Practical Aspects	s of Nitration: The concentration of mixed acids, Importance of									
1	DVS Ratio, thum	b rules for the commercial calculations of batches, Material of		10							
	construction and	its life cycle									
	Reduction in the	e dyestuff industry: Reagents used for reduction, Reaction									
2	conditions for diff	ferent reagents, Comparisons of operating different reagents	10								
2	at industrial scale, Material of construction, shop-floor practices and safety										
	measures										
	Case studies of	the synthesis of Bromamine Acid, Synthesis of Bromamine									
3		scale and plant scale, Bromination commercial aspect,	10								
U		nthraquinones, Material of construction and safety protocols		10							
		e and strong acids.									
4	• •	and material of construction, calculations for heat capacities		10							
•		alculations and estimation of payback period for projects									
_	-	poratory scale set up and scale up, ammonia generation and									
5		safety protocols for ammonolysis, industrial thumb rules for		10							
	the ammonolysis										
		nisms for all the processes described and their relevance in									
		ters for arriving at the process. Physical Organic Chemistry.									
		modynamics and Kinetics.									
		es during Process Design and Project implementation									
		practices followed with safety and hazop.									
6		nent.norms standard processes and practice.		10							
	6) Price of Reage										
	7) Interdependence of all the parameters employed8) Marketing and pricing.										
		how to decide which parameters are important									
		employed and its relevance with Development in other fields									
	like Analysis, Ma	like Analysis, Material availability, Engineering progress , Locational factors.									

	Total	60
	List of Textbooks/Reference Books	
1	BIOS Reports	
2	FIAT Reports	
3	CIOS Reports	
4	Organic Synthesis Collective Volumes I-V	
5	Shreve's Chemical Process Industries by George T Austin	
6	Unit Processes in Organic Synthesis by Philip Groggins	
7	Chemical, Biochemical, and Engineering Thermodynamics by Stanley I Sandler	
8	Marchs Advanced Organic Chemistry by Jerry March	
	Course Outcomes (Students will be able to)	
CO1	Correlate industry-oriented situations for synthesis or isolation of intermediates	(K2)
CO2	Understand practical aspects of selection of suitable methods and isolation tech	niques (K2)
CO3	Realize the utility of the theoretical concepts in the practical situations (K2)	
CO4	Formulate strategies to solve the practical problem (K4)	
CO5	Assess the problem component and come up with a rational solution (<5)

		Мар	oing c	of Cou	rse O	utcom	nes (C	Os) w	ith Pro	ogram	ime Ou	tcome	s (POs)		
		P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	3	3	2	3	3	2	3	2	0	1	2	0	3	3
CO2	K2	3	3	3	3	3	2	3	2	0	1	2	0	3	3
CO3	K2	2	3	3	3	3	3	3	2	2	1	2	2	3	3
CO4	K4	3	3	3	3	3	3	3	2	2	3	3	3	3	3
CO5	K5	3	3	3	3	3	3	3	2	2	3	3	3	3	3
Cour se	K5	3	3	3	3	3	3	3	2	2	3	3	3	3	3

	Course Code:	Courses Titles Technology of Incorporate Disproved	Cre	dits	= 3
	DYT 1108	Course Title: Technology of Inorganic Pigments	anic p heir p	Т	Ρ
	Semester: VIII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
HSC (
	List	of Courses where this course will be prerequisite			
All dye	estuff technology co	Durses			
	Descript	ion of relevance of this course in the B. Tech. Program			
To giv	e students the info	rmation on general properties of inorganic pigments.			
To ena	able students to gai	n knowledge on white, colored, black, and special effect inorga	anic p	igme	ents
that ar	re used in commerc	cial product.			
In add	lition, to make stude	ent understand the underlying properties of a pigment behind the	heir p	artic	ular
applica	ation.				
To en	able them to know	v the raw materials available for the production of pigments	s, me	thod	for
produ	ction, analysis and	handling, and related toxicology.			
		Course Contents (Tenies and Subtenies)	Re	quir	ed
		Course Contents (Topics and Subtopics)	ŀ	lour	s

Hours

	Introduction to inorganic pigment; Their classification, Fundamental aspects of	10
1	their chemical and physical properties; Introduction to general method of	
-	determination of inorganic pigment.	
	White Pigments based on Titanium Oxide, Zinc oxide, and Zinc Sulfide;	08
2	properties, production, raw materials, application in commercial products, and	
	toxicology	
3	Various colored pigments on metal oxides and hydroxides; synthesis,	10
	properties, uses and economic aspects	
	Natural source and commercial production of black pigments; Chemical and	10
4	Physical properties of black pigments; their application in Paints, Plastics, and	
	Printing inks; Detailed Safety issues and, Toxicology	
	Inorganic pigments with special properties for examples Magnetic pigment,	07
5	Luminescent pigments, Transparent pigments, Electroluminescent pigments,	
	Special effect pigments, etc.	
	Total	45
	List of Textbooks/Reference Books	
1	Industrial Inorganic Pigments Edited by G. Buxbaum and G. Pfaff, Wiley	VCH
	Course Outcomes (Students will be able to)	
CO1	Understand the physical and chemical properties of inorganic pigments (K2)	
CO2	understand underlying properties of white inorganic pigment for their a	pplication in
602	commercial product (K2)	
CO3	Know various colour pigments based on metal oxide and hydroxide (K2)	
CO4	Gain knowledge on properties, production, application of various inorganic bla	ack pigments
604	(K2)	
CO5	Conceptualize the idea on inorganic pigments that possess special properties (K2)
A		

	I	Mapp	ing of	f Cour	se Ou	Itcom	es (CC	Ds) wi	th Pro	gram	me Out	comes	(POs)		
		Р О 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	1	1	0	1	1	1	1	0	0	0	3	0	3	2
CO2	K2	3	3	1	1	1	3	2	0	0	0	3	0	3	2
CO3	K2	2	2	3	2	1	3	2	0	0	0	3	1	2	3
CO4	K2	2	2	3	3	3	3	2	1	1	1	3	1	3	3
CO5	K2	3	3	3	3	2	3	2	1	1	1	3	1	3	3
Cours e	K2	3	3	3	3	3	3	2	1	1	1	3	1	3	3

	Course Code:	Course Title: Technology of exercic sigments	Cre	dits	= 3						
	DYT 1109	Course Title: Technology of organic pigments	Credits =	Ρ							
	Semester: VIII	Total Contact Hours: 45	2	1	0						
	List of Prerequisite Courses										
The s	tudent should have	e cleared B.Tech sixth semester from the Dyestuff Technology	Dep	epartment							
	Lis	t of Courses where this course will be prerequisite									
All dye	All dyestuff technology courses										
	Description of relevance of this course in the B. Tech. Program										
The fo	The following are the relevance of the course-										

- To have a clear idea about the basic differences between dyes and pigments
- To know about the concepts of various pigmentary properties
- Aware of the various classes of organic pigments and their synthetic routes
- Be familiar with the standardization techniques and finishing treatments of organic pigments

1	Course Contents (Topics and Subtopics) ntroduction to pigments, colour and physical constitution, optical properties of igments, crystalline modifications and other basic properties	Required Hours
1		10
. pi	• • •	10
2 pht pig	nemistry – Lake pigments, condensation pigments, arylide pigments, copper athalocyanine, benzimidazolone pigments, vat pigments, quinacridone gments. echnology – manufacture of some of the above pigments	10
pig 3 pei qui	gh performance pigments, dioxazine pigments, diketopyrrolopyrrole gments, erylene pigments and other condensed heterocyclic pigments, ninophthalone gments, azamethine pigments, thiazine pigments	10
4 He	eterocyclic analogues of conventional pigments, luminescent pigments	5
5	gment finishing and standardisation. Newer Technologies of pigment ocessing. Latent Pigment Technology. Pigment Flush.	5
6 7	gments in organo electronics and other modern applications. Pigments for inting inks, ink jet printing and other applications.	5
	Total	45
	List of Textbooks/Reference Books	
1 Ch	nemistry of Synthetic Dyes – Vol II, Venkataraman K., Academic Press, New Y	York, 1952
2 K.,	dustrial Organic Pigments – Production, Properties, Applications, Herbst W., VCH Verlag, Weinheim, 1997.	and Hunger
3 Hig	gh Performance Pigments, Smith H. M.	
	Course Outcomes (Students will be able to)	
	fferentiate between dyes and pigments (K2)	
ble	onceptualize the basic pigmentary properties like hue, tinctorial strength beeding, stability, optical properties, polymorphism, etc. (K2)	n, blooming,
	assify the pigments based on chemical constitution and color (K3)	
	orrelate and predict various application properties of pigments (K3)	
CO5 Gra	rasp the standardization and after treatment methods of pigments (K3)	

	I	Napp	ing of	f Cour	se Ou	Itcom	es (CC	Ds) wi	th Pro	gram	me Out	comes	(POs)		
		Р О 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	2	3	2	2	1	3	1	2	1	1	3	1	3	3
CO2	K2	2	3	2	3	2	2	2	2	1	1	3	1	3	3
CO3	K3	3	2	2	3	2	2	2	2	1	1	2	1	2	2
CO4	K3	3	3	3	2	2	3	3	3	1	1	3	2	3	2
CO5	K3	3	3	2	3	2	3	2	3	1	1	3	1	3	2
Cours e	K3	3	3	3	3	2	3	3	3	1	1	3	2	3	3

	Course Code:	Course Title:	Cre	dits	= 3
		Pre-approved Open Electives from MOOCs / NPTEL	L	Т	Ρ
	Semester: VIII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
		-			
	Lis	t of Courses where this course will be prerequisite			
		-			
	Descript	tion of relevance of this course in the B. Tech. Program			
	I	-			
		Course Contents (Topics and Subtopics)		equir Hour	
1		-		-	
2		-		-	
3		-		-	
4		-		-	
5		-		-	
		Total		45	
		List of Textbooks/Reference Books			
1		the course instructor			
		Course Outcomes (Students will be able to)			
CO1		the course instructor			
CO2		the course instructor			
CO3		the course instructor			
CO4	As prescribed by	the course instructor			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PO13		
CO1	CO1													
CO2	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO3	-	-	-	-	-	-	-	-	-	-	-	-	-	
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	

	Course Code: DYP	Course Title: Project -II	Credit	ts = 4	
	1008		L	Т	Р
	Semester: VII	Total contact hours: 120	0	0	8
		List of Prerequisite Courses			
	Project I (DYP 1007)				
	List of C	Courses where this course will be Prerequisite			
Rele	vant courses of Semester \	/11			
	Description of relevan	ce of this course in the B. Tech. (Dyestuff Tech.) I	Program	nme	
	-	te & solve a research problem in dyestuff technology nting a research outcome effectively			
Sr. No.	Cou	rse Contents (Topics and subtopics)		Requ Hou	
1	by scientifically planned r	with defined objectives and hypothesis should be ex ational experiments. Students should have actual ed on the chosen research topic.	plored	8	0

2	-Oral presentation of proposed research work with data generated during actual trial targeted towards the objectives -Submission of report of research proposal	40
	Total	120

	Course Outcomes (Students will be able to)
CO1	Perform experiments & troubleshoot to generate reliable data (K5)
CO2	Apply different statistical tools for scientific data analysis (K4)
CO3	Evaluate critically the experimental data and draw meaningful inferences (K5)
CO4	Develop skills to communicate the research outcome effectively (K6)
CO5	Develop skills for writing a complete document on the project work (K6)

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
		P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		K3	K4	K6	K5	K6	K3	K3+S	K3	K3+A	K2+A	K3	K6+A+P	K3	K4
CO1	K5	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	K4	3	3	2	3	2	3	3	3	2	3	3	2	3	3
CO3	K5	3	3	3	3	3	0	3	3	3	3	3	3	3	3
CO4	K6	3	3	3	3	3	3	1	3	3	3	3	2	3	3
CO5	K6	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Course	K6	3	3	3	3	3	3	3	3	3	3	3	3	3	3

	Course Code:	Course Title: Preparation, analysis and application of	Cre	dits	= 4					
	DYP 1009	dyes, optical brightners and functional colorants	L	Т	Ρ					
	Semester: VIII	Total Contact Hours: 120	0	0	8					
		List of Prerequisite Courses								
HSC ((Science)									
		t of Courses where this course will be prerequisite								
All dye	estuff technology c									
		tion of relevance of this course in the B. Tech. Program								
and th		ze the students with different dyes, optical brighteners, functio /nthesizing them, characterizing them as well as applying th functional dyes.								
		Course Contents (Topics and Subtopics)								
1	Nitroso N,N-dim Preparation of	lysis and application of some intermediates (Preparation of p- ethyl aniline Hydrochloride, Synthesis of Benzocoumarin, p-Amino acetanilide, Synthesis of para-dimethyl amino ynthesis of 1,2,4-Acid, Diaminostilbenedisolphonic acid)		40						
2	Indophenol blue, Xanthene dyes,	lysis and application of some dyes (Examples: Preparation of Synthesis of Acid Blue 40, Metal complex dyes, Synthesis of Preparation of dis azo dye, Synthesis of Azocoumarin f Malachite Green etc.)		40						
3		lysis and application of some optical brighteners (Preparation paration of DASDA, Preparation of triazine based optical		20						
4		nalysis and application of some functional colorants ration of coumarin based functional colorants)		20						
		Total		120						
		List of Textbooks/Reference Books								
1	Fundamental Pro	ocesses Of Dye Chemistry by Hans Eduard Fierz-David And L	ouis	Blan	gey					

	Course Outcomes (Students will be able to)
CO1	Design the synthetic route for the preparation of dyes and intermediates (K3)
CO2	Conduct experiments in the lab independently for the synthesis of dyes, intermediates and
002	optical brighteners (K3)
CO3	Execute the process with utmost efficiency and precession (K3)
CO4	Evaluate the purity, and characterize the products via instrumental methods (K5)
CO5	Apply of the synthesized products for diverse uses (K4)

	I	Mapp	ing of	f Cour	se Ou	Itcom	es (CC)s) wi	th Pro	gram	me Out	comes	(POs)		
		Р О 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K3	3	3	3	3	1	3	3	1	3	1	3	2	2	3
CO2	K3	3	3	3	3	3	3	2	0	3	1	3	2	3	2
CO3	K3	3	3	3	3	3	3	2	0	3	1	3	3	2	3
CO4	K5	3	2	2	3	3	2	1	2	3	1	3	1	2	2
CO5	K4	3	3	3	3	3	3	3	1	3	1	3	2	3	3
Cours e	K5	3	3	3	3	3	3	3	2	3	1	3	3	3	3

Annexure A

Institute Elective Offered by DYT

Semester VI (DYT1721)

	Course Code:	Course Title:	Cre	dits	= 3
	DYT 1721	Organic Reaction mechanism and reagent chemistry	L	Т	Ρ
	Semester: VI	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
HSC (Science)				
	Lis	t of Courses where this course will be prerequisite			
All che	emistry, chemical s	science and dyestuff technology related courses			
	Descript	tion of relevance of this course in the B. Tech. Program			
The st	tudents will be train	ned to write the reaction mechanisms of different chemical tra	nsfor	rmati	ons
as we	ll as the uses of se	everal reagents for functional group transformation will also be	discu	issed	Ι.
		Course Contents (Topics and Subtopics)		equir Iour	
1	Study of interme	ediates: Carbocations, carbanions, carbenes, nitrenes, free		10	
1	radicals their stat	bility, formation and reactions.			
	Discussion on m	nechanism of organic reactions and problem solving (class		20	
2	work as well ass	signment): Molecular rearrangements, cyclixsation reactions.			
2	Reagents used	in oxidation and reductions. C-C bond forming reactions,			
	palladium catalys	sed coupling reaction.			

3	Discussion and revision of concepts – substitution and elimination reactions, electrophilic and nucleophilic aromatic substitution reactions, free radical reaction.	8					
4	Neighbouring group participation; 1,2 and 1,4 addition to conjugated systems.	8					
	Total	45					
	List of Textbooks/Reference Books						
1	Organic Chemistry, Morrison R. T. and Boyd R. N.						
2	Mechanism and Theory in Organic Chemistry, Lowry T. H. and Richardson K. S	S., Harper					
2	and Row						
3	Fundamentals of Organic Reaction Mechanisms, Harris J. M. and Wamser C. C., John Wiley						
5	and Sons						
4	The Art of Writing Reasonable Organic Reaction Mechanisms, Grossman R. B.	, Springer					
	Course Outcomes (Students will be able to)						
CO1	Identify the classes of organic molecular structure. (K2)						
CO2	Design synthetic route of different organic molecules. (K3)						
CO3	Propose the retrosynthetic pathway of different organic molecules. (K3)						
CO4	Analyse the reaction mechanism (K4)						
CO5	Assess the best possible route for the synthesis (K3)						

	I	Mapp	ing o	f Cour	se Ou	Itcom	es (CC	Ds) wi	th Pro	gram	me Out	comes	(POs)		
		Р О 1	PO 2	PO 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	3	3	3	3	0	0	1	0	0	0	2	3	2	2
CO2	K3	3	3	3	3	1	1	1	1	1	1	3	3	2	3
CO3	K3	3	3	3	3	1	1	1	1	1	1	2	3	2	3
CO4	K4	3	3	3	3	2	2	1	2	1	1	2	3	2	3
CO5	K3	3	3	3	3	2	2	1	2	2	2	3	3	2	3
Cours e	K4	3	3	3	3	2	2	1	2	2	2	3	3	2	3

Annexure B Institute Elective Offered by DYT Semester VII (DYT1812)

	Course Code:	Course Title:	Cre	dits	= 3
	DYT 1812	Introduction to Green Chemistry	L	Т	Ρ
	Semester: VII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Indust	try visits for unit pro	cess study.			
	List	of Courses where this course will be prerequisite			
All co	urses relevant to ch	emical science and chemical engineering			
	Descript	ion of relevance of this course in the B. Tech. Program			
To int	roduce various exis	ting processes and technology of Dyes and pigment field to s	tudent	ts	

	Course Contents (Topics and Subtopics)	Required Hours
1	Philosophy of the environment, sustainable development and Green Chemistry, need of Green Chemistry, 12 principles of Green Chemistry, waste minimization and atom economy, atom economic and atom uneconomic reactions	10
2	Chemical practice and solvent usage, need for alternative solvents, water and renewable solvents, room temperature ionic liquids, applications of supercritical fluids and fluorous solvents, 'solvent free' chemistry	15
3	History of chemistry and Green Chemistry, emergence of green synthesis, dyes industry and Green Chemistry, reduction of energy requirement, reduction of risk and hazard.	10
4	Catalysis and Green Chemistry, heterogeneous catalysis, homogeneous catalysis, phase transfer catalysis, biocatalysis, photocatalysis	10
	Total	45
	List of Textbooks/Reference Books	
1	Solvent-free Organic Synthesis, Tanaka K., WILEY-VCH, Verlag, 2003.	
2	Green Solvents for Chemistry: Perspectives and Practice, Oxford University 2003.	Press, U.K.,
3	Green Chemistry: Theory and Practice, Anastas P. T. and Warner J. C., Oxfor Press, U.K., 1998.	ord University
4	Introduction to green Chemistry, Matlack A. S., Marcel Dekker, Inc., New York, 2	2001.
5	Green Chemistry: An Introductory Text, Lancaster M., Royal Society of Chemistry U.K., 2002	v, Cambridge,
	Course Outcomes (Students will be able to)	
CO1	Understand the Green aspects of chemistry (K2)	
CO2	<i>Utilize</i> and modify the processes to have green and better environmental prote (K3)	ective aspect.
CO3	Design Safer and healthy atmosphere building (K3)	
CO4	Analyze energy efficient chemical transformation (K4)	
CO5	Demonstrate the sustainable strategies for the chemical synthesis (K5)	

		Мар	oing c	of Cou	rse O	utcom	nes (C	Os) w	ith Pro	ogram	ime Ou	tcome	s (POs))	
		Р О 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	1	3	2	3	2	2	3	3	0	0	3	1	3	2
CO2	K3	3	3	3	3	3	3	3	2	2	1	2	2	3	2
CO3	K3	3	3	3	3	3	3	3	3	2	2	2	2	3	3
CO4	K4	3	3	3	3	3	3	3	3	2	2	3	3	2	3
CO5	K5	3	3	3	3	3	3	3	3	2	2	3	3	2	3
Cour se	K5	3	3	3	3	3	3	3	3	2	2	3	3	3	3

Annexure C

Programme Electives Offered by DYT Semester VIII (DYT1722 or DYT1208)

	Course Code:	Course Title:	Cre	dits	= 3
	(DYT 1722)	Computational colour chemistry	L	Т	Ρ
	Semester: VIII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Chemi (Sem I	•	Constitution of Colorants (Sem III) and Physics and Mathema	atics	cour	ses
	,	t of Courses where this course will be prerequisite			
All Dye	estuff and Intermed	diates Special Courses			
	Descript	tion of relevance of this course in the B. Tech. Program			
To ma chemis		derstand computational material science in general and compu	tatio	nal c	olor
To ma	ke them understar	nd the physical basis of color of organic molecules of industrial	impo	ortan	ce.
	-	te the early empirical theories of color and chemical constitution ight of quantum chemistry.	relat	ionsł	nips
	•	apacity to understand proper selection of computational rties of commercial important organic colorants.		•••	
		Course Contents (Topics and Subtopics)		equir Iour:	
1	and chemical c	putational material science. Early qualitative theories of color onstitution like theory of unsaturation, quinonoid theory. color as an outcome of interaction between electromagnetic tter.		04	
2	electron systems to polyene and	quantum mechanical concepts with special reference to one . Particle in one-dimensional box treatment and its application cyanine dyes. Particle in a ring, sphere and application in he application in the absorption spectra of aromatic		12	
3	Beer-Lambert la electromagnetic transition dipole r	radiation. Absorption cross section. Transition dipole and moment.		08	
4		ated with the many electron systems. Hartree-Fock formalism		08	
5	organic colorants	nical concepts relevant to the understanding of bonding in a. Resonance theory, valence bond descriptions. Bond Length d Order Alternation, Aromaticity and quantum mechanical pomaticity.		06	
6	Semiempirical m Interaction Single	nethods of calculation of absorption spectra. Configuration es. Hartree-Fock method in Time Dependent Domain. Density ry and its Time Dependent formalism.Post- HartreeFock		12	
				45	
		List of Textbooks/Reference Books			
1	J. Griffiths, Colou	ir and Constitution of Organic Molecules, Academic Press, Lor	ndon	(197	6)
2	J. Fabian, H. Har	tmann, Light Absorption of Organic Colorants, Springer-Verlag	, Bei	rlin 1	980
2		Computational Organic Chemistry, Wiley, 2014			

4	W.Koch, Chemist's guide to Density Functional Theory, Wiley-VCH, 2008
	Course Outcomes (Students will be able to)
CO1	understand the basics of color and chemical constitution (K2)
CO2	acquire basics of computational material science knowledge (K2)
CO3	analyze the various quantum mechanical tools to understand color of dyes (K2)
CO4	know the various methodologies in computational spectroscopy (K2)

	N	lappi	ng of	Cours	se Ou	tcome	s (CO	s) wit	h Pro	gramn	ne Out	comes	(POs)		
		P 0 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS 01	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	K3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	3	3	1	3	2	1	1	0	1	1	1	3	2	2
CO2	K2	3	3	1	3	2	1	1	0	1	1	1	3	2	3
CO3	K3	3	3	2	3	2	2	1	1	1	1	2	3	3	2
CO4	K2	3	3	2	3	2	2	1	1	1	1	1	3	3	3
Course	K2	3	3	2	3	2	2	1	1	1	1	2	3	3	3

	Course Code:	Course Title: Chemistry and Technology of	Cre	dits	= 3
	(DYT 1208)	Agrochemicals	L	Т	Ρ
	Semester: VIII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
HSC (, ,	nic chemistry I and II			
	List	t of Courses where this course will be prerequisite			
All Sp	eciality chemicals of	course			
	-	ion of relevance of this course in the B. Tech. Program			
	•	ntroduction to the concepts of crop protecting chemicals, their of	class	ificat	ion,
formul	ation, design strate	egy, modes of action and synthetic schemes.	I		
		Course Contents (Topics and Subtopics)		equir Hours	
1	agrochemicals. C to target species health pests/Agri pests etc. Toxic species etc.). Ca	duction: Definition, importance & classification of Classification of pesticides on chemical nature and according a, mode of action. Classification of insects and pests-Public cultural pests/Domestic pests/Animal husbandry pests/Plant ity (acute and chronic toxicity in mammals, birds, aquatic uses of outbreak of pest growth & development. Insect pest memistry- Principle and practices.		10	
2	definition, object formulation code Precautions in the of physical prop stability, wet sie Specific gravity, Regulations and products. Pestici	ulations, Techniques and Analysis- General aspects: inves, process, purpose, product spectrum, classification, es etc. Equipment used in preparation of formulations. e use of pesticides. A brief introduction on methods of analysis erties of formulations- Suspensibility, wettability, Emulsion eve test, acidity, alkalinity, moisture content, Flash Point, Persistent foaming, water runoff test, dry sieve test etc. Quality- Brief introduction on the packaging of pesticide de application techniques and devices used – Dusters and of nozzles etc. Calculation of amount of formulation required on.		10	

3	Pesticides Synthesis and Manufacturing Technology - Retrosynthesis of Agrochemicals. Following classes of pesticides are to be studied - Hydrocarbons, Halogenated hydrocarbons, carboxylic acids, phenols, amines, amides, aryloxycarboxylic acids, organophosphorous, heteroaromatic pesticides etc. Important reactions namely Michaelis-Arbuzov reaction, Perkow reaction, Thiono-thiolo rearrangement involved in the preparation, properties of important pesticides Pesticides and Environmental Risk Assessment : Movement, Degradation and Metabolism of Pesticides-Theory Movement and fate of pesticides in environmental components like soil, air, water, flora and fauna, and other non-target organisms. Fate and adverse effects of pesticides on them. Decontamination of pesticides through physical, chemical, photochemical, microbial, enzymatic and biotechnological techniques. Ground water decontamination; Movement in plant, animal and other living systems: Penetration, translocation, excretion etc. Persistence – factors affecting (physical, chemical, biochemical etc.), primary and secondary metabolites in plants and animals with examples. Different methods of pesticide disposal (physical, chemical, incineration and soil treatment). Disposal of industrial effluents and related xenobiotics.	10
4	Pesticidal Residue Analysis and analytical Techniques in Pesticide Chemistry - Application of analytical techniques for residue analysis such as spectrophotometry, chromatography including GC, HPLC, GC-MS, LCMS and ELISA etc.	10
5	Recent advances in pest control: Green Chemistry in pesticides- insect attractants, chemosterilents and repellents, mode of action and Applications. Tactics and strategies of Integrated Pest Management. Management of insects and diseases in stored agricultural commodities, side effects of applications etc.	5
	Total	45
	List of Textbooks/Reference Books	
1	N. N. Melnikov: Chemistry of Pesticides (English) Springer.	
2	M. B. Green, G. S. Hartley, T. F. West, Chemical for Crop Improveme Management (Pergamon)	nt and Pest
3	H. B. Scher: Advances in pesticides formulation Technology. ACS, NO.254.	
4	W. Valukenburg : Pesticide formulations (Dekker).	
5	H. A. Moye: Analysis of pesticide residues	
	Course Outcomes (Students will be able to)	
CO1	Define and state different terminologies related to agrochemicals (K2)	
CO2	Describe and explain the general requirements for pesticides design, their techniques, application procedures and residue analysis (K2)	r formulation
CO3	Differentiate agrochemicals based on application and chemical constitution (K2)
CO4	Outline the synthesis of various commercially important pesticides (K2)	,
CO5	Illustrate the potential environmental risk and involvement of green chemis management strategies in agrochemistry(K2)	try and pest
	management strategies in agrochemistry(K2)	

	N	lappi	ng of	Cours	se Out	tcome	s (CO	s) wit	h Prog	gramn	ne Outo	comes	(POs)		
		P 0 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2
		K3	K4	K6	K5	K6	K3	K3 +S	К3	K3 +A	K2+ A	K3	K6+ A+P	K3	K4
CO1	K2	2	2	2	2	2	2	3	1	0	0	2	0	2	2
CO2	K2	3	3	3	3	3	3	3	1	0	0	3	1	2	2

CO3	K2	2	2	2	3	2	2	3	2	1	0	3	1	3	3
CO4	K2	2	3	3	3	3	3	3	3	2	2	3	2	2	3
CO5	K2	3	3	3	3	3	3	3	3	3	3	3	3	2	2
Course	K2	3	3	3	3	3	3	3	3	3	3	3	3	3	3

INSTITUTE OF CHEMICAL TECHNOLOGY

Degree of Bachelor of Technology in Dyestuff Technology (B. Tech- Dyestuff Technology) Syllabus

The institute revamped the syllabi of various courses in 2009. All the courses are credit based and the evaluations are grade based. The credit system is a systematic way of describing an educational programme by attaching credits to its components. The definition

of credits is based on student workload, learning outcomes and contact hours. It is a studentcentric system based on the student workload required to achieve the objectives of

a programme. Each theory course consists of lectures and tutorials. During tutorial sessions it is expected that the problem solving / case studies / relevant real life applications / student presentations / home assignments / individual or group projects are discussed in presence of the teacher. Teacher can have the freedom to interchange lectures / tutorials depending upon the need. Each laboratory course consists of practical hours and/or extra lecture hours depending upon the need. The institute gives emphasis on continuous evaluation with considerable freedom to the teacher in deciding the mode of evaluation of the students. It is desirable to revise the syllabi of various courses every 5 - 6 years. Accordingly, the B. Tech (Dyestuff Technology) syllabus was revised in. The revised syllabus came into effect for first year students from the academic year, commencing July 2015. The Bachelor of Technology is a four year program, after 12^{th} grade. The structure consists of subjects common to all branches, and includes basic sciences, engineering and some humanities and management components. In this document, the Department of Dyestuff Technology,

Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 1 of 100 structure of the syllabus divided into 8 semesters (including the evaluations and related information), is followed by the detailed syllabus for special subjects, within the dyestuff

technology domain. There were several motivations for the syllabus revision:

- Syllabus to be benchmarked with respect to other institutions
- Program objectives to be defined for the course
- Course objectives to be defined for each subject
- Map showing how the course objectives meet the program objectives
- Map showing the linkage between different courses
- AICTE / NBA accreditation guidelines requirement

So far, the intake of B. Tech (Dyestuff Technology) was based on two different qualifying examinations: AIEEE and MHCET. From the academic year 2014, all the incoming students will be coming through a qualifying criterion based on combination of JEE-Main and state board examinations.

Syllabi of Bachelor of chemical engineering and chemical technology courses of various universities and institutions around the world, MIT, UCB, UCSB, UMN, UWM, RMIT, IITB, IITKGP, IITG, etc. was analyzed to identify the weightages given to different components in the syllabus. A summary of this analysis is as follows:

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 2 of 100

Subject	% of the total credits in different
	universities
Physics	2.0-7.5
Chemistry	2.8-15.9
Mathematics	8.1-17.4
Biology	1.5-4.5
Communication Skills	1.5-3.8
Humanities and Management	2.1-12.6
General Engineering	1.5-10.8
Core Chemical Engineering/Core Technology	36.1-57.6
Electives	4.6-16.5

Feedback about the course contents as well as overall structure was taken from various experts (alumni as well as others), who are working in the areas of chemical Engineering and technology and especially in the dyestuff and pigment industry from industry and academic Institutions. These experts were from diverse backgrounds (R&D, production, design, consultancy, engineering, technology, etc. Some of the salient points of the feedback are:

ICT students have excellent background in chemistry, industrial aptitude, and core chemical engineering subjects.

- Analytical abilities and mathematical aptitude needs to be further strengthened
- Students need to be exposed to newer and emerging areas in chemical engineering and technology, such as, nanotechnology, biotechnology, product design, sustainability, energy engineering, etc.
- Industry relevant applications, such as, chemical process safety, scale-up, engineering standards and codes, P&ID, etc. need to be covered

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 3 of 100

- Students need to be exposed to standard commonly used softwares, such as, MATLAB, ASPEN, etc.
- Syllabus needs to have more electives and flexibility for student to choose courses as per liking, electives can be grouped to form one area of expertise
- Communication skills, interpersonal skills, and team work need to be strengthened
- Knowledge in management related subjects needs to be enhanced; e.g. finance, human resource, IP, etc.

The weightages of different modes of assessments shall be as under:

1.15	In-Semester	Evaluation	17	
Sec. Var	Continuous	One Mid	End	12/10
11	Assessment	Semester	Semester	Possible components of
	(C.A)	Examination	Examination	continuous assessment
		(M.S)	(E.S)	3/
Theory Subject	20%	30%	50%	Quizzes, online tests, class tests (open or closed book), home assignments, group assignments, viva- voce, group projects and assignments, etc.
Practicals	50%	-	50%	Attendance, VIVA-VOCE, journal, assignments, project, experiments, tests, etc.

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 4 of 100

Students' Evaluations

(a) It is expected that the teacher would conduct at least two assessments as a part of continuous assessment in a semester

(b) The teacher will announce at the beginning of the respective course the method of conducting the tests under the continuous assessment mode and the assignment of marks for various components of continuous assessment

(c) In-semester performance of all students should be displayed and sent to the academic office by the teacher at least 15 days before the end-semester examination.

(d) For the theory courses, two mid-semester tests for each course will be held as per the schedule fixed in the Academic Calendar.

(e) A mid-semester examination of 30 marks will be conducted for 2 hour duration. A mid semester examination of 15 marks will be conducted for 1 hour duration.

(f) The end semester examination will cover the full syllabus of the course and will be conducted as per the institutional time table at the end of each semester.

(g) An end semester examination of 50 marks will be conducted for 3 hours duration. An end semester examination of 25 marks will be conducted for 2 hours duration.

Detailed discussions were conducted by the syllabus revision committee of the department and the following Programme Education Objectives (PEO), Programme Outcomes (PO) and Graduate Attributes (GA) were decided. The syllabus revision was carried out in view of the following PEO, PO and GA:

Program Education Outcomes (PEOs)

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 5 of 100

Sr. No.	Programm Education Outcomes
	Our graduates are expected to think critically, creatively and apply the fundamentals of chemistry, applied technology and engineering to chemical and
1	allied industries, especially the dyestuff industry, for the benefit of country in general, economy, society and environment in particular.
2	Our graduates are expected to adopt to evolving technologies and stay in tune with current needs of the country and society
3	Our graduates are expected to work for implementation of new technologies for the benefit of mankind in general, economy, society & environment in particular
4	Our graduates are expected to be innovative and have good entrepreneurship, communication, interpersonal and managerial skills

PEO's for Dyestuff Technology (B.Tech) courses are as follows:

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 6 of 100

Program Outcomes (PO's)

PO's for Dyestuff Technology (B.Tech) courses are as follows

Sr. No.	Graduate Attribute	Programme Outcomes (POs)
1	Engineering knowledge	The graduates will be able to apply knowledge of basic
		sciences (Mathematics, Physics, Chemistry and Biology) and
		engineering courses in getting solutions to issues pertaining to
		chemical and allied industries.
2	Problem analysis	The graduates should be able to systematically break up
		complex problems in realizable steps and solve them.
3	Design & Development of Solutions	The graduates will be able to design a system or a component
		of a system or provide an engineering solution for a specific
		task within realistic constraints
4	Investigation of Problem	The graduates will be able to design and conduct experiments
		as well as analyze and interpret data.
		The graduates should be able to systematically break up
		complex problems in realizable steps and solve them.
5	Modern tools usage	The graduate will be able to use modern tools, softwares,
		equipment etc. to analyze and obtain solution to the problems
		The graduates will be able to study the impact of process

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 7 of 100

		industry on the global, economic, and societal context
7	Environment & sustainability	The graduates should practice their profession considering environmental protection and sustainability
8	Ethics	Graduates are expected to practice professional skills in an ethical manner
9	Individual & team work	The graduates should have competence to undertake designated task on individual or team basis as per the requirement.
10	Communication	The graduates will be able to communicate effectively their points of view
11	Lifelong learning	The graduates will acquire attitude for life- long learning
12	Project management & finance	The graduates should actively participate in project and financial management

askerning aver-

Sr. No.		Programme Specific Outcomes (PO's)
13	Specialization in dye synthesis, analyses, applications and knowledge of dyeing techniques	Our graduates are totally in tune with the current needs of the dyestuff industry and have considerable problem solving acumen.
14	Core organic chemistry, technology development and implementation	Our graduates have a strong foundation in chemistry, and thus combined with their engineering skills are independently able to develop new dyestuff and allied chemical industry related technologies and successfully implement them at an industrial scale

Programme Specific Outcomes for Dyestuff Technology(PO's)

GHEMICA

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 9 of 100

Syllabus Structure for B.Tech (Dyestuff Technology) Course

23

HEMICA

No.	Subjects	Hours/week (L + T)	Marks	Credits
MAT 1101	Applied Mathematics-I	2+2	100	4
PYT 1101	Applied Physics-I	3+1	100	4
CHT 1401	Analytical Chemistry	2+1	50	3
CHT 1432	Physical Chemistry	2+1	50	3
	TOTAL	14	300	14
GEP 1101	Engineering Graphics-I	8	100	4
CHP 1343	Physical and analytical chemistry laboratory	4	50	2
HUP 1104	Communication Skills	4	50	2
	Total Practical	16	200	8
		30	500	22

Semester I

Semester II

No.	Subjects	Hours/week (L + T)	Marks	Credits
CHT 1132	Organic Chemistry	3+1	100	4

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 10 of 100

CHT 1342	Physical Chemistry-II	2+1	50	3
CET 1507	Process Calculations	2+2	100	4
MAT 1102	Applied Mathematics-II	2+2	100	4
PYT 1103	Applied Physics-II	2+1	50	3
	TOTAL	18	400	18
CHP 1132	Organic Chemistry Laboratory	4	50	2
PYP 1101	Physics Laboratory	4	50	2
	Total Practicals	8	100	4
	1.12	26	500	22
1.	Semester II			

dis EMICAL

Semester III

Semester III					
No.	Subjects	Hours/week (L + T)	Marks	Credits	
DYT 1101	Technology of Intermediates	3+1	100	4	
OLT 1102	Chemistry of Oleochemicals and Surfactants	3+1	100	4	
DYT 1202	Chemical and Physical Constituents of Colorants	2+1	50	3	
CHT 1136	Aromatic and Heteroaromatic Chemistry	3+1	100	4	
	TOTAL THEORY	19	450	19	
DYP 1001	Analysis of Inorganic Raw Materials used in Dyestuff Industry		50	2	
MAP 1202	Computer Applications Lab	4	50	2	

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 11 of 100

	TOTAL PRACTICAL	8	100	4
	Total	27	550	23
16	Semester	V	VO	
No.	Subjects	Hours/week (L + T)	Marks	Credits
GET 1116	Engg. Mechanics and Strength of Materials	3+1	100	4
PYT 1202	Colour Physics and Colour Harmony	2+1	50	3
CET 1105	Transport Phenomena	3+1	100	4
GET 1105	Basic Electrical Engg and Electronics	2+1	50	3
DYT 1102	Technology of Intermediates II	3+1	100	4
	TOTAL THEORY	18	400	18
GEP 1106	Electrical Engg and Electronics Lab	4	50	2
PYP 1203	Colour Physics Lab	4	50	2
	TOTAL PRACTICAL	8	100	4
	Total	26	500	22

Semester V

No.	Subjects	Hours/week (L + T)	Marks	Credits
CET 1401	Chemical Engineering Operations	2+1	50	3
CET 1212	Chemical Reaction Engineering	2+1	50	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 12 of 100

DYT 1103	Technology of Azo colorants	3+1	100	4
DYT 1104	Technology of Quinonoid colorants	3+1	100	4
TXT 1215	Technology of dyeing and printing	3+1	100	4
	TOTAL THEORY	18	400	18
DYP 1002	Analysis of intermediates, dyes and fibers	8	100	4
DYP 1003	Experimental Dyeing	4	50	2
	TOTAL PRACTICAL	12	150	6
	Total	30	550	24

SHE MICAL

Semester VI

No.	Subjects	Hours/week (L + T)	Marks	Credits
DYT 1203	Fluorescent Colorants	3+1	100	4
DYT 1204	Heterocyclic intermediates and colorants	2+1	50	3
HUT 1103	Industrial Psychology and Human Resource Management	2+1	50	3
HUT 1104	Industrial Management	3+1	50	3
HUT 1106	Environmental Science and Technology	2+1	50	3
	Elective- I	2+1	50	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 13 of 100

	TOTAL THEORY	20	350	19
DYP 1004	Preparation of intermediates and dyes	8	100	4
TXP 1013	Wet processing of textiles	4	50	2
DYP 1005	Process and plant design	4	50	2
	TOTAL PRACTICAL	16	200	8
	Total	36	550	27

attellic

Elective 1- Chemistry and Technology of Specialty organic intermediates and fine chemicals (DYT 1531) OR Career options and literature survey (DYP 1611)

No.	Subjects	Hours/week (L + T)	Marks	Credits
CET 1703	Chemical Process Control	2+1	50	3
DYT 1105	Technology of cationic and sulfur colorants	3+1	100	4
DYT 1206	Structural Elucidation of organic compounds	2+1	50	3
	Elective-II	2+1	50	3
HUT 1105	Industrial Management-II	2+1	50	3
MAT 1106	Design and Analysis of Experiments	2+1	50	3
	TOTAL THEORY	19	350	19
CEP 1714	Chem. Eng. Laboratory	4	50	2

Semester VII (Will be of 10 weeks duration)

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 14 of 100

DYP 1006	Seminar	4	50	2
DYP 1007	Project I	8	100	4
DYP 1012	In-Plant Training		50	3
	TOTAL PRACTICAL	16	250	11
	Total	34	600	30

GIBIEMICAL

Semester VIII

112	Semester V	/111		
No.	Subjects	Hours/week (L + T)	Marks	Credits
CET 1504	Project Engineering and Economics	2+1	50	3
DYT 1106	Case Studies in dyestuff industries	2+1	50	3
DYT 1205	Functional application of organic colorants	2+1	50	3
DYT 1107	Technology of pigments	2+1	100	4
HUT 1107	Value Education	2+1	50	3
	Elective-III	2+1	50	3
	TOTAL THEORY	21	350	19
DYP 1008	Project II	8	100	4
DYP 1009	Preparation, analysis and application of Dyes, optical brighteners and functional colorants	8	100	4
	TOTAL PRACTICAL	16	200	8

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 15 of 100

	Total	37	550	27
--	-------	----	-----	----

ALC: NICON

Elective II- Reaction mechanism and reagent chemistry (DYT 1721) OR Computational colour chemistry

Elective III- Introduction to green chemistry (DYT 1812) OR Chemistry and Technology of Inorganic Pigments (DYT 1711)

Semester I

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 16 of 100

	Course Code: CHT1341		Course Title: Physical Chemistry I	Cree	dits = 4	
				L	T	Р
	Semester: III	145-58	Total contact hours: 60	3	1	0
)	List of Prerequi	site Courses	5	3	
	HSC (Science)			T.		
		List of Cou	rses where this course will be prerequisite		5	
		92			9	
		Description of releva	ance of this course in the B. Tech. (Dyes) Progra	mme	2	1
	I	and the second se			-	
The co of exp	erimental parameters on phase ar	understand chemical and nd chemical equilbria	phase equilibria , direction of spontaneity and cal		on of equ	
The co of exp	erimental parameters on phase ar	understand chemical and	phase equilibria , direction of spontaneity and cal		on of equ	uilibrium compositions, effec Reqd. hours
The co of exp	course C	understand chemical and nd chemical equiibria ontents (Topics and sub	phase equilibria , direction of spontaneity and cal		on of equ	
of exp	erimental parameters on phase an Course Course Cour	understand chemical and nd chemical equilibria contents (Topics and sub- c systems , work , heat ar	phase equilibria , direction of spontaneity and cal		on of equ	Reqd. hours
of exp	erimental parameters on phase an Course C Introduction- Thermodynamics First law of thermodynamics - states Second and third laws of ther	understand chemical and nd chemical equilibria contents (Topics and sub- c systems , work , heat ar – Enthalpy and heat capa modynamics Statemen	phase equilibria , direction of spontaneity and cal topics) nd energy, state and path functions		on of equ	Reqd. hours

dis EMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 17 of 100

equlibria Gibbs Phase rule, equilibrium between phases Gibbs enegy and phase transitions, ication of phase transitions, , one component systems – phase diagrams, Clausius- Clapeyron ion, Henry's law and Raoult's law, solubility and extraction	5
nd three component systems – liquid- liquid and liquid vapour systemspressure -composition emperature- composition phase diagrams, solidliquid phase diagrams , three component phase ms, colligative properties	5
ochemistry – thermodynamics of electrochemical systemselectrochemical cells, determination of ode potentials, types of electrochemical cells, activity and activity coefficients, theory of iation of electrolytes, ionic equlibria	8
List of Text Books/ Reference Books	1
al chemistry – Robert G Mortimer – Elsevier publications	1
chemical thermodynamics- E. Brian smith – Oxford University press	0
uction to Chemical Engineering Thermodynamics- J.M.smith , Van Ness	1
ical nad Engineering th <mark>ermodyna</mark> mics – Milo Koretsky, Wiley publications	
rule and its applications-Alexander Findlay, Dover publications	

Semester I															
СО	Statement	1	2	3	4	5	6	7	8	6	10	11	12	11	22
		PO	PO	PO	0 d	PO	PO	PO	PO	PO	РО	РО	Ы	PSC	PSC

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 18 of 100

<u>601</u>	comprehend the laws of thermodynamics and related concepts and to explain the														
CO1	molecular basis for the same (K2)	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	apply the concepts of partial molar quantities to explain the behaviour of pure														
02	substances and solutions (K3)	3	3	2	2	2	3	1	3	0	3	2	2	2	3
CO3	apply principles of phase equilibria in two- and three-component systems (K3)	3	3	1	2	2	0	3	3	2	3	3	2	3	3
604	elucidate the effect of thermodynamic quantities on chemical equilibria and relate														
CO4	it to properties of chemical systems (K2)	2	2	0	2	0	3	3	3	3	3	3	1	2	2
CO5	Able to solve complex physical chemistry problems	2	2	2	2	2	2	2	2	1	1	1	1	2	2
CHT1341	1862231	3	3	2	2	2	3	3	3	3	3	3	2	3	3
						55									
							10								

GHEMICA

Course Title: Analytical chemistry	Cre	dits = 🗄	3	
31.5 10 17 1 17	F	т	11.	Р
Total contact hours: 45	2	1	1.	0
Prerequisite Courses	1	3	1.7	
D.		7.		
st of Courses where this course will be prerequisite	1			
ical Chemistry Laboratory	1			
of relevance of this course in the B. Tech. (Dyes) Progr	amme			
	Total contact hours: 45 Prerequisite Courses st of Courses where this course will be prerequisite cical Chemistry Laboratory	Total contact hours: 45 Prerequisite Courses st of Courses where this course will be prerequisite ical Chemistry Laboratory	L T Total contact hours: 45 2 Prerequisite Courses st of Courses where this course will be prerequisite sical Chemistry Laboratory	L T Total contact hours: 45 2 1 Prerequisite Courses st of Courses where this course will be prerequisite ical Chemistry Laboratory

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 19 of 100

	Course Contents (Topics and subtopics)	Reqd. hours
-	Introduction – Analytical procedures- hazards and handling, treatment of waste, good laboratory practices	4
2	Aspects of analysis- errors – systematic and random errors, statistical treatment of experimental results, least square method, correlation coefficients Sampling – basics and procedures, preparation of	5
5	Applied analysis – analytical procedures in environmental monitoring, water, soil and air quality, BOD and COD determinations,	5
-	Instrumental methods – Criteria for selecting instrumental methods - precision, sensitivity, selectivity, and detection limit, transducers, sensors and detectors, signals and noise	4
5 ^I	Molecular spectral methods – Uv-visible, molecular fluorescence, IR and FT-IR Mass spectroscopy	8
6	Atomic spectral methods – atomic emission and absorption methods	3
7	Thermal methods – TGA, DTA and DSC	4
0	Chromatographic and other separation methods – GC, HPLC , ion exchange and size exclusion chromatography , super critical fluid extraction	12
	List of Text Books/ Reference Books	
1	D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, Fundamentals of Analytical Chemistry	
2	J.G. Dick, Analytical Chemistry, R.E. Krieger Pub	
3 I	Environmental Chemistry, A. K. De, Wiley	
4	Chromatography	
5	Thermal Methods	

Semester I

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 20 of 100

СО	Statement	-		- 20											
		P01	P02	PO3	P04	PO5	906	P07	P08	909	PO10	P011	P012	PSO1	PSO2
CO1	Apply the knowledge of sampling, data analysis and select proper analytical method	3	3	2	2	2	3	3	0	3	3	0	2	3	3
CO2	Explain the principles of UV Visible and Fluorescence spectroscopic methods	3	1	0	1	1	0	3	3	2	3	3	0	2	2
CO3	Explain the principles of electrochemical methods	3	2	1	2	0	3	3	3	3	2	3	1	3	2
CO4	Explain the principles of chromatographic methods	3	2	1	1	1	3	2	3	3	3	3	1	1	2
CO5	Analyse and Interprete the data	2	2	2	1	1	2	2	2	2	1	1	1	2	2
CHT1401		3	2	2	2	2	3	3	3	3	3	3	2	3	3

Course Code: MAT1101	Course Title: Applied Mathematics I	Credits = 4		
		L	т	Р
Semester: I	Total contact hours: 60	3	1	0
List of	Prerequisite Courses		11	X
HSC (Science)	111	-	1.1	
		1		
	ist of Courses where this course will be prerequisite	1	1	
	ist of Courses where this course will be prerequisite vledge will be required in almost all subjects later on		1	

This is a basic Mathematics course. This knowledge will be required in almost all subjects later on. This knowledge is also required for solving various mathematical equations that need to be solved in several chemical engineering courses such as MEBC, momentum transfer, reaction engineering, separation processes, thermodynamics, etc.

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 21 of 100

	Course Contents (Topics and subtopics)	Reqd. hours
1	Solutions of system of linear equations (Gauss-elimination, LU-decomposition etc.) Numerical methods for solving non-linear algebraic / transcendental etc. Newton's method, Secant, Regula Falsi,	10
2	Interpolation and extrapolation for equal and non-equal spaced data (Newtons Forward, Newtons backward and Lagrange) Numerical integration (trapezoidal rule, Simpson's Rule)	10
3	Probability of Statistics:Functions of random variables, probability distribution functions, expectation, moments Statistical hypothesis tests, t-tests for one and two samples, F-test, χ2 -test Statistical Methods for Data Fitting: Linear, multi-linear, non-linear regression	10
4	Differential Calculus: Higher order differentiation and Leibnitz Rule for the derivative, Taylor's and Maclaurin's theorems, Maxima/Minima, convexity of functions, Radius of curvature;	10
5	Functions of two or more variables, Limit and continuity, Partial differentiation, Total derivatives, Taylor's theorem for multivariable functions and its application to error calculations, Maxima/Minima, Jacobian.	10
6	Integral Calculus: Beta and Gamma functions, Differentiation under the integral sign, surface integrals, volume integrals	10
	List of Text Books/ Reference Books	
1	Advanced Engineering Mathematics, Erwin Kreyszig, John-Wiely.	10
2	Advanced Engineering Mathematics S. R. K. Iyengar, R. K. Jain, Narosa	1
3	Introductory Methods Of Numerical Analysis, S. S. Sastry, PHI.	
4	A First Course in Probability, Sheldon Ross, Pearson Prentice Hall	
5	Probability and Statistics in Engineering , W.W. Hines, D. C. Montgomery, D.M. Goldsman, John-Wiely	

dis EMICAV

Semester I

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 22 of 100

СО	Statement	-													
		P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	understand the notion of differentiability and be able to find maxima and minima														
CO1	of functions of one and several variables (K3)	3	3	2	0	2	3	3	2	3	3	3	2	3	3
CO2	compute surface and volume integrals (K3)	3	3	2	2	2	3	1	1	3	3	2	1	3	3
CO3	Understand and explain the notion of vectors and vector spaces (K2)	3	2	1	2	1	2	3	3	3	3	3	0	3	2
CO4	solve systems of linear equations and eigenvalue problems analytically and numerically (K3)	3	3	2	1	2	3	2	0	0	0	3	2	3	3
CO5	fit relationship between two data sets using linear, non-linear regression (K3)	3	3	1	2	2	3	3	2	3	3	1	2	3	3
MAT1101	10 T 1 1	3	3	2	2	2	3	3	2	3	3	3	2	3	3

Course Code: PYT1101	Course Title: Applied Physics I	Cre	dits = 4	71
		L	т	Р
Semester: I	Total contact hours: 60	3	1	0
List of Pre	requisite Courses	1.	-11	1
HSC (Science)				
List o	f Courses where this course will be prerequisite		1	
Applied Physics – II, Physics Laboratory, Chem	ical Engineering Thermodynamics, Momentum and	b		
	e and Engineering Structural Mechanics etc			
Mass Transfer, Heat Transfer, Material Scienc	e and Engineering, Structural Weenames, etc			

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 23 of 100

This is This is a basic physics course. This knowledge will be required in almost all subjects later on. This knowledge is also required for understanding various chemical engineering concepts that will be introduced in courses such as momentum transfer, reaction engineering, separation processes, a basic thermodynamics, heat transfer, etc. **Course Contents (Topics and subtopics)** Regd. hours Solid State Physics Crystal structure of solids: unit cell, space lattices and Bravais lattice, Miller 15 1 indices, directions and crystallographic planes, Cubic crystals: SSC, BCC, FCC, Hexagonal crystals: Fluid Mechanics Basic concepts of density and pressure in a fluid, ideal and real fluids, Pascal's 15 2 law, absolute pressure and pressure gauges, basic concepts of surface tension and buoyancy, Optics and Fibre Optics Diffraction: Introduction to interference and example; concept of 10 3 diffraction, Fraunhofer and Fresnel diffraction, Fraunhofer diffraction at single slit, double slit, and multiple slits; diffraction grating, characteristics of diffraction grating and its applications. Lasers Introduction to interaction of radiation with matter, principles and working of laser: 10 4 population inversion, pumping, various modes, threshold population inversion, types of laser: solid state, semiconductor, gas; application of lasers. Ultrasound Generation of ultrasound: mechanical, electromechanical transducers; propagation of 10 5 ultrasound, attenuation, velocity of ultrasound and parameters affecting it, measurement of velocity, cavitation, applications of ultrasound. List of Text Books/ Reference Books Physics: Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern 1 Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. 2 Concepts of Modern Physics – A. Beiser, McGraw-Hill 3 Introduction to Modern Optics – G. R. Fowles, Dover Publications 4 A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. 5

213110

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 24 of 100

6	Optical Fibre Communication – G. Keiser, McGraw-Hill
7	Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India
8	Ultrasonics: Methods and Applications – J. Blitz, Butterworth.
9	Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH

GHEMICAL

Semester I															
CO	Statement					0									
		P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	apply acoustic cavitation of Chemical Engineering Processes (K3)	3	3	2	2	2	1	1	3	3	3	3	2	3	3
CO2	apply Bernoulli equation in simple pipe flows (K3)	3	1	2	1	2	3	3	3	3	3	0	2	1	3
CO3	explain the principles of lasers, types of lasers and applications (K2)	3	2	1	2	0	3	3	3	3	2	3	1	3	2
CO4	calculate resolving power of instruments (K3)	2	3	2	1	2	2	0	2	3	3	3	2	0	3
CO5	describe principles of optical fibre communication (K2)	3	2	1	2	0	0	3	3	1	3	1	1	3	2
PYT1101		3	3	2	2	2	3	3	3	3	3	3	2	3	3

Course Code: CHP1343	Course Title: Physical and Analytical	Cre	dits =	- 4
	Chemistry Laboratory	L	т	Р
Semester: I	Total contact hours: 60	0	0	4

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 25 of 100

	List of Prerequisite Courses	
	H.S.C. Chemistry laboratory courses	
	Description of relevance of this course in the B. Tech. (Dyes) Programme	1
Studen physica	s will become familiar with laboratory experimental skills, plan and interpretation of experimental tasks, under l chemistry in chemical processes	stand the relevance of principles of
	Course Contents (Topics and subtopics)	Reqd. hours
1	Experiments based on chemical reaction kinetics, phase equibria and electrolyte systems, surface and	4h per session
	interfacial phenomena such as surface tension and CMC Measurements.	
	List of Text Books/ Reference Books	2.11
1	Practical physical Chemistry – B.Viswanthan and P.S. Raghavan	
2	Practical physical Chemistry- Alexander Findlay	

Semester I															
СО	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	identify and determine physicochemical parameters using simple tools.(K3)	3	3	2	2	2	3	3	3	2	3	3	2	3	3
CO2	interpretation of data and drawing scientific conclusions, dryers, etc.(K4)	3	3	1	3	1	2	3	1	3	3	0	2	3	3
CO3	Ability to set up reaction independently	3	2	2	2	2	2	2	1	2	2	2	2	1	2
CO4	Ability to conduct the experiments individually	2	2	2	2	1	2	2	2	2	2	1	1	2	2
CO5	Ability to analyze the results	2	3	1	2	2	2	2	2	2	2	1	2	2	2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 26 of 100 CHP1342

3 3 2 3 2 3 3 3 3 3 3 2 3 3

	Course Code: GEP1101	Course Title: Engineering Graphics	Cre	dits = 4	
			L	Ŧ	Р
	Semester: I	Total contact hours: 60	2	0	6
	List o	f Prerequisite Course <mark>s</mark>		5	
	Basic Geometry	N. W. W. 1910	1	< /	
	A STATE OF A	List of Courses where this course will be prerequisite			N. / I
	Engineering Graphic <mark>s – II,</mark> Equipment Desigr Paper – II, Structural Mechanics,	and Drawing-I, Equipment Design and Drawing-II, Home	6	1/1	27.
A stude		n of relevance of this course in the B. Tech. (Dyes) Progr w the various processes and also the equipment used to ca	_	the processe	es. Some of the elementary
process other p equipm process	ent of Chemical Engineering is required to known besolike filtration, size reduction, evaporation, rocesses require machines and equipments. Of the subject of "drawing" is a medium to be on the paper. Through the drawings, a lot of	n of relevance of this course in the B. Tech. (Dyes) Progr w the various processes and also the equipment used to car condensation, crystallization etc., are very common to all One should be familiar with the design, manufacturing, w hrough which, one can learn all such matter, because the faccurate information is conveyed which will not be practi- ogists. This course is required in many subjects as well as	rry out the bra workin "drawi cable t	nches of teo g, maintenan ngs" are use nrough a spo	chnology. These and many nce of such machines and ed to represent objects and oken word or a written text.
process other p equipm process	ent of Chemical Engineering is required to known besolike filtration, size reduction, evaporation, rocesses require machines and equipments. Of the subject of "drawing" is a medium to be on the paper. Through the drawings, a lot of	w the various processes and also the equipment used to cal condensation, crystallization etc., are very common to all One should be familiar with the design, manufacturing, v hrough which, one can learn all such matter, because the faccurate information is conveyed which will not be practi- ogists. This course is required in many subjects as well as	rry out the bra workin "drawi cable t	nches of teo g, maintenan ngs" are use nrough a spo	chnology. These and many nce of such machines and ed to represent objects and oken word or a written text.
process other p equipm process	ent of Chemical Engineering is required to known bes like filtration, size reduction, evaporation, rocesses require machines and equipments. On the subject of "drawing" is a medium to bes on the paper. Through the drawings, a lot of ag is a language used by engineers and technol	w the various processes and also the equipment used to cal condensation, crystallization etc., are very common to all One should be familiar with the design, manufacturing, v hrough which, one can learn all such matter, because the faccurate information is conveyed which will not be practi- ogists. This course is required in many subjects as well as	rry out the bra workin "drawi cable t	nches of teo g, maintenan ngs" are use nrough a spo	chnology. These and many nce of such machines and ed to represent objects and oken word or a written text. essional career.
process other p equipm process Drawir	ent of Chemical Engineering is required to knowed bes like filtration, size reduction, evaporation, rocesses require machines and equipments. On the subject of "drawing" is a medium to the set on the paper. Through the drawings, a lot of the given by engineers and technol Course Contents (Topic	w the various processes and also the equipment used to cal condensation, crystallization etc., are very common to all One should be familiar with the design, manufacturing, v hrough which, one can learn all such matter, because the faccurate information is conveyed which will not be practi- ogists. This course is required in many subjects as well as	rry out the bra workin "drawi cable t	nches of teo g, maintenan ngs" are use nrough a spo	chnology. These and many nce of such machines and ed to represent objects and oken word or a written text. essional career.
process other p equipm process Drawin	ent of Chemical Engineering is required to known es like filtration, size reduction, evaporation, rocesses require machines and equipments. On the subject of "drawing" is a medium to the set on the paper. Through the drawings, a lot of the g is a language used by engineers and technol Course Contents (Topic Orthographic projections	w the various processes and also the equipment used to cal condensation, crystallization etc., are very common to all One should be familiar with the design, manufacturing, v hrough which, one can learn all such matter, because the faccurate information is conveyed which will not be practi- ogists. This course is required in many subjects as well as	rry out the bra workin "drawi cable t	nches of teo g, maintenan ngs" are use nrough a spo	chnology. These and many nce of such machines and ed to represent objects and oken word or a written text. essional career.
process other p equipm process Drawin 1 2 Depar Institu	ent of Chemical Engineering is required to known es like filtration, size reduction, evaporation, rocesses require machines and equipments. On the subject of "drawing" is a medium to the set on the paper. Through the drawings, a lot of the graving is a language used by engineers and technol Course Contents (Topic Orthographic projections Sectional views	w the various processes and also the equipment used to cal condensation, crystallization etc., are very common to all One should be familiar with the design, manufacturing, v hrough which, one can learn all such matter, because the faccurate information is conveyed which will not be practi- ogists. This course is required in many subjects as well as	rry out the bra workin "drawi cable t	nches of teo g, maintenan ngs" are use nrough a spo	chnology. These and many nce of such machines and ed to represent objects and oken word or a written text. essional career.

HEIMICA/

3	Isometric projections		
Ļ	Missing views (or interpretation of views.)	100	-
5	Projection of solids		-
6	Sections of solids		
7	Development of surface		
8	Interpenetration of solids		-
	List of Text Books/ Reference Books		
1	Engineering Drawing by N.D.Bhat	C 222 10.10.10.10.	1.50
2	Engineering Drawing by N.H.Dubey		(P)

Semester I															
СО	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	prepare multi view orthographic projections of objects by visualizing them in														
01	different positions. (K3)	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	draw sectional views and develop surfaces of a given object. (K3)	3	2	2	2	2	3	3	3	1	2	3	2	3	1
<u></u>	prepare pictorial drawings using the principles of isometric projections to visualize														
CO3	objects in three dimensions. (K3)	3	3	2	2	1	1	3	3	3	3	3	2	2	3
CO4	prepare assembly drawing. (K3)	3	3	2	2	2	3	0	2	3	3	3	2	3	1
CO5	obtain Multiview projections and solid models of objects using CAD tools (K3)	3	2	2	0	2	3	3	3	1	3	0	2	3	3
GEP1101		3	2	2	0	2	3	3	3	1	3	0	2	3	3

Course Code: HUP1101	Course Title: Communication Skills	Credits = 4
Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 28 of 100		

				-	т	Р
	Semester: I	16.24	Total contact hours: 60	3	1	0
		List of Prerequisit	e Courses	10		
	XIIth Standard English				2	1
		Description of relevant	ce of this course in the B. Tech. (Dyes) F	Programme	12	10
This is	an important course for the effec	tive functioning of an Eng	ineer. Communication skills are required	l in all cour	ses	
	Course Co	ontents (Topics and subto	pics)		8	Reqd. hours
1	Development of communication	on skills in oral as well as w	vriting.	- 11	2	1
2	The writing skills should emph etc.	asize technical report writ	ing, scientific paper writing, letter drafti	ng,		1 section
3	The oral communication skills	should emphasize present	ation skills.	10	3/	par.
4	Use of audio-visual facilities lik	e powerpoint, LCD. for ma	aking effective oral presentation.	9	7/	· ·
5	Group Discussions	1000		21/		· ·
	List of	Text Books/ Reference Bo	oks	1		
	Elements of style – Strunk and		Pr	1		

Semester I

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 29 of 100

	CHIEMIC,			1											
CO	Statement	PO1	PO2	PO3	P04	PO5	P06	P07	PO8	909	PO10	P011	P012	PSO1	PSO2
CO1	Write grammar error free technical reports in MS Word or equivalent software (K3)	3	3	2	2	2	3	3	3	3	3	1	2	3	3
CO2	Make power point slides in MS PowerPoint or equivalent software (K3)	3	3	2	0	2	3	1	3	3	2	3	2	3	3
CO3	Ability to present own view in front of the audience	2	2	2	1	2	2	2	2	1	2	1	2	2	2
CO4	Ability to use advanced grammar tools for writing technical report	2	2	2	1	2	2	1	2	2	2	1	2	3	3
CO5	Ability to use latest software for technical report writing	2	1	2	2	1	2	2	2	2	1	2	2	3	3
HUP1101		3	3	2	2	2	3	3	3	3	3	3	2	3	3

GEEN

annistance

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 30 of 100

Semester II

क्षेणांगित्रकारत्व

6HEMICA

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 31 of 100

	Course Code: CHT1342	Course Title:	Cree	Credits = 4							
		Ellen Market	L	Т	Р						
	Semester: II	Total contact hours: 60	3	1	0						
	List	of Prerequisite Courses		0	V.						
	Physical Chemistry –I, HSC Chemistry			2	1						
	C.N.	List of Courses where this course will be prerequisite	6		12						
			-								
			-1	11							
	Descript	ion of relevance of this course in the B. Tech. (Dyes) Progra	imme	1							
Relevar		ion of relevance of this course in the B. Tech. (Dyes) Progra g the same , concept of interfaces and surfaces and the impor		of disper	se systems						
Relevar		g the same, concept of interfaces and surfaces and the impor-		of disper	se systems Reqd. hours						
Relevar	ce of reaction rates and parameters affecting Course Contents (Top Chemical kinetics – Introduction, concept	g the same, concept of interfaces and surfaces and the impor-	tance	of disper	-						

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 32 of 100

3	Complex reactions- parallel, consecutive and reversible	2
4	Kinetics and reaction mechanism- steady state and rate determining step Mechanism of thermal photochemical chain reactions, polymerization reactions	2
5	Surface reactions – Adsorption, kinetics of surface reactions- Hishelwood and Rideal models of surface reactions	2
6	Theories of reaction rates and temperature effects- collision theory and TST Theory of unimolecular reactions	3
7	Kinetics of reactions in solutions- solvent effects	2
8	Fast reactions – experimental techniques	
9	Surface and interfacial Chemistry – introduction, surface tension and surface free energy, methods of determining surface and interfacial tensions	2
10	Thermodynamics of surfaces – surface excess, Gibbs adsorption equation, curved surfaces- bubbles, droplets and foams, Kelvin, Young Laplace and Thomson equations, homogeneous nucleation	3
11	Liquid- liquid and solid liquid interfaces – contact angle, wetting and spreading, adhesion and cohesion, contact angle measurements and hysterisis	3
12	Surfactants: Types, adsorption at surfaces and interfaces, surfactant aggregates, factors affecting aggregation phenomena, applications of surfactants and mixed surfactant systems	3
13	Disperse systems - Emulsions microemulsions and foams Thermodynamics and stability, HLB values , colloids - preparation, stability, characterization, surface charges and electrical double layer	4
	List of Text Books/ Reference Books	
1	Chemical Kinetics – K.J.Laidler	
2	Principles of Chemical Kinetics – James E House	
3	Surfaces interfaces and colloids- Drew Myers- Wiley VCH	

CHIEMICAV

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 33 of 100

4	Colloids and interfaces with polymers and surfactants - Jim Goodwin, wiley
5	Surfactants and interfacial phenomena- Milton J Rosen – Wiley Interscience
6	Industrial utilization of surfactants principles and applications – M.J. Rosen and M Dahanayake, AOCS Press
7	Principles of colloids and surface Chemistry – Paul C Hemenz and Raj Rajagopalan- Marcel Dekker
8	Foundations of Colloid science – Robert J Hunter – Oxford university Press

CINERAL CAV

Semester I															
СО	Statement					5	11								
	1000	P01	P02	PO3	P04	POS	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	comprehend fundamental knowledge in chemical kinetics with basics of order,														
01	molecularity and temperature effect (K2)	3	2	1	2	0	3	3	3	3	3	3	0	3	2
CO2	examine kinetics for complex, fast as well as surface reactions and comprehend														
02	different theories in kinetics (K4)	3	1	2	3	2	3	3	3	3	1	3	2	3	3
<u> </u>	comprehend fundamental knowledge and thermodynamics in surface and														
CO3	interfacial chemistry (K3)	3	3	0	2	2	3	3	2	2	3	3	1	3	2
604	evaluate the behavior of surface-active agents and disperse systems based on the														
CO4	knowledge of interfacial phenomena (K4)	3	2	2	3	2	0	3	3	3	3	2	2	3	3
CO5	Ability to solve complex physical chemistry problems	2	2	2	2	2	1	2	2	2	2	1	2	2	2
CHT1342	7 15 1-23	3	3	2	3	2	3	3	3	3	3	3	2	3	3

Course Code: CHT1132	Course Title: Organic Chemistry	Cre	dits =	4	
		L	Т	Р	

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 34 of 100

	Semester: II Total contact hours: 60	3 1	0
	List of Prerequisite Courses	1	5
	Organic Chemistry –I, HSC Chemistry		(
	List of Courses where this course will be prerequisite		10
		E.	
	Description of relevance of this course in the B. Tech. (Dyes) Programm	e	
		04	01
			1 · · · · ·
	Course Contents (Topics and subtopics)	È	Reqd. hours
1	Course Contents (Topics and subtopics) Mechanisms of organic reactions: Types of Organic Reaction, Reactive intermediates; their generation, structure, stability and general reactions. Acidity and basicity. Mechanisms of simple organic	5	Reqd. hours
1	Mechanisms of organic reactions: Types of Organic Reaction, Reactive intermediates; their generation,	57/	1
	Mechanisms of organic reactions: Types of Organic Reaction, Reactive intermediates; their generation, structure, stability and general reactions. Acidity and basicity. Mechanisms of simple organic Stereochemistry: Stereodescriptors, Elements of symmetry, stereochemistry of compounds containing	57	12
2	Mechanisms of organic reactions: Types of Organic Reaction, Reactive intermediates; their generation, structure, stability and general reactions. Acidity and basicity. Mechanisms of simple organic Stereochemistry: Stereodescriptors, Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Racemates and their resolution, conformation of cyclic and acyclic Aromaticity: Huckel's theory of Aromaticity. Aromaticity of simple benzenoid and non benzenoid	57/1	12 5
2	Mechanisms of organic reactions: Types of Organic Reaction, Reactive intermediates; their generation, structure, stability and general reactions. Acidity and basicity. Mechanisms of simple organicStereochemistry: Stereodescriptors, Elements of symmetry, stereochemistry of compounds containing one and two carbon atoms. Racemates and their resolution, conformation of cyclic and acyclicAromaticity: Huckel's theory of Aromaticity. Aromaticity of simple benzenoid and non benzenoid species.Aromatic compounds: Sources. BTX, Aromatic hydrocarbons. General mechanisms of aromatic		12 5 4

SHEEMIC AV

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 35 of 100

7	Chemistry of ethers, epoxides, sulphonic acids.	4
8	Amines: Methods of preparation, chemistry of aromatic diazonium salts	4
	List of Text Books/ Reference Books	
1	Organic Chemistry, J. McMurry, Brooks/Cole	
2	Organic Chemistry, T.W.G. Solomons, C.B. Fryhle, John Wiley and Sons Inc.	15A
3	Organic Chemistry, L.G. Wade Jr, Pearson Education	The second second
4	StereoChemistry of Carbon compounds, E.L. Eliel, Mcgraw-Hill	
5	Organic Chemistry, Paula Y. Bruice, Pearson Education	0
		2
	and the second sec	19-4 CI

GHEMICAL

						2	1								
Semester I															
СО	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	Explain the aromatic chemistry and interpret the outcome of general transformations (K3)	3	3	2	2	2	3	3	3	0	3	3	2	3	3
CO2	Appreciate and visualize the reactions involving radicals such as cyclizations, pericyclic reactions in synthesis (K3)	3	3	2	2	1	3	3	3	3	3	3	2	0	3
СО3	Understand the importance of heterocycles, learn the properties and synthetic routes, interpret IUPAC of compounds and decipher outcomes of various transformations involving heterocycles (K3)	3	3	2	1	2	2	1	3	2	3	3	2	3	3
CO4	Apply the knowledge obtained through the course to predict the outcome of reactions and devise solutions to unknown problems (K3)	3	2	0	2	2	3	3	3	3	3	3	1	3	3
CO5	Ability to solve complex organic chemistry problems	2	2	1	1	2	2	2	1	2	2	2	2	2	2
CHT1132		3	3	2	3	2	3	3	3	3	3	3	2	3	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 36 of 100

	Course Code: CET 1507	Course Title: Process Calculation	Cree	dits = 4	
		Contraction of the second	L	Т	Р
	Semester: II	Total contact hours: 60	2	2	0
	Lis	t of Prerequisite Courses			10
	XIIth Standard Mathematics, Chemistry,	Physics		۲	
		List of Courses where this course will be prerequisite		9	1
	This is a basic Course. This knowledge wil	be required in ALL subjects later on.			1.0
	Descrip	tion of relevance of this course in the B. Tech. (Dyes) Prog	ramme	7	
This is	a basic course. This knowledge will be r				
Engine	ering to the students. The knowledge of this on, economics, sustainability, environmental	equired in almost all subjects later on. This subject intro subject is required for in ALL B. Tech. courses, etc. It can impacts	duces th be applie	e vario ed in va	ous concepts used in Chemical arious situations such as process
Engine	ering to the students. The knowledge of this	subject is required for in ALL B. Tech. courses, etc. It can impacts	duces the applie	e vario	bus concepts used in Chemical arious situations such as process Reqd. hours
Engine	cering to the students. The knowledge of this on, economics, sustainability, environmenta Course Contents (To	subject is required for in ALL B. Tech. courses, etc. It can impacts	duces the applie	e vario	arious situations such as process
Engine electio	Course Contents (To Introduction to Chemical process calculat concept of process flow sheets	subject is required for in ALL B. Tech. courses, etc. It can impacts pics and subtopics)		e varid ed in va	arious situations such as process Reqd. hours
Engine electio	Course Contents (To Introduction to Chemical process calculat concept of process flow sheets	subject is required for in ALL B. Tech. courses, etc. It can impacts pics and subtopics) ions, overview of single stage and multistage operations, sional analysis of equations, Mathematical techniques	duces the applied of	e varie ed in va	Reqd. hours

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 37 of 100

5	Stoichiometry	2
6	Material balance in reacting systems: application to single and multistage processes	6
7	Behaviour of gases and vapors	4
8	Introduction to psychrometry, humidity and air-conditioning calculations.	6
9	Calculation of X-Y diagrams based on Raoult's law	2
10	Applications of material balances to Multiphase systems	6
11	Basic concepts of types of Energy and calculations	2
12	Application of Energy balance to non-reacting systems	6
13	Application of Energy balance to reacting systems	6
14	Fuels and combustion	4
	List of Text Books/ Reference Books	1-11-11-11-11-11-11-11-11-11-11-11-11-1
1	Elementary Principles of Chemical Processes, Felder, R.M. and Rousseau, R.W	a all parts
2	Chemical Process Principles, Hougen O.A., Watson K. M.	
3	Basic Principles and Calculations in Chemical Engineering, Himmelblau	3/ 8
4	Stoichiometry, Bhatt B.I. and Vora S.M.	1.4.5

GHEMICA

Semester I															
СО	Statement		1								-				
		P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PS02
CO1	convert units of simple quantities from one set of units to another set of units (K2)	3	2	0	2	1	3	3	3	3	3	3	1	3	2
Institut	nent of Dyestuff Technology, e of Chemical Technology, Mumbai (Dyes)- Syllabus														

GEEN

Page No. 38 of 100

(0)	calculate quantities and /or compositions, energy usages, etc. in various processes														
CO2	and process equipment such as reactors, filters, dryers, etc. (K3)	3	3	2	2	2	3	3	3	3	3	2	2	3	3
CO3	apply material balances in multiphase systems (K3)	3	1	2	2	1	3	3	3	2	3	3	1	3	3
CO4	apply energy balance to various systems (K3)	3	3	2	0	2	3	3	3	3	3	3	2	2	3
CO5	Evaluate the feasibility of the process	2	2	2	1	1	2	1	1	2	1	1	2	1	2
CET1507	10000	3	3	2	2	2	3	3	3	3	3	3	2	3	3

Course Code: MAT1102	Course Title: Applied Mathematics	Cre	dits = 4	- 1
		L	т	Р
Semester: II	Total contact hours: 60	3	1	0
List of Prerec	juisite Courses		1	
XIIth Standard Mathematics, Applied Mathemat	ics - I	É	2	//
List of C	ourses where this course will be prerequisite	5	#	11
This is a basic Mathematics course. This knowled	ge will be required in almost all subjects later on	2	9	
Description of rele	evance of this course in the B. Tech. (Dyes) Progr	amm	e	
Description of rele a basic Mathematics course. This knowledge will t natical equations that need to be solved in severa	e required in almost all subjects later on. This know	wledg	ge is also	o required for solving vari

Matha

separation processes, thermodynamics, etc.

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 39 of 100

	Course Contents (Topics and subtopics)	Reqd. hours
1	Differential Equations: Solution of Higher order ODE with constant and variable coefficients and its applications to boundary and initial value problems, Series solution of differential equations,	20
2	Numerical methods for solution of initial values problems using RK method, Euler's method and Taylor series method.	20
3	Finite difference methods: Forward difference, backward difference, central differences, application of finite difference methods to ODE Boundary value problem	20
	List of Text Books/ Reference Books	120
1	Advanced Engineering Mathematics, Erwin Kreyszig, John-Wiely	2.1
2	Advanced Engineering Mathematics S. R. K. Iyengar, R. K. Jain, Narosa.	1531 3
3	Elements of Applied Mathematics. Volume 1, P.N.Wartikar and J.N.Wartikar, Pune Vidyarthi Graha	
4	Introductory Methods Of Numerical Analysis, S. S. Sastry, PHI.	
	Numerical Solution of differential Equations, M. K. Jain, Wiley Eastern	

GHEMICAV

Semester I															
СО	Statement			1											
		P01	P02	P03	P04	PO5	P06	PO7	P08	60d	P010	P011	P012	PS01	PS02
		-	_	-	_	-	_	-	_	_	-		-	_	-
CO 1	solve system of linear algebraic equations.	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO 2	do numerical integrations of functions.	3	3	2	3	2	3	3	3	3	3	3	2	3	2
CO 3	solve higher order ODE by analytical methods.	3	2	1	2	1	3	3	2	3	3	3	1	3	3
CO 4	solve initial value problems using numerical methods.	3	3	3	2	2	2	3	3	3	3	3	2	3	2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 40 of 100

CO 5	apply Fourier series and Laplace transform techniques to solve ODE and PDE.	3	2	2	3	2	3	3	3	2	3	3	2	3	3
MAT1102		3	3	2	2	2	3	3	3	3	3	3	2	3	3

GHEMICA

Course Code: PYT 1103	Course Title: Applied Physics II	Cree	dits = 4	
	2010/001 00100	L	т	Р
Semester: II	Total contact hours: 45	2	1	0
List of	Prerequisite Courses		2	1.000
XIIth Standard Physics, Applied Physics – I,	Physics Laboratory,			1
	st of Courses where this course will be prerequisite			
This is a basic physics course. This knowledge	will be required in almost all subjects later on	4E)	1.1	
Description	of relevance of this course in the B. Tech. (Dyes) Prog	ramme	89	
his is a basic physics course. This knowledge will be mical engineering concepts that will be introduced eat transfer, etc.	e required in almost all subjects later on. This knowled in courses such as momentum transfer, reaction engine	dge is al eering, s	so require reparation	ed for understanding various processes, thermodynamics,
Course Contents (Topics	and subtopics)			Reqd. hours
T	n physics, black body radiation, explanation using the on effect, de Broglie hypothesis, waveparticle duality,		-	25

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 41 of 100

Dielectric and Magnetic Properties of Materials Introduction to the _del' operator and vector calculus, revision of the laws of electrostatics, electric current and the continuity equation, revision of the laws	20
 List of Text Books/ Reference Books	
Physics:Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern.	
 Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa.	
 Concepts of Modern Physics – A. Beiser, McGraw-Hill	0.00
 Solid State Physics – A. J. Dekker, 1957, MacMillan India.	
 Perspectives of Modern Physics – A. Beiser, 1969, McGraw-Hill	

Statement														
Statement				17 .		11								
	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
do simple quantum mechanics calculations (K3)	3	3	2	2	2	3	3	3	3	3	3	2	3	3
define various terms related to properties of materials such as, permeability,														
polarization, etc (K2)	3	2	1	2	1	3	3	3	3	3	3	1	3	2
state some of the basic laws related to quantum mechanics as well as magnetic														
and dielectric properties of materials (K2)	3	2	1	2	1	3	3	3	3	3	3	1	3	2
Correlate the concepts of physics in chemical industry	2	2	1	2	1	2	2	1	3	2	3	1	3	2
Rationalize the physical effects in the real life application	2	2	2	2	2	2	2	1	2	3	2	2	2	3
	3	3	2	2	2	3	3	3	3	3	3	2	3	3
	5	5		2	2	5	5	ر ا	ر ١	5	5	2	<u>ل</u>	
	define various terms related to properties of materials such as, permeability, polarization, etc (K2) state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2) Correlate the concepts of physics in chemical industry	do simple quantum mechanics calculations (K3)3define various terms related to properties of materials such as, permeability, polarization, etc (K2)3state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2)3Correlate the concepts of physics in chemical industry2Rationalize the physical effects in the real life application2	do simple quantum mechanics calculations (K3)33define various terms related to properties of materials such as, permeability, polarization, etc (K2)32state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2)32Correlate the concepts of physics in chemical industry22Rationalize the physical effects in the real life application22	do simple quantum mechanics calculations (K3)332define various terms related to properties of materials such as, permeability, polarization, etc (K2)321state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2)321Correlate the concepts of physics in chemical industry221Rationalize the physical effects in the real life application222	do simple quantum mechanics calculations (K3)3322define various terms related to properties of materials such as, permeability, polarization, etc (K2)3212state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2)3212Correlate the concepts of physics in chemical industry2212Rationalize the physical effects in the real life application2222	do simple quantum mechanics calculations (K3)33222define various terms related to properties of materials such as, permeability, polarization, etc (K2)32121state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2)32121Correlate the concepts of physics in chemical industry22121Rationalize the physical effects in the real life application22222	do simple quantum mechanics calculations (K3)332223define various terms related to properties of materials such as, permeability, polarization, etc (K2)321213state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2)321213Correlate the concepts of physics in chemical industry221212Rationalize the physical effects in the real life application222222	do simple quantum mechanics calculations (K3)3322233define various terms related to properties of materials such as, permeability, polarization, etc (K2)3212133state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2)3212133Correlate the concepts of physics in chemical industry2212133Rationalize the physical effects in the real life application2222222	do simple quantum mechanics calculations (K3)33222333define various terms related to properties of materials such as, permeability, polarization, etc (K2)32121333state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2)32121333Correlate the concepts of physics in chemical industry22121333Rationalize the physical effects in the real life application2222222221	do simple quantum mechanics calculations (K3)33222333define various terms related to properties of materials such as, permeability, polarization, etc (K2)321213333state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2)321213333Correlate the concepts of physics in chemical industry22121221333Rationalize the physical effects in the real life application2222221212	do simple quantum mechanics calculations (K3)332223333define various terms related to properties of materials such as, permeability, polarization, etc (K2)3212133333state some of the basic laws related to quantum mechanics as well as magnetic and dielectric properties of materials (K2)3212133333Correlate the concepts of physics in chemical industry221212213332Rationalize the physical effects in the real life application2222221212332	do simple quantum mechanics calculations (K3)33222333333define various terms related to properties of materials such as, permeability, polarization, etc (K2)3212133 </td <td>do simple quantum mechanics calculations (K3)33222333332define various terms related to properties of materials such as, permeability, polarization, etc (K2)3212133<!--</td--><td>do simple quantum mechanics calculations (K3) 3 3 2 2 3 <th< td=""></th<></td></td>	do simple quantum mechanics calculations (K3)33222333332define various terms related to properties of materials such as, permeability, polarization, etc (K2)3212133 </td <td>do simple quantum mechanics calculations (K3) 3 3 2 2 3 <th< td=""></th<></td>	do simple quantum mechanics calculations (K3) 3 3 2 2 3 <th< td=""></th<>

Course Code PYP1101	Course Title: Physics Laboratory	Credits = 4
Department of Dyestuff Technology,		
stitute of Chemical Technology, Mumbai		
.Tech (Dyes)- Syllabus		
Page No. 42 of 100 📃 📃		

			-	т	Р
	Semester: II	Total contact hours: 60	0	0	4
	List of Prereq	quisite Courses	2		
	Applied Physics - I	Sel Com	15		1
	List of Co	ourses where this course will be prerequisite	1	-	10
	This is a basic physics Laboratory course. This knowle on.	edge will be required in almost all subjects later		0	1
	Description of role	evance of this course in the B. Tech. (Dyes) Prog	ramme	0	77
nost a	a basic physics course. Students will be able to learn all subjects later on. This knowledge is also required for the num transfer, reaction engineering, separation proce	various concepts by doing experiments on difference or understanding various chemical engineering co	ent topi	cs. This that wi	s knowledge will be required in ll be introduced in courses such
nost a	a basic physics course. Students will be able to learn all subjects later on. This knowledge is also required for	various concepts by doing experiments on different or understanding various chemical engineering co esses, thermodynamics, heat transfer, etc	ent topi	cs. Thi that wi	s knowledge will be required in ll be introduced in courses such Reqd. hours
nost a	a basic physics course. Students will be able to learn all subjects later on. This knowledge is also required for the transfer, reaction engineering, separation proce	various concepts by doing experiments on different or understanding various chemical engineering co esses, thermodynamics, heat transfer, etc	ent topi	cs. This that wi	ll be introduced in courses such
ost anom	a basic physics course. Students will be able to learn all subjects later on. This knowledge is also required for the transfer, reaction engineering, separation proce	various concepts by doing experiments on different or understanding various chemical engineering co esses, thermodynamics, heat transfer, etc	ent topi	cs. Thi that wi	ll be introduced in courses such
ost a nom <u>1</u> 2	a basic physics course. Students will be able to learn all subjects later on. This knowledge is also required for the transfer, reaction engineering, separation proce	various concepts by doing experiments on different or understanding various chemical engineering co esses, thermodynamics, heat transfer, etc	ent topi	cs. Thi that wi	ll be introduced in courses such
1 2 3	a basic physics course. Students will be able to learn all subjects later on. This knowledge is also required for the neutron transfer, reaction engineering, separation proce Course Contents (Topics and su Viscosity Thermistor	various concepts by doing experiments on different or understanding various chemical engineering co esses, thermodynamics, heat transfer, etc	ent topi	cs. Thi that wi	ll be introduced in courses such
1 1 2 3 4	a basic physics course. Students will be able to learn all subjects later on. This knowledge is also required for the neutron transfer, reaction engineering, separation proces Course Contents (Topics and su Viscosity Thermistor Thermal conductivity	various concepts by doing experiments on different or understanding various chemical engineering co esses, thermodynamics, heat transfer, etc	ent topi	cs. This that wi	Il be introduced in courses such Reqd. hours
1 2 3 4 5	a basic physics course. Students will be able to learn all subjects later on. This knowledge is also required for the neutron transfer, reaction engineering, separation proce Course Contents (Topics and survey) Viscosity Thermistor Thermal conductivity Ultrasonic interferometer	various concepts by doing experiments on different or understanding various chemical engineering co esses, thermodynamics, heat transfer, etc	ent topi	cs. Thi that wi	Il be introduced in courses such Reqd. hours
1 2 3 4 5 6	a basic physics course. Students will be able to learn all subjects later on. This knowledge is also required for the neutron transfer, reaction engineering, separation processor Course Contents (Topics and su Viscosity Thermistor Thermal conductivity Ultrasonic interferometer Photoelectric effect	various concepts by doing experiments on different or understanding various chemical engineering co esses, thermodynamics, heat transfer, etc	ent topi	cs. This that wi	Il be introduced in courses such Reqd. hours
nost a	a basic physics course. Students will be able to learn all subjects later on. This knowledge is also required for the neutron transfer, reaction engineering, separation proceses Course Contents (Topics and su Viscosity Thermistor Thermal conductivity Ultrasonic interferometer Photoelectric effect Hall effect	various concepts by doing experiments on different or understanding various chemical engineering co esses, thermodynamics, heat transfer, etc	ent topi	cs. This that wi	Il be introduced in courses such Reqd. hours

GHEMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 43 of 100

10	Resolving power of grating -
	List of Text Books/ Reference Books
1	Physics:Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern
2	Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa
3	Concepts of Modern Physics – A. Beiser, McGraw-Hill.
4	Introduction to Modern Optics – G. R. Fowles , Dover Publications
5	A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern.
6	Optical Fibre Communication – G. Keiser, McGraw-Hill
7	Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India.
8	Ultrasonics: Methods and Applications – J. Blitz, Butterworth.
9	Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH.

CHIEMICAV

Semester I															
СО	Statement		1	$\mathcal{T}_{\mathcal{L}}$	1	1.5					•				
	Contraction of the second seco	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	Apply various laws which they have studied through experiments (K3)	3	3	2	2	1	3	3	3	3	3	3	2	3	3
CO2	Measure transport properties like viscosity, conductivity, etc.(K4)	3	3	2	3	2	3	3	2	3	3	3	0	2	3
CO3	Explain the application of acoustic cavitation (K2)	3	2	1	2	0	3	3	3	3	1	3	1	3	2
CO4	Ability to set up the reaction independently	3	2	1	2	1	2	1	2	2	1	2	2	2	2
CO5	Ability to perform the reaction and Interprete the results	2	2	2	2	1	2	2	2	1	1	2	1	2	2
PYP1101		3	3	2	3	2	3	3	3	3	3	3	2	3	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 44 of 100 **CHP1132 Organic Chemistry Laboratory** Synthesis of simple organic compounds to demonstrate various unit processes. Separation and purification of binary mixtures by physical and chemical methods. Purification of organic compounds.

GHEMICA

Semester I															
CO	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PS02
CO1	work safely in the organic chemistry laboratory.(K3)	3	3	2	2	2	3	3	3	3	3	3	0	3	3
CO2	separate binary organic mixtures by multiple techniques.(K4)	3	3	2	3	2	3	3	0	3	3	3	2	2	3
CO3	understand basic principles for separation of binary organic mixtures qualitatively and quantitatively.(K3)	3	1	2	1	2	2	3	3	3	3	1	2	3	1
CO4	Ability to perform the experiment following the reported procedure	2	3	2	2	2	2	2	1	1	2	1	1	3	2
CO5	Ability to isolate the product and purify it	3	3	3	2	2	2	1	1	1	3	2	2	2	2
CHP1132		3	3	2	3	2	3	3	3	3	3	3	2	3	3

F F

AND PERMIT

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 45 of 100

Semester III

क्षेणांगित्राव्यान्तृत्व

TTEEN

6HEMICA

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 46 of 100

	Course Code: CHT-1124	Course Title: Industrial Inorganic	Cree	dits = 4	
		Chemistry (Marks 100)	Ľ	Т	Р
	Semester: III	Total contact hours: 60	3	1	0
	List	of Prerequisite Courses			10
	HSC (Science)			6	
				6	
		List of Courses where this course will be prerequisite		-	
	Material Technology,, Nanomaterials and it	s applications	. 1		1.
	Descriptio	on of relevance of this course in the B. Tech. (Dyes) Prog	ramme	3/	. p
The stud	ents will understand the properties of elements	based on their position in the periodic table.	7.5	0/	7A
Students	s will get to know the different inorganic compo	nents involved in nature and their applications in technology.	-2	1.	
	Course Contents (Tori		4	69	
	Course Contents (Topi	ics and subtopics)	1		Reqd. hours
1	Modern periodic law, Long form of the peri	iodic table, Sketch, Cause of periodicity			4
2	Division of elements in to s, p, d, and f bloc	ks. General characteristics of s, p, d and f block elements		~	4

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 47 of 100

3	Definition and explanation of atomic radius, ionic radius, Covalent radius, Vander waals radius. Variation of atomic size along a period and in a group.	4
4	Definition and Explanation of ionization energy, Successive ionization energy, Factors affecting ionization energy. Variation of ionization energy along a period and in a group. Applications of ionization energy to chemical behavior of an element.	6
5	Definition and Explanation of electron affinity, Successive electron affinity, Factors affecting electron affinity. Variation of electron affinity along a period and in a group. Applications of electron affinity to chemical behavior of an element.	6
6	Definition and Explanation of electronegativity, Factors affecting electronegativity. Variation of electronegativity along a period and in a group. Pauling's approach of electronegativity. Calculations of electronegativity by Pauling's method (Numerical), Mulliken,s approach. Applications of electronegativity to bond properties such as percent ionic character, bond length, bond angle.	6
7	Definition of oxidation, Reduction, Oxidizing agent and reducing agents according to classical concept, electronic concept, oxidation number concept. Rules for assigning oxidation number, Balancing of redox reaction by Ion-electron method and Oxidation number method	6
8	Introduction to Acid & Bases, Arrhenius concept, Bronsted-Lowry concept, Lewis acids and bases concept Discuss briefly with suitable example,	4
9	Definition of Chemical bonding, Cause for chemical bonding, Types of chemical bonding, defination& explanation of Inonic Bonding, Covalent Bonding, Metallic Bonding, Vander Waal's Bonding, Hydrogen Bonding.	4
10	Coordination Chemistry: Nomenclature, Werner theory, VSEPR, crystal field theory, electronic and magnetic properties of the complexes, Organometallics: Metal Ligand concept, , types of ligands, Application of organometallic complexes in hydrogenation, hydroformylation, carbonylation etc.	6

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 48 of 100

11	Non aqueous solvents: Classification and properties of solvents, study of – liquid ammonia, liquid	4
	sulphur dioxide with respect to (i) acid-base reaction (ii) redox reaction (iii) complex formation (iv)	
	solvolysis (v) precipitation reaction.	
12	Inorganic materials : Inorganic polymers, alloys, clays, zeolites, nanomaterials, magnetic materials,	6
	Bioinorganic Chemistry : Study of involvement of metals such as Fe, Co, Cu, Zn and their compounds in	
	biological processes, biomineralization, inorganic complexes of biological relevance.	
	List of Text Books/ Reference Books	
1	Principles of Inorganic chemistry by Puri, Sharma and Kalia.	
2	Advanced inorganic chemistry by Gurudeep Raj and ChatwalAnand.	1
3	A New Concise Inorganic Chemistry by J. D. LeeEds., van Nostrand Reinhold, ELBS edition, London.	1
4	Basic Inorganic Chemistry by F. A. Cotton, G. Wilkinson and P. L. Gaus, John Wiley and Sons, New York, 1976	50 I
5	Modern aspects of inorganic chemistry, H.J. Emaleus and A.G. Sharp Eds., Routledge and Kegan Paul	1
6	Inorganic Chemistry by G. L. Miessler and D. A. Tarr.	
7	Chemistry for Degree Students ,B.Sc F.Y by Dr. R.L. Madan(S. Chand)	
8	Inorganic Chemistry , P.W. Atkins and D.F. Shriver, Oxford University press, 1999.	

GIHEMIC AV

Semester III	Industrial Inorganic Chemistry CHT1124														
CO	Statement										•	_			2
	and the second s	01	02	03	04	05	90	01	80	60	010	011	012	S01	S02
		Ā	A	Ā	Ā	Ā	Ā	Ā	Ā	Ā	ď	Ā	Ā	ä	ă

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 49 of 100

Explain various industrial chemicals of nitrogen, sulfur, hydrogen, phosphorus and														1
halogens (K2)	3	2	1	2	0	3	2	3	3	3	3	1	3	2
Explain and apply the concept the alkali and alkaline-earth metal based industrial														
chemicals, iron metallurgy (K3)	3	3	2	2	2	3	3	1	3	3	2	2	3	3
Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)	3	2	0	2	1	3	3	3	3	0	3	1	2	1
Explain the concept of nuclear fuel and power industry (K2)	3	2	1	2	1	2	3	3	3	3	1	1	3	2
Ability to comprehend the use of complex inorganic materials in industrial	n	C	2	n	2	2	n	2	2	2	2	2	2	2
processes	2	2	5	2	ר	2	2	5	5	Z	2	2	ה	2
184-239	3	3	2	2	2	3	3	3	3	3	3	2	3	3
	 Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3) Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2) Explain the concept of nuclear fuel and power industry (K2) Ability to comprehend the use of complex inorganic materials in industrial 	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)3Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)3Explain the concept of nuclear fuel and power industry (K2)3Ability to comprehend the use of complex inorganic materials in industrial2	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)3Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)3Explain the concept of nuclear fuel and power industry (K2)3Ability to comprehend the use of complex inorganic materials in industrial 22	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)332Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)320Explain the concept of nuclear fuel and power industry (K2)321Ability to comprehend the use of complex inorganic materials in industrial 223	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)3322Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)3202Explain the concept of nuclear fuel and power industry (K2)3212Ability to comprehend the use of complex inorganic materials in industrial 22323	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)33222Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)32021Explain the concept of nuclear fuel and power industry (K2)32121Ability to comprehend the use of complex inorganic materials in industrial22323	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)332223Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)320213Explain the concept of nuclear fuel and power industry (K2)321212Ability to comprehend the use of complex inorganic materials in industrial223232	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)000 </td <td>Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)3222331Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)32021333Explain the concept of nuclear fuel and power industry (K2)32121233Ability to comprehend the use of complex inorganic materials in industrial22323223</td> <td>Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)32223313Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)320213333Explain the concept of nuclear fuel and power industry (K2)321212333Ability to comprehend the use of complex inorganic materials in industrial223232233</td> <td>Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)Image: Complex inorganic complex inorganic materials in industrialImage: Complex inorganic complex inorganic materials in industrial 2Image: Complex inorganic complex inorganic complex inorganic materials in industrial 2Image: Complex inorganic complex inor</td> <td>Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)Image: Complex inorganic cement, ceramics, etc. (K2)Image: Compl</td> <td>Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)Image: Complex information of the second complex information of the</td> <td>Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)Image: Complex inorganic complex inorganic materials in industrialImage: Complex inorganic complex inorganic complex inorganic materials in industrialImage: Complex inorganic complex inorganic</td>	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)3222331Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)32021333Explain the concept of nuclear fuel and power industry (K2)32121233Ability to comprehend the use of complex inorganic materials in industrial22323223	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)32223313Explain inorganic solid materials like glass, silicone, cement, ceramics, etc. (K2)320213333Explain the concept of nuclear fuel and power industry (K2)321212333Ability to comprehend the use of complex inorganic materials in industrial223232233	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)Image: Complex inorganic complex inorganic materials in industrialImage: Complex inorganic complex inorganic materials in industrial 2Image: Complex inorganic complex inorganic complex inorganic materials in industrial 2Image: Complex inorganic complex inor	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)Image: Complex inorganic cement, ceramics, etc. (K2)Image: Compl	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)Image: Complex information of the second complex information of the	Explain and apply the concept the alkali and alkaline-earth metal based industrial chemicals, iron metallurgy (K3)Image: Complex inorganic complex inorganic materials in industrialImage: Complex inorganic complex inorganic complex inorganic materials in industrialImage: Complex inorganic

CHEMICAL

Y BTech (Sem III)	(O)
otal No of Credits 4	No hours 3 (Lectures) + 1 (Tutorial) = 60
ubject Code CHT1136	
romatic and Heteroaromat	ic Chemistry CHT1136
1.1	Description L+T
1	Structure, Reactivity and Mechanism (Resonance effect, hyperconjugative effect, Concepts of Arrhenious equation, Rate constant, Gibbs free enery, Reaction kinetics, Reaction Profile), Acid base concepts (Lewis acid, Lewis base, Brønsted Lowry acid base concept etc)3+1
2	Concept of aromaticity, descriptors of aromaticity, general discussion on the reactivity of aromatic compounds.3+1
3	Electrophilic aromatic substitution reactions – 6+2 mechanism, electrophilicity versus acidity, strength of electrophiles and their gradation.
4	Reactions involving sulphur electrophiles, nitrogen electrophiles, carbon electrophiles (including one carbon electrophiles), and halogen electrophiles.6+2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 50 of 100

5	Orientation in electrophilic substitution reactions on monosubstituted and disubstituted aromatic compounds. Reactivity of monosubstituted aromatic compounds and their gradation. Hammet equation. Typical synthetic strategies in obtaining di and trisubstituted aromatic compounds.	9+3
6	Nucleophilic aromatic substitution reactions – mechanism, nucleophilicity versus basicity, commonly encountered nucleophilic aromatic substitution reactions.	6+2
7	Cyclisation reactions involving electrophilic and nucleophilic substitution reactions as a means of obtaining fused aromatic and heteroatomatic compounds.	3+1
8	Rearrangement reactions involving electrophilic and nucleophilic aromatic substitution reactions and their synthetic utility.	3+1
9	Multistep, sequential reactions for dyestuff intermediates. Unusual aromatic substitutions like halogen exchange reactions and reactions involving diazonium salts.	6+2
References:	Contraction of the second s	
	nisms in organic cheimistry-Longman_Wiley: Peter Sykes	
2. Advanced Organic Chemistr		
-	y, Reactions, Mechanisms and Structures-Jerry March	
 Organic Chemistry-Clayden, Organic chemistry-Paula Y. 	Greeves, Warren and Wothers	
 Organic Chemistry-Paula Y. Organic Chemistry-I. L. Fina 		
7. Organic Chemistry-Graham		

AND MERID

Semester III Aromatic and Heterocyclic Chemistry CHT1136

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 51 of 100

CO	Course Objectives	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	Understand and apply the key concepts from general chemistry including electronegativity, resonance, hyperconjugation, aromaticity, acid-base concept, thermodynamics and kinetics to organic reactions.	3	2	3	3	2	1	2	2	1	1	1	2	3	3
CO2	Learn the basic mechanisms of substitution, addition, elimination, rearrangement and cyclization reactions (ArSn1, Sn2, E1, E2, E1cb) involved in organic molecules	3	2	3	3	2	1	1	2	2	1	1	2	2	3
СО3	Draw products and reaction mechanisms for many reactions including all aromatic compounds, carbonyl-containing compounds, amines, etc.	3	1	2	2	2	1	1	1	2	1	2	2	3	3
CO4	Design multistep synthesis of organic molecules.	3	2	2	2	2	2	1	1	2	1	2	3	3	2
CO5	Explain the organic reaction.	2	2	3	3	2	2	1	1	2	2	2	3	2	3
CHT1136	1 Bretsi	3	2	3	3	2	2	2	2	2	2	2	3	3	3

GHEMICAL

	Materials used in Dyestuff Industries (50 Marks)			
	Materials used in Dyestuff Industries (50 Marks)			F
Semester: III	Materials used in Dyestuff Industries (50 Marks) L T Total contact hours: 60 0 0 List of Prerequisite Courses	4		
	List of Prerequisite Courses			
HSC (Science)	MEDU			

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 52 of 100

	Analysis of various inorganic reagents compo	unds used in chemical ir	ndustry	6	
	Description of relevan	nce of this course in the	B. Tech. (Text	ile) Programme	
tudents	will understand the significance of uses of these inc	rganic raw materials in th	e chemical indu	stry	10
	Course Contents (Topics	and subtopics)			Reqd. hours
Sr.	Торіс			12-1	Hrs.
1	Estimation by volumetric titrations of inorgan sulphite, sodium bisulphite, sodium metabisu C, bleaching powder, sodium hypochloride, in	ulphite, sodium sulphide	, sodium hydro	osulphite, Rongalite	1 2
	dioxide, sodium nitrite		,	inde, manganese	60
Sr.No.	dioxide, sodium nitrite Topic	CO Statement	Knowledge Level	Delivery Method	1.
Sr.No.		со	Knowledge	5	1.
	Торіс	CO Statement	Knowledge Level	Delivery Method Experiment and theory:	Teaching Hours

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 53 of 100

4	Estimation of Sodium Metabisulfite			Europinsont and	04
4	Estimation of Sodium Metablsulfite	C5	К3	Experiment and theory: Chalk and board	04
5	Estimation of Stannous chloride	C4	K2	Experiment and theory: Chalk and board	08
6	Estimation of sodium nitrite	C4, C5	К3	Experiment and theory: Chalk and board	04
7	Estimation of hydrogen peroxide	C3, C4	К3	Experiment and theory: Chalk and board	04
8	Estimation of ferric alum	C3, C4	К2	Experiment and theory: Chalk and board	04
9	Estimation of zinc	C5	К4,К5	Experiment and theory: Chalk and board	08
10	Estimation of iron	C5, C6	К3	Experiment and theory: Chalk and board	04
11	Estimation of Manganese dioxide	C6	К4	Experiment and theory: Chalk and board	08

Semester III	Analysis of Inorganic Raw Materials used in Dyestuff industries DYP1001														
СО	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
Institute	nent of Dyestuff Technology, e of Chemical Technology, Mumbai Dyes)- Syllabus		1	C	ľ										

Page No. 54 of 100

CO1	Estimate the amount of inorganic compounds present (K4)	2	2	2	3	3	3	2	2	3	1	2	3	3	2
CO2	Check the purity of compound (K3)	2	2	2	3	3	3	2	2	3	1	2	3	З	2
CO3	Understand the controlling and quantitative analysis of reducing agents (K2)	2	2	2	3	3	3	2	2	3	1	2	3	3	3
CO4	Analyse and identify the classes of metal containing reducing and oxidizing agents (K4)	3	3	3	3	3	3	2	2	2	1	2	3	3	3
CO5	Identify the reducing and oxidizing agents used for synthesis (K4)	3	3	3	3	3	3	2	2	3	1	2	3	3	3
DYP1001		3	3	3	3	3	3	2	2	3	1	2	3	3	3

GHEMICAV

	Course Code: DYP 1101	Course Title: Technology of Intermediates I	Credi	ts = 4	ļ
- 63	100	(100 marks)	L	т	Ρ
1.00	Semester: III	Total contact hours: 60	3	1	0
	List of Prerequisit	e Courses			
HSC (Science),	(Chiefe				
	List of Courses where this course will be pre	requisite			
	All Dyestuff and Intermedia	ites Special Courses			
Descriptio	on of <mark>relevance</mark> of this course in the B. Tech (D	yes) Programme			

JED.

कामनिसम्बद

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 55 of 100

- To make the students understand chemistry various intermediates used for chemical industry in general and Dyestuff industry in perticular
- To make them understand the unit processes and their relevance in chemical industries .
- To enable them to analyse and identify the proper synthetic and industrial method and choose accordingly the further processes to make intermediates.
- To develop in them capacity understand proper selection of the chemical processes based on economy and ecological aspects

Sr.	Торіс	CO	Knowledge	Delivery	Teaching
No.		Statemen t	Level	Method	Hours
1	Chemical feedstock for Dyestuff industry- Basic Raw materials a. Fossil feedstock b. Petroleum and coal based raw materials c. Importance of BTX	C1, C5	К1, К2	Marker and Board	04
2	Chemistry of Benzenoid intermediates- a. Electrophilic aromatic substitution reaction b. Orientation in aromatic substitutions	C2, C3, C5	К3	Marker and Board	08
3	Introduction of Functional groups into benzene and technology involved A. Basic Unit processes a. Sulphonation b. Nitration c. Reduction d. Halogenation	C3, C4	К4, К5	Marker and Board, Projector	16
	B.Sulphonation: (i) Reaction phenomenon and conditions (ii) Sulphonating agents and solvents	197		9	

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 56 of 100

	(iii) Work up and Material of construction				
	(iv) Substitution in benzene and substituted benzene				
	(v) Plant and process flow		200		
	(vi) Safety and process control parameters			N	
	C. Nitration:		10.00		
	(i) Reaction phenomenon and conditions		100		
	(ii) Nitrating agents and solvents			· · · ·	
	(iii) Work up and Material of construction				
	(iv) Substitution in benzene and substituted benzene				
	(v) Plant and process flow				
	(vi) Safety and process control parameters, Run away reactions	_		P.211	
	D. Reduction:			6411	
	(i) Reducing agents	175.0			
	(ii) Reduction methods	11.8		111.	
	(iii) Selection of best method for Benzene and substituent			11.000	
	(iv) Process and workup			11. 1. 1.	
	(v) Safety aspect		19:22	1.1.	
	E. Halogenation	1		1	
	(i) Basic nucleophilic and Electrophilic substitution	1000	54. Y / A		
	(ii) Reaction and MOC				
4	Naphthalene Introduction	C2, C5	К2, КЗ	Marker	04
	a. Nomenclature, Reactions, Reactivity rules			and Board, Ball and	
	a. Nomenciature, Reactions, Reactivity rules	-		stick model	
5	Chemistry: Naphthalene intermediates	C2,C3	К2	Marker	18
	a. Synthesis of naphthalene	1.2.2.2		and Board	
	b. Substitution pattern				

CHEMIC AV

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 57 of 100

	c. Reactions possible and criterion for the same		7	N	
6	Technology and Reactions of naphthalene	C4	K5	Marker	10
	a. Nitration		0.9	and Board,	
	b. Sulphonation		100	Projector	
	c. Halogenation	1.0			
	d. Reduction		Ta		
	(Key points are similar to benzene)				
Text	/ Reference Books:			T and the second s	
1. In	dustrial organic chemistry, Weissermal K., ArpeH.J.VCH, Wein	heim, 1993			
2. 0	rganic synthesis, Smith M B, Tata McGrow Hill, NY, 2 nd Ed, 200	4			
3. Cl	hemistry of Synthetic Dyes, Lubs H. A., NY 1995			0	
	hemistry of Synthetic Dyes, Lubs H. A., NY 1995 hemistry of synthetic dyes vol I, Venkatraman K., NY 1952			2	
4. Cł		30.77		31.	
4. Cł	hemistry of synthetic dyes vol I, Venkatraman K., NY 1952	\$ 7		₹/	
4. Cł 5. O	hemistry of synthetic dyes vol I, Venkatraman K., NY 1952			3/.5	
4. Cł 5. O Asse	hemistry of synthetic dyes vol I, Venkatraman K., NY 1952 rganic Chemistry,Clayden, Oxford Univ. Press, 2001				
4. Cł 5. O Asse 1. U	hemistry of synthetic dyes vol I, Venkatraman K., NY 1952 rganic Chemistry,Clayden, Oxford Univ. Press, 2001 essment method:				
4. Cł 5. O Asse 1. U 2. As	hemistry of synthetic dyes vol I, Venkatraman K., NY 1952 rganic Chemistry,Clayden, Oxford Univ. Press, 2001 essment method: nit Test				

GINE HICAV

Semester III	Technology of Intermediates 1 DYT1101														
СО	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	Understand the basics of dyestuff industry in terms of raw materials utilized (K2)	2	2	1	1	0	1	0	0	0	0	2	0	2	2
CO2	Apprehend basic benzene and naphthalene chemistry. (K2)	2	2	1	1	0	1	0	0	0	0	2	0	2	2
СОЗ	Analyze the various methods for synthesis of different intermediates used in dyes (K2)	2	3	3	3	0	1	0	0	0	0	2	0	2	2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 58 of 100

CO4	Know the various technology and safety aspects for reactions. (K2)	3	2	3	3	0	3	2	0	0	0	2	0	2	2
CO5	Identify the substrates and chemistry to synthesize desired product (K2)	2	3	2	3	0	2	2	0	-	0	2	0	2	2
DYT1101	1 free and	2	2	1	1	0	1	0	0	0	0	2	0	2	2
	110-120			10	94	1.0									
					C. 7										

GHIEMICAV

	Course Code: DYT 1202	Course Title: Chemical and Physical con Colorants (Marks 50)	stitution of	Ν.	Credits = 3		
		100000000000000000000000000000000000000	18	L	т	Р	
	Semester: III	Total contact hours: 45		2	1	0	
	2	List of Prerequisite Courses					
	HSC (Science)	35.0.00 III II II	2				
	List of Cour	rses where this course will be prerequisite	- 153	11		2.1	
	All the Dyes Special Cours	es		11.	٨.,	1.	
			1.3	1			
	Description of releva	nce of this course in the B. Tech. (Dyes) Pro	gramme	1			
	s will be able to understand the relation between the chemi	cal structure and the colour.	1 11/10				
	Tania		elivery		Tee	-	
Students Sr. No.	Торіс	CO Statement Knowledge De	elivery ethod		Теа	ching Hours	
	TopicOrigin of colour in organic molecules. Chromatic and achromatic colors. Red shift, blue shift, hyperchromic effect, solvatochromism, halochromism. Beer-Lambert's law, absorptivity, oscillator strength,	CO Statement Knowledge Me level m CO1 K2, A2 C			Tea	ching Hours 03	

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 59 of 100

2.	Early theories of color and constitution - empirical correlations between the chemical structures and their color. Chromophores, auxochromes, distribution rules, chromogens. $n \rightarrow \pi^*$, donor-acceptor, acyclic and cyclic polyene, and cyanine type chromogens	CO3	К2, К3 & А2	Chalk and board, Tutorial	03
3.	Resonance theory of color, failures of resonance theory. Steric effects in electronic absorption spectra – some general considerations.	CO2	K2, K3 & A2	Chalk and board, Tutorial	03
4.	Perturbational molecular orbital theory: Alternation of the electronegativity of an atom in an even alternant system. Alteration of the electronegativity of an atom in an odd alternate system, Dewar rules. Other empirical approaches to substituent effects, Mesomeric and field effects, Correlation between the frequency shift of a substitution and the Hammett substituent constant	CO2	K2, K3 & A2	Chalk and board, Tutorial	03
5.	Simple donor-acceptor chromogens: general characteristics – donor group, unsaturated bridge, acceptor group. The carbonyl acceptor – merocyanine types of compounds.	CO4, CO4	K2, K3 & A2	Chalk and board, Tutorial	03
6.	Complex donor-acceptor chromogens: classes of complex acceptor residues, donor substituted quinones. Donor substituted azo compounds. Color and constitution of simple azo dyes. Steric effects, and azo- hydrazonetautomerism in azo dyes	CO4, CO5	K4 & A3	Chalk and board, Tutorial	03
7.	Color and chemical constitution of indigoid dyes. Introduction to cross-conjugated chromophores. Chromogens based on acycyclicand cyclic polyene systems: general characteristics with examples. Cyanine type chromogens.	CO4, CO5	K2 & A3	Chalk and board, Tutorial	03

GINERAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 60 of 100

8.	Di- and triaryl methane colorants, heterocyclic analogues of di- and triaryl methane colorants. Simple color and constitution relationships.	CO3, CO4	K2 & A3	Chalk and board, Tutorial	03
9.	Essentials of computational colour chemistry – brief introduction to one particle system. Schrodinger equation. Particle in a box.	CO4	К2	Chalk and board, Tutorial	03
10	Two particle system, Many particle systems – HartreeFock theory. Basis sets.	C04	K2 & A3	Chalk and board, Tutorial	03
11	Electronic Structure theory. Molecular orbitals and light absorption. Semiempirical methods,	CO2	K2 & A2	Chalk and board, Tutorial	03
12.	Limitations of HartreeFock method, Computational complexities in post HartreeFock (wavefunction based methods).	CO4	K2	Chalk and board, Tutorial	03
13.	Introduction to Density Functional Theory and its application in colour chemistry	CO2, CO5	K2	Chalk and board, Seminar	03
14	Excited State calculations, Configuration Interaction Singles.	CO2, CO5	К2	Chalk and board, Seminar	03
15	Time Dependent Density Functional Theory.	CO2, CO5	K2	Chalk and board, Seminar	03
Recom	mended books:				

HHEMICAL

1. Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E Krieger Publishing

Company, New York, 1977

2. Chemistry of Synthetic Dyes – Vol I, Venkataraman, K., Academic Press, 1952

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 61 of 100

- 3. Chemistry of Synthetic Dyes Vol III, Venkataraman, K., Academic Press, 1972
- 4. Colour and Chemical Constitution of Organic Dyes, Griffiths J., Academic Press, 1976
- 5. Quantum Chemistry, Chandra A. K., Tata McGraw Hill, 1979
- 6. Color Chemistry –Synthesis, Properties and Applications of Dyes and Pigments, Zollinger
- H., 2nd ed., Weinheim VCH, 1991

Assessment method:

- 1. Unit Test
- 2. Assignment
- 3. Seminar
- 4. Literature survey including patents and research papers.

	MAP 1201 Engineering Applications of Computers (Lab)	Marks: 50
Semester IV	Computer Programming Languages: FORTRAN, C, C++, etc.	32
	Softwares : Wordprocessing, Spreadsheets, Database, etc.	8
	Softwares for Libraries etc.	8
	Introduction to Computer Hardware, Architecture, Networking	12

SHENICA

Semester III	Engineering Applications of Computers MAP1202														
СО	Statement	1		0	1	1					_				
		50	P02	PO3	P04	PO5	90d	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	perform descriptive statistical analysis using Excel (K3)	3	3	2	2	0	3	3	3	3	3	3	2	3	3
CO2	perform basic statistical tests using R (K3)	3	3	2	1	2	3	3	3	3	3	1	2	0	3
CO3	perform linear regression using R (K3)	3	1	2	2	2	2	3	0	3	2	3	2	3	3
CO4	write Python programs to implement basic numerical methods (K4)	3	3	0	3	2	3	3	3	3	3	3	0	3	3
CO5	perform data processing and regression analysis using Python (K4)	3	3	2	3	2	3	3	2	3	3	3	2	3	3
MAP1202		3	3	2	3	2	3	3	3	3	3	3	2	3	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 62 of 100

Course Code: OLT 1102	Course Title: Chemistry of Oleochemicals and Surfactants			Credits = 4
	(Marks 100)	L	Т	Р
Semester: III	Total contact hours: 60, Marks : 100	3	1	0
145-10	List of Prerequisite Courses			
All the Oils, Oleochemicals&	Surfactants Special Courses		1	
Descriptio	n of relevance of this course in the B. Tech. (All Branches)			

Sr. No.	Course Contents (Topics and subtopics)	CO Mapping	Delivery method	Teaching Hours
1.	Oleochemical and Surfactant raw materials and their derivatives as feedstock for Chemical Industries, Worldwide Statistics of Oleochemical and Surfactant Industries	C01	Chalk and board/ LCD, Tutorial	04
2.	Different techniques of synthesis of Fatty Acid Methyl Esters (FAME), Glycerol and Fatty Alcohols, Fatty Amines, Amides, and Nitriles and their physical and chemical characteristics	CO1, CO2	Chalk and board/ LCD	08
3.	Introduction to the nature of colloidal solutions, Surface Tension and Energy, Definition and classification of surfactants, Hydrophilic and hydrophobic groups and HLB balance, Theory of Surface Actions.	CO3, CO4	Chalk and board/ LCD	06
4.	Self-assembly and packing features of surfactants (bi and multilayers, direct & reverse micelles, vesicles, Microemulsions). Thermodynamics of Adsorption and Micellization, structure of micelles	CO3, CO4	Chalk and board/ LCD	06
5.	Different surface activity phenomenon: Emulsification & de- emulsification, foaming & defoaming, Solubilisation, Dispersion, Wetting, Detergency Prediction of emulsion type from packing geometry, general phase behaviour and Solubility–Temperature Relationship for Surfactants, phase inversion, Kraft and Cloud point	CO3, CO4	Chalk and board/ LCD	08
6.	Synthesis, analysis and applications of Anionic surfactants: Sulphonates (FAMES, AOS, LABS, Paraffin S., Ester & Amide S.), Sulphates (Alcohol & Alcohol ether sulphates, TRO, Sulphated MG, SulphatedAlkanolamides), N-acylated amino acids, Alkyl Phosphates, Sulphosuccinates etc.	CO5, CO6	Chalk and board/ LCD	12
7.	Synthesis, analysis and applications of Nonionic Surfactants: Fatty Alcohol ethers, Alcohol Polyglycol Ethers, Alkyl phenol ethers, Mono	CO5, CO6	Chalk and board/ LCD, Tutorial	08

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 64 of 100

	and diglycerides, Lecithin, Polyol esters (TWIN, SPAN, Sucrose polyester), Alkanolamides etc.		(S) (9)	
	Polymeric and Gemini Surfactants			
8.	Synthesis, analysis and applications of Cationic and Amphoteric	CO5, CO6	Chalk and	08
	Surfactants: Alkoxylated amines, Amine oxide, 2-Alkyl imidazoline, N-		board/ LCD,	
	alkyl-β-Alanine, Quaternary Ammonium Compounds, Betains,		Tutorial	
	Sulphobetains etc.			
	Speciality Fluorocarbon and Silicone Surfactants			

GHEMICAL

Semester III	Chemistry of Oleochemicals and Surfactants OLT1102														
СО	Statement					3					(
		P01	P02	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PS01	PSO2
CO1	Understand the technical significance of Oleochemical and Surfactant Industries														
01	(К2).	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	Conceptualize and develop the different modes of derivatizations of oleochemical														
02	and surfactants and its applications (K <mark>5</mark>).	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO3	Analyse and illustrate the HLB, diverse interfacial phenomenon, molecular														
05	aggregations and phase behaviour of surfactants.(K4)	3	3	2	3	2	3	3	3	3	3	3	2	3	3
	Ability to identify and interpret the role of surfactants as specialty and high														
CO4	performance chemicals. (K5)														
	the second se	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO5	Ability to design the synthesis of surfactant (K4)	2	2	2	2	1	1	1	0	0	1	1	2	2	2
OLT1102		3	3	3	3	3	3	3	3	3	3	3	3	3	3

ashuman-

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 65 of 100

Semester IV

ANTERIA TO

ी राजका

HEIEMIC /

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 66 of 100

	Course Code: GET 1116	Course Title: Engineering Mechanics and Strength of	Cr	edits = 4
		Materials	L T	Р
	Semester: IV	Total contact hours: 60, Marks : 100	3 1	0
	145 - 11	List of Prerequisite Courses		
	XIIth Standard Physics and Mathematics, Applied	Mathemaics-I and II, Applied Physics-I		
	Description of re	elevance of this course in the B. Tech. (All Branches)		
ſhis s	ubject will help students to understand use of basic	cs of Applied Mechanics and Strength of Materials. As a practicing	engineer	and technolog
what	are different types of forces to be considered and	how to quantify them during design of equipments? To know th	e conditio	ons of equilibri
and h	ow to apply them to analyse the problems. Impo	rtance of centre of gravity and moment of Inertia in Engineering	Design.	Study of differ
		tunee of centre of granty and momente of mercia in Engineering		
types	of stresses and strains occurring in various compor	nents of the structure. Advantages and disadvantages of various g	-	•
			eometric	sections availa
for en	gineering design. What are different advance fibre	nents of the structure. Advantages and disadvantages of various g	eometric	sections availa
for en	gineering design. What are different advance fibre neing construction chemicals. This is the foundation	nents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application	eometric ons. Diffe	sections availa
for en	ngineering design. What are different advance fibre incing construction chemicals. This is the foundatio Course Cont	nents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application n course for a good Design Engineer and Technologist.	eometric ons. Diffe	sections availa rent performa
for en enhar	ngineering design. What are different advance fibre incing construction chemicals. This is the foundatio Course Cont	nents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application n course for a good Design Engineer and Technologist. ents (Topics and subtopics)	eometric ons. Diffe	sections availa rent performa qd. hours
for en enhar	re different advance fibre noing construction chemicals. This is the foundatio Course Cont Concepts of forces, their types, Resolution of force types supports and free body diagram.	nents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application n course for a good Design Engineer and Technologist. ents (Topics and subtopics)	eometric ons. Diffe	sections availa rent performa qd. hours
for en enhar 1	re different advance fibre noing construction chemicals. This is the foundatio Course Cont Concepts of forces, their types, Resolution of force types supports and free body diagram.	nents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application in course for a good Design Engineer and Technologist. ents (Topics and subtopics) ces, Composition of forces, Steps in Engineering Design, Different porium. Determinant and indeterminate structures. Equilibrium	eometric ons. Diffe	sections availa rent performa rqd. hours 4
for en enhar 1	ingineering design. What are different advance fibre incing construction chemicals. This is the foundation Course Cont Concepts of forces, their types, Resolution of force types supports and free body diagram. Equilibrium of rigid bodies - Conditions of equilil of beams, trusses and frames problems on analy	nents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application in course for a good Design Engineer and Technologist. ents (Topics and subtopics) ces, Composition of forces, Steps in Engineering Design, Different porium. Determinant and indeterminate structures. Equilibrium	eometric ons. Diffe	sections availa rent performa rqd. hours 4
for en enhar 1 2	gineering design. What are different advance fibre noing construction chemicals. This is the foundation Course Cont Concepts of forces, their types, Resolution of force types supports and free body diagram. Equilibrium of rigid bodies - Conditions of equilil of beams, trusses and frames problems on analy Concept of moment of Inertia (Second momen	nents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application n course for a good Design Engineer and Technologist. ents (Topics and subtopics) ces, Composition of forces, Steps in Engineering Design, Different prium. Determinant and indeterminate structures. Equilibrium sis of beams and truss.	eometric ons. Diffe	sections availa rent performa qd. hours 4 5
for en enhar 1 2	gineering design. What are different advance fibre noing construction chemicals. This is the foundation Course Cont Concepts of forces, their types, Resolution of force types supports and free body diagram. Equilibrium of rigid bodies - Conditions of equilil of beams, trusses and frames problems on analy Concept of moment of Inertia (Second momen	hents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application in course for a good Design Engineer and Technologist. ents (Topics and subtopics) ces, Composition of forces, Steps in Engineering Design, Different porium. Determinant and indeterminate structures. Equilibrium sis of beams and truss. t of area) its use. Parallel axis theorem. Problems of finding	eometric ons. Diffe	sections availa rent performa qd. hours 4 5
For en enhar 1 2	gineering design. What are different advance fibre noing construction chemicals. This is the foundation Course Cont Concepts of forces, their types, Resolution of force types supports and free body diagram. Equilibrium of rigid bodies - Conditions of equilil of beams, trusses and frames problems on analy Concept of moment of Inertia (Second momen centroid and moment of Inertia of single figure Radius of gyration.	hents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application in course for a good Design Engineer and Technologist. ents (Topics and subtopics) ces, Composition of forces, Steps in Engineering Design, Different porium. Determinant and indeterminate structures. Equilibrium sis of beams and truss. t of area) its use. Parallel axis theorem. Problems of finding	eometric ons. Diffe	sections availa rent performa qd. hours 4 5
For en enhar 1 2 3	gineering design. What are different advance fibre noing construction chemicals. This is the foundation Course Cont Concepts of forces, their types, Resolution of force types supports and free body diagram. Equilibrium of rigid bodies - Conditions of equilil of beams, trusses and frames problems on analy Concept of moment of Inertia (Second momen centroid and moment of Inertia of single figure Radius of gyration.	hents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application in course for a good Design Engineer and Technologist. ents (Topics and subtopics) ces, Composition of forces, Steps in Engineering Design, Different orium. Determinant and indeterminate structures. Equilibrium sis of beams and truss. t of area) its use. Parallel axis theorem. Problems of finding es, composite figures. Perpendicular axis theorem, Polar M.I., t, S.F. and B.M. diagram for cantilever, simply supported beams	eometric ons. Diffe	sections availa rent performa 4 5 5
for en enhar 1 2 3	 gineering design. What are different advance fibre for on construction chemicals. This is the foundation Course Content Course Content Concepts of forces, their types, Resolution of force types supports and free body diagram. Equilibrium of rigid bodies - Conditions of equilility of beams, trusses and frames problems on analy. Concept of moment of Inertia (Second moment centroid and moment of Inertia of single figure Radius of gyration. Shear Force and Bending Moment - Basic concept (with or without overhang). Problems with concept 	hents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application in course for a good Design Engineer and Technologist. ents (Topics and subtopics) ces, Composition of forces, Steps in Engineering Design, Different orium. Determinant and indeterminate structures. Equilibrium sis of beams and truss. t of area) its use. Parallel axis theorem. Problems of finding es, composite figures. Perpendicular axis theorem, Polar M.I., t, S.F. and B.M. diagram for cantilever, simply supported beams	eometric ons. Diffe	sections availa rent performa 4 5 5
for en enhar 1 2 3 4	 Index of general general	hents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application in course for a good Design Engineer and Technologist. ents (Topics and subtopics) tes, Composition of forces, Steps in Engineering Design, Different porium. Determinant and indeterminate structures. Equilibrium sis of beams and truss. t of area) its use. Parallel axis theorem. Problems of finding es, composite figures. Perpendicular axis theorem, Polar M.I., t, S.F. and B.M. diagram for cantilever, simply supported beams entrated and U.D. loads.	eometric ons. Diffe	sections availa rent performa 4 5 5 5
for en enhar 1 2 3 4	 Index of gyration. Shear Force and Bending Moment - Basic concept Shear Force and Bending Moment - Basic concept Stresses and Strains - Tensile and compressive strains. 	hents of the structure. Advantages and disadvantages of various g polymer composite materials used in Industry for various application in course for a good Design Engineer and Technologist. ents (Topics and subtopics) tes, Composition of forces, Steps in Engineering Design, Different orium. Determinant and indeterminate structures. Equilibrium sis of beams and truss. t of area) its use. Parallel axis theorem. Problems of finding es, composite figures. Perpendicular axis theorem, Polar M.I., t, S.F. and B.M. diagram for cantilever, simply supported beams entrated and U.D. loads. stresses, strains, modulus of elasticity, modulus of rigidity, bulk	eometric ons. Diffe	sections availa rent performa 4 5 5 5

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 67 of 100

6	Theory of Bending - Assumptions in derivation of basic equation, Basic equation, section modulus, bending stress	4
	distribution.	
7	Problems on shear stress - Concept, Derivation of basic formula. Shear stress distribution for standard shapes.	4
	Problems of Shear stress distribution	
8	Slope and Deflection of beams - Basic concept, Slope and Deflection of cantilever and simply supported beams	4
	under standard loading. Macaulay's method.	
9	Short and Long Columns (Struts) – Basic Concept, Crippling load, End conditions, Euler's and Rankine's Approach (Without Derivations)	4
10	Torsion of a circular shaft – Concept, basic derivation, shear stress distribution, power transmitted by shafts,	4
	Simple problems	
11	Thin and Thick Cylinders – Concept of circumferential, longitudinal stresses, Behaviour of thin cylinders, problems	4
	on thin cylindrical and spherical shells, Behaviour of thick cylinders (Theory only)	
12	Natural Materials, Manmade materials, Materials used for coatings, anticorrosive coatings, special purpose	6
	floorings, water proofing compounds, Various polymers and epoxies used for industrial applications. Composite	
	Materials – various types of fibres, fabrics used in polymer composites, Glass and Carbon fibre polymer	
	composites, methods of manufacturing, Uses in various industrial applications.	
13	Concrete – Basics, Ingredients of concrete, properties of concrete, testing of fresh and hardened concrete, uses	6
	of concrete. Different types of performance enhancing and special purpose construction chemicals. Plasticizers	
	and super-plasticizers, air entraining agents, accelerators and retarders, viscosity modifying agents, corrosion	
	inhibitors, Cement, Basic process of hardening, types of cements, blended cements, Recycling of waste – value	
	addition.	
	List of Text Books/ Reference Books	
	Engineering Mechanics Vol I Statics by B. N. Thadani, Publisher Wenall Book Corporation	
	Introduction to Mechanics of Solids by Egor Popov, Prentice Hall of India Pvt. Ltd	
	Mechanics of Materials by Ferdinand Beer and E. Russel Johnston, Tata McGraw Hill	
	Fundamentals of applied Mechanics by Dadhe, Jamdar and Walavalkar, SaritaPrakashan Pune	
	Engineering Mechanics by S. Timoshenko and D. H. Young, McGraw Hill Publications	
	Strength of Materials by Ferdinand Singer and Andrew Pytel, Harper Colins Publishers	
	Mechanics of composite Materials by Autar K. Kaw, Publisher CRC Press	

GHIEMICA

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 68 of 100

s
3
120

GHEMICAV

Semester IV	Engineering Mechanics and Strength of Materials GET1301														
СО	Course Objectives	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	P010	P011	P012	PSO1	PSO2
CO1	quantify the actions and able to find reactions by applying conditions of equilibrium, find out the Centroid and Moment of Inertia for various cross sections used in engineering structures and for plane areas and be able to draw the Shear Force and Bending Moment diagram for different types of beams under simple and complex loading (K3)	3	3	2	2	2	3	3	3	3	1	3	2	3	3
CO2	calculate the forces, reactions, stresses, strains in components of the bodies of a complex engineering structure (K3)	3	3	1	2	1	3	3	2	3	3	3	2	1	3
СОЗ	find out the Bending Stresses at different positions and Shear Stress distribution across the cross section at various points and calculate the Slope and Deflection at different points under simple and complex loading (K3)	3	2	2	2	2	3	2	3	3	3	0	2	3	3
CO4	explain various materials used in various applications in engineering. cement composite – Concrete, Chemicals used to alter the properties of concrete (K2)	3	2	0	2	1	3	3	3	3	3	3	1	3	2
CO5	Ability to document the technical report .(K2)	2	2	2	2	3	2	2	2	3	2	2	3	2	2
GET1301		3	3	2	2	2	3	3	3	3	3	3	2	3	3

с	Course Code: DYT 1102	Course Title: Technology of Intermediates-II (Marks 100)		<	Credits =	= 4	
		L	L	т		Ρ	
Department of Dyestuff Tech	nnology.						
Institute of Chemical Techno							
B.Tech (Dyes)- Syllabus							
Page No. 69 of 100							

	Semester: IV	Total contact hours: 60		3		1 0
	1	List of Prerequisi	te Courses	1000		
	HSC (Science)	977 ·		18	10	
	List of Courses where this co	urse will be prerequisite	time to	1	2	
	Organic chemistry,	Technology of Intermediates I			6	-
	Description of relevance of this course in the	B. Tech. (Dyes) Programme			1.5	2 10
•	To make them understand the unit processes To enable them to analyse and identify the pr To develop in them capacity understand prop	oper synthetic and industrial method	and choose a			
Sr. No.	Торіс	CO Statemen t	Knowledge Level	Delivery Method	2	Teaching Hours
1	Chemistry of Naphthalene a. Synthesis of naphthalene b Raw materials	C1, C2	K1, K2	Marker and Board	2	02
	c. Mechanism	000	1		77.	

ABIEMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 70 of 100

	 (iii) Reactor design and safety aspect c. Ammonolysis (i) Reaction conditions (ii) Substrate requirement and substitution pattern d. Hydrolysis (i) Types (ii) Reaction conditions and work up (iii) Technology e. Diazotization and coupling (i) Definition (ii) Types (iii) Reagents required (iv) Reaction conditions and work up (v) Process control test and MOC (vi) Reactor designing (vii) Substitution pattern and reaction conditions f. Bucherer Reaction, Reverse Specially designed for naphthalene chemistry 				
3	Synthesis of naphthol, naphthylamine sulphonic acids, Bon acid and its derivatives	C2, C4	K4, K5	Marker and Board, Projector	08
4	Case studies Commercially important bulk and specialty intermediates synthesis	C1, C4	К2, КЗ	Marker and Board, Ball and stick model	08

CHIER MICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 71 of 100

5	Active Methylene compounds And utility in dyes and intermediates	C3	К2	Marker and Board	04
6	Technology and safety aspects Environmental conditions and factors affecting the reaction	C4	К5	Marker and Board, Projector	04
7	Separation techniques and agitation system Various agitation systems, power functions, reactor designing aspects, separation techniques: (a) Physical method (b) Chemical method	C4, C5	К4	Marker and Board, Projector	04
1. Ind	/ Reference Books: ustrial organic chemistry, Weissermal K., ArpeH.J.VCH, Weinheim, 199 ganic synthesis, Smith M B, Tata McGrow Hill, NY, 2 nd Ed, 2004 emistry of Synthetic Dyes, Lubs H. A., NY 1995	93		V.S	1.2
3. Che 4. Che 5. Org	emistry of synthetic Dyes, Lubs H. A., NY 1993 emistry of synthetic dyes vol I, Venkatraman K., NY 1952 ganic Chemistry ,Clayden, Oxford Univ. Press, 2001 sment method:			121	
3. Che 4. Che 5. Org Asses 1. Uni	emistry of synthetic dyes vol I, Venkatraman K., NY 1952 ganic Chemistry ,Clayden, Oxford Univ. Press, 2001 sment method: it Test			B	
3. Che 4. Che 5. Org Asses 1. Uni	emistry of synthetic dyes vol I, Venkatraman K., NY 1952 ganic Chemistry ,Clayden, Oxford Univ. Press, 2001 sment method: it Test signment			B	

Semester IV	Technology of Intermediates-II DYT1102														
СО	Statement	P01	PO2	PO3	P04	POS	P06	PO7	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1	Understand the basics of Naphthalene chemistry (K2)	2	2	2	2	1	1	1	0	0	0	3	0	2	2
Departr	nent of Dyestuff Technology.			0											

Department of Dyestuff Technology,

Institute of Chemical Technology, Mumbai

B.Tech (Dyes)- Syllabus

Page No. 72 of 100

		3	-	2											
CO2	Conceptualize basic unit processes for naphthalene and benzene (K2)	2	2	2	2	1	1	1	0	0	0	3	0	2	2
CO3	Analyze the various methods for synthesis of different intermediates used in dyes (K2)	2	2	2	2	2	2	2	0	0	0	3	0	2	2
CO4	Master the various technology and safety aspects for reactions. (K2)	3	3	3	3	3	2	2	1	0	0	3	0	3	3
CO5	<i>Know</i> various separation techniques used commercially and agitation systems for processes (K2)	3	3	3	3	3	2	2	1	0	0	3	1	3	3
DYT1102	10-24	3	3	3	3	3	2	2	1	0	0	3	1	3	3
				2	. \	2	ų								

Course Code: PYP 1203	Course Title: Colour Physics Lab (Marks50) (By Physic	s) Cr	edits	= 2
		L	T	P
Semester: IV	Total contact hours: 40	0	0	4
	List of Prerequisite Courses			10.11
HSC (Science)		1	9	1.202
List of Courses when	re this course will be prerequisite	(a))		S/S
Technology of Textile Dyeing	I CLA	-0	1	1
Technology of Textile Printing		1		
Experimental dyeing		1		
Experiments in Printing		- I.		
Technology of Garment Manufacturi	ng. & Processing	1		
Description of relevance of this cour	se in the B. Tech. (Textile) Programme			
dents will be trained to determine variou:	s parameters related to colour physics which are applicable in differe	nt fields	s.	- 21

	Determination of unknown concentration of a dye in solution by Dubosque colorimeter.	
	Determination of unknown concentration of a use in solution by Dubosque colonineter.	4
ľ	Verification of B-L law (dependence of absorbance on concentration) by spectrophotometer.	4
I	Mixture analysis using spectrophotometer.	4
1	Determination of gloss of various samples using gloss meter	4
	Determination of color of various textile samples in terms of Lovibond primaries and chromaticity co-ordinates using Lovibondtintometer	4
	Specification of color of a textile sample in terms of 'Lab' at using color computer.	4
I	Finding color differences (ΔE) between set of samples vis a vis dye solution concentration	4
1	Finding color differences (ΔE) between set of samples vis a vis time of exposure.	4
1	Determination of colors of samples in terms of Munsell color system using Munsell Color Tree	4

Semester IV	Color Physics Lab PYP1103														
со	Statement	PO1	P02	PO3	P04	PO5	P06	P07	P08	PO9	P010	P011	P012	PS01	PSO2
CO1	To understand colour specifying systems and schemes of quantification of colour.	3	3	2	3	2	2	2	3	2	1	3	2	2	2
CO2	To measure the intensity of the transmitted light	3	3	3	3	3	3	2	3	1	1	3	3	3	3
CO3	To use instruments to uniquely specify a colour in terms of nos.	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO4	To explain various concepts of colour mixing, sources etc.	3	3	3	3	3	3	3	1	3	1	3	3	3	3
CO5	To correlate intensity of transmitted light with concept of chromophore and colour	3	2	3	3	3	3	2	3	2	3	3	3	2	2
PYP1103	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OF THE OWNER	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Course Code: PYT 1202	Course Title: Colour Physics &Colour Harmony (Marks 50) (By Physics)	Credits = 3
Department of Dyestuff Technology,	PI	
nstitute of Chemical Technology, Mumbai		
B.Tech (Dyes)- Syllabus		
Page No. 74 of 100		

			L	т	Р
	List of Courses where this course will be prerequisite Colour Physics Lab, Additives for Polymers, Additives for Coatings, Pigment Synthesis Lab Technology of Textile Printing, Technology of Garment Manufacturing. & Processing. Description of relevance of this course in the B. Tech./B. Pharm. Program s will be trained to understand the mechanism behind visibility of different colours. dents will be made aware of different technics and terms of colour physics that can be appl Course contents(topics/subtopics) ntroduction: Colour as a concept, its definition, geometric and chromatic attributes Radiation and illumination: SPD, CT andCCT; Sources and illuminants; Need for artificial sources. Interaction of radiation with matter : gloss and diffused reflectance, travel, flip and flop co of light in sample-various transitions in dye molecule, Beer – Lambert law and its verificatio law, Additivity of absorbances, mixture analysis, various instruments used for the purpose;	Total contact hours: 45	2	1	0
	110000	List of Prerequisite Courses		I	
	Applied Physics –I & II				
	List of Courses where this course will	be prerequisite			
	Description of relevance of this course in the B.	Tech./B. Pharm. Program			
	Course contents(topics/subto		Dee	uired h	
		pics)	Rec		rs
L	Introduction: Colour as a concept, its definition, geome		Rec		3
2	Radiation and illumination: SPD, CT andCCT; Sources and	tric and chromatic attributes nd illuminants; Need for artificial sources – various ways of producing	Kec		
	Radiation and illumination: SPD, CT andCCT; Sources and light and different artificial sources; efficacy and colour Interaction of radiation with matter : gloss and diffuse of light in sample-various transitions in dye molecule, B	tric and chromatic attributes nd illuminants; Need for artificial sources – various ways of producing rendering properties of sources. ed reflectance, travel, flip and flop colour,polar diagrams; absorption eer – Lambert law and its verification, deviation from Beer – Lambert	Rec		3

CHIER MICAY

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 75 of 100

5	Colour specification : Additive-substractive mixing, Grassmann's law,1931 and1964CIE system-XYZ and L*a*b*colour spaces, colour difference formulae, Munsellcolour order system	8
6	Recipe match prediction: Single constant Kubelka – Munk theory of colourant formulation and recepie prediction; Modern computerised methods of colour matching	6
7	Colour Harmony : Definition, colour associations, colour harmony theories; colour contrasts-successive and simultaneous contrast, contrast of proportion, intensity, value, hue etc.(Itten's contrasts);colour wheel and various colour schemes, dominant, subdominant and accent colours; visual weight and balance in colour schemes	8
	List of Text Books/ Reference Books	
1	Colour Physics for Industry, R. McDonald, West Yorkshire, 1997.	
2	Color: A Multidisciplinary Approach; Zollinger Heinrich Zurich, Verlag Helvetica ChemicaActa, 1999	
3	The Colour Science of Dyes and Pigments, R. McLaren Bristol, Adam Hilger Ltd., 1983	
4	Industrial Colour Technology, Johnson R. M., Sartzman M, American Chemical Society, Washington D.C., 1971.	
5	Coloring of Plastics: Fundamentals by Robert A. Charvat John Wiley & Sons, 11-Mar-2005	
6	Coloring of plastics: theory and practice by M.Ahmad Van Nostrand Reinhold, 1979	

	GEEN	2		2	9										
Semester IV	Color Physics and Color Harmony PYT1202														
CO	Statement	PO1	PO2	PO3	P04	POS	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	To understand colour specifying systems and schemes of quantification of colour.(K2)	3	3	2	3	2	2	2	1	2	1	3	2	2	2
Instit B.Teo	rtment of Dyestuff Technology, ute of Chemical Technology, Mumbai ch (Dyes)- Syllabus No. 76 of 100		5	Ç	Ľ										

CO2	To measure the intensity of the transmitted light	3	3	3	3	3	3	2	1	1	1	3	3	3	3
CO3	To use instruments to uniquely specify a colour in terms of nos.	3	3	3	3	3	3	3	1	1	1	3	3	3	3
CO4	To explain various concepts of colour mixing, sources etc.	3	3	3	3	3	3	3	1	1	1	3	3	3	3
CO5	To correlate intensity of transmitted light with concept of chromophore and colour	3	2	3	3	3	3	2	1	2	1	3	3	2	2
PYT1202	182.948	3	3	3	3	3	3	3	1	2	1	3	3	3	3
	10530		-		5	1	÷								
	10-24						1								

GHEMICA

	Course Code: CET1105	Course Title: Transport Phenomena (Marks 100)	Cred	its = 4
		5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	LT	Р
	Semester: IV	Total contact hours: 60	3 1	0
		List of Prerequisite Courses		·
	Applied Physics –I & II			
		vill be preservicite		
	List of Courses where this course v Technology of Thermoplastics, Technology of Th	ermosets ,Fabrication and design of moulds, Project, Processing of		
	Technology of Thermoplastics,Technology of Th Polymers	ermosets ,Fabrication and design of moulds, Project, Processing of		
Stude	Technology of Thermoplastics, Technology of Th	ermosets ,Fabrication and design of moulds, Project, Processing of Tech. Programme		
Berno	Technology of Thermoplastics, Technology of The Polymers Description of relevance of this course in the B. nts will be trained to understand fundamentals of ma	ermosets ,Fabrication and design of moulds, Project, Processing of Tech. Programme		rs and he
Berno	Technology of Thermoplastics, Technology of The Polymers Description of relevance of this course in the B. Ints will be trained to understand fundamentals of ma pullies equation and its application. The students will	ermosets ,Fabrication and design of moulds, Project, Processing of Tech. Programme ss transfer,lamilar turbulent flow		
Berno	Technology of Thermoplastics, Technology of Th Polymers Description of relevance of this course in the B. Ints will be trained to understand fundamentals of ma pullies equation and its application. The students will fer basics	ermosets ,Fabrication and design of moulds, Project, Processing of Tech. Programme ss transfer,lamilar turbulent flow be made aware of design aspect of heat exchangers, condensers eva	aporato	

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 77 of 100

	CITE SUICE	
3	Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping design and fluid moving machinery such as pumps, blowers, compressors, vacuum systems, etc.	10
	Particle Dynamics, Flow through Fixed and Fluidised Beds.	
1	Gas – liquid Two phase flow: types of flow regimes, Regime maps, estimation of pressure drop and hold-up	2
5	Fundamentals of mass transfer: Molecular diffusion in fluids, mass transfer coefficients, and interface mass transfer, steady state theories of mass transfer, Whitman's two-film theory, and its variations.	10
õ	Heat conduction in Cartesian, cylindrical and spherical coordinate systems. Convective heat transfer in laminar and turbulent boundary layers. Theories of heat transfer and analogy between momentum and heat transfer.	8
7	Design aspects of exchangers like: Double pipe heat exchangers: Concurrent, counter-current and cross flows, mean temperature difference. Shell and tube heat exchangers: Basic construction and features. Design methods for shell and tube heat exchangers.	10
3	Introduction to Compact Exchangers.	2
9	Heat transfer aspects in condensers, reboilers and evaporators.	4
10	Heat transfer in agitated vessels: coils, jackets, limpet coils, calculation of heat transfer coefficients, heating and cooling times, applications to batch reactors and batch processes	4
	List of Text Books/ Reference Books	
1	Transport Processes and Separation Process Principles: Geankoplis, C.J.	
2	Unit Operations of Chemical Engineering, McCabe W.L., Smith J.C., Harriot P.	
3	Coulson and Richardson's CHEMICAL ENGINEERING, Volume 1	
4	Heat Transfer: Principles and Applications: Dutta, B.K	
5	Principles of Mass Transfer and Separation Processes	
6	Transport Phenomena: Brodkey, R.S.	
7	Fluid Mechanics: Kundu, P.K.	
8	Fluid Mechanics: Subramanya, K	
9	Fluid Dynamics and Heat Transfer: Knudsen and Katz	
10	Process Heat Transfer: Kern, D.Q.	

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 78 of 100

11	Heat Exchangers: Kakac, S., Bergles, A.E., Mayinger, F.
12	Process Heat Transfer: Hewitt, G.

GHENICAL

Semester IV	Transport Phenomenon CET1105														
СО	Statement				1.1										
	1151	P01	P02	PO3	P04	PO5	P06	P07	P08	909	P010	P011	P012	PSO1	PSO2
CO1	calculate friction factor, pressure drop, power (K3)	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	calculate flow and power required for pumps(K3)	3	3	1	2	1	3	1	3	3	3	1	2	3	3
<u> </u>	calculate heat transfer coefficients and do basicsizing of double pipe and shell and														
CO3	tube heat exchangers (K3)	3	1	2	2	2	2	3	2	3	3	3	2	2	3
CO4	calculate mass transfer coefficients	3	3	2	0	2	3	3	3	3	2	3	0	3	3
CO5	estimate mass transfer rates in simple situations (K3)	3	2	2	3	2	2	3	2	2	3	2	2	3	3
CET1105		3	3	2	2	2	3	3	3	3	3	3	2	3	3

Course Code: GEP 1106	Course Title: Electrical Engineering and Electronics laboratory			Credits = 2								
	(Marks 50)		L	7///	Р							
Semester: IV	Total contact hours: 60	110	0	0	4							
	List of Prerequisite Courses		11.	0.0								
XII Standard Physics and Mathemati	cs courses,	2 9/	-									
	List of Courses where this course will be	e prerequisite	2									
	Course objectives											
1. Students will get an insight	to the importance of Electrical Energy in Chemical Plants.											
2. The students will understan	d the basics of electricity.											
3. They will understand the wo	orking and utility of transformers and electrical drives.											
4. They will get basic knowled	ge as regards to electronic devices and their application in Pow	ver suppli <mark>es, amplif</mark>	iers a	nd other circu	uits.							

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 79 of 100

0

1. Superposition Theorem	
2. Thevenin's Theorem	
3. Series RL circuit	and the second s
4. Reconance in Series RLC circuit	
5. H.W. and F.W. Rectifiers	
6. Cathode Ray Oscilloscope	
7. Input and output characteristic of npn transistor in CE mode.	and a set of
8. Load Test on Transformer	
9. Three phase star connection	
10. Three phase delta connection	6280
11. Study of UJT relaxatation oscillator	a ten at star
12. Design of UJT relaxation oscillator	
12. Load Test on 3 phase induction motor	
13. Study of Thermo couple	

Semester IV	Electrical Engineering and Electronics Lab GEP1106														
СО	Statement	P01	PO2	PO3	P04	POS	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	Explain concepts of basic working of D.C circuits (K2)	3	2	1	2	0	3	3	3	3	3	3	1	3	2
CO2	Explain the basic applications of single phase and three phase AC supply and circuits (K2)	3	2	1	1	1	3	3	3	3	3	3	0	2	2
СОЗ	Explain the working and utility of transformers and motors used as various industrial drives (K2)	3	2	0	2	1	3	3	3	2	2	3	1	3	2
CO4	Apply the basic principles in electronic devices and circuits (K3)	3	3	2	2	2	3	3	2	3	3	3	2	3	3
CO5	Comprehend the use of complex electronic devices in chemical plant	3	3	2	2	2	3	3	2	3	2	2	2	2	3
GEP1106		3	3	2	2	2	3	3	3	3	3	3	2	3	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 80 of 100

Course Code:	Course Title: Basic Electrical Engineering and Electronics (Marks 50)	Credits =3
GET 1105		L T P
Semester: IV	Total contact hours: 40	2 1 0
	List of Prerequisite Courses	
XIIth Standard F	Physics and Mathematics courses,	
	List of Courses where this course will be prerequisite	
All subsequent	courses	
	Course expectations	
	ts will get an insight to the importance of Electrical Energy in Chemical Plants. dents will understand the basics of electricity,	0
3. They wi	ill get basic knowledge about Transformer and selection of different types of drives for a given application vill get basic knowledge as regards to electronic devices and their application in Power supplies, amplifiers	
Sr.No.	Торіс	Hrs.
1	Basic Laws: Kirchoff'scurrent and voltage law, Simple series and parallel connections, star and d transformation. Mesh and nodal analysis, Basic elements R, L and C. Concept of self and mutual inducta	
2	Network theorems: super position, Thevenin's theorems	2
3	A.C. Fundamentals: Equations of alternating voltages and currents, cycle, frequency. Time per amplitude, peak value average value, R.M.S. value, A.C. through resistance, inductance and capacital simple RL, RC and RLC circuits. Resonance in series RLC circuits, Power, power factor, series and part circuits.	nce,
4	Three Phase systems: Star and delta connections, relationship between line and phase voltages currents, Power in three phase circuits	and 3
5	Transformer: Introduction, principle of operation, e.m.f. equation, phasor diagrams. Ideal transformer transformer on no load, Transformer under load, Transformer losses, efficiency, regulation.	mer, 5
6	Introduction to dc and ac drives	3

GHEMIC

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 81 of 100

7	Diodes and rectifiers: P-N junction diode characteristics, Zener diode, Half wave and full wave rectifiers, their waveforms, brief introduction to filters.	4
7	Bi-polar junction transistor: Current components. Modes of operation, Input and output characteristics, Regions of operation, Transistor as an amplifier, classification of amplifiers	6
8	Introduction to Uni junction transistor, Characteristics, UJT relaxation oscillator,	3
9	Silicon controlled rectifier, controlled rectification, characteristics, methods of turning-on. Applications.	3
	List of Text Books/ Reference Books	
Electrical Eng	ineering Fundamentals by Vincent Deltoro	
Electronic de	vices and circuits by Boylstead, Nashelsky	
Electrical Ma	chines by Nagrath, Kothari	
Electrical Ma	chines by P.S. Bhimbra	
Electrical Tec	hnology by B.L.Theraja, A.K.Therajavol I,II,IV	
Thyristors an	d their applications by M.Ramamurthy	11
Dowor Floatr	onics by P.S. Bhimbra	

AND MERINA

Semester IV	Electrical Engineering and Electronics GET1105														
СО	Course Objectives	P01	P02	PO3	P04	PO5	P06	P07	P08	909	P010	P011	P012	PSO1	PSO2
CO1	Explain the basic concepts of D.C circuits. Solve basic electrical circuit problems (K3)	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	Explain the basic concepts of single phase and three phase AC supply and circuits (K2)	3	2	0	2	1	3	3	3	3	2	3	0	3	2
СОЗ	Explain the basic concepts of transformers & motors used as various industrial drives (K2)	3	2	1	2	0	3	3	2	3	3	3	1	3	2
CO4	Explain the basic concepts of electronic devices and their applications (K2)	3	0	1	2	1	2	3	3	1	3	1	1	2	2
CO5	Comprehend the use of complex electronic devices in chemical plant	3	2	2	2	3	2	2	3	2	3	2	2	2	2
GET1105		3	3	2	2	2	3	3	3	3	3	3	2	3	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 82 of 100

Semester V

GEENE

क्षेणांगित्रकारत्व

6HEMICA

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 83 of 100

	Course Code:			Course Title	e:				1	Credits = 3	
	CET1212	5					L	Т	1.1	Р	
	Semester: V Total Contact Hours: 45							1		0	
	127		Lis	st of Prerequi	isite Courses		-	1 52			
Physical Chemi	istry – I and – II, Transp	oort Phenome	ena					10	1		
		Z Li	st of Courses	where this co	ourse will be p	prerequisit	е	2-			
Environmental	Engineering and Proce	ess Safety, Ch	emical Projec	t Economics				17	21		
	111	Descri	ption of relev	vance of this o	course in the	B.Tech. Pro	gram	1.5		1.00	
	concerned with the uti		emical reaction	ons on a com	mercial scale.						-
industries: Inol	rganic chemicals, orga	inic chemicals	s, petroleum	& petrochem	nicals, Pulp &	paper, Pigr	nents & p	aints,	rubbe	er, plastics, synt	thetic fibres,
Foods, Dyes an Pharmaceutica	rganic chemicals, orga id intermediates, Oils, c ils and drugs, Microele	oleo chemicals ctronics, ener	s, and surfacta rgy from conv	ants, Minerals ventional and	s, clean sing ag non-conventio	gents, Polyn	ners and te	xtiles	, Biocł	nemicals and bio	
Foods, Dyes an	d intermediates, Oils, oils and drugs, Microele	oleo chemicals ctronics, ener Course (s, and surfacta rgy from conv Contents (Top	ants, Minerals ventional and pics and Subto	s, clean sing ag non-conventio opics)	gents, Polyn onal resour	ners and te ces, Metal	xtiles	, Biocł		
Foods, Dyes an Pharmaceutica	d intermediates, Oils, o	oleo chemicals ctronics, ener Course (eneous react	s, and surfacta rgy from conv Contents (Top ions, Interpre	ants, Minerals ventional and pics and Subto	s, clean sing ag non-conventio opics)	gents, Polyn onal resour	ners and te ces, Metal	xtiles	, Biocł	nemicals and bio	
Foods, Dyes an Pharmaceutica Sr. No.	d intermediates, Oils, o Ils and drugs, Microele Kinetics of homog	oleo chemicals ctronics, ener Course (eneous react design aspects	s, and surfacta rgy from conv Contents (Top ions, Interpre s	ants, Minerals ventional and pics and Subto etation of bat	s, clean sing ag non-conventio opics)	gents, Polyn onal resour	ners and te ces, Metal	xtiles	, Biocł	nemicals and bio	
Foods, Dyes an Pharmaceutica Sr. No. 1	d intermediates, Oils, o ils and drugs, Microele Kinetics of homogore reactors including o	oleo chemicals ctronics, ener Course (eneous react design aspects Temperature	s, and surfacta rgy from conv Contents (Top ions, Interpress and pressure	ants, Minerals ventional and pics and Subto etation of bat e effects	s, clean sing ag non-conventio opics) tch reactor da	gents, Polyn onal resour ata, Single	ners and te ces, Metal	xtiles	, Biocł	nemicals and bio equired Hours 10	
Foods, Dyes an Pharmaceutica Sr. No. 1 2	d intermediates, Oils, o als and drugs, Microele Kinetics of homogoreactors including of Multiple reactions,	oleo chemicals ctronics, ener Course (eneous react design aspects Temperature n-ideal flow, F Heterogeneo	s, and surfacta rgy from conv Contents (Top ions, Interpress and pressure RTD measurer	ants, Minerals ventional and pics and Subto etation of bat e effects ments, Model	s, clean sing ag non-conventio opics) tch reactor da ls to predict co	gents, Polyn onal resour ata, Single onversions	ners and te ces, Metal ideal	xtiles	, Biocł	equired Hours	
Foods, Dyes an Pharmaceutica Sr. No. 1 2 3	d intermediates, Oils, o als and drugs, Microele Kinetics of homogoreactors including of Multiple reactions, Introduction to Noo Homogeneous and	oleo chemical ctronics, ener Course (eneous react design aspects Temperature n-ideal flow, F Heterogeneo rtic reactors	s, and surfacta rgy from conv Contents (Top ions, Interpress and pressure RTD measurer bus Catalysis, H	ants, Minerals ventional and pics and Subto etation of bat e effects ments, Model	s, clean sing ag non-conventio opics) tch reactor da ls to predict co	gents, Polyn onal resour ata, Single onversions	ners and te ces, Metal ideal	xtiles	, Biocł	equired Hours 10 5 5	
Foods, Dyes an Pharmaceutica Sr. No. 1 2 3 4	d intermediates, Oils, o als and drugs, Microele Kinetics of homog reactors including o Multiple reactions, Introduction to Non Homogeneous and of gas – solid cataly	oleo chemical ctronics, ener Course (eneous react design aspects Temperature n-ideal flow, F Heterogeneo vtic reactors Itiphase react	s, and surfacta rgy from conv Contents (Top ions, Interpress and pressure RTD measurer ious Catalysis, H	ants, Minerals ventional and pics and Subto etation of bat e effects ments, Model Kinetics of Soli	s, clean sing ag non-convention opics) tch reactor da ls to predict co id Catalyzed R	gents, Polyn onal resour ata, Single onversions Reactions. D	ners and te ces, Metal ideal esign	xtiles	, Biocł	equired Hours 10 5 5 15	

HEMI

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 84 of 100

	List of Textbooks
1	Elements of Chemical Reaction Engineering – H. Scott Fogler
	List of Additional Reading Material / Reference Books
1	Heterogeneous Reactions, Vol.I and II – L.K. Doraiswamy, M.M.Sharma
	Course Outcomes (students will be able to)
CO1	describe and apply the principles of various types of reactors (K3)
CO2	calculate rates of reactions based on given reaction scheme (K3)
CO3	design various components of reactors used in industrial practice (K3)
CO4	compare various reactors and select an appropriate reactor for a given situation (K4)

CHEIHICAV

Semester VII	Chemical Reaction Engineering 1 CET1212														
СО	Statement	P01	PO2	PO3	P04	PO5	P06	P07	PO8	P09	P010	P011	P012	PSO1	PSO2
CO1	describe and apply the principles of various types of reactors (K3)	3	3	2	2	1	3	3	3	3	3	3	2	3	3
CO2	calculate rates of reactions based on given reaction scheme (K3)	3	2	2	2	2	1	3	0	3	3	2	0	3	3
CO3	design various components of reactors used in industrial practice (K3)	3	3	2	1	2	3	3	3	3	3	3	2	3	3
CO4	compare various reactors and select an appropriate reactor for a given situation (K4)	3	3	2	3	0	2	3	3	1	3	3	1	3	3
CO5	Validate the feasibility of the chemical process in plant	2	3	3	2	2	2	2	2	2	1	2	1	2	2
CET1212		3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:			Credits = 3					
	CET1401	L	Т	Р						
	Semester: V	Total Contact Hours: 45	2	1	0					
		List of Prerequisite Courses								
Process C	alculations (CET1507), Transport Phenomena (CET110									
List of Courses where this course will be prerequisite										

1 m

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 85 of 100

This is a b	asic course. It is required in many other courses that involve physical processes	
	Description of relevance of this course in the B. Tech. Programme	
This is a b	pasic Chemical Engineering course. The principles learnt in this course are required in almost all the forthcoming courses an	d throughout the professional
career of	students.	
Sr. No.	Course Contents (Topics and Subtopics)	Required Hours
1	Distillation: Fundamentals of flash-, batch- and continuous distillation, Distillation columns internals, Steam and azeotropic distillation	12 – 15
2	Liquid-Liquid Extraction: Solvent selection, Construction of ternary diagrams, Staged calculations, Types of extraction equipment	6
3	Crystallization: Phase diagram (temp/solubility relationship), Evapo-rative and cooling crystallization, Introduction to different types of crystallizers	5
4	Filtration: Mechanism of filtration, Basic equation, Constant volume, Constant pressure filtration, Rate expressions with cake and filter cloth resistances, Compressible and incompressible cakes, Introduction to various types of filters	5
5	Drying: Drying mechanism, Drying rate curves, Estimation of drying time, ypes of dryers	5
6	Introduction to Other Aspects of Unit Operations: Content will be aimed towards understanding practical and safety aspects of unit operations and/or introducing other separation processes like: adsorption/ion exchange, membrane processes and gas absorption, etc.	9-6
7	Industrial Case Studies: Interactive discussion with experienced professionals from industry or equipment vendors with emphasis on applicability, importance and challenges of different unit operations	3
	Total	45
	List of Text Books/ Reference Books	
1	Richardson, J.F., Coulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: Particle technology and separa Heinemann, Woburn, MA.	ation processes. Butterworth
2	Seader, J.D., Henley, E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J.	
3	Svarovsky, L., 2000. Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA.	
4	McCabe, W., Smith, J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-Hill Science/Engineering/N	1ath, Boston.
5	Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh.	

ABIEMICA

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 86 of 100

6	Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi.
	Course Outcomes (students will be able to)
CO1	perform basic sizing of continuous and batch distillation columns (K3)
CO2	analyze filtration data and select systems based on requirements, estimate filtration area for given requirements, understand filter aids and their usage
02	(K4)
CO3	describe few industrial crystallization, filtration and drying equipment (K2)
CO4	describe the need and importance of other separation processes like adsorption, ion exchange and membrane (K2)
CO5	Apply the concept of unit operation in chemical industries (K3)

GINERNIC AV

Semester VIII	Chemical Engineering Operations CET1401														
со	Statement	P01	P02	PO3	PO4	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	perform basic sizing of continuous and batch distillation columns (K3)	3	3	2	2	1	3	3	3	3	3	0	2	3	3
CO2	analyze filtration data and select systems based on requirements, estimate filtration area for given requirements, understand filter aids and their usage (K4)	3	3	2	3	2	3	2	3	3	2	3	2	3	3
CO3	describe few industrial crystallization, filtration and drying equipment (K2)	3	2	0	2	1	3	3	2	3	3	3	1	3	2
CO4	describe the need and importance of other separation processes like adsorption, ion exchange and membrane (K2)	3	2	1	2	0	3	3	3	3	1	3	1	2	2
CO5	Apply the concept of unit operation in chemical industries (K3)	3	3	2	2	2	1	3	3	1	3	3	2	3	3
CET1401		3	3	2	3	2	3	3	3	3	3	3	2	3	3

	and the second second			
Course Code: DYP 1002	Course Title:Analysis of intermediates, dyes and fibres (100 Marks)			Credits = 4
	and the second s	L	т	Р
Semester: V	Total contact hours: 60	0	0	8

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 87 of 100

	List of Prerequisite Courses	
	HSC (Science)	
	List of Courses where this course will be prerequisite	
	All subsequent BTech courses	
	Course Contents (Topics and subtopics)	Hr
1	To analyze the purity of amine by the method of Diazotization – aniline, sulphanilic acid, chloroanilines, toluidines, anisidines, etc	8
2	Coupling experiments- Estimation of phenols and naphthols by bromination – phenol, 2-naphthol, R-acid, etc	8
3	Estimation of naphtholsulphonic acids and aminonaphtholsulphonic acids by diazo-coupling – Schaffer acid, R salt, gamma acid, J acid, etc	8
4	Estimation of dyes by reduction – Sunset Yellow, Ponceau 4R, Orange II, Tartrazine, etc	8
5	Identification of dyes – acid, basic, direct, acid mordant, vat, sulphur	8
6	Identification of fibres – cotton, wool, silk, nylon, polyester	8
7	To analyze the purity of amine by the method of Diazotization– aniline, sulphanilic acid, chloroanilines, toluidines, anisidines, etc	<mark>10</mark>
8	Coupling experiments- Estimation of phenols and naphthols by bromination – phenol, 2-naphthol, R-acid, etc	<mark>10</mark>

GINE HICAN

	Analysis of Intermediates, Dyes and Fibers DYP1002														
CO	Statement	PO1	PO2	PO3	P04	50d	P06	P07	PO8	60d	PO10	P011	P012	PSO1	PSO2
CO1	Analyse the purity of the amines used for dye synthesis. (K3)	2	3	3	3	2	2	2	0	2	1	3	3	3	2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 88 of 100

CO2	<i>Check</i> the presence of coupling components purity required for final dye synthesis. (K2)	3	3	3	3	3	2	2	0	2	1	3	3	3	2
СОЗ	<i>Understand</i> the presence of diazo groups and reducible groups in the given dye structure. (K2)	3	3	3	3	3	2	1	0	2	1	3	3	2	3
CO4	Analyse and identify the classes of dyes from the application-oriented perspective. (K3)	3	3	3	3	3	2	1	0	2	1	3	3	3	3
CO5	Identify the substrates and chemistry of the fibres for dye affinity. (K3)	3	3	3	3	3	2	1	0	2	1	3	3	3	3
DYP1002		3	3	3	3	3	2	2	0	2	1	3	3	3	3

TREAT

क्षेणविकारल

GHEMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 89 of 100

		ABEMICAL			
	Course Code: DYP 1003				
		Course Title: Experimental Dyeing	L	dits = T	P
	Semester: V	Total contact hours: 60	0	0	4
	Lis	t of Prerequisite Courses		1	
	HSC (Science)			11	
	List of Co	urses where this course will be prerequisite		14	2
	All practical courses in subseq	uent semes <mark>te</mark> rs		17	
	Description of relev	vance of this course in the B. Tech. (Dyes) Pr	ogram	me	20 1
Students will und	derstand the significance of uses all the	e kinds of dyes used in the coloration or vario	ous tex	tile s	ubstrates
	Course C	ontents (Topics and subtopics)	-	٩.	Reqd. hours
1	Application anionic, cationic a natural textile substrates	nd nonionic colorants to synthetic and		3)	60

	Experimental dyeing DYP1003														
СО	Statement			- 20											
		P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	Apply water soluble dyes to hydrophilic substrates (K3)	2	3	3	3	3	2	0	0	2	0	3	2	3	3
CO2	Apply water-insoluble dyes to hydrophilic substrates (K3)	2	3	3	3	3	2	0	0	2	0	3	2	3	2
CO3	Ability to categorize the dyes according to the substrates. (K4)	2	3	3	3	3	2	0	0	2	0	3	2	3	2
CO4	Analyse and identify the dyes on textiles (K4)	2	3	3	3	2	2	1	0	2	0	3	2	2	3
CO5	<i>Identify</i> the requirements of the dyes as against the suitability of substrates for dyeing (K4)	2	3	3	3	3	2	2	1	2	1	3	2	2	2
DYP1003		2	3	3	3	3	2	2	1	2	1	3	2	3	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 90 of 100

	Course Code: DYP 1103	Co	olorants	chnology of A	zo	Credi	its = 4	
		(1	.00 marks)		1	Ŀ.	Т	Р
	Semester: V	Тс	tal contact h	ours: 60	10	3	1	0
	Lis	t of Prerequi	site Courses	27.6	Y		1	
	10-50	HSC (Scie	ence),		1.16		1.	
	List of Courses where this course will be prere	quisite		23.0.10	1	1	10	
	All Dyestuff	and Interme	diates Special	Courses	- B	24		
Sr.No	Торіс	1	CO Statement	Knowledge Level	Deliver Metho		1	Teaching Hours
1	Classification of dyes Application of dyes Textile fibres Dyes classified according to dyeing properties Acid, acid-mordant, basic, direct, vat, sulphur, reactive, dispers	e	C01		Chalk ar Board		1	04
2	Direct dyes Dyeing of cotton Chemical constitution and substantivity Examples of bisazo dyes for cotton Manufacture of direct dyes Chemical constitution and fastness properties Drawbacks of direct dyes	GE	CO2,CO3					8
3	Reactive dyes Concept of reactive dyeing as a way of improving wash fastness History of reactive dyes Proof of fibre-dye reaction	s	CO3	-			-	18

GHEMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 91 of 100

	Reactive dyes based on cyanuric chloride		5		
	Reactive dyes based on vinyl sulphone				
	Other reactive systems			Sec. 1	
	Bi-functional reactive dyes	-			
	Manufacture of reactive dyes				
4	Acid dyes	CO2		12.4	10
	Dyeing of wool	1 11		1000	1
	Monoazo acid dyes				
	Dyes from diazotized o-aminophenols		_	- 11 mm	
	Soluble chromium complexes of mordant azo dyes		100	1. 1	
	Neutral dyeing metal complexes		_		11
	Metal complexes for leather dyeing			0	11
	Constitution of metal-dye complexes	and the second			1
5	Trisazo and polykisazo dyes	CO2	179.00	1.00	4
6	Disperse dyes	CO2,CO3,	100	1.00	16
	Dyeing of hydrophobic fibres	CO4	1	11 6 1	
	Ionamines	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10-2-201	
	Development of disperse dyes			10-18/	
	General structure of disperse azo dyes		1	1-11	
	Preparation and manufacture of diazo components	1	19	1007/101	
	Diazotization of weakly basic aromatic amines		100 A	1 1 / A & A	
	Preparation of and manufacture of coupling components				
	Hydroxyethylation and handling of ethylene oxide	The second se	4.37	1	
	Manufacture of disperse azo dyes				
	Heterocyclic diazo and coupling components		-		
「ext /	Reference Books:	And a distance	-		
Chem	istry of Synthetic Dyes, Lubs H. A., NY 1995	11111214-02			
	istry of synthetic dyes vol I, Venkatraman K., NY 1952				
Chem	istry of azo colorants Vol I and Vol II- P. Zollinger				

CHIEMICAV

Assessment method:

1. Unit Test

2. Assignment

3. Seminar

4. Literature survey including patents and research paper

	Technology of azo colorants DYT1103														
СО	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	Explain the and define the classes of dyes, substrates (K2)	2	2	2	2	0	0	0	0	0	0	3	0	2	3
CO2	Understand the variety and chemistry of dyes and their application (K2)	2	2	2	2	0	0	0	0	0	0	3	0	2	3
CO3	Overview of recent trends in the field of dyes containing azo groups (K2)	2	3	2	3	1	1	1	1	0	0	3	0	3	2
CO4	Differentiate the Techniques of diazotization and variations available (K2)	2	3	2	3	1	1	1	1	1	1	3	1	3	2
CO5	Design the synthesis of novel azo based dyes (K3)	3	3	3	3	2	2	2	1	2	2	3	2	2	3
DYT1103		3	3	3	3	2	2	2	1	2	2	3	3	3	3

Course Code: DYT 1104	Course Title: Technology of Quinonoid colorants (Marks 100)	1		Credits = 4
		L	Т	Р
Semester: V	Total contact hours: 60	3	1	0
	List of Prerequisite Courses			
100 100	HSC (Science)			
List of Cours	ses where this course will be prerequisite			
Dyes students	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE		2	2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 93 of 100

Sr. No.	Course Contents (Topics and subtopics)	CO Mapping	Delivery method	Teaching Hours
1.	Introduction to Anthraquinone chemistry, Synthesis, mechanism, sources of Anthraquinones	Co1, CO2	Chalk and board/ LCD, Tutorial	15
2.	Reactions of Anthraquinone: Sulphonation, Nitration, Halogenation, Bucherer Reaction	CO3	Chalk and board/ LCD	10
3.	Chemistry of Anthraquinonoid, Indigoid, polycyclic Quinonoids vat dyes	CO2,CO3	Chalk and board/ LCD	10
4.	Disperse dyes, Reactive dyes, Acid dyes based on Quinonoid systems	CO4	Chalk and board/ LCD	15
5.	Vat dyes and pigments	CO2	Chalk and board/ LCD	5
6.	Synthesis and technology for unit processes, material of construction, Work up	CO4	Chalk and board/ LCD	5
	trial Organic Chemistry, Weissermal K., Arpe H. J., VCH, Weinheim, 1 nic Chemistry, Clayden, Greeves, Warren, Oxford University Press, 20 1313		121	1
	rial of Construction, Lee		2.1/	
7. Synth	istry of Synthetic Dyes – Vol I, <mark>Venkataraman, K., Academic Press, 19</mark> esis and Application of Dyes, Rys and Zollinger	153154	11	
	hemistry of Synthetic Dyes – Vol II, Venkataraman K., Academic Pres hemistry of Synthetic Dyes – Vol IV, Venkataraman K., Academic Pre			
	Chemistry of Synthetic Dyes – Vol VI, Venkataraman K., Academic Pr			
	Chemistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E. Krie Istrial Dyes – Chemistry, Properties, Applications, Hunger K. (Ed), Wil		2003 ICT	

GHEMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 94 of 100

List of assignments and Open Ended Projects:

1. Literature survey including patents and research papers of fundamental process

- Design based small project or

- Study report based on latest scientific development or

- Technology study report/modeling/ simulation/collection report

- Presentations based on topics given

These can be done in a group containing maximum three students in each.

2. Generation of problem based project to enhance the basic mental and technical level of students.

3. Evaluation should be done on approach of the student on his/her efforts (not on completion) to study the design module of given task

13.11

	Technology of Quinonoid colorants DYT1104														
СО	Statement	P01	PO2	PO3	P04	POS	PO6	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	Define and state different terminologies related to AQ (K2)	2	2	2	2	0	1	0	0	0	1	3	0	2	3
CO2	Describe the Chemistry and technology of AQ based compounds (K2)	2	2	2	2	1	1	1	1	1	1	3	1	2	3
CO3	Application of AQ in pigments and dyes (K2)	3	3	3	3	2	2	2	1	1	1	3	2	3	2
CO4	Outline the synthesis of various commercially important products (K3)	3	3	3	3	2	2	2	1	1	1	3	2	2	3
CO5	Propose methods for the synthesis of quinonoid dyes (K3)	3	3	3	3	2	2	2	1	1	1	3	2	2	3
DYT1104		3	3	3	3	2	2	2	1	1	1	3	2	3	3

	Course Code: TXT 1215	Course Title: Technology of Dyeing and Printing (Marks 100)			Credits = 4
			L	Т	P
	Semester: V	Total contact hours: 60	3	1	0
<		List of Prerequisite Courses		>.	
	HSC (Science)				

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 95 of 100

	List of Courses where this course will be prerequisite
Chemist	ry and Application of Colorants
De	scription of relevance of this course in the B. Tech. (Dyes) Programme
• To make the students understand chemis	try various substrates and their coloration processes.
• To make them understand the dyeing pro	ocesses and the machineries involved
To enable them to understand the proper	rties of substrates in relation to the properties of dyes used for their coloration.
 To develop in them capacity understand 	proper selection of the colorants based on their structural diversities
• Syllabus: To make the students understar	nd chemistry various substrates and their coloration processes.
• To make them understand the dyeing pro	ocesses and the machineries involved
• To enable them to understand the proper	rties of substrates in relation to the properties of dyes used for their coloration
• To develop in them capacity understand	proper selection of the colorants based on their structural diversities
ext / Reference Books:	
. Experimental Dyeing by Giles, SDC	
. Textile Dyeing, V A Shenai	
. Textile Printing, V A Shenoi	
. Textile Fibres V A ShenoiAssessment method:	
. Unit Test	A Carl B
. Assignment	
8. Seminar	
 Literature survey including patents and research 	n paper

	Technology of dyeing and printing (including substrates) TXT1215														
СО	Statement	P01	PO2	PO3	P04	504	P06	P07	908	60d	P010	P011	P012	PSO1	PSO2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 96 of 100

	identify and define the applications of different classes of synthetic dyes with the													2	2
CO1	physio-chemical principles involved in dyeing, preparation of fabric for dyeing and		3	3	3	3	3	2	2		2		2		
	printing (K2)									2		2			
CO2	understand dyeing machinery. (K2)	3	3	3	3	3	3	2	2	2	2	2	2	2	2
СО3	list and understand the function of the ingredients used in printing paste. (K2)	3	3	3	3	3	3	2	2	2	2	2	2	2	2
CO4	understand and explain basic styles of printing. (K2)	3	3	3	3	3	3	2	2	2	2	2	2	2	2
CO5	understand and describe methods of printing. (K2)	3	3	3	3	3	3	2	2	2	2	2	2	2	2
TXT1215	1 BI-Perli .	3	3	3	3	3	3	2	2	2	2	2	2	2	2

GERN

amination

GHEMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 97 of 100

Semester VI

antimater

ी संलाहा

HEIEMIC !

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 98 of 100

	Course Code: DYP 1004		Course Title: Chromatography techniques and Preparation of intermediates and dyes	Cro	edits	= 4
				Ca L	Т	P
	Semester: IV	10230	Total contact hours: 60	3	1	0
			List of Prerequisite Courses	100	-	1
	All organic chemistry courses	1.57				100
	List of Courses	s where this cour	se will be prerequisite		10	
	All subsequent dyestuff tech	nology courses			6	21
Sr.No.	Main topic		Sub topic		1	Hrs.
	chromatography)	increas Separat Detecti permar Separat Separat	ent of a coloured compound on a TLC plate with solv ing polarity tion of two coloured compounds on techniques for colourless compounds (iodine char nganate/2,4-DNP/etc spray) tion of a mixture of coloured and colourless compour tion of a mixture of 2 and 3 colourless compounds	nber, nds		12
2	Paper chromatography	polaritySeparatDetectipermar	nent of a coloured compound on paper with solvents v cion of two coloured compounds on techniques for colourless compounds (iodine char nganate/2,4-DNP/etc spray) cion of a mixture of coloured and colourless compour	nber,	ng	5
3	Column chromatography		ation of a column ion of 2 coloured compounds	1		5

GINERAL A

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 99 of 100

		lourless compound				
4	Preparation of dyes and intermediates	40				
Sr. No.	Course Content	57	CO Statement	Knowledge level	Delivery method	No. Of Hours to be handled
1	TLC (Thin layer chromatography)	Conf. 11	CO1, CO2,	K1, K2, K3,	Laboratory	10
	100		CO3, CO4	K4, K5, K6 S3	Practical	
2	Paper chromatography		CO1, CO2,	КЗ, К4, К5,	Laboratory	5
			CO3, CO4	K6 S3	Practical	No. No.
3	Column chromatography	28	CO1, CO2,	K3, K4, K5,	Laboratory	3
			CO3, CO4	K6 S3	Practical	2
	Synthesis		CO1-CO5	КЗ, К4, К5,	Laboratory	40
	- 6 - 100			K6 S3	Practical	

GIBEMICAL

	Chromatographic Techniques and Preparation of Dyes and Intermediates DYP1004														
со	Statement	P01	PO2	PO3	PO4	POS	PO6	P07	P08	909	PO10	P011	P012	PSO1	PSO2
CO1	Understand the principle behind chromatographic techniques – TLC, paper and column – used for the separation of organic compounds	3	3	3	2	2	2	1	1	1	2	1	2	2	3
CO2	Learn to use the appropriate technique for a given separation scenario	3	2	2	3	2	2	0	2	2	2	1	2	3	2
СОЗ	<i>Conduct</i> these processes in the lab independently for the separation of two or more organic compounds that may or may not be coloured	3	2	2	2	3	2	1	1	1	2	2	1	2	3
CO4	Apply these techniques whenever separation of organic compounds needs to be done	2	3	2	2	3	1	0	1	1	2	3	2	3	3
CO5	Perform separation of complex mixture	3	2	3	2	2	1	1	1	1	2	3	3	2	2
DYP1004		3	3	3	3	3	2	1	2	2	2	3	3	3	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 100 of 100

	Course Code: DYP 1003	Course Title: Pro	cess and Plant De	sign (Marks 100)			Credits = 4
		1				т	Р
	Semester: VI	Total contact ho	urs: 60		3	1	0
	1055	List of	f Prerequisite Cour	ses	160		
	Basic knowledge of unit	processes	FIL	1999	YG		1
	List of Courses where this course will	be prerequisite	1. T	1000	10	-	
	Organic chemistry, Tech	nology of Interme	diates	100		1	
Sr.N o.	Торіс		Course Outcome	Hrs.		ž.	Delivery Method
1	Introduction to unit processes w.r.t Plant designing la	yout	C01	06	OHP, M	larker	and Board, Power point presentations
2	Processes like sulphonation, Nitration, Oxidation, Red Hydrolysis, Ammonolysis, FC reaction etc their plant of flow sheet, MOC		CO1,CO2	24	OHP, M	larker	and Board, Power point presentations
3	Specification of raw materials, study of process, addit Process control tests, Designing of plant and reactor v described capacity		CO3	10	OHP, M	larker	and Board, Power point presentations
	Selection of process and its alterations in terms yield,	selectivity etc.	CO2	08	OHP, M	larker	and Board, Power point presentations
4			CO2,CO3	08	OHP M	larker	and Board, Power point presentations
4	Multistep reactions and their process design	and the second sec		00			· · ·

CHEMICAV

3. Chemistry of Synthetic Dyes, Lubs H. A., NY 1995

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 101 of 100 4. Chemistry of synthetic dyes vol I, Venkatraman K., NY 1952

5. Handbook of Chemical Process Development, Chandalia S. B., Multi-Tech Publishing Co.

6.BIOS Reports, FIAT Reports

7. Organic Synthesis Collective Volumes I-V

8. Unit processes in organic syntheses, P.H. Groggins

Assessment method:

1. Unit Test

2. Assignment

3. Seminar

4. Literature survey including patents and research paper

	Process and Plant Design DYP1005														
СО	Statement	P01	PO2	PO3	PO4	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	To understand the unit processes and their industrial scale up	2	3	3	2	3	2	2	3	2	2	2	2	1	3
CO2	Transfer of technology from pilot scale to plant scale by designing process with study of process parameters	2	2	2	2	2	3	3	2	3	2	1	3	2	3
CO3	Calculations based on real industry situation with volume based understanding	3	3	2	3	2	3	3	2	3	1	3	3	2	2
CO4	Ability to design considering the safety issues	3	3	3	2	3	2	3	2	3	1	3	3	2	2
CO5	Demonstrate knowledge in choosing appropriate materials for the construction and plant design	3	2	2	3	3	2	3	2	2	1	3	3	3	3
DYP1005		3	3	3	3	3	3	3	3	3	2	3	3	3	3

DEFU

HEIMIC :

Course Code: DYT 1203	Course Title: Fluorescent Colorants	Credits = 4
	(100 marks)	LTP
Department of Dyestuff Technology		

Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 102 of 100

	Semester: VI	Total	contact hours	5: 60	3 1	0
	List of Prerequ	uisite Course	s	1000		
HSC (Science),	-			N	
	List of Courses where this of	course will b	e prerequisite	100	1	
All Dy	restuff and Intermediates Special Courses	111		102		
	Description of relevance of this cour	se in the B. 1	ech (Dyes) Pro	ogramme		
• • •	To make the students understand physics and chemistry of fluorescent color To make them understand the structure and synthesis of fluorescent colorar To enable them to analyze and identify the proper synthetic and industrial m	nts.		1.16	er proc <mark>e</mark> sses to m	ake fluorescent dyes
Sr.N o.	Торіс	CO Statemen t	Knowledge Level	Delivery Me	ethod	Teaching Hours
1	Introduction to luminescence phenomena. Various terms like intersystem crossing, internal conversion, Stokes shift, and fluorescence quantum yield. Energy Level diagrams. Singlet and triplet states.Franck-Condon principle, Kasha's rule. Quantum mechanically allowed transitions. Charge transfer mediated effects	C1, C5	К1, К2	Marker and	Board	12
2	Stilbene based optical whiteners and fluorescent dyes	C2, C3, C5	К3	Marker and	Board	16
3	Coumarin and carbostyryl based optical whiteners and fluorescent dyes	C3, C4	К4, К5	Marker and Projector	Board,	12
4	Pyrazoline, naphthaliminde, benzanthrone, and azabenzanthrone based fluorophores	C2, C5	К2, КЗ	Marker and stick model	Board, Ball and	08

ABIEM/ICAV

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 103 of 100

5	Water soluble fluorescent dyes, Cyanine dyes, xanthenes, oxazines, and	C2,C3	К2	Marker and Board	12
	similar dyes.				
	BODIPY and their Aza analogues				
Text /	Reference Books:	-		A CONTRACTOR	·
1. Mo	lecular Fluorescence: Principles and Applications by B Valeur, Wiley VCH			1000	
2. Prir	nciples of Fluorescence Spectroscopy J R Lackowiz, Springer				
Asses	sment method:				
1. Uni	t Test				
2. Ass	ignment			and a state of the second s	
3. Ser	ninar				
4. Lite	erature survey including patents and research paper				

GHEMICAL

	Fluorescent Colorants DYT1203														
CO	Statement	P01	PO2	PO3	P04	PO5	PO6	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	Understand the basics of fluorescence (K2)	2	2	2	2	1	1	0	0	0	0	2	0	2	3
CO2	Conceptualized the basic fluorophores. (K2)	2	2	2	2	2	1	0	0	0	0	2	0	2	3
CO3	Analyze the various fluorophores for optical whitening, and functional applications (K3)	2	3	3	2	2	1	2	0	2	2	2	2	3	2
CO4	Know the various aspects of water-soluble fluorescent dyes in biology. (K2)	2	2	2	3	2	1	2	0	1	1	2	1	2	3
CO5	Identify the synthetic route for a desired fluorescent dye (K2)	2	3	3	3	2	2	2	1	2	2	3	2	3	3
DYT1203		2	3	3	3	2	2	2	1	2	2	3	2	3	3

Course Code: DYT 1204	Course Title: Heterocyclic colorants			Credits = 4
	second and the second s	L	т	Р
Semester: VI	Total contact hours: 60	3	1	0

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 104 of 100

	List of Prerequis	ite Courses	1200		
	Applied Physics –I & II		1000		
	List of Courses where this course will be prerequisite		100		
	All BTech courses	time to	10		
ör. No.	Торіс	CO Statement	Knowledge level	Delivery method	Teaching Hours
1.	Chemistry of three membered rings with one hetero atom – epoxides, aziridines and episulphides, preparation and reactions	CO1, CO2, CO4	K2, A2	Chalk and board	01
2.	Chemistry of furan, pyrrole and thiophene – Paal-Knorr synthesis, Hantzsch synthesis, Hinsberg synthesis. Electrophilic reactions, nucleophilic and radical substitutions, reaction with bases, reactions of C-metallated , reaction with reducing agents, electrocyclicreactions, photochemical reactions, oxy and amino derivatives etc.	CO1, CO2, CO3, CO4	K2, K3 & A2	Chalk and board, Tutorial	08
3.	Chemistry of condensed five-membered heterocycles – various syntheses of indoles, benzofuran and benzo[b]thiophenes. Electrophilic reactions, nucleophilic and radical substitutions	CO1, CO2, CO3, CO4	K2, K3 & A2	Chalk and board, Tutorial	07
4.	Chemistry of 1,2 and 1,3 azoles. 2-Methylbenzoxazole, 2- methylbenzothiazole, 2-methylbenzimidazole. Electrophilic reactions, nucleophilic and radical substitutions, quarternaryazolium salts, side chain reactivity	CO1, CO2, CO3, CO4	K2, K3 & A2	Chalk and board, Tutorial	04
5.	Chemistry of pyridine, pyrimidine and pyridine oxide – Preparation. Electrophilic reactions, nucleophilic and radical substitutions, side chain reactivity, reactions with oxidizing agents,reactions of c-metallated ,electrocyclic reactions, photochemical reactions, oxy and aminopyridines, alkylpyridines, pyridine aldehyde, ketones, carboxylic acids and esters ,quaternary pyridinium salts, pyridine N-oxides etc.	CO2, CO3, CO4	K2, K3 & A2	Chalk and board, Tutorial	06

GHEMICAV

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 105 of 100

6.	Chemistry of 106olubiliz and isoquinoline – Skraup synthesis – 106olubiliz and quinaldine, N-methyaltion of quinaldine. Friedlander synthesis, Bischler-Napieralski synthesis – methyl isoquinoline, Pictet-Spengler synthesis. Electrophilic reactions, nucleophilic and radical substitutions on 106olubiliz and isoquinoline. Side chain reactivity of both of them.	CO2, CO4	K2, K3 & A2	Chalk and board, Tutorial	02
7.	Technically important heterocycles derivatives	CO5	K4 & A3	Seminar, Tutorial	01
8.	Basic important intermediates and dyes: Fischer-indole synthesis, Skraup synthesis, oxazines and thiazine dyes(cationic dyes), indigo and thioindigo dyes, phthalocyanine, carbazole chemistry, vat dyes based on anthranthrone type system	CO4,CO5		Chalk and board	01
9.	Refer some research papers on heterocycles used in dyes. (Assignment)	S 7	10	57/0	3
2. The Cher Eicher T., H 1. He 2005	yclic Chemistry, 4 th ed., Joule J. A. and Mills K., Blackwell Science, 2000 mistry of Heterocycles – Structures, Reactions, Syntheses and Applicatio lauptmann S. and Speicher A., Wiley-VCH GmbH & Co, KgaA, 2003 terocyclic Chemistry – Vols I, II and III, Gupta R. R., Kumar M. and Gupta ndamental process of Dye Chemistry- Fierz David				
Assessmen	nt method:				
5. Unit Tes 6. Assignm 7. Semina	hent	SIL	//		

CHIEMICAL

	Heterocyclic colorants and intermediates DYT1204														
СО	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 106 of 100

CO1	Identify the classes of heterocycles. (K2)	1	1	2	1	1	0	2	0	0	0	3	0	2	3
CO2	Design synthetic route of different heterocycles. (K3)	2	3	3	3	0	2	2	2	1	1	3	1	2	3
CO3	Propose the retrosynthetic pathway of different heterocycles. (K3)	2	3	3	3	2	2	2	2	2	2	3	2	2	3
CO4	Understand the reactivity of different heterocycles. (K2)	2	3	3	3	3	3	2	2	2	2	2	2	3	3
CO5	Assess the technical importance of heterocycles. (K3)	3	3	3	3	3	3	2	3	2	2	3	2	3	2
DYT1204	10530	3	3	3	3	3	3	2	3	3	2	3	2	3	3
	10-24				10		~								

CHIEMIC A

		Course Code: Elective I	Course Title: Heterocyclic c	olorants	10	1	1	Credits = 4
			21525			L	т	Р
		Semester: VI	Total conta <mark>ct hours: 40</mark>	1.1.1.1.1.1.		3	1	0
		1 E B	List of Prerequisite Course	es	104			0.00
		Applied Physics –I & II	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	710		7/		
	List of C	ourses where this course w	vill be prerequisite	100	123	18	1	- C
		All Btech courses of Dye	estuff Technology	200	143	1.1	1	
Sr. No.		1 July 10	Торіс		97.291	1	Te	eaching Hours
1.	and pharmaceutical in Retrosynthesis Technology – Brief disc	termediates, chiral chemist cussion on manufacture of s		26	2	1		15
2.	Chemistry – Chemistry	of some perfumery and fla						10
3.	Brief discussion on fine	e chemical indu <mark>stry with</mark> exa	amples of some global fine ch	emical companie	es		0	05
		SI. No.	ntent CO Statement	knowledge level	Delivery met	hod	1	

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 107 of 100

	1	Chemistry – Chemistry of some advanced dyestuff intermediates, agrochemical and pharmaceutical intermediates, chiral chemistry Retrosynthesis Technology – Brief discussion on manufacture of some agrochemical and pharmaceutical intermediates, handling of solvents, solvent recovery, IPR issues	CO1, CO2, CO4	K2 and A1	Chalk and board	
5	2	Chemistry – Chemistry of some perfumery and flavor intermediates Technology – Brief discussion on manufacture of some perfumery and flavor Intermediates	CO3 and CO5	K2 and A2	Chalk and board	
	3.	Brief discussion on fine chemical industry with examples of some global fine chemical companies	CO2, CO4, CO5	K1 and A2	Chalk and Board	

ABEMICA

Reference Books:

- Fine Chemicals manufacture Technology & Engineering, Cybulski A., Moulijn J. A., Sharma M. M., Sheldon R. A., Elsevier.
- Catalysis of Organic Reactions, Ford M. E. (Ed), Marcel Dekker Inc.
- Fine Chemicals The Industry and the Business, Pollak P., Wiley
- Chirality in Industry II Developments in the Commercial Manufacture and Applications of Optically Active Compounds, Collins A. N., Sheldrake G. Crosby J. (Eds), John Wiley & Sons.
- Organic Synthesis Engineering, Doraiswamy L. K., Oxford University Press.

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 108 of 100

- Handbook of Chemical Process Development, Chandalia S. B., Multi-Tech Publishing Co.
- Solvent Recovery Handbook, Smallwood I., Blackwell Publishing. Industrial Organic Chemistry, Arpe H.J.VCH, Weinheim, Weissermal K.1993

-

List of assignments and Open Ended Projects:

- 1. Assignments and presentations:
- Design based small project or
- Study report based on latest scientific development or
- Technology study report
- These can be done in a group containing maximum three students in each.

Evaluation based on assignments and short presentations and discussions

	Chemistry and Technology of Specialty Organic Intermediates and Fine chemicals E	lecti	ve-l												
СО	Statement	P01	P02	PO3	P04	PO5	PO6	P07	P08	60d	P010	P011	P012	PS01	PSO2
CO1	Define and state different terminologies related to fine chemicals	3	3	2	2	2	2	2	1	1	1	1	1	1	3
CO2	<i>Describe</i> and <i>explain</i> the general requirements for specialty chemicals and their techniques and application procedures	3	2	3	1	2	3	1	1	1	1	2	2	2	2
СОЗ	<i>Classify and differentiate</i> chemicals based on application and chemical constitution	2	2	2	2	1	2	1	1	1	2	2	1	2	2
CO4	Outline the synthesis of various compounds	2	2	2	1	2	2	1	2	2	2	2	2	2	2
CO5	Justify and illustrate the involvement of green chemistry and advancement strategies	2	2	2	2	2	2	2	2	1	2	2	1	2	3
Elective-I	X X X 17 1-11	3	3	3	2	2	3	2	2	2	2	2	2	2	3

Course Code: HUT1106	Course Code: HUT1106 Course Title:				
	Environmental Science and Technology	L	Т	Р	
Semester: VI	Total Contact Hours: 45	2	1	0	

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 109 of 100

	List of Prerequisite Courses	
Various T	echnology Courses in previous semesters	
	List of Courses where this course will be prerequisite	
Various T	echnology Courses in the forthcoming semesters	
	Description of relevance of this course in the B. Tech. Program	
Environm	se is very useful for the future Chemical Engineers and Technologists for assessing and appreciating impact of c ent. The students will be exposed to the nitty-gritties of the impact of design principles on the Environment. Th going to help in innovative solutions with positive impact on the environment.	
	Course Contents (Topics and Subtopics)	Required Hours
1	Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO14000+	3
2	Environmental impact assessment, Life cycle assessment (LCA)	3
3	Pollution prevention in chemical manufacturing, effluent valorization	2
4	Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control), Noise pollution	4
5	Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste	4
6	Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)	5
7	Toxicology; Industrial hygiene	2
8	Source models; Toxic release and dispersion models	5
9	Fires and explosions; Concepts to prevent fires and explosions	3
10	Chemical reactivity	2
11	Reliefs and reliefs sizing; Hazard identification; Risk assessment	4
12	Safety procedures and designs	4
13	Some case histories	4

AN DIMEINS

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 110 of 100

	Total 45
	List of Textbooks/Reference Books
1	Environmental Studies by R. Rajagopalan, Oxford University Press.
2	Essentials of Environmental Studies by Kurian Joseph & Nagendran, Pearson
3	Education Renewable Energy by Godfrey Boyle, Oxford Publications
4	Perspective of Environmental Studies, by Kaushik and Kaushik, New Age
5	International Environmental Studies by. Anandita Basak, Pearson Education
6	Textbook of Environmental Studies by Dave and Katewa, Cengage Learning
7	Environmental Studies by Benny Joseph, Tata McGraw Hill
8	Textbook of Environmental studies by Erach Books Bharucha, University Press.
	Course Outcomes (Students will be able to)
CO1	calculate BOD / COD for a given composition of effluent stream, Estimation of bio Kinetics.
CO2	calculate adiabatic lapse rate and determine conditions for suitability of atmospheric dispersion, effective stack height, chimney design.
CO3	calculate concentrative of pollutant at any point in the neighbourhood of emission given atmospheric conditions like wind, dispersion, environmental
COS	factors, etc.
CO4	calculate size/time/power required for primary clarifier, secondary treatment, tertiary treatment, sizing of different types of Biological treatments etc
CO5	identify hazards in a given process and assess the same and provide solutions for operating safely.

CHIEMICAV

	Environmental Science and Technology HUT1106														
СО	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	calculate BOD / COD for a given composition of effluent stream, Estimation of bio Kinetics.	3	3	2	2	2	3	3	2	3	3	3	2	3	3
CO2	calculate adiabatic lapse rate and determine conditions for suitability of atmospheric dispersion, effective stack height, chimney design.	3	3	2	2	0	3	3	3	3	3	3	1	3	3
CO3	calculate concentrative of pollutant at any point in the neighbourhood of emission given atmospheric conditions like wind, dispersion, environmental factors, etc.	3	3	0	2	2	3	1	3	3	1	3	2	2	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 111 of 100

CO4	calculate size/time/power required for primary clarifier, secondary treatment,														
04	tertiary treatment, sizing of different types of Biological treatments etc	3	1	2	2	2	3	3	3	3	3	0	2	3	3
CO5	identify hazards in a given process and assess the same and provide solutions for														
05	operating safely.	3	3	2	3	2	3	3	3	3	3	3	2	3	3
HUT1106	101.960	3	3	2	3	2	3	3	3	3	3	3	2	3	3

CALE MICAN

	Course Code:	Course Title:			Credits = 3
	HUT1103	Industrial Psychology and Human Resource Management	L	Т	Р
	Semester: VI	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses		1	4.5
None	10 m at			2	1
		List of Courses where this course will be prerequisite	17	-	
Techno	logy Courses in the forthcoming semeste	rs	1		la la
		Description of relevance of this course in the B. Tech. Program		-1	- Co
This co	urse equips students with human resourc	e management skills to be able to function	1.7	31	
		effectively in their professional careers.		11	
	Course	e Contents (Topics and Subtopics)		1.1	Required Hours
1	Introduction and Overview		1	1	2
	Management Theories				
2	Taylor, Fayol, Weber, Hawthorne; Ba	sic types of structures; Span of Control, Delegation, Authority,			4
	Responsibility	YEEN	×.		
	Recruitment				3
2			1		Э
3	Philosophies, Different methods of att	acting candidates			
3		acting candidates		<	2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 112 of 100

-	Performance Management	2
5	Goal setting process, Performance appraisal methods, Appraisal interviews, Rating errors	3
6	Training & Development	2
6	Identifying training needs, Training methods (on the job and off the job techniques), Evaluation of training	3
_	Change Management	
7	Types of change, Theories of change management, Hurdles to change, Olmosk change strategies	3
8	Knowledge Management	3
8	Innovation, Importance and benefits of Knowledge Management, Framework	3
	Motivation Theories	(S2)
9	Classification of motives, Various theories (Maslow, Herzberg, ERG, Vroom, Equity and Nohria's 4 drive model)	4
	Leadership Theories	511.5
10	Blake Mouton model, Hersey Blanchard Model, Michigan Model	3
11	Organizational Culture	
11	Types of cultures, Understanding and influencing cultures	3
12	Conflict Management	3
	Stages of conflict, Types of conflict and sources of conflicts, Conflict resolution	10.5
13	Power & Politics	3
	Bases of power, Politicking strategies	
14	Personality	3
	Theories of personality, Behaviour and personality styles Perception	
15	Persception versus sensation, Perceptual process, Perceptual errors	3
	Total	45
	List of Textbooks/Reference Books	
1	Innovation and Entrepreneurship, Peter Drucker	

GINE HICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 113 of 100

2	Essentials of organizational Behaviour, Srephen Robbins
3	Organizational Behaviour, Luthans
4	Select HBR cases and articles for review
5	Innovation and Entrepreneurship, Peter Drucker
	Course Outcomes (Students will be able to)
CO1	explain the fundamental concepts of industrial psychology and human resource management (K2)
CO2	analyze practical solutions (K4)
CO3	provide applicable solutions (K3)

CHIER MICAY

	Industrial Psychology and Human Resource Management HUT1103														
СО	Statement					5					0	1	2	1	2
		P01	PO2	PO3	P04	PO5	90d	P07	P08	60d	P010	P011	P01:	PSO1	PSO:
CO1	explain the fundamental concepts of industrial psychology and human resource														
01	management (K2)	3	2	1	2	0	3	3	3	3	3	3	1	3	2
CO2	analyze practical solutions (K4)	3	3	1	3	2	3	2	3	3	3	1	2	3	3
CO3	provide applicable solutions (K3)	3	3	2	2	2	3	3	3	2	3	3	2	1	3
CO4	Understanding the human resource management problems through case studies	2	2	1	2	2	2	2	2	2	2	2	2	1	1
CO5	Ability to provide viable solutions that will make a better workspace	2	2	1	1	1	2	1	2	2	2	2	1	2	2
HUT1103		3	3	2	3	2	3	3	3	3	3	3	2	3	3

Course Code:	Course Title: Industrial Management – I	Cre	dits	=3	
HUT1104	and the second sec	L	Т	Ρ	
Semester: VI	Total contact hours: 45	2	1	0	
	List of Prerequisite Courses				

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 114 of 100

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 115 of 100

Sr.No.	Торіс	Hrs.
1	Introduction: Principles, thoughts and contributions of FW Taylor, Henry Fayol and Elton Mayo.	10
	Responsibilities of management: society and development. Functions of Management:	
2	Planning, Motivating, Leading, Controlling; Business organization structures, limitations, relative merits	10
	&demerits. 10 2 Organisational ProcessandBehaviour:IntroductionandMeaningofOrganization,Organizationasa	
	process, Span of Control, Authority, Responsibility and Accountability, Delegation of authority,	
	Decentralizationofauthority.EnhancingManagerialEffectivenessthroughselfandothers,Individ ual	
	Personality&Behaviour,Perception,Attitudes,	
3	Technology Management: Strategies & their applications in industry, Business specifications versus	10
4	Marketing Management, Marketing sales, advertising, marketing research, supply chain management	10
5	Laws: Company Laws, Factory Laws, Labor Laws and Intellectual Property Rights (IPR)	1
6	CommunicationSkills:Communicationprocess,mediachannels,writtenandverbal/presentations kills,	(***
	List of Text Books/ Reference Books	
Essentials of	Management,Koontz	
Innovationar	d Entrepreneurship,Peter Drucker	
Industrial Ma	inagement–I,JhambL.C.and JhambS.	
Essentials of	Organizational Behavior, S. Robbins	
Organization	alBehaviour, LuthansF	
Principles of	Marketing,Kotler	
Research and	IDevelopment Management,BamfieldP	
Industrial Ma	inagement, Spriegel U.S.	

GINERNIC AV

Wet Processi	g of Textiles TXP1013													
CO Statement		FO1	0 0	P04	POS	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 116 of 100

CO1	Able to explain and use dyeing of cotton with reactive dye and azoics using														
	padding mangle and carry out and examine printing of Cotton, Polyester and its	3	3	2	2	3	2	2	1	2	2	2	2	2	3
	blend with Pigments														
CO2	Able to process and evaluate dyeing of cotton hank by tub liquoring using azoics														
	and choose and apply different styles of printing on Natural and Synthetic fabrics	2	3	3	3	2	2	1	2	2	2	3	3	2	2
	using different dye classes.														
CO3	Able to comprehend basis of special styles of printing like Batik, Tie and Dye and	2	2	2	3	3	2	2	2	3	2	2	3	3	3
CO4	Able to explain and carry out discharge and resist style of printing of cotton	3	2	2	3	3	2	1	2	3	2	3	3	2	2
CO5	Ability to use machinery for dyeing of cotton with reactive dyes on Laboratory	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Jigger and Winch	2	2	3	3	3	2	2	2	3	2	2	2	2	3
TXP1013		3	3	3	3	3	2	2	2	3	2	2	3	3	3

GHEMICAL

Course Code:	Course Title: Wet Processing of Textiles	Cr	edits	=3
TXP 1013		0 1/· I	Т	Р
Semester: VI	Total contact hours: 30	2	1	0
	List of Prerequisite Courses	1111		
All Dyes relate	d courses	-01/		
Sr.No.	Торіс	110		Hrs.
1	To study dyeing of cotton with reactive dye and azoics on padding mangle	100		8
2	To study the dyeing of cotton hank by tub liquoring using azoics	2		8
3	To study dyeing of cotton with reactive dyes on Laboratory Jigger			4
4	To study dyeing of cotton hosiery with reactive dye on Laboratory Winch		-	4

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 117 of 100

5	Direct style of printing – Direct, Reactive, 118olubilized vat and azoic		8
6	Direct style printing on Polyester and Nylon with disperse dyes		4
7	Direct style printing on Nylon and Wool with acid and direct dyes	201	4
7	Printing of Cotton, Polyester and its blend with Pigments	New York	4
8	Discharge style of printing – white discharge under direct and azoic ground		4
	(I I - mell)		
9	Resist style of printing – White and colour resist under reactive		4
10	Special styles of printing like Batik, Tie and Dye	1.2.1	8
	special styles of printing like back, the and bye	2	0
	List of Text Books/ Reference Books	1.20	

GHEMICAV

	Wet Processing of Textiles TXP1013														
СО	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	Able to explain and use dyeing of cotton with reactive dye and azoics using padding mangle and carry out and examine printing of Cotton, Polyester and its blend with Pigments	3	3	2	2	3	2	2	1	2	2	2	2	2	3
CO2	Able to process and evaluate dyeing of cotton hank by tub liquoring using azoics and choose and apply different styles of printing on Natural and Synthetic fabrics using different dye classes.	2	3	3	3	2	2	1	2	2	2	3	3	2	2
CO3	Able to comprehend basis of special styles of printing like Batik, Tie and Dye and	2	2	2	3	3	2	2	2	3	2	2	3	3	3
CO4	Able to explain and carry out discharge and resist style of printing of cotton	3	2	2	3	3	2	1	2	3	2	3	3	2	2
CO5	Ability to use machinery for dyeing of cotton with reactive dyes on Laboratory Jigger and Winch	2	2	3	3	3	2	2	2	3	2	2	2	2	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 118 of 100

Semester VII

AND THE READER

ी राजका

HEIEMIC,

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 120 of 100

	Course Code:	Course Title:		Cred	its = 2
	CEP1714	Chemical Engineering Laboratory	L	т	Р
	Semester: VII	Total Contact Hours: 60	0	0	4
		List of Prerequisite Courses			
Process (Calculations (CET1507), Transport Phenomena (CET110	5), Chemical Engineering Operations (CET1401), Chemical Re	eaction Eng	ineering	(CET1212)
	List of Cours	ses where this course will be prerequisite			
Other B.	. Tech. courses in this and the last semester				
	Description of re	levance of this course in the B. Tech. Program			
versions distillatio	· · · · · · · · · · · · · · · · · · ·	Tying various theoretical concepts learnt in theory courses. It ers as a bridge between theory and practice. This particula			
versions	s of typical chemical engineering equipments and serve on, filtration, drying and sedimentation.				id dynami
versions distillatic Sr.	s of typical chemical engineering equipments and serve on, filtration, drying and sedimentation.	ers as a bridge between theory and practice. This particula Contents (Topics and Subtopics)		es on flu Require	id dynami
versions distillatio Sr. No.	s of typical chemical engineering equipments and serve on, filtration, drying and sedimentation. Course C	ers as a bridge between theory and practice. This particula Contents (Topics and Subtopics)		es on flu Require 2	id dynami d Hours
versions distillatio Sr. No. 1	s of typical chemical engineering equipments and serve on, filtration, drying and sedimentation. Course C 4 - 6 Experiments on fluid dynamics and heat transfe	ers as a bridge between theory and practice. This particula Contents (Topics and Subtopics)		es on flu Require 2 1	id dynami d Hours
versions distillatio Sr. No. 1 2	 a of typical chemical engineering equipments and server on, filtration, drying and sedimentation. Course C 4 - 6 Experiments on fluid dynamics and heat transfer 3 - 5 Experiments on Chemical Engineering Operation 	ers as a bridge between theory and practice. This particula Contents (Topics and Subtopics)		es on flu Require 2 1 1	id dynami d Hours 24 .6
versions distillation Sr. No. 1 2 3	 a of typical chemical engineering equipments and server on, filtration, drying and sedimentation. Course C 4 - 6 Experiments on fluid dynamics and heat transfer 3 - 5 Experiments on Chemical Engineering Operation 2 - 4 Experiments on Reaction Engineering 	Contents (Topics and Subtopics) er ins		es on flu Require 2 1 1	id dynami d Hours 24 .6 .2
versions distillatic Sr. No. 1 2 3	 a of typical chemical engineering equipments and server on, filtration, drying and sedimentation. Course C 4 - 6 Experiments on fluid dynamics and heat transfer 3 - 5 Experiments on Chemical Engineering Operation 2 - 4 Experiments on Reaction Engineering 1 - 3 Experiments on process dynamics and control 	Contents (Topics and Subtopics) er ins		es on flu Require 2 1 1	id dynami d Hours 24 .6 .2 8
versions distillatic Sr. No. 1 2 3	 a of typical chemical engineering equipments and server on, filtration, drying and sedimentation. Course C 4 - 6 Experiments on fluid dynamics and heat transfer 3 - 5 Experiments on Chemical Engineering Operation 2 - 4 Experiments on Reaction Engineering 1 - 3 Experiments on process dynamics and control 	Contents (Topics and Subtopics) er ins tal of Text Books/ Reference Books		es on flu Require 2 1 1	id dynami d Hours 24 .6 .2 8

GHEMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 121 of 100

3	Coulson J.M., Richardson J.F., and Sinnott, R.K. Coulson & Richardson's Chemical Engineering: Chemical engineering design, 1996.
4	Green D. and Perry R. Perry's Chemical Engineers' Handbook, Eighth Edition, 2007.
	Course Outcomes (students will be able to)
01	Learn how to experimentally verify various theoretical principles (K3)
02	Visualize practical implementation of chemical engineering equipment (K4)
03	Develop experimental skills (K4)
04	Ability to document scientific and technical data
05	Ability to demonstrate project management skill in performing the experiments

Semester VII	Chemical Engineering Laboratory CEP1714														
CO	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	Learn how to experimentally verify various theoretical principles (K3)	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	Visualize practical implementation of chemical engineering equipment (K4)	3	3	2	1	2	3	3	0	3	3	3	2	2	3
CO3	Develop experimental skills (K4)	3	3	2	3	2	2	3	3	3	3	2	2	3	2
CO4	Ability to document scientific and technical data	2	2	2	2	2	2	2	3	3	2	3	2	3	2
CO5	Ability to demonstrate project management skill in performing the experiments	2	3	2	2	2	3	3	2	2	3	2	2	2	2
CEP1714		3	3	2	3	2	3	3	3	3	3	3	2	3	3

	Course Code:	Course Title:	С	redits =	- 3
	CET1703	Chemical Process Control	L	Т	Ρ
	Semester: VII	Total Contact Hours: 45	2	1	0
		List of Prerequisite Courses			
Material ar	nd Energy Balance Calculations, Applied Ma	thematics, Chemical Engineering Operations, Chemical Reaction Engineering	ng		

List of Courses where this course will be prerequisite

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 122 of 100 Chemical Engineering Laboratory, Projects

Description of relevance of this course in the B. Tech. Program

Process control plays a very critical role in the context of actual operation of a process plant. Most of the core chemical engineering courses focus on the steady state operation. In the real-life environment, process is continuously subjected to various disturbances which deviates the operation from the designed steady state. This course specifically prepares students to assess the impact of such disturbances and equip them with the tools available to tackle these situations.

Sr. No.	Course Contents (Topics and Subtopics)	Required Hours
1	Instrumentation: Principles of measurement; Pressure, Temperature, Level, Flow and composition measuring devices; Introduction to controllers (PLC, digital control, DCS), Introduction to control valves, Types of control valves, Control valve characteristics	9
2	Introduction to system dynamics, Concept of dynamic response, Linear systems, First, second and higher order system, Systems with dead-time, Definition of terms such as transfer function, Time constant, Gain of the process with practical examples Response of processes to standard inputs	9
3	Introduction to Process Control: Set point, disturbance, closed loop and open loop control, Feedback and feed-forward configurations, Poles and zeros of the transfer functions Basic control actions (ON/OFF, P, I and D), Effects of controller action on process response: Offset, closed-loop gain, controller gain effect of controller parameters	6
4	Stability analysis of feedback systems, Notion of stability, Criteria for stability	6
5	Control System Design: Introduction to controller design Identification of controlled, manipulated and disturbance variables, Pairing of inputs and outputs Controller selection for pressure, flow, temperature, level and composition control	9
6	Multiple Loop and Traditional Advanced Control Systems: Cascade control, Ratio control, Feed-forward control, Selective control, Split-range control, Inferential control	6
	Total	45
	List of Text Books/ Reference Books	
1	Chemical Process Control: An Introduction to Theory and Practice, Stephanopolous G.	
2	Process Modeling, Simulation, and Control for Chemical Engineers, Luyben W.L.	

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 123 of 100

3	Process Dynamics and Control, Seborg, D.E. and Mellichamp, D.A. and Edgar, T.F. and Doyle, F.J.
4	Process Control: Modeling, Design, and Simulation, Bequette, B.W.
5	Process Control Instrumentation Technology, Johnson, C.D.
	Course Outcomes (Students will be able to)
1	Specify the required instrumentation and control elements for a particular process (K3)
2	Develop input-output transfer function models for dynamics of processes (K4)
3	Characterize the dynamics and stability of processes based on mathematical analysis (K5)
4	Design and tune process controllers (K6)
5	Specify the required instrumentation and control elements for a particular process (K3)

disiEM/ca

	Chemical Process Control CET1713														
СО	Statement		1		1	L.		1				L	2	L	
		P01	P02	PO3	P04	PO5	P06	P07	P08	909	P010	P011	P012	PSO1	PSO2
CO1	Specify the required instrumentation and control elements for a particular process														
	(КЗ)	3	3	2	2	2	3	3	0	3	3	3	2	3	3
CO2	Develop input-output transfer function models for dynamics of processes (K4)	3	3	2	0	2	3	3	3	3	3	0	2	3	2
CO3	Characterize the dynamics and stability of processes based on mathematical														
	analysis (K5)	3	2	3	3	1	3	1	3	3	1	3	3	3	3
CO4	Design and tune process controllers (K6)	3	3	1	3	3	2	3	3	2	3	3	1	2	3
CO5	Specify the required instrumentation and control elements for a particular process			1											
	(K3)	3	1	2	2	2	3	3	3	3	3	3	2	3	3
CET1703		3	3	3	3	3	3	3	3	3	3	3	3	3	3

Course Code: DYT 1105	Course Title: Technology of Sulphur and Cationic Colorants (Marks 100)	Credi	ts =	4
		L	Τ	Р
Semester: VII	Total contact hours: 60	3	1	0

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 124 of 100

	List of Prerequisite	Courses	100		
	HSC (Science)	-	1000		
	List of Courses where this cours	se will be prere	quisite		
	All the Dyes Special Courses		100		
	Description of relevance of this course in	the B. Tech. (I	Oyes) Programm	e	
Students	will be able to understand the chemistry and Technology of Sulphur and Cat	tionic Colorant	5.		
Sr. No.	Торіс	CO Statement	Knowledge level	Delivery method	Teaching Hours
1	Sulphur Dyes, method of application, method of formation. Intermediates used in the manufacture of Sulphur dyes. Solubilized Sulphur Dyes	C01	K2, A2	Chalk and board, Tutorial	12
2.	Different kinds of cationic dyes – conventional and pendant. Properties of basic dyes. Conversion of disperse dyes into pendant basic dyes and properties of pendant basic dyes.	CO3	K2, K3 & A2	Chalk and board, Tutorial	09
3.	Conventional basic dyes. Diphenylmethane and ketone-imine class. Synthesis. Disubstittuedtriohenylmethane dyes and trisubstittuedtriphenylmethanedyes.typical synthesis and manufacturing methods.	CO2	K2, K3 & A2	Chalk and board, Tutorial	12
4.	Basic dyes for acrylic fibres, rating dyes. Oxidative coupling methods. Synthesis of heterocyclic intermediates	CO2	K2, K3 & A2	Chalk and board, Tutorial	12
Comp 2. <i>Chem</i>	nistry of Synthetic Dyes and Pigments, Lubs H. A., Robert E Krieger Publishing Dany, New York, 1977 Distry of Synthetic Dyes – Vol II, Venkataraman, K., Academic Press, 1952 Distry of Synthetic Dyes – Vol IV, Venkataraman, K., Academic Press, 1972	line in the second			
6. Color	Chemistry – Synthetic Dyes – Vol IV, Venkatalanian, K., Academic (1933, 1972) Chemistry – Synthesis, Properties and Applications of Dyes and Pigments, Zol Id ed., Weinheim – VCH, 1991	llinger			

CHIEMIC AV

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 125 of 100

Assessment method:

- 8. Unit Test
- 9. Assignment
- 10. Seminar
- 11. Literature survey including patents and research papers.

	Technology of cationic and sulfur colorants DYT1105														
СО	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	Understand the constitution of Sulphur dyes. (K2)	1	2	2	2	1	0	1	0	0	0	2	0	2	3
CO2	Interpret the structural diversities in cationic dyes. (K2)	2	2	3	3	1	0	1	0	0	0	2	0	2	3
CO3	Distinguish the colour changes with different classes of cationic dyes. (K2)	1	3	3	3	1	0	1	0	0	0	2	0	2	3
CO4	Conceptualize the process in the manufacture of Sulphur dyes. (K2)	3	3	3	3	3	3	2	2	1	1	3	1	3	2
CO5	Assess the technical importance of cationic dyes and their manufacture. (K2)	3	3	3	3	3	3	2	2	1	1	3	2	3	2
DYT1105		3	3	3	3	3	2	2	2	1	1	3	2	3	3

	Course Code: DYT 1206		tle: Structural elucidation spectroscopy	n of organic	24	1	Credits = 4
		(Marks 1	00)		L	Т	Р
	Semester:VII	Total con	tact hours: 60	//	3	1	0
		List o	f Prerequisite Courses				
	All BTech dyestuff Technology courses		and the	100			
Sr. No.	Course Contents (Topics and subtopics)	-	CO Mapping	Delivery method			Teaching Hours
1.	Introduction to spectral methods of analysis. UV-Visible spectroscopy.	a sur	CO1, CO2, CO3, CO4	Chalk and board			02

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 126 of 100

2.	Nuclear Magnetic Resonance Spectroscopy: Principles, some basic terms. Shielding and de-shielding, chemical shift in ¹ H-NMR spectroscopy, Magnetic Anisotropy, Spin-Spin coupling and splitting in ¹ NMR spectroscopy, Coupling constant, analysis of ¹ H- NMR spectrum.	CO1, CO2, CO3, CO4	Chalk and board, Tutorial	09
3.	IR-Spectroscopy: Basic theory, fingerprint region, treatment to identify functional groups, structure elucidation.	CO1, CO2, CO3, CO4	Chalk and board, Tutorial	08
4.	Mass spectroscopy: Basic terms and nitrogen rule. Mass Spectral Data, Representation of fragmentation process, factors governing fragmentation process, examples of common types of fragmentation.	CO1, CO2, CO3, CO4	Chalk and board, Tutorial	06
5.	Combined use of IR, NMR and Mass spectroscopy for structure elucidation.	CO4	Chalk and board, Tutorial	04
6.	Utility of all chromatographic techniques like GC , HPLC and HPTLC in organic chemistry. Some other advance techniques like GC-MS and LC-MS for self study. X-RAY diffraction and scanning and similar techniques.	CO1, CO2	Chalk and board, Tutorial	01

CHEMICAL

	Structural Elucidation of organic compounds DYT1206														
СО	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	Understand the basic concepts of spectroscopy (K2)	3	3	3	3	2	1	0	1	1	0	3	0	2	3
CO2	Demonstrate the knowledge in analyzing the UV and IR spectra (K2)	3	3	3	3	2	1	0	1	1	0	3	0	2	3
CO3	Analyze the NMR spectra (K3)	3	3	3	3	2	1	0	1	1	0	3	0	2	3
CO4	Solve complicated spectral problems (K4)	3	3	3	3	2	1	0	1	2	2	3	2	3	2
CO5	Assess the mass spectroscopic spectra (K4)	3	3	3	3	2	2	0	1	2	2	3	2	3	3
DYT1206		3	3	3	3	2	2	0	1	2	2	3	2	3	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 127 of 100

	Course Code: Elective-II	Organic Elective	Reaction mechanism a	nd reagent cher	mistry		(Credits = 4
					L	Т	Р	
	Semester:VII	Total co	ontact hours: 30	1	3	1	0	
	10250	List of Pre	erequisite Courses	10 1		1		
	All BTech dyestuff Technolog	gy courses			1	1		
	List of Cours	ses where	this course will be prere	quisite	Kay			
Sr. No.	Торіс		CO Statement	Knowledg e level	Deli met	-		Teaching Hours
1.	Study of intermediates: Carbocations, carbanions, carbene nitrenes, free radicals their stability, formation and reaction		CO1,CO2,CO3, CO4, CO5	K3, A2	Chalk a	ind bo	bard	7
2.	Discussion on mechanism of organic reactions and problem (class work as well assignment): Molecular rearrangement cyclisation reactions. Reagents used in oxidation and reduc C bond forming reactions, palladium catalysed coupling rea	ctions. C-	CO1,CO2,CO3, CO4, CO5	K3, A2	Chalk a	ind bo	bard	10
3.	Discussion and revision of concepts – substitution and elim reactions, electrophilic and nucleophilic aromatic substitut reactions, free radical reaction.		CO1,CO2,CO3, CO4, CO5	K3, A2	Chalk a	ind bo	bard	8
4.	Neighbouring group participation; 1,2 and 1,4 addition to conjugated systems.	C G	CO1,CO2,CO3, CO4, CO5	K3, A2	Chalk a	ind bo	bard	5
1. Or 2. Mo and F 3. Fu	mmended books: ganic Chemistry, Morrison R. T. and Boyd R. N. echanism and Theory in Organic Chemistry, Lowry T. H. and Row ndamentals of Organic Reaction Mechanisms, Harris J. M. ar ley and Sons	111	and stated as		1	-	ė.	

GHEMICAL

B.Tech (Dyes)- Syllabus

Page No. 128 of 100

4. The Art of Writing Reasonable Organic Reaction Mechanisms, Grossman R. B., Springer

Assessment method:

1. Unit Test

2. Assignment

	Organic Reaction mechanism and reagent chemistry Elective-II														
СО	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	Identify the classes of organic molecular structure. (K2)	3	3	3	3	0	0	1	0	0	0	2	3	2	2
CO2	Design synthetic route of different organic molecules. (K3)	3	3	3	3	1	1	1	1	1	1	3	3	2	3
CO3	Propose the retrosynthetic pathway of different organic molecules. (K3)	3	3	3	3	1	1	1	1	1	1	2	3	2	3
CO4	Analyse the reaction mechanism (K4)	3	3	3	3	2	2	1	2	1	1	2	3	2	3
CO5	Assess the best possible route for the synthesis (K3)	3	3	3	3	2	2	1	2	2	2	3	3	2	3
Elective-II		3	3	3	3	2	2	1	2	2	2	3	3	2	3

HEMIC .

	Course Code:	Course Title:		Cre	dits = 4
	HUT1105	Industrial Management	67 F	Т	Р
	Semester: VII	Total Contact Hours: 60	3	1	0
		List of Prerequisite Courses			
None		100000000000000000000000000000000000000			
	List of Cours	ses where this course will be prerequisite	1		
None		NEUR			
	Description of re	levance of this course in the B. Tech. Program			
This course	is required for effective and holistic functioning of	of students in their professional career.			
	Course Conten	ts (Topics and Subtopics)		Requi	red Hours
1	Greiner's Model of Organization Life Cycle	See			2
T	Organic and mechanistic structures				3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 129 of 100

2	Marketing Management	7
2	Introduction, Porter's value chain, Porter's five forces, Porter's generic strategies	7
3	Introduction to the 4Ps of Marketing	11
5	Product, Price, Place, Promotion	11
	Production and Operations Management	
4	Concept of productivity, World class manufacturing, Business process reengineering, Kanban, JIT, Poka	10
	Yoke system, Maintenance practices	
	Quality Management	
5	The concept of quality, Quality control, acceptance sampling and SQC	6
	Deing's 14 points, TQM, Insights into ISO-9000, ISO -14000,ISO-50000	
6	Financial Management	15
U	Accounting system, Balance-sheet evaluation, Fund-flow analysis, financial ratios an insight, Costing	15
7	Materials Management	4
,	Value analysis, Purchasing and vendor development, Warehousing and inventory control methods	A
	Maintenance Management	
8	Classifications, Equipment and plant reliability and availability, Management of shut downs and	4
	turnarounds	
	Total	60
	List of Textbooks/Reference Books	
1	Industrial Management–I, Jhamb L. C. and Jhamb S.	
2	Industrial Management, Spriegel U.S.	
3	Operations Management for Competitive Advantage, Richard B. Chase, F. Robert Jacobs, Nicholas Acquilano	
4	World Class Manufacturing - A strategic Perspective, B.S. Sahay, K.B.C. Saxena, Ashish Kumar	
5	Management Finance, Varanasay Murthy	
6	Essentials of Management,Koontz	
7	Principles of Marketing, Kotler	
8	Quality Planning and Analysis, Juran	

CHEMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 130 of 100

9	Financial Management, Prasanna Chandra	
10	Financial Management, R. M. Srivastava	
11	Select HBR cases and articles for review	

SHEMIC

	Industrial Management 2 HUT1105														
СО	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	explain the fundamental concepts of Marketing management and the various aspects therein (K2)	3	2	1	2	1	3	3	3	3	3	3	1	3	2
CO2	describe the fundamental concepts of Finance and analyse the balance sheet (K4)	3	3	2	3	1	1	3	3	3	3	3	2	3	3
CO3	explain various productivity techniques that when combined with engineering knowledge can be applied successfully in the industry (K2)	3	2	0	2	1	3	3	2	3	3	0	1	3	2
CO4	study real life practical problems, constraints and will be able to think in terms of various alternative solutions (K3)	3	3	2	0	1	3	3	3	3	3	3	2	2	3
CO5	Ability to solve the real-life chemical industry problems through financial, marketing and project management	3	3	2	2	1	2	2	2	2	2	2	2	2	2
HUT1105		3	3	2	3	1	3	3	2	2	2	2	3	3	3

	Course Code:	Course Title:		C	redits = 4
	MAT1106	Design and Analysis of Experiments	L	Т	Р
	Semester: VII	Total Contact Hours: 60	2	2	0
	1.10	List of Prerequisite Courses		•	
HSC Standard Matl	nematics, Applied Mathematics – I (MA	T1101), Computer Applications Laboratory (MAP1201)			
	List of Co	ourses where this course will be prerequisite			
All subsequent tec	nnology and science courses				
	Description o	f relevance of this course in the B. Tech. Program	<u></u>	1	
This course is requ	ired for graduating technocrats to funct	ion effectively and efficiently in Industry, Academia and ot	her Profe	essional S	Spheres.
Sr. No.		Rea	uired Hours		

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 131 of 100

	Module I (Statistical Theory of Design of Experiments)	
1	Fundamental Principles of Classical Design of Experiments:Strategy of Experimentation, Typicalapplications of experimental design, Basic principles, Guidelines for designing experiments	2
2	Review of Probability and Basic Statistical Inference: Concepts of random variable, Probability, Density function cumulative distribution function, Sample and population, Measure of central tendency, Mean, median and mode, Measures of variability, Concept of confidence level, Statistical Distributions: Normal, Log Normal & Weibull distributions, Hypothesis testing	4
3	Experiments with a Single Factor: Analysis of Variance -Fixed effect model and Random effect model, Model adequacy checking, Contrasts, Orthogonal contrasts,Regression Models and ANOVA, Violation of normality assumption: Kruskal-Wallis testRandomized block designs, Latin square designs, Balanced incomplete block designs	8
4	Factorial Designs: Definition, Estimating model parameters, Fitting response curves and surfaces	4
	Module II (Data Analysis using Software (R/Python))	
5	The 2 ^k Factorial design, Blocking and confounding in the 2 ^k Factorial design, Focus of 2 ² and 2 ³ designs, Blocking and confounding in the 2k Factorial Design	8
6	Plackett Burman methods, Central Composite Design (CCD)	4
7	Descriptive Statistics, Probability Distribution and Testing of Hypothesis using R	6
8	Regression techniques, Diagnostic checks, ANOVA using R and implementation of contrasts	6
9	Construction of Balanced Incomplete Block Designs and data analysis using R	6
10	Analysis of factorial designs using R, Understanding output and interpretation	6
11	Factorial designs, Data analysis and interpretation.	6
	Total	60
	List of Textbooks/ Reference Books	
1	Montgomery, Douglas C. Design and Analysis of Experiments; 9 th Ed.; John Wiley & Sons, Inc. (2017)	
2	Box, G. E.; Hunter, J. S.; Hunter, W. G. Statistics for Experimenters: Design, Innovation, and Discovery; 2 nd Ed.; W	iley (2005)
3	Lawson, John. Design and Analysis of Experiments with R; 1 st Ed.; CRC Press (2015)	1. A.
4	Rasch, D.; Pilz, J.; Verdooren, R.; Gebhardt, A. Optimal Experimental Design with R; 1 st Ed.; CRC Press (2011)	

GHEMICAV

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 132 of 100

5	Unpingco, J. Python for Probability, Statistics, and Machine Learning; 2 nd Ed.; Springer (2019)
6	Anderson-Cook, Christine M.; Montgomery, Douglas C.; Myers, Raymond H. Response Surface Methodology: Process and Product
, i i i i i i i i i i i i i i i i i i i	Optimization using Designed Experiments; 4 th Ed.; Wiley (2016)
7	Montgomery, Douglas C. Introduction to Statistical Quality Control; 7 th Ed.; Wiley (2009)
8	Lazić, Živorad R. Design of Experiments in Chemical Engineering: A Practical Guide; 1 st Ed.; Wiley-VCH (2005)

GIBIEMICAV

	Design and Analysis of Experiments MAT1106														
СО	Statement					-					0	1	2		8
		P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	Explain the basic principles of design of experiments (K2)	3	2	1	2	0	3	3	3	3	3	1	1	3	2
CO2	perform statistical analysis of single experiments and do post hoc analysis (K3)	3	3	2	2	2	3	3	3	0	3	3	2	3	3
CO3	conduct experiment and analyse the data using statistical methods (K4)	3	2	2	3	2	3	1	3	3	2	3	2	2	3
CO4	choose an appropriate design given the research problem (K5)	3	3	3	3	3	3	3	3	3	3	0	3	3	3
CO5	perform statistical analysis of different designs using R and interpret the results														
	(K5)	3	1	3	3	3	3	3	2	3	3	3	3	0	3
MAT1106		3	3	3	3	3	3	3	3	3	3	3	3	3	3

	116		12		
	Course Code: DYP	Course Title: Project -I	Cre	2	
	1007		L	Т	Р
	Semester: VII	Total contact hours: 60	0	1	4
		List of Prerequisite Courses			
Seminar (DYP 1006)					
	List	of Courses where this course will be Prere	quisite	~	-
Project II (DYP 1008)	1	A Share and the state		_	1

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 133 of 100

Descrip	tion of relevance of this course in the B. Tech. (Dyestuff Technology) Programme	
2.	Develop a skill to solve a research problem related to dyestuff technology Develop skills for presenting a research work effectively. The course presents an opportunity to the students for fine-tu communication skills, oral as well as written.	ning their scientific
Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Teachers will communicate various research project topics to all the students based on interest and facilities available and relevance to the area of Dyestuff Technology. - Each student based on his/her interest and merit selects the research topic and is allotted a supervisor. - Review of literature, formulation of research project, hypothesis, objectives, methodology, possible expected outcomes, planning for experimentation, experimental trials, data generation and analysis. - Oral presentation & written report of the seminar will be evaluated.	60
	Total	60
	List of Textbooks/Reference Books	200
1	Relevant research articles, patents, review articles, conference proceeding, book chapters and books	6

	Project-I DYP1007														
СО	Statement	01	02	03	04	05	06	07	9 0 8	60	010	011	012	S01	502
CO1	Develop critical thinking to identify the research gap for the project (K5)	2	2	2	2	2	2	2	2	2	2	2	2	2	
		5	3	5	5	5	2	5	З	З	3	5	З	Э	5
CO2	Formulate a scientific question and approach to solve it (K6)	3	3	3	3	3	3	3	3	3	3	2	3	3	1
CO3	Plan the experimental methodology for the project (K5)	3	2	3	3	3	3	3	1	3	3	3	3	3	3
CO4	Develop skills to communicate the research plan effectively (K6)	3	3	3	3	3	2	3	3	3	0	3	3	2	3
CO5	Develop skills for writing a scientific document on the research work (K6)	3	3	3	3	3	3	3	3	3	3	3	3	3	3
DYP1007		3	3	3	3	3	3	3	3	3	3	3	3	3	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 134 of 100

	Course Code: Course Title:	Course Title:			Credits = 3
	DYP 1006	Seminar	L	Т	Р
	Semester: VII	Total Contact Hours: 60	0	0	4
	104638	List of Prerequisite Courses			
All the previous dyestuff techno	logy courses		(2)		
	List of Course	es where this course will be prerequisite	122	1	
All the B.Tech (dyestuff technologies)	ogy) courses in this semester a	and the subsequent semesters.	in the second		
	Description of rele	evance of this course in the B. Tech. Program	1.50		
The course is intended to develo	p student's ability to read, und	derstand any given topic related to dyestuff techno	ology, colle	ect litera	ature, write a scientif
report on that tonic based on t	and the second sec				
report on that topic based on t	the provided guidelines and p	present the scientific merits and demerits of the	matter. S	tudents	s shall prepare critic
· ·	-	present the scientific merits and demerits of the subjects and submit in the form of standard type			
· ·	-				
reviews of selected topics in Che	emical Technology and allied			Studen	
reviews of selected topics in Che	emical Technology and allied	subjects and submit in the form of standard type se Contents (Topics and Subtopics)		Studen	ts shall also make or
reviews of selected topics in Che	emical Technology and allied s	subjects and submit in the form of standard type se Contents (Topics and Subtopics)		Studen	ts shall also make ora quired Hours
reviews of selected topics in Che	emical Technology and allied s Cours Any topic related to dye	subjects and submit in the form of standard type se Contents (Topics and Subtopics) estuff technology.		Studen	ts shall also make or equired Hours 60

	Seminar DYP1006														
СО	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	Develop a protocol for literature survey about a certain topic (K4)	3	3	1	3	2	3	3	3	3	3	3	2	3	3
CO2	Evaluate the literatures and interpret the scientific content (K5)	3	2	3	3	3	0	3	3	3	3	2	3	3	3
CO3	Apply the concept of dyestuff technology on a selected topic (K3)	3	3	2	2	2	3	3	2	3	3	3	1	3	3
CO4	Develop skills for presenting a scientific topic in dyestuff technology (K6)	3	1	3	3	0	3	3	3	1	3	0	3	3	3
CO5	Develop skills for writing a scientific document (K6)	3	3	3	3	3	3	3	3	3	3	3	3	3	3
DYP1006		3	3	3	3	3	3	3	3	3	3	3	3	3	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 135 of 100

	Course Code:	Course Title: In-plant Training	Credit	s = 6	Second Contraction
	DYP 1012		Ŀ	т	Ρ
	Semester: VII	Total duration: 12 weeks	0	0	0
		List of Prerequisite Co	rses		
	None	11.57			
	·	List of Courses where this course w	ll be P	rere	quisite
	Project I (FDP 10	27), Project II (FDP 1024)		-	(0)
	•	Description of relevance of this service in the P. Teel	(500)	End	2.112
					gg X lech i Programme
		Description of relevance of this course in the B. Tecl	. (FUUL		gg. & Tech.) Programme
he cours	se is designed to – 1	. develop a systematic thinking about an industrial problem; 2	. (FOOL		gg. & Tech.) Programme
	e			7,	151.)
evelop s	kills for communica	. develop a systematic thinking about an industrial problem; 2		7,	151.)
evelop s	kills for communica	. develop a systematic thinking about an industrial problem; 2 tion, networking, personal grooming & amp; professional con		7,	151.)
evelop s Idustrial	kills for communication environment, and the Each Student w Engineering /St	. develop a systematic thinking about an industrial problem; 2 tion, networking, personal grooming & amp; professional con 3. develop the attitude for individual and teamwork.	uct wi	7,	an
evelop s idustrial Sr. No.	kills for communication environment, and the Each Student we Engineering /St services/ Engine	develop a systematic thinking about an industrial problem; 2 ation, networking, personal grooming & amp; professional con 3. develop the attitude for individual and teamwork. Course Contents (Topics and subtopics) ill be involved in R & D/ manufacturing (QA / QC / Plant ores and Purchase)/ marketing / finance/ consultancy/ Techni eering / Projects, etc.	uct wi	7,	an Required weeks

1.1.1.1

GIGEMICAV

In-Plant Training DYP1012

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 136 of 100

	CINEMIC,			1											
СО	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	Apply the concept of project & production management in further planning (K3)	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	<i>Develop</i> critical thinking regarding the various operations involved in dyestuff technology and allied industry (K4)	3	3	2	3	2	3	3	3	3	3	3	2	3	2
CO3	Solve certain industrial challenges in dyestuff technology and allied field (K6)	3	3	3	3	3	3	2	3	1	3	2	3	3	3
CO4	Present and communicate an industrial problem effectively (K6)	3	3	2	3	3	3	3	0	3	3	3	3	2	3
CO5	Write a scientific report on the training (K6)	3	3	3	3	1	3	3	3	3	2	3	3	3	3
DYP1012		3	3	3	3	3	3	3	3	3	3	3	3	3	3

GEEN

antificance

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 137 of 100

Semester VIII

GEEN

ADD FEED ADD

GHEMICA

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 138 of 100

Code & Tit		-	Analysis and Application of Dyes, Intermediates, Optical Brightene plorants DYP1009	ers and
Marks	10	00		
Number of	f Hours per Week 8		1000	
Credits	4			
Class	Fir	nal Year B T	ech (Dyes)	
Semester	VI			
SI. No.	Detailed Syllabus		List of Experiments	Hours
1	Preparation, analysis and application Detailed Sy some intermediates	yllabusof	 Preparation of p-Nitroso N,N-dimethyl aniline Hydrochloride. Synthesis of Benzocoumarin Preparation of p-Amino acetanilide Synthesis of para-dimethyl amino benzaldehyde Synthesis of 1,2,4-Acid Diaminostilbenedisolphonic acid 	40
2	Preparation, analysis and application of some dy	yes	 Preparation of Indophenol blue Synthesis of Acid Blue 40 Metal complex dyes Synthesis of Xanthene dyes Preparation of dis azo dye Synthesis of Azocoumarin dye Synthesis of Malachite Green 	40
3	Preparation, analysis and application of some op brighteners	otical	 Preparation of DNSDA Preparation of DASDA Preparation of triazine based optical brightner 	20
4	Preparation, analysis and application of some function colorants	inctional	Preparation of coumarin based functional colorants	20

GIBIEIMIC AV

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 139 of 100

Sl. No.	Course Content	CO Statement	Knowledge level	Delivery method	No. Of Hours to be handled
1	Preparation, analysis and application of some dyes	CO1, CO2, CO3, CO4, CO5	K1, K2, K3, K4, K5, K6 S3	Laboratory Practical	40
2	Preparation, analysis and application of some intermediates	CO1, CO2, CO3, CO4, CO5	K3, K4, K5, K6 S3	Laboratory Practical	40
3	Preparation, analysis and application of some optical brighteners	CO1, CO2, CO3, CO4, CO5	K3, K4, K5, K6 S3	Laboratory Practical	20
4	Preparation, analysis and application of some functional colorants	CO1, CO2, CO3, CO4, CO5	К3, К4, К5, К6 S3	Laboratory Practical	20

GHEMICAL

Assessment methods:

- 1. Viva
- 2. Assignment
- 3. Practical

Recommended books:

Fundamental Processes Of Dye Chemistry by Hans Eduard Fierz-David And Louis Blangey

	Preparation, Analysis and Applications of Dyes, Intermediates, Optical Brightners DYP1009														
СО	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
CO1	Design the synthetic route for the preparation of dyes and intermediates (K3)	3	3	3	3	1	3	3	1	3	1	3	2	2	3
CO2	<i>Conduct</i> experiments in the lab independently for the synthesis of dyes, intermediates and optical brighteners (K3)	3	3	3	3	3	3	2	0	3	1	3	2	3	2
CO3	Execute the process with utmost efficiency and precession (K3)	3	3	3	3	3	3	2	0	3	1	3	3	2	3

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 140 of 100

CO4	<i>Evaluate</i> the purity, and characterize the products via instrumental methods (K5)	3	2	2	3	3	2	1	2	3	1	3	1	2	2
CO5	Apply of the synthesized products for diverse uses (K4)	3	3	3	3	3	3	3	1	3	1	3	2	3	3
DYP1009		3	3	3	3	3	3	3	2	3	1	3	3	3	3

CHEMIC A

	Course Code: DYT 1106	Course Title: Case Studies i	n Dyestuff Technology (Marks :	Credi	its = 4	
		100)		L	Т	Ρ
	Semester: VIII	Total contact hours: 60	there are made to 12 states	3	1	0
		List of Prerequisite Courses		(h)		
	All BTech dyestuff Techno	ology courses	100 H MI 100-00			
	Course Contents (Topics	and subtopics)	Course Outcome	Reqd	. hours	5
1	Case studies in intermedia	ates and dyes with emphasis	C01-C05			4 5
1	on sources of literature a	nd selection of methods.	110 1001			45
	Lis	st of Text Books/ Reference B	ooks	A		
BIOS Reports						
	and the second sec					

2. FIAT Reports

3. CIOS Reports

4. Organic Synthesis Collective Volumes I-V

	Case Studies in Dyestuff Industry DYT1106														
CO	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
CO1	<i>Correlate</i> industry-oriented situations for synthesis or isolation of intermediates (K2)	3	3	2	3	3	2	3	2	0	1	2	0	3	3
CO2	Understand practical aspects of selection of suitable methods and isolation techniques (K2)	3	3	3	3	3	2	3	2	0	1	2	0	3	3
CO3	Realize the utility of the theoretical concepts in the practical situations (K2)	2	3	3	3	3	3	3	2	2	1	2	2	3	3
CO4	Formulate strategies to solve the practical problem (K4)	3	3	3	3	3	3	3	2	2	3	3	3	3	3

Department of Dyestuff Technology,

Institute of Chemical Technology, Mumbai

B.Tech (Dyes)- Syllabus

Page No. 141 of 100

CO5	Assess the problem component and come up with a rational solution (K5)	3	3	3	3	3	3	3	2	2	3	3	3	3	3
DYT1106		3	3	3	3	3	3	3	2	2	3	3	3	3	3
	100000														

GHEMICAL

Subject Co	ode: 1107				Subject: Teo	chnology of p	igments	Total Marks: 100
L		T	Test	С	Theory Mar	ks	Continuous Assessment	
		11			Mid Sem	End Sem		
4		2	0	3	30	20	15	100
Sl.No.		121		(Contents		221	Hrs.
1	Introduction to pigme pigments, crystalline					operties of	115 3	5
2	Chemistry – Lake pigm phthalocyanine, benzir Technology – manufac	nidazolone	pigments, v	vat pigme	nts, quinacridor		1511	5
3	High performance pign perylene pigments and pigments, azamethine	other cond	ensed hete	erocycli <mark>c</mark> p			Die 1	15
4	Heterocyclic analogues				nescent pigmer	nts		5
5	Pigment finishing and s Pigment Flush.	standardisat	ion. Newei	r Technolo	ogies of pigmen	t processing.	Latent Pigment Technology.	2
6	Pigments in organo ele applications.	ectronics and	d other mo	dern appl	ications. Pigmer	nts for printin	g inks, ink jet printing and other	3
7	Introduction to inorgan properties;Introduction						chemical and physical	5

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 142 of 100

	CHEMICAL	
8	White Pigments based on Titanium Oxide, Zinc oxide, and Zinc Sulfide; properties, production, raw materials, application in commercial products, and toxicology	5
9	Various colored pigments on metal oxides and hydroxides; synthesis, properties, uses and economic aspects	5
10	Natural source and commercial production of black pigments; Chemical and Physical properties of black	5
	pigments; their application in Paints, Plastics, and Printing inks; Detailed Safety issues and, Toxicology	
11	Inorganic pigments with special properties for examples Magnetic pigment, Luminescent pigments, Transparent pigments, Electroluminescent pigments, Special effect pigments, etc.	5
2. Industria	Books: ry of Synthetic Dyes – Vol II, Venkataraman K., Academic Press, New York, 1952 Il Organic Pigments – Production, Properties, Applications, Herbst W. and Hunger K., VCH Verlag, Weinheim, 1997. formance Pigments, Smith H. M.	
Text / Re	ference Books:	
	ial Inorganic Pigments Edited by G. Buxbaum and G. Pfaff, Wiley VCH	
	ent method:	
1. Unit Te	The second se	
2. Assignr		
3. Semina		
4. Literati	ure survey including patents and research paper	

	Technology of Pigments DYT1107														
СО	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	PO9	P010	P011	P012	PSO1	PSO2
CO1	<i>Conceptualize</i> the basic pigmentary properties like hue, tinctorial strength, blooming, bleeding, stability, optical properties, polymorphism, etc.	3	3	2	2	2	2	1	0	1	1	1	1	2	2
CO2	Classify the pigments based on chemical constitution and color	3	3	2	2	2	3	2	1	1	1	2	1	2	1
CO3	Correlate and predict various application properties of pigments	3	3	2	2	3	2	1	1	1	1	2	1	3	2
CO4	Describe and apply the standardization and after treatment methods of pigments	3	3	3	2	2	2	1	1	1	1	2	1	3	2

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 143 of 100

CO5	Propose synthetic routes for different pigments	3	3	3	3	3	3	2	1	1	1	3	1	3	3
DYT1107		3	3	3	3	3	3	2	1	1	1	3	1	3	3

A SIMERIA

	Course Code: DYT 1205	Course Title: Functional Applications of Orga Colorants	anic		Credits = 3
			·	L L	ТР
	Semester: VIII	Total contact hours: 45		2	1 0
	100	List of Prerequisite Courses		Past.	
	All BTech dyestuff Technology Courses			D-C	3 S
	Course contents(topics/sub	topics)	Course Outcome	Requi	red hrs
1	Introduction to functional dyes. Indicate laser dyes, liquid crystal dyes,	or dyes, dyes used in other analytical techniques,	CO1,CO3	06	1
2	Dyes in photography and electrophotog	grapy	CO3	08	
3	Dyes for ink jet printing, thermal printing	ng	CO2	04	A
4	Dyes used in light harvesting devices lik Imaging	e solar cells and other related uses, holography,	СОЗ	04	
5	Non linear optical properties of dyes ar	nd infrared absorbing dyes	C01	03	
6	Quasi aromatic fluorescent compounds	GEEN	CO2	03	
7	Colorants for Photodynamic theory		CO1, CO3	03	
	List of	Text Books/ Reference Books	-	÷	
1	Advances in Color Chemistry – Vol I, Pe	ters A. T.		1	2
2	Advances in Color Chemistry – Vol II, Pe	et <mark>ers A. T.</mark>			

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 144 of 100

3	Non-Textile Dyes, Freeman H. S.
4	Coloring of Plastics: Fundamentals by Robert A. Charvat John Wiley & Sons, 11-Mar-2005
5	Coloring of plastics: theory and practice by M.Ahmad Van Nostrand Reinhold, 1979
6	Coloring of plastics: theory and practice by M.Ahmad Van Nostrand Reinhold, 1979

GHEMICAV

	Functional Application of Colorants DYT1205														
СО	Statement										0	1	2	L	2
		P01	PO2	PO3	P04	PO5	P06	P07	P08	P09	P01(P01:	P01:	PSO1	PSO2
CO1	Grasp broad idea about functional applications of dyes (K2)	1	2	2	2	1	1	2	0	1	1	3	0	3	2
CO2	Understand underlying properties for their application in commercial product (K2)	1	3	2	2	1	1	2	1	1	1	3	0	3	2
CO3	Know various colorants based on specific molecule engineering (K2)	2	3	2	2	1	2	2	0	1	1	3	0	2	3
CO4	Apply the knowledge in planning the synthesis of functional dyes (K3)	3	3	3	2	2	2	3	1	2	2	3	2	3	3
CO5	Design functional dyes based on the specific role (K4)	3	3	3	3	2	2	3	1	2	3	3	3	3	3
DYT1205		3	3	3	3	2	2	3	1	2	3	3	3	3	3

1

Course Code: HUT1107	Course Title: Value Education	Credi	redits = 4				
		L T 2 1	Ρ				
Semester: VIII	Total contact hours: 45	2	1	0			
	List of Prerequisite Courses						
	AND THE REPORT OF THE PARTY OF		24				
List of	Courses where this course will be Prerequisite		10.0				

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 145 of 100

	Description of relevance of this course in the B. Tech. (Dyestuff Tech.) Programme	
Sr. No.	Course Contents (Topics and subtopics)	Required Hours
1	Unit –I Education and Human values 1. Education: Etymology, definitions (western, Indian) 2. Relationship between education and Axiology (Ethics, Logic, aesthetics/Satyam, shivam, Sundaram) 3. Evaluation of education: Ancient Indian education :Purusharthas 4. Concept and types of values 5. Functions of holistic education for the development of Personal/individual growth *Social, National Global citizenship.	15
2	Unit –II National and International Values for Global Development • Importance for national integration and international understanding. • National values (constitutional Values)- Democracy, socialism ,Secularism ,Equality, Justice, Liberty, freedom and Fraternity • Constitutional provisions for values in Indian constitution –Article 14,15,16,17 & 19 • Social values- Empathy Social responsibility, self- control, Humanity university brotherhood. • Professional values- Religious Tolerance, Wisdom, character formation (Character building) • Aesthetic values- Love and appreciation of literature and fine arts and respect for the same	15
3	Unit –III Human Rights 1. Right to information 2. Right when arrested 3. Right to compensation in accidents 4. Rights of consumers 5. Constitutional Rights of women 6. Rights of Wife and Children 7. Offenses relating to marriage 8. Women's rights to protect from domestic violence 9. Rights against Dowry 10. Free Legal services to the poor 11. Workman's right to compensation for accidents and Occupational Diseases 12. Working women's right for Maternity benefits 13. Right of women against Sexual Harassment in workplaces 14. The law on rape	15
	Total	45

GIGEMICA

	Project-II HUT1107														
со	Statement	P01	PO2	P03	P04	PO5	P06	P07	PO8	60d	PO10	P011	P012	PSO1	PSO2
CO1	Perform experiments & troubleshoot to generate reliable data (K5)	3	3	3	3	3	3	3	3	3	3	3	3	3	3

VEEN.

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 146 of 100

CO2	Apply different statistical tools for scientific data analysis (K4)	3	3	2	3	2	3	3	3	2	3	3	2	3	3
CO3	Evaluate critically the experimental data and draw meaningful inferences (K5)	3	3	3	3	3	0	3	3	3	3	3	3	3	3
CO4	Develop skills to communicate the research outcome effectively (K6)	3	3	3	3	3	3	1	3	3	3	3	2	3	3
CO5	Develop skills for writing a complete document on the project work (K6)	3	3	3	3	3	3	3	3	3	3	3	3	3	3
DYP1008	101,940	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	10530				10		÷								
	110-11														

GHIEMICAV

	Course Code: DYP 1008	Course Title: Project -II	100	Credit	:s = 4	
				L	Т	Р
	Semester: VII	Total contact hours: 120	1.50	0	0	8
	15-21	List of Prerequisite Courses	0			
	Project I (DYP 1007)	and the local state of the	0-40			
	List of	Courses where this course will be Prerequisite	1000	1	1	
elevant c	courses of Semester VIII			1.2.	11	
		nce of this course in the B. Tech. (Dyestuff Tech	n.) Programme	100	C	
2. De	evelop a skill to execute & solve a research problem evelop skills for presenting a research outcome effe	n in dyestuff technology ectively	n.) Programme	1	_	
	evelop a skill to execute & solve a research problem evelop skills for presenting a research outcome effe	n in dyestuff technology	n.) Programme	1		Required Hours
2. De	evelop a skill to execute & solve a research problem evelop skills for presenting a research outcome effe	n in dyestuff technology ectively e Contents (Topics and subtopics) es and hypothesis should be explored by scientifi	cally planned ratio	onal		Required Hours 80
2. De Sr. No.	evelop a skill to execute & solve a research problem evelop skills for presenting a research outcome effe Course The topic of the research with defined objective	n in dyestuff technology ectively e Contents (Topics and subtopics) as and hypothesis should be explored by scientifi imental data collected on the chosen research t	cally planned ratic opic.			<u> </u>

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 147 of 100

	Project-II DYP1008														
СО	Statement	P01	PO2	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	Perform experiments & troubleshoot to generate reliable data (K5)	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CO2	Apply different statistical tools for scientific data analysis (K4)	3	3	2	3	2	3	3	3	2	3	3	2	3	3
CO3	<i>Evaluate</i> critically the experimental data and draw meaningful inferences (K5)	3	3	3	3	3	0	3	3	3	3	3	3	3	3
CO4	Develop skills to communicate the research outcome effectively (K6)	3	3	3	3	3	3	1	3	3	3	3	2	3	3
CO5	Develop skills for writing a complete document on the project work (K6)	3	3	3	3	3	3	3	3	3	3	3	3	3	3
DYP1008		3	3	3	3	3	3	3	3	3	3	3	3	3	3

GHEMICAL

	Course Code: CET1504	Course Title: Chemical Project Engg and Economics	1		Credits = 3	
			1	T	Р	
	Semester: VIII	Total contact hours: 45	2	1	0	
		List of Prerequisite Courses	-0	1	(°	
	Material and Energy Balanc	eCalculations, Equip Desand Dwg I, Energy Engineering,	11			
	List of Co	ourses where this course will be prerequisite	14			
	Home Paper I and II	Constant of the	-)			
	Description of relevance of	f this course in the B Tech. Program				
	This course is required for the	ne future professional career				
Sr. No.		Торіс			Teach Hou	-
1.		ojectsandglobalnatureofprojects;Impactofcurrencyfluctuations or idConceptsof—Quality byDesign includingtypical design	Projec	t	6	

Department of Dyestuff Technology,

Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus

Page No. 148 of 100

	deliverablesandunderstandingconstructability, operability and maintainability duringallstages of project	
	execution.Meaning of Project Engineering, variousstages of project implementation	
	Relationshipbetweenpriceofaproductandprojectcostandcostofproduction, EVA analysis. El ements of cost of	
2	production, monitoring of the same in a plant, Meaning of Administrative expenses, sales expenses etc.	0
2.	Introductiontovarious components of project cost and their estimation.	8
	IntroductiontoconceptofInflation, location index and their use in estimating plant and machiner y cost. Various cost indices, Relationship between cost and capacity.	
	Projectfinancing: debt:Equityratio,Promoters'contribution,Shareholders'contribution,sourceoffinance, time value of	
2	money. Concept of interest, time value of money, selection of various alternative equipmentor system	-
3.	basedonthisconcept. Indiannorms, EMIcalculations. Depreciation concept, Indian normsand their	7
	utilityinestimateofworkingresultsofproject. Workingcapital concept and its relevance to project	
	Estimateofworkingresultsofproposedproject. Capacityutilization, Grossprofit, operating profit, profit	
4.	beforetax,Corporate tax, dividend, Netcashaccruals.Projectevaluation: Cumulativecashflow analysis Break-Even	7
	analysis, incremental analysis, various ratios analysis, Discounted cash flow analysis	
5	Process Selection, Site Selection, Feasibility Report	4
	Project:ConceptiontoCommissioning:milestones,Projectexecutionasconglomerationoftec hnicaland nontechnical	
6	activities, contractual details. Contract:Meaning,contents, Types of contract. Lump- sum Turnkey	6
U	(LSTK), Eng, Procurement and Construction (EPC), Eng, Procurement and Construction Management (EPCM). Mergers and	Ū
	Acquisitions	
7	ReadingofBalanceSheetsandevaluationof Techno-commercial ProjectReports	3
8	PERT, CPM, barcharts and network diagrams	4
rence B	ooks:	
nical Pr	pject Economics,MahajaniV.V. Reference Books andMokashi SM	

	Chemical Project Engg and Economics CET1504														
CO	Statement	PO1	0	PO3	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
De	epartment of Dyestuff Technology,			0	11	0									

Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 149 of 100

CO1	calculate working capital requirement for a given project (K3)	3	3	2	2	2	3	3	3	3	3	3	2	3	3
CO2	calculate cost of equipment used in a plant total project cost (K3)	3	3	2	2	2	3	3	3	3	3	2	2	2	3
CO3	calculate cash-flow from a given project (K3)	3	3	1	0	2	3	1	3	3	3	3	2	3	2
CO4	select a site for the project from given alternatives (K4)	3	3	2	3	2	2	3	3	3	3	3	2	3	3
CO5	list out various milestones related to project concept to commissioning (K2)	3	2	1	2	1	3	3	3	3	0	3	1	3	2
CET1504	1000	3	3	2	3	2	3	3	3	3	3	3	2	3	3
	10-20 011				NL.	2	1								
	111257						10								

CHEMICAV

	Course Code: DYT 1812	Course Title: Introduction to Green Chemistry Credits	5 = 3			
			Г			
	Semester: VIII	Total contact hours: 45 2	1			
	1111	List of Prerequisite Courses				
	All BTech courses					
Sr. No.		Торіс	Teaching Hours			
1.		ment, sustainable development and Green Chemistry, need of Green Chemistry, 12 principles e minimization and atom economy, atom economic and atom uneconomic reactions	6			
2.	-	vent usage, need for alternative solvents, water and renewable solvents, room temperature of supercritical fluids and fluorous solvents, 'solvent free' chemistry	8			
_	History of chemistry and Green Chemistry, emergence of green synthesis, dyes industry and Green Chemistry, reduction of energy requirement, reduction of risk and hazard.					
3.	reduction of energy requir					

- Green Solvents for Chemistry: Perspectives and Practice, Oxford University Press, U.K., 2003.
- Green Chemistry: Theory and Practice, Anastas P. T. and Warner J. C., Oxford University Press, U.K., 1998.

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 150 of 100

- Introduction to green Chemistry, Matlack A. S., Marcel Dekker, Inc., New York, 2001.
- Green Chemistry: An Introductory Text, Lancaster M., Royal Society of Chemistry, Cambridge, U.K., 2002

List of assignments and Open Ended Projects:

1. Literature survey including patents and research papers of fundamental green based process

- Design based small project **or**
- Study report based on latest scientific development or
- Presentations based on topics given

These can be done in a group containing maximum three students in each.

2. Evaluation based on presentations and discussions

SI. No.	Course Content	CO Statement	knowledge level	Delivery method
1	Philosophy of the environment, sustainable development and Green Chemistry, need of Green Chemistry, 12 principles of Green Chemistry, waste inimizationand atom economy, atom economic and atom uneconomic reactions	CO1 and CO2	K2 and A1	Chalk and board
2	Chemical practice and solvent usage, need for alternative solvents, water andrenewable solvents, roomtemperature ionic liquids, applications of supercriticalfluids and fluorous solvents, 'solvent free' chemistry	CO1 and CO2	K2 and A2	Chalk and board
3	History of chemistry and Green Chemistry, emergence of green synthesis, dyesindustry and Green Chemistry, reduction of energy requirement, reduction of riskand hazard.	CO1, CO3	K1, A1	Chalk and board
4	Catalysis and Green Chemistry, heterogeneous catalysis, homogeneous	CO1, CO2, CO3	K1 and A2	Chalk and board

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 151 of 100

catalysis, phase transfer catalysis, biocatalysis,	 1000	
photocatalysis		
100.000		

dis EMICA

	Introduction to Green Chemistry Elective-III														
СО	Statement	P01	P02	PO3	P04	PO5	P06	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO1	Understand the Green aspects of chemistry (K2)	1	3	2	3	2	2	3	3	0	0	3	1	3	2
CO2	<i>Utilize</i> and modify the processes to have green and better environmental protective aspect. (K3)	3	3	3	3	3	3	3	2	2	1	2	2	3	2
CO3	Design Safer and healthy atmosphere building (K3)	3	3	3	3	3	3	3	3	2	2	2	2	3	3
CO4	Analyze energy efficient chemical transformation (K4)	3	3	3	3	3	3	3	3	2	2	3	3	2	3
CO5	Demonstrate the sustainable strategies for the chemical synthesis (K5)	3	3	3	3	3	3	3	3	2	2	3	3	2	3
Elective-III		3	3	3	3	3	3	3	3	2	2	3	3	3	3

			100		6		
SI. No	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Total hours	Total Credit
1	CHP1342	BASIC SCIENCE 1: Physical and Analytical Chemistry Laboratory	0	0	4	4	2
2	CHT1341	BASIC SCIENCE 2: Physical Chemistry 1	2	1	0	3	3
3	CHT1401	BASIC SCIENCE 3: Analytical Chemistry	2	1	0	3	3
4	GEP1101	ENGINEERING SCIENCE 1: Engineering Graphics 1	2	0	6	8	4

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 152 of 100

		A SI SI SI CAL	-				
5	HUP1101	HUMANITIES 1: Communications Skills	0	0	4	4	2
6	MAT1101	BASIC SCIENCE 4: Applied Mathematics 1	3	1	0	4	4
	DVT1404		2				
7	PYT1101	BASIC SCIENCE 5: Applied Physics 1	3	1	0	4	4
			12	4	14	30	22
		Semester II		12			
Ω	Course Code	Course Title	.ecture (L)	Tutorial (T)	Practical (P)	Total hours	Total Credit
8	CET1507	ENGINEERING SCIENCE 2: Process Calculations	3	1	0	4	4
•	CUD1122		0				
9	CHP1132 CHT1132	BASIC SCIENCE 6 Organic Chemistry Laboratory	0	0	4	4	2 4
10 11	CHT132	BASIC SCIENCE 7: Organic Chemistry		_		4	3
11	MAT1102	BASIC SCIENCE 8: Physical Chemistry	2	1	0	3	4
12	PYP1101	BASIC SCIENCE 9: Applied Mathematics 2 BASIC SCIENCE 10: Physics Laboratory	0	0	4	4	2
15	PYT1101	BASIC SCIENCE 10: Physics Laboratory BASIC SCIENCE 11: Applied Physics 2	2	1	0	3	3
14	P11105	BASIC SCIENCE 11. Applied Physics 2	13	5	8	26	22
		Semester III	15	5	0	20	22
		Schester in					
	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Total hours	Total Credit
<u>□</u>							4
15 16	CHT1124	BASIC SCIENCE 12: Industrial Inorganic Chemistry	3	1	0	4	
тр	CHT1136	BASIC SCIENCE 13: Aromatic and Heterocyclic Chemistry	3	1	0	4	4

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 153 of 100

17	DYP1001	PROGRAMME CORE 1: Analysis of Inorganic Raw Materials used in Dyestuff industries	0	0	4	4	2
18	DYT1101	PROGRAMME CORE 2: Technology of Intermediates 1	3	1	0	4	4
19	DYT1202	PROGRAMME CORE 3: Chemical and Physical Constitution of Colourants	2	1	0	3	3
20	MAP1202	ENGINEERING SCIENCE 3: Engineering Applications of Computers	0	0	4	4	2
21	OLT1102	PROGRAMME CORE 4: Chemistry of Oleochemicals and Surfactants	3	1	0	4	4
		1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14	5	8	-	23
		Semester IV		1 m			
9	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Total hours	Total Credit
22	CET1105	ENGINEERING SCIENCE 4: Transport Phenomena	3	1	0	4	4
23	DYT1102	PROGRAMME CORE 5: Technology of Intermediates 2	3	1	0	4	4
24	GEP1106	ENGINEERING SCIENCE 5 : Electrical Engineering and Electronics Lab	0	0	4	4	2
25	GET1109	ENGINEERING SCIENCE 6: Electrical Engineering And Electronics	2	1	0	3	3
					-	4	4
26	GET1301	ENGINEERING SCIENCE 7: Engineering Mechanics and Strength of Materials	3	1	0	4	
	GET1301 PYP1103		3	1	4	4	2
26 27 28		of Materials	1				

dis EMICAL

1144

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 154 of 100

QI	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Total hours	Total Credit
29	CET1212	ENGINEERING SCIENCE 8: Chemical Reaction Engineering 1	2	1	0	3	3
30	CET1401	ENGINEERING SCIENCE 9: Chemical Engineering Operations	2	1	0	3	3
31	DYP1002	PROGRAMME CORE 6: Analysis of Intermediates, Dyes and Fibers	0	0	8	8	4
32	DYP1003	PROGRAMME CORE 7: Experimental dyeing	0	0	4	4	2
33	DYT1103	PROGRAMME CORE 8: Technology of azo colorants	3	1	0	4	4
34	DYT1104	PROGRAMME CORE 9: Technology of Quinonoid colorants	3	1	0	4	4
35	TXT1215	PROGRAMME CORE 10: Technology of dyeing and printing (including substrates)	3	1	0	4	4
			13	5	12	-	24
		Semester VI	1914	111	1.		
DI	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Total hours	Total Credit
36	DYP1004	PROGRAMME CORE 11: Chromatographic Techniques and Preparation of Intermediates of Dyes	0	0	8	8	4
37	DYP1005	PROGRAMME CORE 12: Process and Plant Design	0	0	4	4	2
38	DYT1203	PROGRAMME CORE 13: Flourescent Colourants	3	1	0	4	4
39	DYT1204	PROGRAMME CORE 14: Heterocyclic Intermediates ad colorants	2	1	0	3	3
40	Elec_DYE_TYBT	OPEN ELECTIVE 1: Technology of Organic Processes	2	1	0	3	3

GIGEMICAV

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 155 of 100

		1000		Č			
41	HUT1103	HUMANITIES 2: Industrial Psychology and Human Resource Management (VF)	2	1	0	3	3
42	HUT1104	HUMANITIES 3: Industrial Management 1 (VF)	2	1	0	3	3
43	HUT1106	HUMANITIES 4: Environmental Science and Technology (VF)	2	1	0	3	3
44	TXP1013	PROGRAMME CORE 15: Wet Processing of Textiles	0	0	4	4	2
			13	6	16	-	27
		Semester VII					
Q	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Fotal hours	Fotal Credit
45	CEP1714	ENGINEERING 10: Chemical Engineering Laboratory	0	0	4	4	2
46	CET1713	ENGINEERING 11: Instrumentation and Process Control	2	1	0	3	3
47	DYT1105	PROGRAMME CORE 16: Technology of cationic and sulfur colorants	2	1	0	0	3
48	DYT1206	PROGRAMME CORE 17: Structural Elucidation of organic compounds	2	1	0	3	3
49	DYT1721	OPEN ELECTIVE 2: Reaction Mechanism and reagent chemistry	2	1	0	3	3
50	HUT1105	HUMANITIES 5: Industrial Management 2	2	1	0	3	3
51	MAT1106	BASIC SCIENCE 16: Design and Analysis of Experiments	2	1	0	3	3
52	DYP1006	SEMINAR 1: Seminar	0	0	4	4	2
53	DYP1007	PROJECT 1: Project 1	0	0	8	8	4
54	DYP1012	In plant training	-	-		-	3
			12	6	16		29

GHEMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 156 of 100

		Semester VIII		ć. –			
DI	Course Code	Course Title	-ecture (L)	rutorial (T)	Practical (P)	Fotal hours	Fotal Credit
55	CET1504	ENGINEERING 12: Chemical Project Engineering Economics	2	1	0	3	3
56	DYP1009	PROGRAMME CORE 18: Preparation, analysis and application of dyes, optical brighteners, and functional colourants	0	0	8	8	4
57	DYT1106	PROGRAMME CORE 19: Case Studies in Dyestuff Industry	3	1	0	4	3
58	DYT1107	PROGRAMME CORE 20: Technology of Pigments	3	1	0	4	4
59	DYT1205	PROGRAMME CORE 21: Functional Applications of Organic Colourants	2	1	0	3	3
60	DYT1812	OPEN ELECTIVE 3: Elective 3 Introduction to Green Chemistry	2	1	0	3	3
61	HUT1107	HUMANITIES 6: Value Education	2	1	0	3	3
62	DYP1008	PROJECT 2: Project 2	0	0	8	8	4
			14	6	16	-	27

TEEN

antificiary

GHEMICAL

Department of Dyestuff Technology, Institute of Chemical Technology, Mumbai B.Tech (Dyes)- Syllabus Page No. 157 of 100