Revised Syllabus for Two Years Programme in

M.Sc. in Engineering Mathematics (2021-2022)

DEPARTMENT OF MATHEMATICS INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956)
Elite Status and Center for Excellence
Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

A. Preamble:

Due to emergence of modern computing facilities, the applications of mathematics in all branches of engineering, medical sciences, and financial sectors have become extremely important. As a result, there has been an extraordinary demand for technically qualified persons having sound mathematical skills. However, most of the courses available in the country are devoted to either pure mathematics or some combination of pure and applied mathematics with a bit of computer programming knowledge.

The Master Program entitled "M.Sc. in Engineering Mathematics" is designed to create professionals who are equipped with practical knowledge of Mathematics, Statistics and Computer Programming. This is a two-year programme consisting of four semesters. The programme was started as a five-year project under UGC Innovative Schemes in 2011. The first revision of the syllabus took place in the academic year 2017-2018. This is second revision which will be implemented from the academic year 2021-2022.

The course is an optimal blend of mathematical theory and its applications. Subjects related to Applied Mathematics, Statistics and Machine Learning will train the students on the use of modern computational tools to solve real life problems which are relevant to industry and society. These applied courses are complemented by some foundation courses in pure mathematics. Students having gone through this course will have sound working knowledge with strong mathematical base which is necessary to address computational and statistical challenges encountered in the different areas of science and technology. During the course, students also work on a yearlong project under the supervision of faculty members of the department and most often the projects are carried out in collaboration with people from industry.

After completing this course students will have career opportunities both in industry and academia. Almost all the career paths open to graduates in Mathematics are also available to the students.

B. Regulations Related to the Degree of Master of Science in Mathematics (M. Sc. in Engineering Mathematics) Degree Course

Intake

20 candidates shall be admitted every year. The distribution of seats shall be as per the Institute's norms.

Admission

- a. Candidates who have taken the post-H.S.C. 3-year degree course of Bachelor of Science with 6 units of Mathematics at the third year of the course and any two of chemistry, physics, and statistics as the two other subjects at the first and second years of University of Mumbai or of any other recognized University; and passed the qualifying examination with at least 55% of the marks in aggregate or equivalent grade average. (50% for the backward class candidates only from Maharashtra State are eligible to apply).
- b. Candidates who have passed B.Sc. in Statistics or B.Tech./B.E. with at least four mathematics papers as part of the coursework from a UGC/AICTE recognized University/ Institute are also eligible for admission.
- The admissions will be done strictly based on merit; the marks obtained in entrance test conducted by ICT.
- d. The candidates who have cleared the qualifying examination in one sitting will be preferred.

• Course structure

- a. The course is a credit-based 4-semester (2-year) course.
- b. There will be two semesters in a year:
 - i. Semester I and III (July to December)
 - ii. Semester II and IV (December to May)
 - iii. Each semester will consist of 15-16 weeks of instructions including seminars / projects/assignments.
- c. At the end of each semester the candidates will be assessed as per the norms of the Institute.
- d. Semesters will be governed by academic calendar of the institute.

- e. The requirement of attendance of the students shall be as per the norms of the Institute.
- f. All the relevant academic regulations of the Institute shall be applicable to the course.
- g. Assessment of the students will be done as per the norms of the Institute.
- h. In case of any difficulty regarding any assessment component of the course, the Departmental Committee shall take appropriate decision, which will be considered final.

i. Electives:

- i. Three elective courses will be offered during the programme and the list of electives will be made available to the students.
- ii. Open electives will also be offered which may be of two types: (a) students can take it from well-established MOOC courses with prior approval from the department (b) it may be proposed by a faculty with detailed syllabus and get prior approval from the department.

j. Project:

- At the end of the Second semester, the Head of Department in consultation with the Departmental Committee will assign topics for seminar course to the students and assign the supervisors. Seminar course will create adequate background to the students for taking project in the fourth semester.
- ii. The students will do the project in semester IV on the topics assigned under the supervision of the assigned faculty member.
- iii. The students shall submit the project report before the prescribed date which will be a date before the last date of the semester IV. The report shall be submitted with soft binding.
- iv. The project report will be examined by the supervisor along with one other internal/external referee to be appointed by the Departmental committee. The referees shall give marks to the report as per the norms.
- v. The students will make presentation on the work in front of the Project Evaluation Committee (PEC) appointed by the Departmental Committee, in open defence form. The PEC will give marks to the presentation.
- vi. The comments received from the referees as well as given by the PEC need to be incorporated in the final project report in consultation with the supervisor.

Programme Outcomes (POs) for M.Sc. Engineering Mathematics

	110gramme Outcomes (1 Os) for M.Sc. Engineering Mathematics
PO1	Fundamental knowledge of pure mathematics: Apply the fundamental concepts of pure mathematics to understand the concepts in Applied Mathematics, Statistics and Computational Mathematics and empowering students to engage in research and development in future into top industries and institutions.
PO2	Foundation of Applied Mathematics: Strong foundation of Applied Mathematics which is directly connected to solving real life problems in different domains by means of mathematical modelling and being able to apply them in solving complex problems relevant to the society and industry.
PO3	Foundation of Statistics and Data Science: Strong foundation of Mathematics and Statistics of Data science and good hold on various statistical methodologies including probability theory, estimation, and testing of hypothesis etc. and being able to apply them in solving real life problems.
PO4	Foundation of Machine Learning and AI: Understand and employ modern computational methods in Machine Learning including Deep Learning and Artificial Intelligence and use them effectively using free and proprietary advanced computational platforms for solving large scale problems arising from different research areas.
PO5	Research based Teaching Learning: An innovative teaching framework to engage students in both academic and industrial research and open up multiple future paths in different verticals including preparation to qualifying national level tests like NET/GATE etc and creation of future leaders in teaching.
PO6	Conduct investigations of complex problems: Use research-based knowledge in machine learning and artificial intelligence and research methods including design of experiments, analysis and interpretation of data to unfold complex problems from industry and academia and provide working solutions.
PO7	Problem analysis: Identify, formulate, review research literature, and analyze complex real life problems using mathematics, statistics, and computational methods.
PO8	Societal Applications of Mathematics: Apply reasoning informed by the existing knowledge pool to convert into a quantitative framework, collect relevant information and address various societal issues using modelling and statistical data analytics tools including deep learning and artificial intelligence.
PO9	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the practice of mathematics, statistics and data sciences in all verticals of industry and society.
PO10	Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO11	Communication: Communicate effectively on complex industrial/natural problems and understand the functional requirements, identify the gaps and being able to provide solutions using modern tools and technologies offering advanced data sciences and machine learning techniques.
PO12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning, acquire appropriate skills in Mathematics and its application for the benefit of humankind.

M.Sc. in Engineering Mathematics Institute of Chemical Technology, Mumbai

	Semester-I										
Subject Code	Subject	Credits	edits Hrs/Week Marks for various					various l	Exams		
			L T P			CA	MS	ES	Total		
MAT 2201	Applied Linear Algebra	4	3	1	0	20	30	50	100		
MAT 2202	Real Analysis-I	4	3	1	0	20	30	50	100		
MAT 2221	Ordinary Differential Equation	4	3	1	0	20	30	50	100		
MAT 2204	Modern Algebra	4	3	1	0	20	30	50	100		
MAT 2321	Probability Theory	4	3	1	0	20	30	50	100		
MAP 2521	Programming Lab	3	0	0	6	25		25	50		
	Total	23	15	5	6				550		

	Semester-II										
Subject Code	Subject	Marl	ks for v	ks for various Exams							
			L T P			CA	MS	ES	Total		
MAT 2205	Optimization Techniques	4	3	1	0	20	30	50	100		
MAT 2207	Real Analysis II	4	3	1	0	20	30	50	100		
MAT 2421	Numerical Methods	4 3 1				20	30	50	100		
MAT 2322	Statistical Inference	4	3	1	0	20	30	50	100		
MAT 2222	MAT 2222 Partial Differential Equations		3	1	0	20	30	50	100		
	Elective-I		3	1	0	20	30	50	100		
	Total			6	0				600		

	Electives-I (SEM-II)										
Subject Code	Subject Credits Hrs/Week Marks for various								Exams		
		L T P CA MS ES						ES	Total		
MAT 2601	Graph Theory	4	3	1	0	20	30	50	100		
MAT 2602	Topology	4	3	1	0	20	30	50	100		
MAT 2603	Number Theory	4	3	1	0	20	30	50	100		
MAT 2604	Matrix Computations	4	3	1	0	20	30	50	100		
	*Open Elective-I	4	3	1	0	20	30	50	100		

^{*}Open electives may be of two types: (i) students can take it from MOOC (Swayam/NPTEL etc) course with prior approval from the department (ii) it may be proposed by a faculty with complete details of syllabus and get prior approval from the department.

	Semester III											
Subject Code	Subject Credits Hrs/Week Marks for var						arious E	rious Exams				
			L	T	P	CA	MS	ES	Total			
MAT 2210	Functional Analysis	4	3	1	0	20	30	50	100			
MAT 2323	Statistical Computing	4	3	1	0	20	30	50	100			
MAT 2324	Machine Learning	3	2	1	0	10	15	25	50			
MAT 2206	Complex Analysis	4	3	1	0	20	30	50	100			
	Elective-II	4	3	1	0	20	30	50	100			
MAP 2701	Project Seminars	2	0	0	4				50			
MAP 2522	Software Lab	2	0	0	4	25		25	50			
	Total	23	14	5	8				550			

	Electives-II (SEM-III)											
Subject Code	Subject	Credits	Hrs	/Weel	ζ.	Mar	ks for v	arious	Exams			
			L	T	P	CA	MS	ES	Total			
MAT 2621	Cryptography	4	3	1	0	20	30	50	100			
MAT 2622	Finite Element Method	4	3	1	0	20	30	50	100			
MAT 2623	Operation Research	4	3	1	0	20	30	50	100			
MAT 2624	Mathematical Finance-I	4	3	1	0	20	30	50	100			
MAT 2625	Multivariate Analysis	4	3	1	0	20	30	50	100			
MAT 2626	Design and Analysis of	4	3	1	0	20	30	50	100			
	Experiments											
MAT 2627	Mathematical Biology	4	3	1	0	20	30	50	100			
MAT 2628	Signal Processing	4	3	1	0	20	30	50	100			
MAT 2629	Momentum, Heat and Mass	4	3	1	0	20	30	50	100			
	Transfer											
	*Open Elective -II	4	3	1	0	20	30	50	100			

	Semester-IV											
Subject Code	Subject	Hrs	/Weel	ζ.	Mar	Marks for various Exams						
			L	T	P	CA	MS	ES	Total			
MAT 2223	Combinatorics	4	3	1	0	20	30	50	100			
MAT 2325	Deep Learning & Artificial Intelligence	3	2	1	0	10	15	25	50			
MAT 2305	Stochastic Process	4	3	1	0	20	30	50	100			
MAT 2402	Computational Fluid Dynamics	5	3	2	0	20	30	50	100			
	Elective-III	4	3	1	0	20	30	50	100			
MAP 2702	Project	4	0	0	8	50		50	100			
	Total	24	14	6	8				550			

	Electives-III (SEM-IV)										
Subject Code	Subject	Credits	Hrs	Weel	ζ.	Marks for various Exams					
			L	T	P	CA	MS	ES	Total		
MAT 2641	Dynamical Systems	4	3	1	0	20	30	50	100		
MAT 2642	Integral Transforms	4	3	1	0	20	30	50	100		
MAT 2643	Mathematical Finance-II	4	3	1	0	20	30	50	100		
MAT 2644	Geometry of Curves and	4	3	1	0	20	30	50	100		
	Surfaces										
MAT 2645	Convex Optimization	4	3	1	0	20	30	50	100		
MAT 2646	Time-Series Analysis	4	3	1	0	20	30	50	100		
MAT 2647	Operator Theory	4	3	1	0	20	30	50	100		
MAT 2648	Bayesian Statistics	4	3	1	0	20	30	50	100		
	*Open-Elective-III	4	3	1	0	20	30	50	100		

SEMESTER I

	Course Code: MAT		Cro	edits	=					
	2201	Course Title: Applied Linear Algebra		4						
			L	T	P					
	Semester: I	Total contact hours: 60	3	1	0					
		List of Prerequisite Courses								
Basics	of matrix algebra and determ	inant of square matrix, vector spaces								
		Courses where this course will be prerequisite								
It is a f		be prerequisite for all the course studied in this program								
		of this course in the M.Sc. Engineering Mathematics Progra		TE I						
		and in continuation with undergraduate level course on linear a								
		ts of linear algebra and introduces advanced concepts w								
	ne Learning and Deep Learning	which will be used in almost all the later courses with special	empn	asis	on					
iviaciili		Contents (Topics and subtopics)	н	ours						
1		Subspaces, Linear dependence and independence, Basis and	- 11	6						
1	dimensions.	Subspaces, Efficial dependence and independence, basis and		U						
2		Transformations; Use of elementary row operations to find		8						
_		ange of basis matrix, matrix of a linear transformations and		O						
	subspaces associated with n									
3	•	Orthogonal Bases, Gram-Schmidt Orthogonalization, QR		12						
	Factorization, Normed Line									
4	Matrix Norm, condition numbers and applications.									
5	Eigenvalue and Eigenvectors, Diagonalization and its applications to ODE, Dynamical									
		ains, Positive Definite Matrices and their applications,								
	Computation of Numerical	Eigenvalues.								
6		tion, Matrix Properties via SVD, Projections, Least Squares		10						
	Problems, Application of	SVD to Image Processing, Principal Component Analysis								
	(PCA).									
7		s: Adjoint operators, Normal, Unitary, and Self-Adjoint		10						
		n for normal operators, Jordan Canonical Forms and its								
	applications.	L'ad a CT and be also / D a Common beautiful								
1	C Vumaragan Lincon Alasi	List of Textbooks/ Reference books ora – A Geometric Approach, Prentice Hall India.								
2		ra and its Applications, Addition-Wesley.								
3		el B. Costa, Matrix Methods, Academic Press.								
4		nd its Applications, Harcourt Brace Jovanish.								
5		rse in Linear Algebra, open textbook (http://linear.ups.edu/htm	1/fcla	html)					
6		lysis and Applied Linear Algebra, SIAM.	1/1014	.1111111						
7	•	ra with Applications, Addison Wesley.								
,		rse Outcomes (students will be able to)								
CO1		ear Transformations and Inner Product spaces								
CO2		n Eigenvalues-Eigenvectors and Structure of Linear maps.								
CO3	understand and work with v									
CO4		concepts to solve real life problems.								
CO5		es-eigenvectors to solve real life problems.								
-	117 1 8	<u> </u>	1							

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	5	5	4	5	3	1	1	0	5	1	0	5
CO2	5	5	4	5	0	1	1	0	5	1	0	5
CO3	5	5	5	5	0	1	1	1	5	1	0	5
CO4	4	5	5	5	4	5	4	1	5	3	4	5
CO5	4	5	5	5	4	5	4	4	5	3	4	5

	Course Code: MAT	Course Title: Real Analysis – I	Credit	$t_s = 4$					
	2202		L T	P					
	Semester: I	Total contact hours: 60	3 1	0					
		List of Prerequisite Courses							
Basic o	course in Calculus								
		Courses where this course will be prerequisite							
Real A		nctional Analysis (MAT 2210)							
		of this course in the M.Sc. Engineering Mathematics Progr							
		rerequisite for all the pure and applied mathematics topics incl	uding sta	tistics					
in upco	oming semesters		1						
		Contents (Topics and subtopics)	Hou 10						
1									
		ion. Fourier series, pointwise convergence, Fejer's theorem,							
	Weierstrass approximation								
2		ables, Level Sets, Convergence of sequences of several	13)					
		inuity, Derivatives of scalar fields, Directional derivatives,							
3		rivative, Gradient of scalar fields, Tangent planes. , curl, divergence, Chain rules for derivatives, Derivatives of	ves of 20						
3			20	j					
	functions defined implicitly, Higher order derivatives, Taylor's theorem and application, Inverse function theorem, Implicit function theorem, Local Maxima, Local Minima,								
		sints, Lagrange's multipliers.							
4		Iterated integrals, Change of variables formula, Applications	14	5					
•		rea and volumes. Paths and line integrals, Fundamental	1.						
		ne integrals, Line integrals of Vector fields, Green's theorem							
	and its applications.	, , ,							
		List of Textbooks / Reference books							
1	T. Apostol, Mathematical A	analysis, 2nd Edition, Narosa, 2002.							
2	W. Rudin, Principles of Ma	thematical Analysis, 3rd Edition, McGraw-Hill							
3	Ajit Kumar and S. Kumares	san, A Basic Course in Real Analysis, CRC Press.							
4	T. M. Apostol, Calculus Vo	l. II, 2nd Ed., John Wiely& Sons.							
5		, and A. Weinstein, Basic Multivariable Calculus, Springer-Ve	rlag.						
6		Calculus, 4th Edition, Pearson.							
		rrse Outcomes (students will be able to)							
CO1		d uniform convergence of sequence and series of functions.							
CO2	understand the notion of dif								
CO3		ions of functions of several variables and compute maxima,							
	minima and saddle points.								
CO4		licit function theorem and their applications.							
CO5	compute multiple integrals a	and line integrals.							

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	5	5	1	1	4	1	4	1	5	1	0	5
CO2	5	5	2	3	4	1	3	1	5	1	0	5
CO3	5	5	2	3	4	1	4	0	5	1	0	5
CO4	5	5	1	1	4	3	5	1	5	1	0	5
CO5	5	5	1	1	4	3	5	1	5	1	0	5

	Course Code: MAT		C	redit	$t_s = 4$							
	2221	Course Title: Ordinary Differential Equation	L	T	P							
	Semester: I	Total contact hours: 60	3	1	0							
		71. AD 11. G										
ъ.		List of Prerequisite Courses										
Basic c	course on Calculus and ordina											
Dortiol		Courses where this course will be prerequisite 222), Computational fluid dynamics (MAT 2402)										
Partiai		of this course in the M.Sc. Engineering Mathematics Prog	rom									
Ordina		in the core of Applied Mathematics and this program em			on the							
		rent branches of science and engineering including industry.	omas	oize (ni tiic							
иррпсс		Contents (Topics and subtopics)		Hot	ırs							
1		order ODE s Modelling differential equations.		4								
2		heorems for first order ODEs.		4								
3			16									
		Higher Order Linear Equations and linear Systems: fundamental solutions, Wronskian, variation of constants, matrix exponential solution, behaviour of solutions.										
4	Power series method of solv	8										
5		Two dimensional autonomous systems and Phase Space		12								
	Analysis: critical points, p	roper and improper nodes, spiral points and saddle points.										
	Asymptotic Behavior: stabi	lity (linearized stability and Lyapunov methods).										
6		s for Second Order Equations: Green's function, Sturm		10)							
		scillations, eigenvalue problems.										
7	Laplace Transforms and its	application to solving IVP.		6								
		List of Textbooks/ Reference Books										
1	William E. Boyce, Richard	C. DiPrima, Elementary Differential Equation, Wiley										
2	E. A. Coddington, An Intro	duction to Ordinary Differential Equations, PHI										
3	G. F. Simons, S. G. Krantz,	Differential Equation, Theory Techniques and Practice Tata M	[cGr	aw-F	Iill							
4		rse in Differential Equations, Cengage Learning										
5	L.Perko, Differential Equati	ons and Dynamical Systems, 2 nd Ed., Springer Verlag.										
		rrse Outcomes (students will be able to)										
CO1	model differential equations											
CO2		al equations with constant coefficients.										
CO3		with variable coefficients with power series method.										
CO4		and eigenfunctions of Boundary value problems.										
CO5	solve system of differential	equations and analyse the solutions.										

		Mapp	ing of C	ourse O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	5	0	1	5	5	3	5	5	4	1	5
CO2	1	5	0	0	3	1	5	1	5	1	0	3
CO3	4	5	1	1	3	1	5	1	5	1	0	4
CO4	4	5	1	1	3	1	5	1	5	1	0	4
CO5	1	5	0	0	3	1	5	1	5	1	1	4

	Course Code: MAT	Course Title: Modern Algebra	Cr	edits	= 4
	2204		L	Т	P
	Semester: I	Total contact hours: 60	3	1	0
	Semester. 1	Total contact nours. 00		1	
		List of Prerequisite Courses			
		•			
	List of	Courses where this course will be prerequisite			
Combi	natorics (MAT 2223)				
		of this course in the M.Sc. Engineering Mathematics Prog			
It is a f		thematics having various applications in all branches of mathe			
		Contents (Topics and subtopics)		Hour	S
1		, Lagrange Theorem, Normal subgroups, quotient groups.		10	
		ternating groups, Symmetry groups Dihedral groups as group			
	of symmetries of a regular r			-	
2		Direct product of groups, Fundamental theorem for finite		8	
3	abelian groups (without pro	or). abilizers, applications to the structure of groups, applications			
3	to combinatorics.	abilizers, applications to the structure of groups, applications			
4		, Integral domains and division rings. Focus on finite fields,		10	
		s rings, roots and their multiplicities, matrix rings.		10	
5		Chinese remainder theorem, Euclidean domains, principal		10	
	·	actorization domains, irreducibility of polynomials.			
6	Extension fields, algebraic	extensions, construction of finite fields, roots of polynomials		12	
		ctions with ruler and compass. Polynomial rings and matrix			
	rings over finite fields.				
	T	List of Textbooks/ Reference Books			
1		Abstract Algebra, 4th Edition, Narosa.			
2		e in Abstract Algebra", 7th Ed. Pearson Education.			
3		ote, Abstract Algebra, 2nd Edition, John Wiley.			
4	M. Artin, Algebra, Prentice				
5	G. Santhanam, Algebra, Na				
901		urse Outcomes (students will be able to)			
CO1	understand basic concepts i				
CO2		up theory, rings and filed theory.			
CO3		n to classify groups of finite orders.			
CO4		and group theory, rings and filed theory.			
CO5	work with rings and fields of	over finite fields.			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	5	4	3	0	4	3	2	1	5	1	0	5		
CO2	5	1	0	0	4	1	4	1	5	1	0	4		
CO3	5	1	0	0	4	1	3	1	5	1	0	4		
CO4	5	1	0	0	4	3	2	1	5	1	0	5		
CO5	5	1	0	1	5	4	4	1	5	1	0	3		

	Course Code: MAT		Cı	edit	s = 4
	2321	Course Title: Probability Theory	L	T	P
	Semester: I	Total contact hours: 60	3	1	0
			-		
		List of Prerequisite Courses			
Basic c	course on Calculus	•			
	List of	Courses where this course will be prerequisite			
		Statistical Computing (MAT 2323), Machine Learning (MAT	Γ 23	24),	Deep
Learnii		(MAT 2325), Stochastic Process (MAT 2305)			
		of this course in the M.Sc. Engineering Mathematics Prog			
		overing major concepts of Probability theory. Introduced conce	epts v	whic	h will
be used		rning and deep learning courses.			
		Contents (Topics and subtopics)		Hot	
1		algebra, Probability Space, Combinatorics: Probability on		10)
		litional probability, and Bayes theorem			
2		Their Probability Distributions: Random variables and Its		8	
	T	Continuous random variables, Functions of random variables			
2	and their distribution	Franking Manager Chieffed Continue time		-	
3		Functions: Moments of distribution function, generating ing function, probability generating function, characteristic		6	
		ng function, factorial moment generating functions) and their			
	applications, Moment Inequ				
4		oles: Joint distribution, Independence, functions of several		10)
7		ce, Correlation and joint moments, Conditional Expectation,		1(•
	Order Statistics and Their D				
5		ons: Common discrete distributions (Binomial, Poisson,		6	
		nial, Discrete Uniform, Multinomial distribution), Common		Ü	
		ectangular, gamma, Cauchy, Beta, Normal)			
6	Bivariate and Multivariate n			4	
7	Sampling distribution: Co	ncept of Random sampling, Sample characteristics and their		8	
		t-, and F-Distributions: Exact Sampling Distributions;			
	Sampling from Normal distr				
8	Limit theorems: Converge	nce concepts, Weak Law of Large Numbers and Strong Law		8	
	of Large numbers, Central I	Limit Theorem, Elements of Large Sample Theory.			
		List of Textbooks / Reference Books			
1		J. Stone, Introduction to Probability, Universal Book Stall, New		lhi.	
2		V. K. Rohatgi. An Introduction to Probability and Statistics. Wi	ley.		
3	ŭ	. Statistical Inference. Duxbury Press.			
4	i	mery, Probability and Statistics in Engineering. John Wiley.			-
5	887	raig. Introduction to Mathematical Statistics, McMillan Publica			т 1
6		K. Md. Ehsanes Saleh, An Introduction to Probability and S	statis	tics,	John
7	Wiley & Sons, Inc.	and D. C. Dans, Introduction to The Till.		1041	. 1/
7	_	and D. C. Boes, Introduction to The Theory of Statistics, Thi	ra E	11110	n, Mc
8	Graw Hill Education.	Dasgupta, An Outline of Statistical Theory, Volume Two, Wo	rld I)rogo	
Ŏ		rse Outcomes (students will be able to)	11U I	1088	•
CO1	1	of probability to compute probability of events.			
CO2	obtain the distribution of fu				
CO ₂		xpectations of random variables.			
CO4		on of the functions of random sample.			
CO5	i	to investigate large sample properties.			
		Aure vare combre broberaen	l		

		Mapp	ing of C	ourse O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	5	5	4	4	5	4	5	1	1	5
CO2	1	2	5	5	1	3	5	3	5	1	0	5

CO3	1	2	5	5	1	3	5	3	5	1	0	5
CO4	1	1	5	5	3	4	5	3	5	0	0	5
CO5	4	3	5	5	4	5	5	4	5	3	1	5

Course Code: MAP		(Tredi	ts = 3
2521	Course Title: Programming Lab	L	T	P
Semester: I	Total contact hours: 60	0	0	6
	List of Prerequisite Courses			

List of Courses where this course will be prerequisite

Software Lab (MAP 2522), Machine Learning (MAT 2324), Statistical Computing (MAT 2323), Deep Learning and Artificial Intelligence (MAT 2325)

Description of relevance of this course in the M.Sc. Engineering Mathematics Program

This M.Sc. program gives special emphasis on the implementation and application of large-scale computational techniques from applied mathematics and statistics. Hence, a good efficiency in mathematical programming is required in the upcoming semesters. Programming lab will give the students exposure to computational mathematics using latest software.

mather	natics using latest software.	
	Course Contents (Topics and subtopics)	Hours
	Module-I (Python)	
1.	Introduction to Python Programming.	2
2	Python as an advanced scientific Calculator, use of math and cmath modules	2
3	Strings, List, tuples and dictionary data structures in Python	2
4	If and else controls and its applications	2
5	Creating user defined functions and creating Python modules	2
6	Loops in Python	4
7	Python Programmes to solve problems in numerical Analysis	4
8	Use of Numpy and Scipy	4
9	Plotting using Matplotlib	4
10	Classes in Python	4
11	Exploring data with Pandas	4
	Module-II (R Programming)	
1	Introduction to R, R as a calculator, Plotting of Mathematical Functions in R, Writing	2
	functions in R, Two dimensional plots.	
2	Numerical Computation using R: Bisection method, Newton Raphson method, Regular	4
	Falsi methods etc. (Using packages and self-written codes)	
3	Numerical Integration using R: Self written codes on Trapezoidal rule, Simpson's 1/3rd	2
	and 3/8 rule. (Self-written codes)	
4	Solving ordinary differential equations using R, deSolve, solving system of linear ODEs,	4
5	Matrix computations in R: Inverse of matrix, special matrices, solving system of linear	4
	equations, generalized inverse, least squares, Eigenvalues and eigenvectors and some	
	selected applications	
6	Exploring statistical distributions using R: Probability mass functions and Probability	4
	density functions, Notion of r, d, p, q (rnorm, dnorm, qnorm, pnorm) related to	
	probability distributions in R.	
	Descriptive Statistics using R: Data types, Data description, data import and export,	
	Basic Statistics using R, data exploration and summary statistics, Histograms, boxplot,	
	stem and leaf plot, normal probability plot, quantile-quantile plot	
7	Simulating Random numbers: Continuous Univariate Statistical Distribution and their	6
	simulation in R, Approximating probabilities by means of simulation, Demonstration of	
	Convergence in Probability Using Simulation, Demonstration of Weak Law of Large	
	Numbers, Demonstration of Central Limit Theorem (concepts covered in MAT 2301)	
1	List of Textbooks/ Reference Books	
1	Hans Petter Langtangen (auth.)-A Primer on Scientific Programming with Python-Sp	oringer Berlin
	Heidelberg.	

2	Reema Thareja, Python Programming: Using Problem Solving Approach.
3	David Beazley, Python Cookbook: Recipes for Mastering Python 3.
4	Victor A. Bloomfield, Using R for Numerical Analysis in Science and Engineering, CRC Press.
5	James, G. Witten, D., Hastie, T. and Tibshirani, R. Introduction to Statistical Learning with Applications
	in R, Springer.
6	Brian Dennis, The R Student Companion, CRC Press, Taylor and Francis Group.
7	Garrett Grolemund, Hands-On Programming with R: Write Your Own Functions and Simulations,
	Shroff/O'Reilly.
8	Laura Chihara and Tim Hesterberg, Mathematical Statistics and Resampling and R.John Wiley & Sons.
9	Christian P. Robert and George Casella, Introducing Monte Carlo Methods with R, Springer.
	Course Outcomes (students will be able to)
CO1	understand basic syntax in Python and R.
CO2	create their own subroutines in Python.
CO3	use standard Python library to solve mathematical problems.
CO4	use R to solve problems in basics probability and statistics.
CO5	write their own R-programmes to solve problems in mathematics and statistics.

		Mapp	ing of C	ourse O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	2	5	5	1	1	3	1	5	2	1	5
CO2	0	2	5	5	1	1	3	1	5	2	2	5
CO3	0	5	5	5	3	3	5	1	5	2	1	5
CO4	0	1	5	5	4	3	5	1	5	3	1	5
CO5	0	5	5	5	3	3	5	5	5	5	3	5

SEMESTER II

	Course Code: MAT		Cı	redit	s = 4
	2205	Course Title: Optimization Techniques	L	T	P
	Semester: II	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Applie	d Linear algebra (MAT 2201),	Real Analysis-I (MAT 2202)			
		ourses where this course will be prerequisite			
Machin		Learning and Artificial Intelligence (MAT 2325)			
		of this course in the M.Sc. Engineering Mathematics Progr			
		phasis on the implementation and application of large-scale			
		s and statistics. Optimization problems are abundant almost	in a	ll rea	al-life
problei	ms related to industrial applicat				
	Course C	ontents (Topics and subtopics)		Hou	
1	Introduction to Optimization	problems and formulations		4	
2		ation: Golden Section method, Fibonacci search Method,		8	
	Polynomial interpolation met		<u> </u>		
3		Techniques: Unconstrained optimization, Constrained		8	
		ods, Method of Lagrange multiplier, Kuhn-Tucker method		10	
4		blex Method, Revised Simplex Method and other advanced		12	,
5		on Techniques: Direct search methods such as Powel's	<u> </u>	4	
3	method, Simplex method, etc			4	
6		: Steepest descent method, Conjugate gradient method,		12)
O		wton's method, DFP, BFGS method etc		12	,
7	Dynamic Programming Probl			4	
8		ed Annealing, Ant Colony Optimization		8	
0		List of Textbooks/ Reference Books	J.		
1		ab H. Zak, An Introduction to Optimization, John Wiley.			
2	Leunberger, Linear and Nonl				
3		right, Numerical Optimization, Springer			
4		ization: theory and practices, New Age International Pvt. Ltd,			
5		gineering Design, Prentice Hall, India			
6		ic Algorithm, New York Van Nostrand Reinhold			
7		gorithm+Data Structure=Evolution Programme, Springer-Ver	·lag		
8		Foundations of Genetic Algorithms, Vose, San Francisco,		: M	organ
	Kaufmann.	, , ,			8
	Cour	se Outcomes (students will be able to)			
CO1	to formulate optimization pro				
CO2		hods to solve unconstrained and constrained optimization			
	problems.				
CO3	understand linear programming	ng problems.			
CO4	solve optimization problems	using various algorithms.			
CO5	apply various algorithms in o	ptimization techniques to solve real life problems.			

		Mapp	ing of C	ourse O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	5	5	5	5	1	3	1	5	1	1	5
CO2	0	5	5	5	4	1	4	1	5	1	1	5
CO3	0	4	5	5	4	1	4	1	5	1	1	5
CO4	0	4	5	5	5	3	4	1	5	1	1	5
CO5	0	5	5	5	5	5	5	5	5	5	2	5

	Course Code: MAT		Credi	$t_s = 4$
	2207	Course Title: Real Analysis – II	L T	P
	Semester: II	Total contact hours: 60	3 1	0
		List of Prerequisite Courses	1	
Real A	nalysis – I (MAT 2202)			
	T	G 1 41 m1		
Б		Courses where this course will be prerequisite		
Functio		Complex Analysis (MAT 2206)		
This		e of this course in the M.Sc. Engineering Mathematics Prog se covering major concepts of Real Analysis and multiva		1 1
		sed in almost all the later courses.	mate ca	icuius.
muodu		Contents (Topics and subtopics)	Но	urs
1		ests. Completion of a measure. Lebesgue Measure and its		0
•		sets. Measurable functions and their properties.	_	
2		ns of bounded variation and absolutely continuous functions.	2	0
		eorem, Fatou's Lemma, Dominated Convergence Theorem,		
	Vitalli Convergence theorem			
3		Calculus for Lebesgue Integrals. Product measure spaces,	1	0
	Fubini's theorem			
4	L ^p spaces, duals of L ^p space	s. Riesz Representation Theorem for C([a,b]).	1	0
		List of Textbooks/ Reference Books		
1		Measures and Integration, AMS		
2	H. L. Royden, Real Analysi			
3		ion and Lesbegue Measure, Wiley		
4		Lahiri, Measure theory and probability theory, Springer Tex	ts in Sta	tistics,
5	Springer Verlag	ory and Integration, New Age Publishers, Second Edition.		
3		irse Outcomes (students will be able to)		
CO1		of measure as generalization of notion of length.		
CO2		urable functions, and construct nonmeasurable set		
CO3		besgue integral and compare it with Riemann integral.		
CO4		ntotone, dominated convergence theorems.		
CO5	compute the duals of Lp[a,b			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	5	4	1	0	4	3	1	1	5	1	0	5		
CO2	5	5	0	0	4	1	2	1	5	1	0	5		
CO3	5	4	0	0	4	1	1	1	5	1	0	5		
CO4	5	4	1	1	5	2	1	1	5	3	0	5		
CO5	5	4	0	0	4	3	1	1	5	2	0	5		

List of Percequisite Courses		Course Code: MAT		C	uodi4	- A
List of Percequisite Courses			Course Title: Numerical methods			$\frac{S=4}{P}$
List of Prerequisite Courses List of Courses where this course will be prerequisite List of Courses where this course will be prerequisite It is a foundation course which will be prerequisite for all the course related to statistics and app mathematics. Description of relevance of this course in the M.Sc. Engineering Mathematics Program This course will introduce various numerical methods which are useful in solving differential equations, solv system of linear equations, understanding of machine learning algorithms etc. Course Contents (Topics and subtopics) Hours Error Analysis and difference table Solution of Algebraic and transcendental equation: Biscetion method, Secant method, Regula-False method, Newton-Raphson method and convergence criteria for these methods. Numerical solution of linear equations: Gauss-Jacobi, Gauss-Seidel iteration, Successive over relaxation (SOR) and under relaxation method and convergence criteria for these methods. Interpolations: Lagrange Interpolation, Divided difference, Newton's backward and forward interpolation, Central difference interpolation (Hermite), Cubic Spline interpolation, Successive over relaxation (SOR) and under relaxation method (Hermite), Cubic Spline interpolation, Interpolations: Lagrange Interpolation (Trapezoidal rule, Simpsons 1/3, 3/8 rules). List of Course of the difference interpolation (Hermite), Cubic Spline interpolation, Liu decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. Numerical Solution of boundary value poblems using initial value method and Shooting						0
List of Courses where this course will be prerequisite It is a foundation course which will be prerequisite for all the courses related to statistics and app mathematics. Description of relevance of this course in the M.Sc. Engineering Mathematics Program This course will introduce various numerical methods which are useful in solving differential equations, solv system of linear equations, understanding of machine learning algorithms etc. Course Contents (Topics and subtopics) 1		Semester: 11	Total contact nours: 60	3	1	
List of Courses where this course will be prerequisite It is a foundation course which will be prerequisite for all the courses related to statistics and app mathematics. Description of relevance of this course in the M.Sc. Engineering Mathematics Program This course will introduce various numerical methods which are useful in solving differential equations, solv system of linear equations, understanding of machine learning algorithms etc. Course Contents (Topics and subtopics) 1			List of Proroquisito Courses			
It is a foundation course which will be prerequisite for all the courses related to statistics and app mathematics. Description of relevance of this course in the M.Sc. Engineering Mathematics Program This course will introduce various numerical methods which are useful in solving differential equations, solv system of linear equations, understanding of machine learning algorithms etc. Course Contents (Topics and subtopics) Hours Solution of Algebraic and transcendental equation: Bisection method, Secant method, Regula-False method, Newton-Raphson method and convergence criteria for these methods. Numerical solution of linear equations: Gauss-Jacobi, Gauss-Seidel iteration, Successive over relaxation (SOR) and under relaxation method and convergence criteria for these methods. Interpolations: Lagrange Interpolation, Divided difference, Newton's backward and forward interpolation, Central difference interpolation (Hermite), Cubic Spline interpolation. Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3 ,3/8 rules). Gauss quadrature formula LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods, Second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice-Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conta and C. deBoo, Clementary Numerical Approach, McGraw Hill. M.K. Jain: Numerical			List of Frer equisite Courses			
It is a foundation course which will be prerequisite for all the courses related to statistics and app mathematics. Description of relevance of this course in the M.Sc. Engineering Mathematics Program This course will introduce various numerical methods which are useful in solving differential equations, solv system of linear equations, understanding of machine learning algorithms etc. Course Contents (Topics and subtopics) Hours Solution of Algebraic and transcendental equation: Bisection method, Secant method, Regula-False method, Newton-Raphson method and convergence criteria for these methods. Numerical solution of linear equations: Gauss-Jacobi, Gauss-Seidel iteration, Successive over relaxation (SOR) and under relaxation method and convergence criteria for these methods. Interpolations: Lagrange Interpolation, Divided difference, Newton's backward and forward interpolation, Central difference interpolation (Hermite), Cubic Spline interpolation. Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3 ,3/8 rules). Gauss quadrature formula LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods, Second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice-Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conta and C. deBoo, Clementary Numerical Approach, McGraw Hill. M.K. Jain: Numerical		List of	Courses where this course will be prerequisite			
Description of relevance of this course in the M.Sc. Engineering Mathematics Program This course will introduce various numerical methods which are useful in solving differential equations, solv system of linear equations, understanding of machine learning algorithms etc. Gourse Contents (Topics and subtopics) Hours	It is a			s ar	nd ai	nlied
This course will introduce various numerical methods which are useful in solving differential equations, solv system of linear equations, understanding of machine learning algorithms etc. Course Contents (Topics and subtopics) 1 Error Analysis and difference table 2 Solution of Algebraic and transcendental equation: Bisection method, Secant method, Regula-False method, Newton-Raphson method and convergence criteria for these methods. 3 Numerical solution of linear equations: Gauss-Jacobi, Gauss-Seidel iteration, Successive over relaxation (SOR) and under relaxation method and convergence criteria for these methods. 4 Interpolations: Lagrange Interpolation, Divided difference, Newton's backward and forward interpolation, Central difference interpolation (Hermite), Cubic Spline interpolation, 5 Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3 ,3/8 rules). Gauss quadrature formula 6 LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. 5 Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. 6 Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). 1 M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. 2 S.S. Sastry, Introductory methods of Numerical Analysis-An Algorithmic Approach, McGraw Hill. 3 D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Tata Mc Graw Hill. 4 S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. 5 S.C			will be prerequisite for all the courses related to statistic	5 41	ւս այ	pnea
This course will introduce various numerical methods which are useful in solving differential equations, solv system of linear equations, understanding of machine learning algorithms etc. Course Contents (Topics and subtopics) 1 Error Analysis and difference table 2 Solution of Algebraic and transcendental equation: Bisection method, Secant method, Regula-False method, Newton-Raphson method and convergence criteria for these methods. 3 Numerical solution of linear equations: Gauss-Jacobi, Gauss-Seidel iteration, Successive over relaxation (SOR) and under relaxation method and convergence criteria for these methods. 4 Interpolations: Lagrange Interpolation, Divided difference, Newton's backward and forward interpolation, Central difference interpolation (Hermite), Cubic Spline interpolation, 5 Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3 ,3/8 rules). Gauss quadrature formula 6 LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. 5 Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. 6 Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). 2 List of Textbooks/ Reference Books 1 M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. 2 S.S. Sastry, Introductory methods of Numerical Analysis, Prentice- Hall of India, New Delhi. 3 D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. 4 S.D. Conte and C. deBoor, Elementary Numerical			e of this course in the M.Sc. Engineering Mathematics Progr	ram		
System of linear equations, understanding of machine learning algorithms etc. Course Contents (Topics and subtopics) Hours	This co					lving
Error Analysis and difference table 4					,	8
Error Analysis and difference table Solution of Algebraic and transcendental equation: Bisection method, Secant method, Regula-False method, Newton-Raphson method and convergence criteria for these methods.					Hou	irs
Regula-False method, Newton-Raphson method and convergence criteria for these methods. 3	1				4	
methods. Numerical solution of linear equations: Gauss-Jacobi, Gauss-Seidel iteration, Successive over relaxation (SOR) and under relaxation method and convergence criteria for these methods. Interpolations: Lagrange Interpolation, Divided difference, Newton's backward and forward interpolation, Central difference interpolation (Hermite), Cubic Spline interpolation, Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3, 3/8 rules). Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3, 3/8 rules). Numerical solution and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor—Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) Course Outcomes (students will be able to) Governous solutions of linear and nonlinear equations. Governous solutions of binear and nonlinear equations.	2	Solution of Algebraic and	transcendental equation: Bisection method, Secant method,		8	
Numerical solution of linear equations: Gauss-Jacobi, Gauss-Seidel iteration, Successive over relaxation (SOR) and under relaxation method and convergence criteria for these methods.			wton-Raphson method and convergence criteria for these			
Successive over relaxation (SOR) and under relaxation method and convergence criteria for these methods. 4 Interpolations: Lagrange Interpolation, Divided difference, Newton's backward and forward interpolation, Central difference interpolation (Hermite), Cubic Spline interpolation, 5 Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3,3/8 rules). 6 Gauss quadrature formula 6 LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. 5 Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor—Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. 6 Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books 1 M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. 2 S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. 3 D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. 4 S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. 5 S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. 6 M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) COI develop the basic understanding of numerical analysis algorithms. COI develop the basic understanding of numerical problems on computer. GOI develop to the basic understanding of numerical problems on computer. GOI analyse solution obtained using nume		methods.				
for these methods. Interpolations: Lagrange Interpolation, Divided difference, Newton's backward and forward interpolation, Central difference interpolation (Hermite), Cubic Spline interpolation, Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3 ,3/8 rules). Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3 ,3/8 rules). LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor—Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) M.K. Jain: Numerical solution of Differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) Gold develop the basic understanding of numerical analysis algorithms. Gold develop the basic understanding of numerical problems on computer. Gold in numerical solutions of linear and nonlinear equations.	3				8	
Interpolations: Lagrange Interpolation, Divided difference, Newton's backward and forward interpolation, Central difference interpolation (Hermite), Cubic Spline interpolation, Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3 ,3/8 rules). Gauss quadrature formula LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) Col develop the basic understanding of numerical analysis algorithms. Col develop the basic understanding of numerical analysis algorithms. Col acquire skills to implement algorithms to solve mathematical problems on computer. Gol analyse solution obtained using numerical algorithms.			(SOR) and under relaxation method and convergence criteria			
forward interpolation, Central difference interpolation (Hermite), Cubic Spline interpolation, Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3 ,3/8 rules). Gauss quadrature formula LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.C. Chapra, and P.C. Raymond, Numerical Analysis-An Algorithmic Approach, McGraw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) Col develop the basic understanding of numerical analysis algorithms. Col develop the basic understanding of numerical analysis algorithms. Goz solve initial value and boundary value ODE numerically. Col find numerical solutions of linear and nonlinear equations.						
interpolation, Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3 ,3/8 rules). Gauss quadrature formula LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.	4				8	
Numerical differentiation, and integration (Trapezoidal rule, Simpsons 1/3 ,3/8 rules). Gauss quadrature formula LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) Col develop the basic understanding of numerical analysis algorithms. Col find numerical solutions of linear and nonlinear equations. acquire skills to implement algorithms to solve mathematical problems on computer. Col analyse solution obtained using numerical algorithms.			entral difference interpolation (Hermite), Cubic Spline			
Gauss quadrature formula 6 LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. 5 Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. 6 Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books 1 M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. 2 S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. 3 D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. 4 S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. 5 S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. 6 M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. GO3 find numerical solutions of linear and nonlinear equations. GO4 acquire skills to implement algorithms to solve mathematical problems on computer. GO5 analyse solution obtained using numerical algorithms.	-		1 interest (Toron - ill and Circum 1/2 2/91)			
6 LU decompositions and its applications, Eigenvalue Approximation using Power method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. 5 Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor—Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. 6 Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books 1 M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. 2 S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. 3 D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. 4 S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. 5 S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. 6 M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.	3	I and the second	and integration (Trapezoidal rule, Simpsons 1/3,3/8 rules).		6	
method, Aitken acceleration. Inverse and shifted inverse power method. Linear least squares. 5 Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor—Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. 6 Numerical Solution of boundary value problems using initial value method and Shooting 8 techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books 1 M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. 2 S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. 3 D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. 4 S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. 5 S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. 6 M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.	6		its applications Figanvalue Approximation using Power		Q	
squares. Solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor—Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books	O				0	
Numerical solution of initial value problems (first and higher order ODE): Taylor series, Runge-Kutta explicit methods (second and forth order), Predictor—Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books			on. Inverse and sinited inverse power method. Emear least			
series, Runge-Kutta explicit methods (second and forth order), Predictor-Corrector methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. 6 Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books 1 M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. 2 S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. 3 D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. 4 S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. 5 S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. 6 M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.	5		tial value problems (first and higher order ODE): Taylor		10)
methods (Adam- Basforth, Adam-Moulton method). Stiff differential equations and its solutions with implicit methods, Numerical Stability, Convergence, and truncation Errors for the different methods. 6 Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books 1 M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. 2 S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. 3 D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. 4 S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. 5 S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. 6 M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.	-					
for the different methods. Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.						
6 Numerical Solution of boundary value problems using initial value method and Shooting techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books 1 M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. 2 S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. 3 D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. 4 S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. 5 S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. 6 M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.		solutions with implicit meth	nods, Numerical Stability, Convergence, and truncation Errors			
techniques (Newton-Raphson and Principle of superposition method). List of Textbooks/ Reference Books M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.		for the different methods.				
List of Textbooks/ Reference Books M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.	6				8	
M. K. Jain, S. R. K. Iyengar and R. K. Jain: Numerical methods for scientific and engineer computation, Wiley Eastern Ltd. Third Edition. S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.		techniques (Newton-Raphso				
computation, Wiley Eastern Ltd. Third Edition. 2 S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. 3 D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. 4 S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. 5 S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. 6 M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.		I		_		
S.S. Sastry, Introductory methods of Numerical analysis, Prentice- Hall of India, New Delhi. D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.	1			id e	ngine	ering
D.V. Griffiths and I.M. Smith, Numerical Methods for Engineers, Blackwell Scientific Publications. S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.	2			•		
S.D. Conte and C. deBoor, Elementary Numerical Analysis-An Algorithmic Approach, McGraw Hill. S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.					4:	
S.C. Chapra, and P.C. Raymond, Numerical Methods for Engineers, Tata Mc Graw Hill. M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.			<u> </u>			
6 M.K. Jain: Numerical solution of differential equations, Wiley Eastern, 2nd Ed Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.				JOIA	w 11.	11.
Course Outcomes (students will be able to) CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.		1	<u> </u>			
CO1 develop the basic understanding of numerical analysis algorithms. CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.						
CO2 solve initial value and boundary value ODE numerically. CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.	CO1					
CO3 find numerical solutions of linear and nonlinear equations. CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.						
CO4 acquire skills to implement algorithms to solve mathematical problems on computer. CO5 analyse solution obtained using numerical algorithms.						
CO5 analyse solution obtained using numerical algorithms.			•			
CO6 model solve real life problems using ordinary differential equations.	CO6					

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	0	5	1	5	3	2	1	3	5	1	1	5	
CO2	0	5	1	2	1	1	1	1	5	1	1	5	
CO3	0	5	1	2	1	1	1	2	5	1	1	5	

	CO4	0	5	3	2	3	1	4	1	5	1	0	5
Γ	CO5	0	5	4	4	4	2	4	1	5	3	1	5

	Course Code: MAT		C	redit	$t_s = 4$
	2322	Course Title: Statistical Inference	L	T	P
	Semester: II	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Probab	ility Theory (MAT 2321)	List of Freequisite Courses			
	(
	List of	Courses where this course will be prerequisite			
Statisti (MAT		, Machine Learning (MAT 2324), Deep Learning and Artifici	al Ir	ntelli	gence
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Progr	ram		,
	ourse is a foundation course of hypothesis.	covering major statistical concepts related to theory of point	estin	natio	n and
		Contents (Topics and subtopics)		Hou	ırs
1	likelihood. Properties of sufficiency, exponential f theorem. Rao-Blackwell the	n: Finding estimators using method of moments, maximum estimators: Sufficiency, factorization theorem, minimal amily and completeness. Ancillary statistics and Basu's eorem. Unbiased estimates and uniformly minimum variance Information and Cramer-Rao inequality.		24	ļ
2		od of developing testing procedure: Likelihood Ratio tests, power function, Most powerful tests, MP tests, N-P lemma. UMPU tests.		16)
3	Tests related to normal di mean, tests on variance, to	stribution: Sampling from normal distribution and test for ests on several means, and tests on several variances with lications (derivations of these tests as an application of LRT),		12	
4	Interval estimation: Metho	d of finding interval estimators, Inversion of test statistics, coverage probability, Connection to Testing of hypothesis		8	
		List of Textbooks/ Reference Books			
1		, Statistical Inference, Second Edition, Duxbury.			
2		V. K. Rohatgi. An Introduction to Probability and Statistics. Wi	ley.		
3		lla, Theory of Point Estimation, Second Edition, Springer.			
4		mano, Testing Statistical Hypothesis, Third Edition, Springer.			
5	L. Wasserman, All of Statis				
6		. Dasgupta, An Outline of Statistical Theory, Volume Two, Wo			
7		eonhard Held, Applied Statistical Inference: Likelihood and Ba	iyes,	Spri	nger
CO1		urse Outcomes (students will be able to)			
CO1		rs for statistical models using different methods.			
CO2	inferential problems.	f an estimator and compare performances of two estimators in			
CO3	develop appropriate testing evaluate the performance of	g procedure for a given testing of hypothesis problem and f the test.			
CO4		hesis techniques to draw inference from real data sets.			
CO5	obtain interval estimate of p	parameter and solve real life problems.			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	0	1	5	5	0	1	2	1	5	1	1	5		
CO2	0	1	5	5	4	1	2	1	5	1	1	5		
CO3	0	1	5	5	3	1	3	1	5	4	1	5		

CO	4	0	1	5	5	4	4	4	4	5	4	3	5
CO	`	0	2	5	5	4	4	4	5	5	5	3	5

	Course Code: MAT		C	redit	s = 4
	2222	Course Title: Partial Differential Equations	L	T	P
	Semester: II	Total contact hours: 60	3	1	0
		I' en '' c			
Ordina	ary differential equation (MA	List of Prerequisite Courses			
Oruma	iry differential equation (MA	1 2221)			
	List of	Courses where this course will be prerequisite			
Compi	utational Fluid dynamics (MA				
		e of this course in the M.Sc. Engineering Mathematics Prog	ram		
This su		rstand the nature of fluid flows and mathematical modelling of			mass
transfe	r phenomena				
		Contents (Topics and subtopics)		Hou	rs
1		quasi-linear equations-Method of characteristics, Lagrange		6	
	method			1.0	
2		fication and Canonical forms of equations in two independent		10	,
		wave equation- D'Alembert's solution, Reflection method for vave equation, Fourier Method.			
3		equation: Maximum Minimum principle for the diffusion		10	
3		ation on the whole line, Diffusion on the half-line,		10	
		the whole line, Fourier method.			
4		liptic, and hyperbolic equations using variable separable		10	,
	methods				
5	Laplace equation: Maximus	m-Minimum principle, Uniqueness of solutions; Solutions of		10)
		esian and polar coordinates-Rectangular regions, circular			
	regions, annular regions; Po				
6		DE's: Numerical Solution of partial differential equations		14	•
		e) using explicit and implicit finite difference methods,			
		licit and implicit method. Solution of elliptic equation using			
		, Collocation and Galerkin methods, Methods of finite ormulation for the solution of ODE and PDE, Calculation of			
		and solution of linear equations.			
	ciement matrices, assembly	List of Textbooks/ Reference Books			
1	Renardy and Rogers, An in	troduction to PDE's, Springer-Verlag.			
2		ential equations, An Introduction, Wiley, John & Sons.			
3		Advanced Engineering Mathematics, Jones & Bartlett.			
4	L.C. Evans, Partial differen	tial equations, Springer.			
5	I. N. Sneddon, Elements of	partial differential equations, McGraw-Hill.			•
6		rs, Numerical solution of partial differential equations, Cambrid			Edn.
7		tion of partial differential equations, finite difference methods,	Oxf	ford.	
8		on to Finite Element Methods, McGraw-Hill.			
9		lution of partial differential Equations: Finite difference metho	ds, l	New	York,
	NY: Clarendon Press.	was Outsomes (students will be able to			
CO1		of the course, the students should be able to understand			
CO1		of the course, the students should be able to understand partial differential equations.			
CO2		partial differential equations.			
CO3	implement algorithms to so				
CO4	analyse analytical and num				
CO5		oblems using partial differential equations.			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	0	5	0	5	3	2	2	3	5	1	0	5		
CO2	0	5	1	1	1	1	1	0	5	1	0	5		
CO3	0	5	1	1	1	1	1	2	5	1	0	5		
CO4	0	5	1	1	3	1	4	1	5	0	0	5		
CO5	0	5	0	4	4	2	4	1	5	3	1	5		

Course Code:		C	redi	ts = 4
	Course Title: Elective – I	L	T	P
Semester: II	Total contact hours: 60	3	1	0

Candidate will have to choose one of the elective subjects offered for that semester from the elective subjects. A consolidated list of all the elective subjects is given at the end.

SEMESTER III

	Course Code: MAT		C		s = 4				
	2210	Course Title: Functional Analysis	L	T	P				
	Semester: III	Total contact hours: 60	3	1	0				
D 1 4	1 : 1 (1 (1 T 2000)) D	List of Prerequisite Courses	1						
	Analysis – I (MAT 2202), Rea	al Analysis – II (MAT 2207), Applied Linear Algebra (MAT							
2201)									
	List of	Courses where this course will be prerequisite							
	Description of relevance	e of this course in the M.Sc. Engineering Mathematics Prog	ram						
This is		ied and Pure Mathematics. A lot of techniques from Functions		nalys	is are				
useful	in differential equations and	numerical methods. This course strengthens mathematical for	ında	tion (of the				
studen									
		Contents (Topics and subtopics)	Hours						
1		of linear maps, Banach spaces		14					
2		ert spaces, Dual spaces and transposes, Orthonormal basis.		18	,				
	Projection theorem and Rie			1.4					
3		d Separation theorems, Baire Category Theorem, Zabreiko's ctionals, Uniform Boundedness Principle, Banach Steinhauss		14					
		neorem, Open Mapping Theorem, Bounded Inverse Theorem							
	as consequences of Zabreik								
4		rator, Examples of compact operators on normed spaces.		14					
		List of Textbooks/ Reference Books							
1	E. Kreyzig, Introduction to	Functional Analysis with Applications, John Wiley & Sons, Ne	ew Y	ork.					
2	B.V. Limaye, Functional A	nalysis, 2ndEdition, New Age International, New Delhi.							
3		onal Analysis for Scientists and Engineers, Springer-Singapor							
4		nar, Functional Analysis—A First Course, Narosa Publishing H	Iouse	Э.					
5		, First Course in Functional Analysis, Prentice Hall.							
6		nal Analysis, Hindustan Book Agency.							
		irse Outcomes (students will be able to)							
CO1		operators on normed spaces and give an example of non-							
000	continuous operator on infin								
CO2		ma and apply it to prove the major theorems of functional							
CO2	analysis.								
CO ₄		compute duals of certain spaces. compute Hahn Banach extensions of linear operators.							
CO4									
CO5	compute spectrum of bound	compute spectrum of bounded operators and identify compact operators.							

		Mapp	ing of C	ourse O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	5	3	0	1	4	1	1	0	5	0	1	5
CO2	5	3	0	0	5	0	2	0	5	2	1	5
CO3	5	0	3	3	5	0	1	0	5	0	1	5
CO4	5	0	1	0	4	2	2	1	5	2	1	5
CO5	5	0	1	0	4	2	1	1	5	0	1	5

	Course Code: MAT		C	redit	s = 4
	2323	Course Title: Statistical Computing	L	T	P
	Semester: III	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Probab	oility Theory (MAT 2321), Sta	atistical Inference (MAT 2322), Programming Lab (MAP 2521)		
D 1		Courses where this course will be prerequisite			
Dеер I	Learning and Artificial Intellig				
With		of this course in the M.Sc. Engineering Mathematics Progree large-scale computational methods in science and engine			mlind
		o various statistical methods. This course aims to give the study			
		thods. It also enables students to understand various simulation			
		the core of application of mathematics to solve real life proble			
		Contents (Topics and subtopics)		Hot	ırs
1		stribution function and statistical functionals		6	
2		tribution of nonlinear functions of random variables and		6	
		e: (Central Limit Theorem and First order and second order			
	Delta method, Extension to				
3		n: Simulation of Random numbers following some specific		8	
		Integral transform; Accept/Reject algorithm; Metropolis			
4	algorithm, Gibbs sampler	Innertone Complies Various reduction Discours		1.0	`
4		, Importance Sampling, Variance reduction, Riemann Approximations, Saddle point approximation, Acceleration		10	,
		control variates and conditional expectations, Statistical			
	simulation using R	control variates and conditional expectations, Statistical			
5		trap variance estimation, Bootstrap confidence intervals,		6	
	Jacknife.				
6		erence: Bayesian philosophy, Prior distribution, posterior		12	!
		sterior point estimate, conjugate prior distribution, Jeffrey's			
		lems and Bayesian testing, large sample properties of Bayes			
	estimators (emphasis on re Bayesian inference)	al data problems and use of packages in R or Python for			
7		ation: Histogram estimator, Kernel density estimation, bias-		12	,
,		ning using orthogonal functions: density estimation and		12	•
	regression problems	ming using oranogonal randoms. Communion and			
		List of Textbooks/ Reference Books			
1	Larry Wasserman, All of St	atistics: A concise course in statistical inference.			
2	Daniel Sabanés Bové and L	eonhard Held, Applied Statistical Inference: Likelihood and Ba	ıyes,	Spr	nger.
3		Casella, Monte Carlo Statistical Methods, Springer.			
4		rumbo, Introduction to Probability Simulation and Gibbs San	nplii	ng w	ith R,
	Springer.				
5		ation A Modeler's Approach, John Wiley & Sons, Inc.	X7:1	,, o	Comm
6	Reuven Y. Rubinstein, Diri	k P. Kroese, Simulation and the Monte Carle method, John V	wile	y &	sons,
7		rge Casella, Introducing Monte Carlo Methods with R, Springe	r		
8		Nonparametric Statistics, Springer	/1		
9	R. A. Thisted, Elements of S				
		rrse Outcomes (students will be able to)			
CO1		on of nonlinear functions of random variables using large			
	sample theory.				
CO2		rom some statistical distribution using different algorithms.			
CO3		on to estimate model parameters and draw inference.			
CO4		of Bayesian statistics and apply them in parameter estimation			
005	problems.				
CO5		s to approximate confidence intervals and variance of			
	estimators.		<u> </u>		

		Mapp	ing of C	ourse O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	0	5	5	3	1	3	1	5	1	1	5
CO2	0	0	5	5	4	3	4	1	5	3	1	5
CO3	0	0	5	5	3	0	3	1	5	1	1	5
CO4	0	1	5	5	4	2	5	5	5	1	3	5
CO5	0	1	5	5	3	5	5	5	5	4	3	5

	Course Code: MAT		C	redit	ts = 3
	2324	Course Title: Machine Learning	L	T	P
	Semester: III	Total contact hours: 45	2	1	0
					-
		List of Prerequisite Courses			
		201), Probability Theory (MAT 2321), Statistical Inference	(M	AT 2	2322),
Progra	mming Lab (MAP 2521), Opt	timization techniques (MAT 2205)	1		
D 1		Courses where this course will be prerequisite			
Deep I	earning and Artificial intellige				
Maahir		of this course in the M.Sc. Engineering Mathematics Progithe core of modern computational techniques. This course help			ıdanta
		statistical concepts behind the machine learning algorithms. St			
	are to various challenges in so		uuci	ns ai	so get
Сироза		Contents (Topics and subtopics)		Hot	ırs
1		ts: Mean Square Error (MSE), Training Error, Test Error,		6	
-		Measuring the quality of fit, Regression Diagnostics,		Ü	
		t of model flexibility and prediction accuracy, Universal			
		Test MSE. Case study of linear regression with K-nearest			
		phasize on simulating the universal patterns using simulated			
	realizations)				
2		ularization: Validation set approach, Leave-One-Out-Cross-		6	
		lidation, Best subset selection, Forward Selection, Backward			
		shrinkage methods: Ridge regression, Lasso.			
3		d Boosting, Random Forests, Gradient Boosting, Adaboost		8	
4		, Fitting Neural Networks, Selection of number of hidden		4	
5	layers, Computational consi	lysis, Naive Bayes, Support Vector Machines: support vector		9	
3	classifier, SVM and for regi			9	
6		incipal Component Analysis, Factor Analysis, Principal		12	,
O		neans clustering, Hierarchical Clustering, Multi-dimensional		12	-
	scaling	reals crastering, riterarement crastering, ritati annonsional			
7	Software Component: R/Py	thon			
		List of Textbooks/ Reference Books			
1	Andreas C. Müller and Sar	rah Guido, Introduction to Machine Learning with Python: D	avid	l Bar	ber A
	Guide for Data Scientists, C				
2		g with R by Bradley Boehmke and Brandon Greenwell, CRC Pr	ress		
3		Learning with Application in R by James, G., Witten, D.,			. and
	Tibshirani, R.				
4		course on Statistical Inference by Larry Wasserman.			
5		l Learning by Jerome H. Friedman, Robert Tibshirani, and	Trev	or F	Iastie,
	Springer.				
6		on to Machine Learning, The MIT Press, Cambridge.		_	
7		k, Mark A. Hall, Data Mining: Practical Machine Learni	ng	Tool	s and
	Techniques by Elsevier				

8	Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning seri	es) by
	Kevin P. Murphy.	
	Course Outcomes (students will be able to)	
CO1	understand advantages of machine learning algorithms.	
CO2	apply machine learning techniques to solve regression problems involving real data.	
CO3	apply machine learning techniques to solve classification problems involving real data.	
CO4	apply dimension reduction methods to solve problems involving real data.	
CO5	use software to build machine learning models and interpret the results.	•

		Mapp	ing of C	Course O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	2	5	5		2	2	0	5	0	0	5
CO2	0	2	5	5	3	5	5	5	5	4	0	5
CO3	0	2	5	5	3	5	5	5	5	4	0	5
CO4	0	1	5	5	2	5	5	5	5	4	4	5
CO5	0	1	5	5	2	5	5	5	5	4	4	5

	Course Code: MAT		C		$t_s = 4$			
	2206	Course Title: Complex Analysis	L	T	P			
	Semester: III	Total contact hours: 60	3	1	0			
				•				
		List of Prerequisite Courses						
Real A	nalysis – I (MAT 2202), Real	Analysis – II (MAT 2207)						
	List of	Courses where this course will be prerequisite						
		of this course in the M.Sc. Engineering Mathematics Progr						
This is		ematics. Many techniques from this course will be used in later	cou					
		Contents (Topics and subtopics)		Hot				
1		mber system, stereographic projection, Analytic functions,		15	;			
	Cauchy Riemann Equations, Elementary functions, Conformal mappings, Fractional							
	linear Transformations.							
2	Complex integration, Cauchy's theorem, Cauchy's integral formula, Liouville's theorem,							
	Morera's Theorem, Cauchy-			2/				
3		sequences and series, Taylor and Laurent series, isolated		20)			
	real integrals	Classification of singularities, Residue theorem, Evaluation of						
4		le, Argument Principle, Rouche's theorem		10				
4	Maximum Modulus Fillicip	List of Textbooks/ Reference Books		1(<u>, </u>			
1	I B Conway Functions of	One Complex Variable, 2nd Edition, Narosa, New Delhi.						
2		allysis, Springer International Edition.						
3		okas Complex variables, Introduction and applications, Cam	hrid	ae te	vts in			
	applied mathematics.	okas complex variables, introduction and applications, came	oria	ge ie	Ats III			
4		Shanahan, Complex Analysis: A First Course with Application	ons.	Jone	s and			
	Bartlett Pub.		,					
5	John H. Mathews & Russel	D. Howell, Complex Analysis for Mathematics and Engineer	ing,	Jone	es and			
	Bartlett Pub.							
	Cou	rrse Outcomes (students will be able to)						
CO1	identify analytic functions.							
CO2	apply Cauchy's theorem to compute complex integrals.							
CO3	obtain power series and Lau	rent series for analytic and non-analytic functions.		-	'			
CO4		classify singularities of a function.						
CO5	compute real improper integ	grals using residue theorems and compute zeros of functions.						

		Mapp	ing of C	Course O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	5	5	1	2	4	4	3	1	5	2	0	5
CO2	5	5	1	0	4	0	3	1	5	1	0	5
CO3	5	5	1	0	3	1	4	1	5	1	0	5
CO4	5	5	0	0	4	3	3	0	5	3	1	5
CO5	5	5	1	2	3	3	4	1	5	2	1	5

Co	urse Code:		(redi	ts = 4
		Course Title: Elective – II	L	T	P
Se	mester: III	Total contact hours: 60	3	1	0

Candidate will have to choose one of the elective subjects offered for that semester from the elective subjects. A consolidated list of all the elective subjects is given at the end.

Course Code: MAP		C	redi	ts = 2
2701	Course Title: Project Seminar	L	T	P
Semester: III	Total contact hours: 60	0	0	4

The Project seminar is concerned with detailed and critical analysis of literature related to a topic on which the candidate is expected to do project in the final semester. The study will be supervised by a faculty member and student is expected to continue to do project under his guidance in next semester. Candidate is expected to submit a report as per guidelines provided below which will be evaluated by the supervisor and an external examiner from the Department/Industry based on the presentation made by the candidate. A suitable combination of the marks for report and presentation will be considered for the final evaluation.

The division of marks will be as follows:

Internal Marks (20) + Final Marks based on presentation (20) + Project report (10) = Total marks (50)

Suggestive Guideline:

- 1. Literature survey (Research papers/ reading course/ adopt new computational tools/ etc.)
- 2. Report must be prepared using LaTex and the format will be provided by the department.
- 3. Name of the student, title of the problem and year of examination must be indicated on the top cover. The name of the supervisor (only initials) must appear on the bottom right corner of the top cover.
- 4. Typographical errors in the report must be corrected by the student. The student will be discredited for any omission in the report.
- 5. The list of references should be arranged in alphabetical order of the names of authors. In the text, the reference should be cited with author's name and year.
- 6. The last date for submission will NOT be extended on any grounds whatsoever.
- 7. There must not be any acknowledgment about the guidance by the faculty in the report.
- 8. Candidates are not permitted to do word to word copying from published articles or books.

	Course Outcomes (students will be able to)
CO1	Collect information from the literature and summarize them.
CO2	Understand the research problem and identify possible gaps.
CO3	Write neat report following the guidelines.
CO4	Propose a defined plan of research.
CO5	Adapt new mathematical/statistical/computational/programming topics which are not
	covered in the subjects taught.
	List of Prerequisite Courses
All Cou	rses in M.Sc. in Engineering Mathematics
	List of Courses where this course will be prerequisite
Projects	(MAP 2702)

Description of relevance of this course in the M.Sc. Engineering Mathematics Program

This course enables students to gather scientific information on a particular topic, analyze the information and present a written and oral summary on that topic. This enables the students to function in a professional environment later on in their career

	Course Code: MAP		Cr	edits	= 2
	2522	Course Title: Software Lab	L	T	P
	Semester: III	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
Progar	nming Lab (MAP 2521)				
	List of	Courses where this course will be prerequisite			
		of this course in the M.Sc. Engineering Mathematics Progr			
		is on computational mathematics and its application in va			
		re to the students to experiment with mathematical software a	nd th	ieir us	se in
real III	e problems.	Contents (Tonics and subtenies)	1	Hour	
1		Contents (Topics and subtopics)		Hour 2	S
2	Plotting 2d and 3d graphs in	lgebra Systems (CAS) and Sagemath.		4	
3		ve various type of equations in Sagemath.		2	
4		and multi-variables in Sagemath		8	
5		ices and vector spaces in Sagemath		8	
6	Linear transforms and its ap	<u> </u>		4	
7	Inner product and least squa			6	
8		and eigenvectors in SageMath.		6	
9		ion and its applications in Sagemath.		4	
10		er theory and group theory in Sagemath.		4	
11	-	lore concepts in optimization techniques and differential		12	
	equations.	T			
1	C C I A''' II D	List of Textbooks/ References	17		
1		obert Beezer and others, Calculus, KyonMoon Publications, S.		ea	
2		tional Mathematics with Sage (available online from sagemath	.org)		
3 4		d other, BigBook: Linear Algebra by (Free online)			
5		e in Linear Algebra (Free online, http://buzzard.ups.edu/) Group Theory—An Expedition with SageMath, Narosa Publica	4:		
6		rgraduate (available online from sagemath.org)	HOHS		
7		ogramming: With Applications to SAGE Interacts for Numeric	o1 M	athad	c by
	Razvan A Mezei, Wiley.	ogramming. With Applications to SAGE interacts for Numeric	ai ivi	Ciliou	s oy
8		van A. Mezei, Numerical Analysis Using Sage, Springer			
9		bez, David Alfredo Báez Villegas, MATLAB handbook with	annli	cation	ıs to
		ering, and finance-CRC Press.	PP-11	- 44101	
10		imization with MATLAB, Cambridge Scholars Publishing			
-		rrse Outcomes (students will be able to)			
CO1		ic numerical computations and symbolics computations.			
CO2	plot graphs of 2d and 3d obj				
CO3	create Sagemath subroutine	s to solve mathematical problems.			
CO4		s, linear algebra and group theory using Sagemath			
CO5		lems in Differential equations and Optimization problems.			

		Mapp	ing of C	Course O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	4	5	4	2	2	4	0	5	0	1	5
CO2	0	4	5	4	0	0	4	0	5	0	0	5
CO3	0	5	4	4	0	0	4	1	5	0	1	5
CO4	1	4	5	5	2	2	4	2	5	2	1	5
CO5	0	5	4	5	2	3	4	2	5	3	3	5

SEMESTER IV

	Course Code: MAT		C	redi	ts = 4
	2223	Course Title: Combinatorics	L	T	P
	Semester: IV	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Moder	n Algebra (MAT 2204)				
	List of (Courses where this course will be prerequisite			
		•			

Description of relevance of this course in the M.Sc. Engineering Mathematics Program	
This course will provide the necessary mathematical foundation and exposure to problems related to applicate	ons

	rete mathematics in different domains.	- uppilounions
	Course Contents (Topics and subtopics)	Hours
1	Sets, Multisets, Binomial Coefficients, and important identities	4
2	Recurrences, Fibonacci numbers and others	3
3	Permutations, cycles in permutations, Stirling numbers of both kinds	5
4	Set Partitions: Exponential Generating function, Dobinski's formula, orthogonality of matrices	4
5	Integer Partitions: Euler's identity, conjugate partitions, bijective proofs, Euler's pentagonal Number theorem	4
6	Generating functions, ordinary and exponential, examples of OGFS, composition of generating functions, exponential formula for EGFS.	5
7	Graph Theory: Walks, paths, distances, Adjacency matrix of graphs, distance matrix of trees and the Graham Pollak Theorem, Counting Spanning trees, Matrix Tree theorem, Matching Theory	20
8	Exploration of concepts in combinatorics and graphs theory using Sagemath	15
	List of Textbooks/ Reference Books	
1	Miklos Bona, Introduction to Enumerative Combinatorics, McGraw-Hill.	
2	Miklos Bona, Walk through Combinatorics, World Scientific.	
3	Paul Zimmerman, Computational Mathematics with SageMath (free online on sagemath.org).
4	M. Aigner, A Course in Enumeration. Springer.	
5	C. Berge. Principles of Combinatorics. Academic Press.	
6	J. M. Harris, J. L. Hirst, M. J. Mossinghoff, Combinatorics and Graph Theory, Springer.	
7	Istvan Mezo, Combinatorics and number theory of counting sequences, CRC Press.	
	Course Outcomes (students will be able to)	
CO1	understand fundamental mathematical objects such as sets, functions and permutations.	
CO2	solve problems involving various counting principles.	
CO3	apply combinatorial ideas to practical problems.	
CO4	understand and use idea of modelling problems using Graph Theory.	
CO5	solve problems in combinatorics and graph theory using Sagemath.	

		Mapp	ing of C	ourse O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	5	0	1	3	3	2	2	0	5	0	2	5
CO2	5	1	1	1	0	5	2	2	5	3	0	5
CO3	0	1	1	1	0	0	5	1	5	0	0	5
CO4	0	1	1	1	4	4	2	1	5	1	0	5
CO5	0	5	5	5	4	4	2	1	5	3	2	5

	Course Code: MAT		Cı	redit	s = 4
	2305	Course Title: Stochastic Process	L	T	P
	Semester: IV	Total contact hours: 60	3	1	0
D 1 1	""	List of Prerequisite Courses			
		Statistical Inference (MAT 2322), Real Analysis-I (MAT			
2202),	Real Analysis-II (MAT 2207) Courses where this course will be prerequisite			
	List of	Courses where this course will be prerequisite			
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Progr	ram		
This c		al-life application of probability theory in biology, medicine		nance	e and
		t in Mathematics and Statistics courses in the previous semeste			
in deal	ing with problems and case st				
		Contents (Topics and subtopics)		Hou	rs
1		dels: Discrete-Time Markov Chains, Transient Distributions,		10	1
		Behavior, First-Passage Times.			
2		osition of Poisson Processes, Thinning of a Poisson Process,		8	
3	Compound Poisson Process	chains, Transient Analysis: Uniformization, Occupancy		10	
3		First-Passage Times, Birth and Death Processes, Examples of		10	
	Birth and Death process	This-i assage Times, Birth and Death Trocesses, Examples of			
4		e Time Branching Processes, Generating Function Relations		8	
•	for Branching Processes, Ex			Ü	
5		gales and sub martingales, Optional Sampling theorem,		8	
	Martingale convergence the	orem and their applications			
6		ry processes Mean square prediction of stochastic process,		6	
	Ergodic theory and stational				
7		aussian process, properties of Brownian motion, Some		10	i
	Uhlenbeck process	ian motion, Brownian motion with drift, The Ornstein-			
	Official Contracts	List of Textbooks/ Reference Books			
1	Sheldon M. Ross. Stochastic				
2		for Stochastic Methods for Physics, Chemistry, and the Nat	tural	Scie	ences.
	Third Edition. Springer-Ver				
3	Karlin and Taylor. A First co	ourse in Stochastic Process. Academic Press (Volume-I).			
4		ourse in Stochastic Process. Academic Press (Volume-II).			
5	J. Medhi, Stochastic Process				
6		tion to stochastic processes with R-John Wiley & Sons.	<u>~ · </u>		7.1
7		ements of Stochastic Processes with Application to the Natural	Scie	nces.	John
0	Wiley & Sons, Inc.	on to Stochastic Colorbys with Amelications 2nd Ed. Immerial	Call	ana D	magg
8		on to Stochastic Calculus with Applications. 2 nd Ed., Imperial of Differential Equations: An Introduction with Applications, Spri			1088.
J		irse Outcomes (students will be able to)	ingel	•	
CO1		nary distribution of Markov chains.			
CO2		pplications of Poisson process.			
CO3		g functions in computations related to branching process.			
CO4		ques for making predictions of stochastic process.			
CO5	understand the properties of	of Brownian motion and its application in various real-life			
	problems.				

		Mapp	ing of C	ourse O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	2	5	5	0	0	2	0	5	0	0	5
CO2	0	2	5	5	4	0	2	1	5	0	0	5
CO3	0	1	5	5	3	1	3	2	5	4	0	5

(CO4	0	1	5	5	4	4	4	4	5	4	3	5
(CO5	0	2	5	5	4	4	4	5	5	5	3	5

			C	redit	$t_{\rm S}=3$
	Course Code: MAT 2325	Course Title: Deep Learning and Artificial Intelligence	L	T	P
	Semester: IV	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			
		Statistical Inference (MAT 2322), Programming Lab (MAP			
2521),	Optimization techniques (Ma	AT 2205), Machine Learning (MAT 2324)			
	List of	Courses where this course will be prerequisite			
TTI :		of this course in the M.Sc. Engineering Mathematics Prog		1.1	
This co	<u> </u>	sure to large scale mathematical computations in solving real lit	te pr		
		Contents (Topics and subtopics)		Hou	
1		d introduction to deep learning		6	
2		chitecture design, backpropagation, and other differentiation		10)
-	algorithms				
3		ming, Bagging, and other ensemble models r training deep learning models, Approximate second-order		6	
4	methods, algorithm for ada			O	
5	Convolutional Networks	onve learning rates		4	
6	dependencies	ng short-term memory, optimization for long terms		6	
7		ning: Computer vision, Speech recognition, Natural language		7	
,	processing	ing. Computer vision, speech recognition, rutural language		,	
8	Software Implementation: 1	R/Python/MATLAB			
	1	List of Textbooks/ Reference Books	1		
1	Ian Goodfellow and Yoshua	Bengio and Aaron Courville, Deep Learning, MIT Press.			
2	The Elements of Statistica	Learning by Jerome H. Friedman, Robert Tibshirani, and	Trev	or I	Iastie,
	Springer.				
3	Josh Patterson, Adam Gibso	on, Deep Learning: A Practitioner's Approach.			
4		g Architectures: A Mathematical Approach.			
5		Learning: A Probabilistic Perspective.			
6		assaron, Deep Learning For Dummies.			
7	Venkata Reddy Konasani,	Shailendra Kadre, Machine Learning and Deep Learning Usin	ng P	ytho	n and
	TensorFlow, Mc Graw Hill.				
		urse Outcomes (students will be able to)			
CO1		of Deep Learning and artificial Intelligence.			
CO2		al concepts behind deep learning algorithms.			
CO3		timization principles in deep neural networks.			
CO4		ams in solving real life problems.			
CO5	apply Deep Learning Algor	ithms using R or Python.			

		Mapp	ing of C	ourse O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	2	5	5	0	2	2	0	5	0	1	5
CO2	0	2	5	5	3	5	5	5	5	4	1	5
CO3	0	0	5	5	3	5	5	5	5	4	1	5
CO4	0	0	5	5	2	5	5	5	5	4	4	5

|--|

	Course Code: MAT		C	redit T	s = 5		
	2402	Course Title: Computational Fluid Dynamics	L	P			
	Semester: IV	Total contact hours: 60	3	2	0		
		List of Prerequisite Courses					
		MAT 2221), Partial Differential Equations (MAT 2222).					
Nume	rical methods (MAT 2421)						
		G					
	List of	Courses where this course will be prerequisite					
	D	-falls M-al					
This		of this course in the M.Sc. Engineering Mathematics Prog perical and computational techniques of Applied Mathematics			dinaat		
	ations to industrial and other r		s na	ving	uneci		
шрпс		Contents (Topics and subtopics)		Hou	irs		
1		lus and curvilinear coordinates		8			
2		ewtonian and Non-Newtonian fluids). Deformation, Strain		6			
_		on tensor, material derivative, steady and unsteady flows,		Ü			
		ion, conservation of mass, potential flows.					
3	Relation between stress an	d rate of strain, constitutive equation (Newtonian & Non-		10	,		
		s' hypothesis, Derivation of Navier-Stokes equation in					
		and Spherical Polar system for laminar flows.					
4		es: Fully developed flow between two parallel plates and		6			
		w between two concentric cylinders, flow between two					
-	concentric rotating cylinder			-			
5		and Unstructured grid generation methods		6			
6		near Algebraic Equations using iterative methods such as:		10	1		
		od, Line by line TDMA, ADI (Alternating direction implicit) d convergence of numerical methods. Finite Volume					
		and 3-D problems. Application of various iterative methods to					
	the discretized Equations.	and 3-D problems. Application of various herative methods to					
7		of convection-diffusion problem: Central difference scheme,		4			
		scheme, Generalized convection-diffusion formulation.					
8		on of two-dimensional convection-diffusion problem, the		10)		
		Discretization of the Momentum Equation: Stream Function					
		nitive variable approach, Staggered grid, SIMPLE, SIMPLER					
0	algorithm etc.	' 1 C 1 C 1 MATTI AD ACRES		1.5			
9		using mathematical software such as MATLAB, ASPEN,		15	*		
	FLUENT	List of Textbooks/ Reference Books					
1	Piiush K Kundu and Ira M	Cohen, Fluid Mechanics, Elsevier.					
2		ction to Fluid Dynamics, Cambridge University Press.					
3		Fluid Mechanics, Prentice Hall.					
4	-	al Technique, Ellis Horwood Ltd.					
5		N., Lightfoot, Transport Phenomena, John Wiley & Sons.					
6	Fletcher C.A.J, Computational Techniques for Fluid Dynamics, Volumes I & II, Springer-Verlag.						
7		utation of Internal and External Flows, Volume I & II, Wiley.					
8		rson and R. H. Pletcher, Computational Fluid Mechanics and	Hea	t Tra	nsfer.		
	McGraw-Hill.						
9	olution of Partial Differential Equations: Finite Difference	Methods, New					
10	York, NY: Clarendon Press.						
10		engineering- Introduction to numerical methods.					
11	M. Farrashkhalvat, J Miles,	Basic Structured Grid Generation, Elsevier.					

12	S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Pub.						
13	John. D. Anderson, Jr., Computational Fluid Dynamics, The Basics with Applications, McGraw-Hill.						
	Course Outcomes (students will be able to)						
CO1	develop basic knowledge in tensor analysis and application to various coordinate system						
CO2	develop basic understanding for obtaining governing equation of motion for some						
	specific flow problems. And obtain velocity profiles and drag coefficient.						
CO3	generate the grids in different coordinate system and apply various iterative methods to a						
	large system of linear and non-linear algebraic equations, which will guarantee the						
	convergence of the system.						
CO4	discretise ODE and PDE using finite volume method and will be able to solve the						
	discretised linear equation using various iterative methods along with boundary						
	conditions.						
CO5	apply finite volume method to discretise laminar fluid flow problems using upwind,						
	hybrid and power-law schemes along with SIMPLE and SIMPLER algorithms and use						
	of various programming languages such as: PYTHON, MAT LAB, FLUENT etc. to						
	obtain the numerical solutions to the discretised						

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	0	5	0	0	0	4	4	1	5	0	0	5
CO2	0	5	1	0	0	0	5	1	5	0	0	5
CO3	0	5	1	0	0	0	5	0	5	1	0	5
CO4	0	5	1	0	4	5	4	0	5	1	1	5
CO5	0	5	0	0	5	5	5	2	5	5	1	5

Course Code:	Course Title: Elective – III	C	redi	ts = 4
		L	T	P
Semester: IV	Total contact hours: 60	3	1	0

Candidate will have to choose one of the elective subjects offered for that semester from the elective subjects. A consolidated list of all the elective subjects is given at the end.

Course Code: MAP	Course Title: Project	Cr	edit	<u>s</u> =	4
2702		L	T]	P
Semester: IV	Total contact hours: 60	0	0		8
				-	

This would be concerned with the continuation of the research project executed in the third semester and the exact work plan will be decided in consultation with the project guide. At the end of the project, the candidate is expected to submit a report as per similar guidelines provided for MAP 2701 above which will be evaluated by the research guide and an external examiner from the Department/Industry/Institute based on the presentation made by the candidate. A suitable combination of the marks for report and presentation will be considered for the final evaluation.

Marks distribution:

Internal Marks (40) + Final Presentation (20) + Report (20) + Overall (20) = Total (100)

Electives in Semester – II (Elective – I)

	Course Code: MAT		Cr	edits	= 4
	2601	Course Title: Graph Theory	L	T	P
	Semester: II (Elective - I)	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Moder	n Algebra (MAT 2204)				
	T				
	List of	Courses where this course will be prerequisite			
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Prog	ram		
	Course	Contents (Topics and subtopics)		Hou	rs
1	operations on graphs, degree			6	
2	Connected graphs and short	est paths: Walks, trails, paths, connected graphs, distance, cut connectivity, weighted graphs, shortest path algorithms.		8	
3		imber of trees, minimum, spanning trees.		6	
4		ipartite graphs, line graphs, chordal graphs		6	
5	Eulerian graphs: Characteriz	zation, Fleury's algorithm, Chinese-postman-problem		4	
6	Hamilton graphs: Necessary		4		
7		s, coverings, matching: Basic equations, matching in bipartite rfect matching, defect form of Halls Theorem, greedy and		10	
8		natic number and cliques, greedy colouring algorithm, . Brook's theorem		10	
9		ree, in-degree, connectivity, orientation, Eulerian directed		6	
	1 8 ··· p ··· ; - · · · · · · · · · · · · · · · ·	List of Textbooks/ References			
1	Bondy and U.S.R.Murty: C Google-Bondy).	Graph Theory and Applications (Freely downloadable from Bo	ndy's	s wel	osite;
2		Graph Theory, Prentice-Hall of India/Pearson.			
3	J.A.Bondy and U.S.R.Murt				
4	R.Diestel: Graph Theory, S				
5	Pearson.	mond Greenlaw, Graph Theory: Modeling, Applications, ar	ıd Al	gorit	hms,
6		nathan, A textbook of Graph theory. Second edition. Springer.			
7	Limited.	ng, Introduction to Graph Theory. Tata McGraw-Hill Publish	hing	Com	pany
		rrse Outcomes (students will be able to)			
CO1	•	s of problems in graph theory.			
CO2		mental theorems on trees, matchings, connectivity, colorings,			
CO2	plane and hamiltonian graph	ties of trees and their application.			
CO3	describe and apply some ba				
CO5	use graphs as a tool to mode				
003	ase graphs as a tool to mode	or rear tire problems.	l		

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	5	5	4	5	3	4	4	0	5	0	0	5		
CO2	5	5	5	5	0	0	3	0	5	0	0	5		
CO3	5	3	4	4	0	0	4	0	5	0	0	5		
CO4	3	4	4	5	2	5	4	0	5	2	1	5		
CO5	4	4	4	5	2	5	5	0	5	4	1	5		

	Course Code: MAT		C	redit	s = 4
	2602	Course Title: Topology	L	T	P
	Semester: II (Elective - I)	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Real A	nalysis – I (MAT 2202)				
	List of	Courses where this course will be prerequisite			
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Prog	ram		
			1		
		Contents (Topics and subtopics)		Hou	rs
1	Axiom of Choice, Well Ord			4	
2	Topological Spaces: Basis : topology	for a topology, Order topology, Subspace topology, Product		8	
3		Points, Continuity, Metric Topology and Quotient Topology		12	
4		spaces, Connected, Subspaces of Real Line, Components and		8	
	Local Connectedness, Simp				
5	Compactness: Compact sp compactness, Local Compac	aces, Compact Subspaces of the Real Line, Limit point ctness	8		
6	Countability Axioms, Sepa	ration axioms: Normal Spaces, Urysohn's Lemma (without corem, Metrization Theorem, Tychonoff's Theorem		8	
7	One-point Compactification			8	
8	Baire's Category Theorem	, , , , , , , , , , , , , , , , , , ,		4	
	<u> </u>	ion to Fundamental Groups may be covered			
	•	List of Textbooks/ Reference Books			
1	J. R. Munkres, Topology, 2	nd Edition, Pearson Education (India).			
2	M. A. Armstrong, Basic To	pology, Springer (India).			
3	Stefan Waldman, Topology				
4		n to Topology and Modern Analysis, McGraw-Hill.			
5		Metric Spaces, 2nd Ed., Narosa Publishing House.			
		rse Outcomes (students will be able to)			
CO1		gical spaces with metric spaces as special cases.			
CO2	identify and learns basic	notions of continuity, connectedness and compactness in			
	arbitrary topological spaces.				
CO3		in arbitrary topological spaces.			
CO4	identify Hausdorff, regular a				
CO5		o Weirstrass theorem (Arzela Ascolis) theorem for functions			
	in the space of continuous for	unctions.			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	5	2	1	1	5	1	1	0	5	0	0	5		
CO2	5	3	1	1	3	0	1	0	5	0	0	5		
CO3	5	1	1	1	4	0	1	1	5	0	0	5		
CO4	5	2	1	1	3	2	1	0	5	4	0	5		
CO5	5	3	1	1	3	2	1	0	5	4	0	5		

	Course Code: MAT		C	redit	s = 4
	2603	Course Title: Number Theory	L	T	P
	Semester: II (Elective – I)	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Moder	n Algebra (MAT 2204)				
	List of	Courses where this course will be prerequisite			
	List of	Courses where this course will be prerequisite			
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Progr	ram		
	Course	Contents (Topics and subtopics)		Hot	ırs
1	Divisibility: Division Algo Numbers, Fermat Numbers	rithms, Prime and Composite Numbers, Fibonacci and Lucas		8	
2	Greatest Common Diviso Arithmetic, LCM, Linear D	r: GCD, Euclidean Algorithm, Fundamental Theorem of iophantine Equations		8	
3	Congruences: Congruence Remainder Theorem and it with Applications	12		2	
4		Euler-phi function, Tau and Sigma Functions, Perfect, Mersenne Primes			
5	Primitive Roots and Indice of Primes, Algebra of Indic	s: Order of positive integers, Primality tests, Primitive Roots		8	
6	Quadratic Congruence: Qua	dratic Residues, Legendre Symbols, Quadratic Reciprocity		8	
7		continued Fractions, Infinite continued Fractions		4	
8	Nonlinear Diophantine Equ			4	
		List of Textbooks/ Reference Books			
1		Number Theory with applications, Academic Press, 2 nd Ed.			
2		tary Number Theory and Its Applications, Addison Wesley, 5th	Ed.		
3		Elementary Number Theory, Springer			
4		introduction to the Theory of Numbers, Wiley			
001		urse Outcomes (students will be able to)			
CO1		ncepts of divisibility, congruence, greatest common divisor,			
CO2		tic Reciprocity and other methods to classify numbers as sidues, and quadratic non-residues.			
CO3		ata to form conjectures about the integers.			
CO4		s (proofs) cantered on the material of number theory,			
CO5		neory to solve real life problems.			
003	appry concepts in number in	icory to sorve rear me problems.			

		Mapp	ing of C	Course O	utcome	s (COs)	with Pro	ogramm	e Outco	mes (POs)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	5	4	2	1	2	1	2	0	5	1	0	5
CO2	5	4	2	3	1	0	4	0	5	1	0	5
CO3	5	5	4	2	2	0	4	0	5	1	0	5
CO4	3	5	2	3	3	1	2	1	5	2	0	5
CO5	4	4	4	4	3	3	5	4	5	3	1	5

	Course Code: MAT		C	redit	s = 4					
	2604	Course Title: Matrix Computations	L	T	P					
	Semester: II (Elective – I)	Total contact hours: 60	3	1	0					
		List of Prerequisite Courses								
Applie	d Linear Algebra (MAT 2201), Numerical Methods (MAT 2401)								
	List of	Courses where this course will be prerequisite								
	D ' ' C 1	ear and more and are								
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Prog	ram							
	Course	Contents (Topics and subtopics)		Hou	ırc					
1		near transformation and inner product spaces		8						
2	Matrix Norms, Singular Value decomposition, Matrix limit and Markov chain and									
_	applications									
3		Sensitivity of linear Systems, Sparse matrices and sparse solutions 6								
4	Least Square Problems and	various methods to solve		8						
5	Eigenvalue Problems: Unsy	mmetric and symmetric eigenvalue problems								
6	Positive Matrices and its a	pplications, Square room of positive semidefinite matrices,		8						
	Schur product theorem.									
7	Location and Perturbation of			6						
8		tion to tensor, rank of tensors, tensor product and		12	!					
	decompositions, vectorization	on and matricization of tensors with applications								
	Lloyd N. Trofothon and Day	List of Textbooks/ Reference Books id Bau, Numerical Linear Algebra, SIAM.								
		van Loan., Matrix Computations, Johns Hopkins University Pres	20							
		of Matrix Computations, Wiley.								
	J. Demmel, Applied Numeri									
		rrse Outcomes (students will be able to)								
CO1	understand basic concepts in	,								
CO2	standard matrix norms and									
CO3		to real life mathematical problems.								
CO4	understand eigenvalue prob									
CO5	understand tensor data and	ts applications to large scale data.								

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	5	4	2	1	2	1	2	2	5	1	0	5		
CO2	5	4	2	3	1	0	4	2	5	1	0	5		
CO3	5	5	4	2	2	0	4	1	5	1	0	5		
CO4	3	5	2	3	3	1	2	1	5	2	1	5		
CO5	4	4	4	4	3	3	5	5	5	3	1	5		

Electives in Semester – III (Elective – II)

	Course Code: MAT		Cr	edits	= 4
	2621	Course Title: Cryptography	L	T	P
	Semester: III (Elective – II)	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Moder	n Algebra (MAT 2204), Nun				
	List of	Courses where this course will be prerequisite			
	Description of relevance	e of this course in the M.Sc. Engineering Mathematics Prog	ram		
	Course	Contents (Topics and subtopics)	1	Hour	S
1	Need for cryptography: C ciphertext attacks, Block ci	Online transactions, Perfect secrecy, eavesdropping attacks, pher codes, Hash functions.		8	
	Fermat's theorem and Eul roots and discrete logarithm	nber theory, Euclidean algorithm, Euler's totient function, ler's generalization, Chinese Remainder Theorem, primitive ns, Quadratic residues, Legendre and Jacobi symbols.			
2	Private key cryptograph linear cryptanalysis, Adv Authenticated encryption:				
3		ystems: RSA system, primality testing, survey of factoring key cryptosystems: El Gamal public key cryptosystem, problem.		10	
4	Block ciphers, Stream ciph			5	
5		mes: Definition of digital signatures, RSA based digital m the Discrete-Logarithm Problem, Certificates and Public-		12	
6		agemath can be used to explore concepts in Cryptography. aged to develop Sage subroutine to solve problems in		15	
		List of Textbooks/ Reference Books			
1	N. Koblitz, A Course in Nu	ımber Theory and Cryptography, Springer			
2		schot and S. A. Vanstone, Handbook of Applied Cryptography,	CRC	Pres	S
3		Theory and Practice, CRC Press			
5		oduction to Modern Cryptography, CRC Press			
6	Heiko Knopse, A Course in	n Cryptography, CRC Press luction to Cryptography with Open-Source Software, CRC Pres			
U		urse Outcomes (students will be able to)	δ.		
CO1		is in cryptography techniques.			
CO2	understand various security				
CO3		yptography to real life application.			
CO4	implement Hashing and Di				
CO5		gorithms Sagemath and create models.			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	5	1	1	3	3	2	2	1	5	1	2	5		
CO2	5	1	1	2	0	5	2	2	5	3	0	5		
CO3	1	1	1	3	0	1	5	1	5	0	0	5		
CO4	1	1	1	4	4	4	2	1	5	1	0	5		
CO5	1	5	5	5	4	4	2	3	5	3	2	5		

	Course Code: MAT	Course Title: Finite Element Method	C	redit	$t_{\rm S} = 4$					
	2622		L	T	P					
	Semester: III (Elective – II)	Total contact hours: 60	3	1	0					
		List of Prerequisite Courses								
	ry differential equations (! rical methods (MAT 2421)	MAT 2221), Partial differential equations (MAT 2222),								
	List of	Courses where this course will be prerequisite								
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Progr	ram							
	Connec	Contents (Tonics and subtonics)		Har						
1		Contents (Topics and subtopics) ational formulation - Rayleigh-Ritz minimization		Hou						
2	Weighted Residual Appro	ximations: Point collocation, Galerkin and Least Square ons to the solution of ODE and PDE		10						
3	Finite Element Procedures:	Finite Element Formulations for the solutions of ordinary tions: Calculation of element matrices, assembly and solution		16	,					
4	Finite Elements: One dimensional and two-dimensional basis functions, Lagrange an serendipity family elements for quadrilaterals and triangular shapes, co-ordinat transformation, integration over a Master Triangular and Rectangular element.									
5	Application of Finite eleme equations over rectangular	ent Method: Finite element solution of Laplace and Poisson and nonrectangular and curved domains. Applications to hanics and in other engineering problems		12)					
6		ould be made to solve some problems on fluid mechanics and		(if ti	me					
		ns using Finite element Method.	l .	perm						
		List of Textbooks/ Reference Books								
1		forgan, Finite Elements and approximation, John Wieley.								
2		The Finite element method- Principles and applications.								
3		gerlind, Applied finite element analysis (2nd Edition), John W	ıley.							
5		n to the Finite Element Method, McGraw Hill, NY. Analysis in Fluid Dynamics, McGraw Hill Inc.								
		rse Outcomes (students will be able to)								
CO1		alculus of variation and able to solve ODE and PDE using								
CO2	obtain finite element formulation for ODE using linear and quadratic elements and ab to assembly all the elements. Further using given boundary condition, the solution to									
CO3	also able to assembly all the	lation for PDE using triangular and rectangular elements and elements for a given domain. Further, using given boundary								
CO4	condition the solution to a g find coordinate transformati the computation of irregular	on from an irregular to a regular domain which will facilitate								
CO5		ethod to some practical problems in 1-D and 2-D problems.								

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	0	5	0	1	1	4	4	0	5	0	0	5		
CO2	0	5	0	1	1	0	5	0	5	0	0	5		
CO3	0	5	0	0	0	0	5	0	5	0	0	5		
CO4	0	5	0	0	4	5	4	0	5	0	0	5		
CO5	0	5	0	0	5	5	5	2	5	5	0	5		

	Course Code: MAT		Cr	edits	s = 4
	2623	Course Title: Operation Research	L	T	P
	Semester: III (Elective – II)	Total contact hours: 60	3	1	0
		List of Donne mainty Commen	ram Hinc. ming, nger.		
		List of Prerequisite Courses 01), Real Analysis-I (MAT 2202). Optimization techniques			
(MAT	2205)				
	List of	Courses where this course will be prerequisite			
	Description of relevance	e of this course in the M.Sc. Engineering Mathematics Prog	ram		
	Course	Contents (Tonics and subtonics)		Han	
1		Contents (Topics and subtopics) duction of operation research using historical perspective		Hou	rs
<u>1</u> 2		lem: Simplex Methods, Revised simplex method, two phase		4 12	
2		ethod, Karmakar Method, Sensitivity analysis and Duality		12	
3	Integer Programming	, , , , , , , , , , , , , , , , , , , ,		8	
4	Dynamic programming,	Characteristics of dynamic programming, Dynamic		8	
		or Priority Management employment smoothening, capital			
		ortest Path, cargo loading and Reliability problems			
5		ment Problems: Transportation Problems definition, Linear		12	
		North-west corner method, least cost method, Vogel's			
		egeneracy in transportation, Modified Distribution method, d profit maximization problems. Transhipment Problems			
		Fravelling sales man problems.			
6		cory classification, Different cost associated to Inventory,		4	
Ü		nventory models with deterministic demands, ABC analysis.		·	
7		f Queuing theory, elements of queuing theory, Kendall's		8	
		acteristics of a queuing system, Classification of Queuing			
	models and preliminary exa	amples.			
8	Network models			4	
	1	List of Textbooks/ Reference Books			
1		desearch: An Introduction, Pearson.			
2		amani, A Tamilarasi, Operations Research, Pearson Education		4.1	
3	Wayne L. Winston and L. Cengage Learning.	M. Venkataramanan, Introduction to Mathematical Program	mıng	, 4tr	Ed,
4		arl-Louis, Operations Research-A Model Based Approach, Spri	nger		
5		hna Dev Kumar, Introductory Operations Research, Theory and			tions.
5	Springer.	and a second sec	171		,
		urse Outcomes (students will be able to)			
CO1	understand basic concepts i	n the subject of operation research.			
CO2		problems arising in science and engineering.			
CO3		solve linear programming problems.			
CO4		s as linear programming or dynamic programming problems.			
CO5	analyse linear programming	g problems arising in science and engineering.			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	0	2	5	5	0	2	2	0	5	0	0	5	
CO2	0	1	5	5	3	5	5	5	5	4	0	5	
CO3	1	2	5	5	3	5	5	5	5	4	0	5	
CO4	0	3	5	5	2	5	5	5	5	4	4	5	
CO5	0	5	5	5	2	5	5	5	5	4	4	5	

	Course Code: MAT		C	redit	s = 4					
	2624	Course Title: Mathematical Finance-I	L	T	P					
	Semester: III (Elective – II)	Total contact hours: 60	3	1	0					
		List of Prerequisite Courses								
Probab	ility Theory (MAT 2321), Re									
	<u> </u>									
	List of	Courses where this course will be prerequisite								
Mather	matical Finance – II (MAT 20									
	Description of relevance	e of this course in the M.Sc. Engineering Mathematics Prog	ram							
		Contents (Topics and subtopics)		Hou	rs					
1		Compound interest with fractional compounding, NPV, IRR,		8						
		gns, Annuity and amortization theory, The Dividend Discount								
_	Model, Valuation of Stocks									
2		witz portfolio model, Two-security portfolio, N-security		8						
2		Diversification and the uniform Dirichlet distribution		1.0						
3		d Portfolio Risk Measures: The Capital Market Line, The		12						
4		APM Theorem, The Security Market Line, The Sharpe ratio, VaR odeling the Future Value of Risky Securities: Binomial trees, Continuous-time limit o								
7		process: Brownian motion and geometric Brownian motion,		8						
	Itô's formula.	process. Brownian motion and geometre Brownian motion,								
5		ptions: No arbitrage and the Law of One Price, Forwards,		12						
		e, and payoff, Put-Call Parity for European options, Put-Call								
	Parity bounds for American	n options								
6		n Model: Black-Scholes-Merton (BSM) formula, Partial		12						
		ach to the BSM formula: the BSM Partial differential equation								
		ral approach to the BSM formula, Binomial-tree approach to								
	the BSM formula, Delta he									
		List of Textbooks/ Reference Books								
1		n to Mathematical Finance, Cambridge University Press.								
2		r, K. Dandapani, G.L. Gahi, T.E. Pactwa and A.M. Parchiga	ari, '	The 1	eturr					
2		pal Finance, Pergamon Press.								
3		nd Other Derivatives (Pearson Prentice Hall, Upper Saddle Riv	er.							
5		bility: Models with Optimization Applications, Holdenday.								
3		the Mathematics of Finance Springer, New York.								
CO1		fferent financial instruments								
CO2		ts related to portfolio theory.								
CO3		s using stochastic processes and Ito formula								
CO4		for pricing options, future etc.								
CO5	Apply Black-Scholes mode									

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	4	2	1	2	1	2	0	5	0	0	5		
CO2	1	4	2	3	1	0	4	0	5	0	0	5		
CO3	2	5	4	2	2	0	4	0	5	0	0	5		
CO4	1	5	2	3	3	1	2	0	5	2	3	5		
CO5	1	4	4	4	3	3	5	0	5	3	4	5		

	Course Code: MAT			rodi	ts = 4
	2625	Course Title: Multivariate Analysis	L	T	P
	Semester: III (Elective – II)	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Probab	ility Theory (MAT 2321) St	atistical Inference (MAT 2322), Programming Lab (MAP 2521)		
110040	mity Theory (White 2321), St	atistical inference (WITT 2522), Frogramming Eab (WITT 2521)			
	List of	Courses where this course will be prerequisite			
		e of this course in the M.Sc. Engineering Mathematics Prog			
		e large-scale computational methods in science and engine			
		to various statistical methods. This course aims to give the students of the students of the state of the sta	dent	s exp	osure
to the t		es and their applications in real life problems.	l		
1		Contents (Topics and subtopics)		Hou	
1		review of multivariate distributions, multivariate normal		8	
2		es, distributions of linear and quadratic forms iple correlation coefficients and regression coefficients and		8	
2		regions. Data analytic illustrations		0	
3	Wishart distribution (defini			6	
4		on-intersection and likelihood ratio principles, inference on	8		
·	mean vector, Hotelling's T ²			Ü	
5		atrices. Discriminant analysis. Principal component analysis		1()
	and factor analysis				
6		sion, Practical on the above topics using statistical packages		10)
	for data analytic illustration				
7	Clustering, Distance metho	ds and Ordination and application to real data sets.		1()
		List of Textbooks/ Reference Books			
1		uction to Multivariate Statistical Analysis.			
2		Vichern, Applied Multivariate Statistical Analysis.			
3 4		d J. M. Bibby, Multivariate Analysis.			
4		Khatri, An Introduction to Multivariate Statistics.			
CO1		of sample and various properties of multivariate normal			
COI	distribution	of sample and various properties of multivariate normal			
CO2	Apply various testing proce	dures for multivariate data			
CO ₂		ribution of statistics and apply them to construct testing			
003	procedures in a multivariate				
CO4		clustering method in multivariate set up.			
CO5		methods using statistical packages to solve real life problems			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	0	0	5	5	3	1	3	1	5	1	1	5		
CO2	0	0	5	5	4	3	4	1	5	3	1	5		
CO3	0	0	5	5	3	0	3	1	5	1	1	5		
CO4	0	1	5	5	4	2	5	5	5	1	3	5		
CO5	0	1	5	5	3	5	5	5	5	4	3	5		

	Course Code: MAT		C							
	2626	Course Title: Design and Analysis of Experiments	L		P					
	Semester: III (Elective – II)	Total contact hours: 60	3	1	0					
		List of Duous quinite Courses								
Applie	d Linear Algebra (MAT 22	List of Prerequisite Courses (01), Probability Theory (MAT 2321), Statistical Inference								
(MAT		1001), 1100aointy 111coty (WA1 2521), Statistical inference								
	T * / . C									
	List of	Courses where this course will be prerequisite								
	Description of relevance	e of this course in the M.Sc. Engineering Mathematics Progr	rom							
	Description of relevance	e of this course in the M.Sc. Engineering Mathematics Frog	aiii							
	Course	Contents (Topics and subtopics)		Hot	ırs					
1	Gauss-Markoff Theorem.	Randomization and Replication, Analysis of one-way		16						
-		ysis of two-way classification model with equal number of		- `						
		and without interactions. Analysis of two-way classification								
		r of observations per cell without interactions								
2	Analysis of BIBD. Analy	sis of covariance in one way and two-way classification	10							
	models, Testing of hypotheses for estimable parametric functions.									
3		nts, 2Kdesign, confounding in 2K design, Partial confounding		10)					
	and total confounding									
4		ology (RSM): linear and quadratic model, stationary point,		16)					
		CCD), ridge systems, multiple responses, concept of rotatable								
		ign, optimality of designs, simplex lattice designs, simplex								
5	centroid designs	t of noise factors, concept of loss function, S/N ratio,		8						
3	orthogonal arrays	of noise factors, concept of loss function, S/N ratio,		0						
6	Software: R/Python/MATL	AR								
	Software. Tell y monthly mile	List of Textbooks/ Reference Books								
1	Montgomery D.C. Design	and Analysis of Experiments, Wiley.								
2		ign and Analysis of Experiments, Springer								
3		N.R. Empirical Model-Building and Response Surfaces, Wiley								
4		omery, Probability and Statistics in Engineering. John Wiley.								
5		l Inference and Its Applications, Wiley								
		irse Outcomes (students will be able to)								
CO1		of one-way and two-way classified data.								
CO2	analyse data coming from f									
CO3		of response surface methodology and apply them in real life								
	problems.									
CO4	apply Taguchi methods to o									
CO5	use statistical software to an	nalyse real data and interpret the results.								

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	0	0	5	5	0	2	2	0	5	0	0	5		
CO2	0	0	5	5	3	5	5	5	5	4	0	5		
CO3	0	0	5	5	3	5	5	5	5	4	0	5		
CO4	0	0	5	5	2	5	5	5	5	4	4	5		
CO5	0	0	5	5	2	5	5	5	5	4	4	5		

	Course Code: MAT		C	redit	s = 4
	2627	Course Title: Mathematical Biology	L	T	P
	Semester: III (Elective – II)	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Ordina	ry Differential Equations (M	AT 2221), Partial differential equations (MAT 2222)			
	I int of	Courses where this course will be prerequisite			
	List 01	Courses where this course will be prerequisite			
	Description of relevance	e of this course in the M.Sc. Engineering Mathematics Prog	ram		
		Contents (Topics and subtopics)		Hou	
1	closed and open populati	models, concepts of birth, death and migration, concept of ons, unconstrained population growth for single species, pertz, ricker growth models, Allee model, Basic dynamical		12	
2		ns and break points, discrete time and delay models, stable	12		!
3		oppulations, predator-prey models, host-parasitoid system, y of equilibrium points, Poincare-Bendixson's theorem	. 12		:
4		redator-prey models, discrete time predator-prey models,		12	,
5	structured models and spa	I theory connected to harvest models, An overview of age- atially structured models, concept of stochastic population standard stochastic models in population biology		12	
		List of Textbooks/ Reference Books			
1		thematical Ecology, Cambridge University Press, Cambridge.			
2		matical Biology, Springer-Verlag, Berlin.			
3		tics in Population Biology, Princeton University Press.	1	TT .	
4	Press.	nund, Evolutionary games and population dynamics, Cambrid	ige	Univ	ersity
5		Biological Populations in Space and Time. Cambridge University	y Pr	ess.	
6		er in Ecology with R, Springer.			
		irse Outcomes (students will be able to)			
CO1		nodels describing single population dynamics.			
CO2		nodels for interactive population dynamics.			
CO3		n theory and apply in population dynamics problems.			
CO4		pulation dynamics and compute stationary distribution.			
CO5	understand the basic optima	al control problem and its application in harvesting models.			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	0	5	0	0	1	4	4	1	5	1	0	5		
CO2	0	5	0	0	1	1	5	1	5	1	0	5		
CO3	0	5	0	0	1	1	5	3	5	1	0	5		
CO4	0	5	0	0	4	5	4	0	5	0	0	5		
CO5	0	5	0	0	5	5	5	2	5	5	0	5		

	Course Code: MAT		C	redit	$c_{\rm S} = 4$				
	2628	Course Title: Signal processing	L	T	P				
	Semester: III (Elective – II)	Total contact hours: 60	3	1	0				
D 1 1	'II'. TI () () () () () ()	List of Prerequisite Courses							
Probab	oility Theory (MAT 2321), Fu	nctional Analysis (MAT 2210)							
	List of	Courses where this course will be prerequisite							
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Prog	ram						
	Course	Contents (Topics and subtopics)		Hou	irs				
1	Review of Linear Contin	uous-Time Signal Processing: Fourier methods, Laplace frequency/time domain processing. Passive and active		8					
2	Sampling and Reconstructi systems, cardinal (Whitaker	on: Sampling theorem, aliasing, quantization, sampled data reconstruction, zero, first, second order hold reconstructors, g reconstructors, matched filtering. Interpolation and		8					
3	Discrete-Time Signal Proc between F(z) and F*(jw)	essing: The z transform, difference equations, relationship, mappings between s-domain and z-domain, inverse z ability.		8					
4	transform. Discrete—time stability. Discrete Spectral Analysis: The DFT and its relationship to the continuous FT, the FFT and implementations (decimation in time and frequency), radix-2 implementation, leakage, windowing. Uses of the DFT: convolution — (overlap and add, select savings), correlation. Random processes, power spectral density (PSD) estimation — methods of smoothing the periodogram (Welch's method, windowing the correlation function, etc).								
5		thods Using Difference Equations: Impulse-, step-, ramp-n's method, matched poles/zeros, bilinear transform methods.		8					
6	Filter Design — Continuo filters. Low-pass design	us and Discrete: Butterworth, elliptic, Chebyshev low-pass methods based on continuous prototypes. Realizations. and-pass, band-stop filters. Discrete-time filters: IIR and FIR.		10)				
7	Statistical Signal Processin	g: Linear prediction, adaptive filters (LMS), recursive least-		8					
	squares, Nonparametric pov	ver spectral density estimation							
1	Stavan D. Damalin, Willand	List of Textbooks/ Reference Books Miller Jr. The Methametics of Signal Processing							
2		Miller, Jr, The Mathematics of Signal Processing. ris K. Manolakis. Digital Signal Processing. 4th ed. Upper Sac	141.	Divo	r MI.				
2	Proakis, John G., and Dmit Prentice Hall.	ns K. Manolakis. Digital Signal Processing. 4th ed. Upper Sac	aure	rive	1, INJ:				
3		ld W. Schafer, and John R. Buck. Discrete-Time Signal Proceentice Hall	essin	ıg. 21	nd ed.				
		rrse Outcomes (students will be able to)							
CO1	frequency related to DSP	ntal principles of sampling ideas, Z-transform, discrete							
CO2	Understand spectral analy methods.	sis and estimate the power spectral density by different							
CO3	Understand the designing of	f filters and test it							
CO4	Understand various real tim	e simulation methods and apply them for real life problems							
CO5		on algorithm for statistical signal processing							

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	4	2	1	2	1	2	1	5	0	0	5	
CO2	1	4	2	3	1	0	4	1	5	0	0	5	
CO3	1	5	4	2	2	0	4	1	5	0	0	5	
CO4	1	5	2	3	3	1	2	1	5	2	0	5	
CO5	0	4	4	4	3	3	5	1	5	3	1	5	

	Course Code: MAT		C	redit	s = 4
	2629	Course Title: Momentum, Heat and Mass Transfer	L	T	P
	Semester: III (Elective – II)	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Ordina	ary Differential Equation (N	MAT 2221), Partial Differential Equations (MAT 2222).			
	rical methods (MAT 2421)	,,			
	List of	Courses where this course will be prerequisite	I		
	D 11 6 1				
TTI :		of this course in the M.Sc. Engineering Mathematics Prog			1' '
	ourse deals with several num attions to industrial and other i	nerical and computational techniques of Applied Mathematics	nav	/ing	direct
ппрпса		Contents (Topics and subtopics)		Hou	re
1		lus and curvilinear coordinates		8	
2		ewtonian and Non-Newtonian fluids). Deformation, Strain		8	
_		on tensor, material derivative, steady and unsteady flows,		Ü	
		ion, conservation of mass, potential flows.			
3		d rate of strain, constitutive equation (Newtonian & Non-		12	,
		s' hypothesis, Derivation of Navier-Stokes equation in			
		and Spherical Polar system for laminar flows.			
4		es: Fully developed flow between two parallel plates and		8	
		w between two concentric cylinders, flow between two			
5	Concentric rotating cylinder	s. ation of laminar boundary layer equations (using order		8	
3		ow past a semi-infinite flat plate and wedge using momentum		0	
	integral method.	w past a semi-minute hat place and wedge using momentum			
6		law of heat transfer and application to one dimensional and		8	
		Convection of heat. Derivation of equation of energy for			
	convective flows in Cartesi	an and cylindrical Polar coordinates, and application to some			
	simple internal flows.				
7	Thermal boundary layer flo	w past a flat plate and heat transfer in some internal flows		8	
		List of Textbooks/ Reference Books			
1	K. Kundu Pijush, Fluid Med				
2		ction to Fluid Dynamics, Cambridge University Press.			
3		en, Boundary-Layer Theory, Springer-Verlag.			
5		Fluid Mechanics, Prentice Hall. Al Technique, Ellis Horwood Ltd.			
6		N., Lightfoot, Transport Phenomena, John Wiley & Sons.			
7		ntum, Heat and Mass Transfer, Mcgraw Hill, Chemical Engin	neeri	ing S	eries
,	1982.	tum, 110at and 111000 110molet, megiaw 11m, Chemical Engli		5	01100,
8		echanics of Fluids, Third edition, 1993,			
		rrse Outcomes (students will be able to)			
CO1		tensor analysis and application to various coordinate system.			
CO2	develop basic understandi	ng for obtaining governing equation of motion for some			

		specific flow problems.	
	CO3	obtain drag coefficient on flow past a rigid body.	
Ī	CO4	calculate the heat transfer coefficient and distribution in different materials using heat	
		conduction method.	
Ī	CO5	calculate the heat transfer coefficient and distribution in a fluid flow problem.	

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	0	5	1	1	0	4	4	0	5	0	0	5	
CO2	0	5	0	1	0	0	5	0	5	0	0	5	
CO3	0	5	0	0	0	0	5	0	5	0	0	5	
CO4	0	5	0	0	4	5	4	0	5	0	0	5	
CO5	0	5	0	0	5	5	5	2	5	5	0	5	

Electives in Semester – IV (Elective – III)

Course Title: Dynamical Systems L T P		Course Code: MAT		Cr	edits	= 4
List of Prerequisite Courses Ordinary differential equations (MAT 2221), Partial differential equations (MAT 2222),		2641	Course Title: Dynamical Systems	L	T	P
List of Prerequisite Courses Ordinary differential equations (MAT 2221), Partial differential equations (MAT 2222), Numerical methods (MAT 2421) List of Courses where this course will be prerequisite Description of relevance of this course in the M.Sc. Engineering Mathematics Program This course enables the students to apply the theory of ordinary and partial differential equations to solve real life problems arising from engineering, biology, medicine etc. Course Contents (Topics and subtopics) Hours Linear and nonlinear discrete dynamical systems: Recurrence relations, Leslie model, Flows and maps, Phase space, Orbits. Fixed points, logistic map, bifurcation diagram and Feigenbaum number, Graphical analysis of orbits of one-dimensional maps, Period doubling root to chaos, example from other branches. Planar Systems: Canonical forms, Eigenvectors defining stable and unstable manifolds, Phase portraits, Linearization and Hartman's theorem, Construction of phase plane diagram. Bequilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Centre. Lyapunov and asymptotic stability. Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles; Poincare-Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, Saddlenode bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books Leprko, Differential Equations and Dynamical Systems, Vol. 7, 2 nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Vuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems, Sorond Edition, Springer, Springer-Verlag New York. Rud			Total contact hours: 60	3	1	0
List of Courses where this course will be prerequisite		(Elective – III)				
List of Courses where this course will be prerequisite			List of Prerequisite Courses			
List of Courses where this course will be prerequisite	Ordina	ary differential equations (
Description of relevance of this course in the M.Sc. Engineering Mathematics Program This course enables the students to apply the theory of ordinary and partial differential equations to solve real life problems arising from engineering, biology, medicine etc. Course Contents (Topics and subtopics)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Description of relevance of this course in the M.Sc. Engineering Mathematics Program This course enables the students to apply the theory of ordinary and partial differential equations to solve real life problems arising from engineering, biology, medicine etc. Course Contents (Topics and subtopics)						
This course enables the students to apply the theory of ordinary and partial differential equations to solve real life problems arising from engineering, biology, medicine etc. Course Contents (Topics and subtopics) Linear and nonlinear discrete dynamical systems: Recurrence relations, Leslie model, Flows and maps. Phase space. Orbits. Fixed points, logistic map, bifurcation diagram and Feigenbaum number, Graphical analysis of orbits of one-dimensional maps, Period doubling root to chaos, example from other branches. Planar Systems: Canonical forms, Eigenvectors defining stable and unstable manifolds, Phase portraits, Linearization and Hartman's theorem, Construction of phase plane diagram. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Centre. Lyapunov and asymptotic stability. Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles, Poincare-Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, bistability, Saddlenode bifurcation, Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation, Prince dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2 nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems governed by difference equations. Course Outcomes (students will be able to) und		List of	Courses where this course will be prerequisite			
This course enables the students to apply the theory of ordinary and partial differential equations to solve real life problems arising from engineering, biology, medicine etc. Course Contents (Topics and subtopics) Linear and nonlinear discrete dynamical systems: Recurrence relations, Leslie model, Flows and maps. Phase space. Orbits. Fixed points, logistic map, bifurcation diagram and Feigenbaum number, Graphical analysis of orbits of one-dimensional maps, Period doubling root to chaos, example from other branches. Planar Systems: Canonical forms, Eigenvectors defining stable and unstable manifolds, Phase portraits, Linearization and Hartman's theorem, Construction of phase plane diagram. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Centre. Lyapunov and asymptotic stability. Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles, Poincare-Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, bistability, Saddlenode bifurcation, Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation, Prince dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2 nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems governed by difference equations. Course Outcomes (students will be able to) und						
Problems arising from engineering, biology, medicine etc. Course Contents (Topics and subtopics) Hours						
Linear and nonlinear discrete dynamical systems: Recurrence relations, Leslie model, Flows and maps. Phase space. Orbits. Fixed points, logistic map, bifurcation diagram and Feigenbaum number, Graphical analysis of orbits of one-dimensional maps, Period doubling root to chaos, example from other branches. Planar Systems: Canonical forms, Eigenvectors defining stable and unstable manifolds, Phase portraits, Linearization and Hartman's theorem, Construction of phase plane diagram. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. 8				solv	e rea	l life
Linear and nonlinear discrete dynamical systems: Recurrence relations, Leslie model, Flows and maps. Phase space. Orbits. Fixed points, logistic map, bifurcation diagram and Feigenbaum number, Graphical analysis of orbits of one-dimensional maps, Period doubling root to chaos, example from other branches. Planar Systems: Canonical forms, Eigenvectors defining stable and unstable manifolds, Phase portraits, Linearization and Hartman's theorem, Construction of phase plane diagram. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Centre. Lyapunov and asymptotic stability. Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles, Poincare- Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, bistability, Saddlenode bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) understand the basic dynamical behaviour of dynamical systems governed by difference equations. understand the basic dynamical behaviour of dynamical systems governed b	proble					
Flows and maps. Phase space. Orbits. Fixed points, logistic map, bifurcation diagram and Feigenbaum number, Graphical analysis of orbits of one-dimensional maps, Period doubling root to chaos, example from other branches. 2 Planar Systems: Canonical forms, Eigenvectors defining stable and unstable manifolds, Phase portraits, Linearization and Hartman's theorem, Construction of phase plane diagram. 3 Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Rentre. Lyapunov and asymptotic stability. 4 Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles. Poincare- Bendixson theorem, worked examples from ecology, disease models. 5 Bifurcation theory: Bifurcation of nonlinear systems, Multistability, bistability, Saddlenode bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation 6 Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books 1 L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2 nd Ed., Springer Verlag. 2 Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. 3 Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. 4 Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. 5 Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). 6 James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. 7 M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. 8 R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) Understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifu]	Hou	*S
and Feigenbaum number, Graphical analysis of orbits of one-dimensional maps, Period doubling root to chaos, example from other branches. Planar Systems: Canonical forms, Eigenvectors defining stable and unstable manifolds, Phase portraits, Linearization and Hartman's theorem, Construction of phase plane diagram. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Centre. Lyapunov and asymptotic stability. Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles, Poincare-Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, bistability, Saddlenode bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). Rudiger Seydel, Practical Bifurcation and Stability analysis. Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) understand the basic dynamical behaviour of dynamical systems governed by difference equations. understand the basic dynamical behaviour of dynamical systems governed by differential equations. understand local and global bifurcation phenomena in non	1				12	
doubling root to chaos, example from other branches. Planar Systems: Canonical forms, Eigenvectors defining stable and unstable manifolds, Phase portraits, Linearization and Hartman's theorem, Construction of phase plane diagram. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Centre. Lyapunov and asymptotic stability. Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles, Poincare- Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, bistability, Saddlenode bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand tocal and global bifurcation phenomena in nonlinear systems.						
Planar Systems: Canonical forms, Eigenvectors defining stable and unstable manifolds, Phase portraits, Linearization and Hartman's theorem, Construction of phase plane diagram. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Equilibrium points, Stable foci. Equilibrium points, Stable and unstable foci. Equilibrium po						
Phase portraits, Linearization and Hartman's theorem, Construction of phase plane diagram. 3 Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Centre. Lyapunov and asymptotic stability. 4 Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles, Poincare- Bendixson theorem, worked examples from ecology, disease models. 5 Bifurcation theory: Bifurcation of nonlinear systems, Multistability, Saddlenode bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation 6 Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books 1 L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. 2 Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. 3 Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. 4 Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. 5 Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). 6 James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. 7 M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. 8 R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO2 understand local and global bifurcation phenomena in nonlinear systems. CO3 understand behaviour analyse dynamical systems.					1.0	
diagram. Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Centre. Lyapunov and asymptotic stability. Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles, Poincare- Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, bistability, Saddle-node bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books Leftko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) Col understand the basic dynamical behaviour of dynamical systems governed by difference equations. understand local and global bifurcation phenomena in nonlinear systems.	2				12	
Equilibrium points, Stable and unstable nodes. Saddle point. Stable and unstable foci. Centre. Lyapunov and asymptotic stability. Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles, Poincare- Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, Saddle-node bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2 nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) Col understand the basic dynamical behaviour of dynamical systems governed by difference equations. understand local and global bifurcation phenomena in nonlinear systems.			ion and Hartman's theorem, Construction of phase plane			
Centre. Lyapunov and asymptotic stability. Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles, Poincare- Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, bistability, Saddlenode bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by differential equations. understand local and global bifurcation phenomena in nonlinear systems.	2		and unstable nodes Saddle naint Stable and unstable feet		Q	
Limit cycles: Existence and uniqueness of limit cycles in the plane, stability of limit cycles, Poincare- Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, Saddlenode bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by differential equations. understand local and global bifurcation phenomena in nonlinear systems.	3				0	
cycles, Poincare- Bendixson theorem, worked examples from ecology, disease models. Bifurcation theory: Bifurcation of nonlinear systems, Multistability, bistability, Saddle-node bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems.	4				8	
Bifurcation theory: Bifurcation of nonlinear systems, Multistability, bistability, Saddle- node bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2 nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems.	•				O	
node bifurcation. Pitchfork bifurcation, Period doubling bifurcation, Hopf bifurcation Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.	5				12	
Three dimensional autonomous systems and chaos: Linear systems and canonical forms, The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.	-	node bifurcation. Pitchfork	bifurcation, Period doubling bifurcation, Hopf bifurcation			
The Lorenz equations. Mathematical software: Mathematica/ MATLAB List of Textbooks/ Reference Books L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) Coll understand the basic dynamical behaviour of dynamical systems governed by difference equations. Coll understand the basic dynamical behaviour of dynamical systems governed by differential equations. Coll understand the basic dynamical behaviour of dynamical systems governed by differential equations.	6				8	
List of Textbooks/ Reference Books 1 L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. 2 Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. 3 Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. 4 Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. 5 Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). 6 James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. 7 M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. 8 R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.						
1 L.Perko, Differential Equations and Dynamical Systems, Vol. 7, 2nd Ed., Springer Verlag. 2 Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. 3 Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. 4 Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. 5 Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). 6 James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. 7 M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. 8 R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.		Mathematical software: Ma	thematica/ MATLAB			
 Stephen Lynch, 2014. Dynamical Systems with Applications using MATLAB. Springer. Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) Understand the basic dynamical behaviour of dynamical systems governed by difference equations. Understand the basic dynamical behaviour of dynamical systems governed by differential equations. Understand local and global bifurcation phenomena in nonlinear systems. Use symbolic mathematical software to analyse dynamical systems. 			List of Textbooks/ Reference Books			
 Yuri A. Kuznetsov, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer. Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems. 		L.Perko, Differential Equati	ions and Dynamical Systems, Vol. 7, 2 nd Ed., Springer Verlag.			
Alligood, Sauer, and Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-Verlag New York. Sudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.						
New York. 5 Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). 6 James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. 7 M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. 8 R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.						
5 Rudiger Seydel, Practical Bifurcation and Stability analysis. Springer (3rd Ed). 6 James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. 7 M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. 8 R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.	4		e. Chaos: An Introduction to Dynamical Systems. Springer, Springer	pring	er-V	erlag
6 James T Sandefur, Discrete dynamical systems Theory and applications, Clarendon press. 7 M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. 8 R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.						
7 M W Hirsch and S Smale - Differential Equations, Dynamical Systems, Academic. 8 R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.						
R. Clark Robinson. An Introduction to Dynamical Systems Continuous and Discrete, Second edition. American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.						
American Mathematical Society, Rhode Island. Course Outcomes (students will be able to) CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.					1 1	
CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.	8			econ	a ea	tion.
CO1 understand the basic dynamical behaviour of dynamical systems governed by difference equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.		•				
equations. CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.	CO1					
CO2 understand the basic dynamical behaviour of dynamical systems governed by differential equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.	COI		near ochaviour or dynamical systems governed by difference			
equations. CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.	CO2		ical behaviour of dynamical systems governed by differential			
CO3 understand local and global bifurcation phenomena in nonlinear systems. CO4 use symbolic mathematical software to analyse dynamical systems.	002	-	dear condition of dynamical systems governed by differential			
CO4 use symbolic mathematical software to analyse dynamical systems.	CO3		bifurcation phenomena in nonlinear systems.			
	CO5					

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	1	5	0	0	2	4	4	0	5	1	0	5		
CO2	1	5	0	0	1	1	5	1	5	2	0	5		

CO3	0	5	0	1	2	1	5	1	5	2	0	5
CO4	0	5	0	0	4	5	4	1	5	1	0	5
CO5	0	5	0	0	5	5	5	4	5	5	0	5

	Course Code: MAT		C	redit	s = 4
	2642	Course Title: Integral Transforms	L	T	P
	Semester: IV (Elective – III)	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Real A 2210)	Analysis – II (MAT 2207), C	Complex Analysis (MAT 2206), Functional Analysis (MAT			
	List of	Courses where this course will be prerequisite			
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Progr	ram		
	ourse gives the students ide ering, including probability at	eas of various transforms that have immense applications in d statistics.	n sc	eienc	e and
		Contents (Topics and subtopics)		Hou	ırs
1	applications to solutions of Equations (PDE).	ransforms. Fourier transforms: Introduction, basic properties, ordinary Differential Equations (ODE), Partial Differential		10)
2		dution, differentiation, integration, inverse transform, on's Lemma, solutions to ODE, PDE including Initial Value ary Value Problems (BVP).		10)
3	Introduction, properties, ap in complex plane, application	action, properties and applications to PDE Mellin transforms: plications; Generalized Mellin transforms. Hilbert transforms ons; asymptotic expansions of 1-sided Hilbert transforms.		8	
4		on, properties, applications, inversion theorems, properties of form. Legendre transforms: Intro, definition, properties,		8	
5	Z Transforms: Introduction	n, definition, properties; dynamic linear system and impulse forms, summation of infinite series, applications to finite		8	
6	Radon transforms: Intro applications, inverse radon	duction, properties, derivatives, convolution theorem, transform.		8	
7	Wavelet Transform: Disc Daubechies Wavelets.	ussion on continuous and discrete, Haar, Shannon and		8	
	·	List of Textbooks/ Reference Books			
1	Sudhakar Nair, Advanced cambridge:	Topics in Applied Mathematics for Engg. & Physical Science	ce,	1 st ed	dition,
2		to Applied Mathematics, Cambridge Press			-
3	J. Spanier and K. B. Old Integration to Arbitrary Ord	ham, Fractional Calculus Theory and Applications of Diffe ler, 1 st Edition, Elsevier:	rent	iatio	n and
4		n Handbook of Mathematical Functions, Dover.			
	Cou	rrse Outcomes (students will be able to)			
CO1	solve ode and partial differen	ential equations using Fourier Transforms.			
CO2	solve ode and partial differen	ential equations using Laplace Transforms.			
CO3	learn about Hankel, Mellin	Transforms and Hilbert Transforms.			
CO4	solve difference equations u	•			
CO5	understand wavelet and rad-	on Transforms.			

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	5	3	1	1	4	1	2	0	5	0	0	5		

CO2	5	3	1	1	5	1	2	0	5	2	0	5
CO3	5	0	3	3	5	1	1	0	5	0	0	5
CO4	5	0	1	1	4	2	2	1	5	0	0	5
CO5	5	0	1	1	4	2	1	3	5	0	0	5

	Course Code: MAT		C	redit	s = 4
	2643	Course Title: Mathematical Finance-II	L	T	P
	Semester: IV (Elective – III)	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
Mather	matical Finance – I (MAT 26)	24), Probability Theory (MAT 2321)			
	List of	Courses where this course will be prerequisite			
	Description of volevene	of this source in the M.So. Engineering Methematics Drog	rom		
This co		e of this course in the M.Sc. Engineering Mathematics Progure to applications of mathematics in baking and finance section			tc get
		al equation, Ito calculus and pricing of various financial instrum			is get
the exp		Contents (Topics and subtopics)	IICII	Hou	rs
1		aces and Convergence concepts, Filtrations, Expectations,		8	
•	Change of Measures	aces and convergence concepts, initiations, expectations,		O	
2		Ito Integral and its properties, Ito processes and Stochastic		12	
		r Ito processes and Martingale properties.			
3		uations, existence, and uniqueness, Backward and Forward		12	
	equations, numerical technical	niques for simulation of stochastic differential equations,			
	Multivariate extensions				
4		iscrete time and continuous time, Stock and FX options,		10)
		rbitrage, Semi martingale market model, Diffusion and Black			
	Scholes model and other ex				
5		es and Options, Bonds and Yield curve, Models based on spot		10	1
6	rates, Merton's model and			0	
6		ulation of Stochastic differential equations		8	
7	Software: R/Python	It come at 1 / Dec D			
1	E'm C Wish and Internal	List of Textbooks/ Reference Books	·.· · · ·	т	1
1		action to Stochastic Calculus with Applications, Second ed	ıtıon	, Im	perial
2	College Press.	Calculus for Finance I: The Binomial Asset Pricing Model, Spri	naai		
3		Calculus for Finance Continuous-Time Models, Springer.	ngci	•	
4		ction to Stochastic Calculus with Applications. Second Ed	ition	Im	nerial
•	College Press.	etion to stochastic calculus with ripplications. Second Ed	11101	,	periur
5		d Platen, Henri Schurz, Numerical Solution of SDE Thro	ugh	Con	nouter
	Experiments.	,	0		1
6		ion and Inference for Stochastic Differential Equations With	ı R	Exan	nples,
	Springer.				_
7	Zdzisław Brzeźniak and To	omasz Zastawniak, Basic Stochastic Processes: A Course Thro	ugh	Exer	cises,
	Springer.				
		irse Outcomes (students will be able to)			
CO1		to processes and Ito integrals.			
CO2		ential equations and properties of solutions.			
CO3		s of some simple stochastic differential equations.			
CO4		s for pricing financial instruments.			
CO5	apply the methods to analys	se real data sets from financial markets.			

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	4	2	1	2	1	2	0	5	0	0	5
CO2	1	4	2	3	1	0	4	0	5	0	0	5
CO3	2	5	4	2	2	0	4	0	5	0	0	5
CO4	1	5	2	3	3	1	2	2	5	2	3	5
CO5	1	4	4	4	3	3	5	2	5	3	4	5

	Course Code: MAT									
	2644	Course Title: Geometry of Curves and Surfaces	L	T	P					
	Semester: IV (Elective – III)	Total contact hours: 60	3	1	0					
	1 1 7 27 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	List of Prerequisite Courses								
Real A	nalysis – I (MAT 2202), Rea	l Analysis – II (MAT 2207)								
	T :- 4 - 6	C								
	LIST 01	Courses where this course will be prerequisite								
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Prog	ram							
	Description of relevance	of this course in the Wisse. Engineering Wathematics 110g	am							
	Course	Contents (Topics and subtopics)		Hot	ırs					
1		space curves: Curvature and torsion of curves, Serret-Frenet		8						
	formulas, Fundamental The									
2		s, Change of parameters, Differentiable functions, Tangent		8	ļ					
		surfaces, Orientable surfaces								
3		ental Form: The first fundamental Forms, The Gauss map,		12	2					
		orms, Normal and principal curvatures, introduction to ruled								
1	and minimal surfaces	turn and tousions. Condesies		11						
5		nture and torsions, Geodesics ons of Surfaces: Tensor Notation, Gauss's Equations and the		12						
3		zi Equations and the Theorema Egregium, The Fundamental		1(,					
	Theorem of Surface Theory									
6		its applications to surfaces of constant curvatures		1()					
		List of Textbooks/ Reference Books								
1	Thomas Banchoff and Stepl	nen Lovett, Differential Geometry of Curves and Surfaces, A K	Pet	ers. l	Ltd.					
2		urves and Surfaces, by Manfredo P. Do Carmo, Dover Publicat		, -						
3		al Geometry of Curves and Surfaces, Springer								
4		Differential Geometry, Cambridge University Press								
5	Andrew Pressley, Elementa	ry Differential Geometry, Springer.								
6		first Course in Curves and Surfaces, by Theodore Shifrin, whi	ch i	s ava	iilable					
	free online at http://math474									
		rrse Outcomes (students will be able to)								
CO1		n theory of plane and space curves.								
CO2	understand theory of surface									
CO3		urvature of curves and surfaces.								
CO4		compute curvatures of curves and surfaces.								
CO5	analyse curves and surfaces	and their properties.								

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	5	5	0	0	4	0	4	0	5	0	0	5	
CO2	5	5	0	3	4	0	3	0	5	1	0	5	
CO3	5	5	1	3	4	0	4	0	5	2	0	5	

CO4	5	5	0	0	4	3	5	0	5	1	0	5
CO5	5	5	0	0	4	3	5	0	5	2	0	5

	Course Code: MAT		C	redit	$t_s = 4$			
	2645	Course Title: Convex Optimization	L	T	P			
	Semester: IV (Elective – III)	Total contact hours: 60	3	1	0			
		List of Prerequisite Courses						
Applie	ed Linear Algebra (MAT 2201), Optimization Techniques (MAT 2205)						
), - 						
	List of	Courses where this course will be prerequisite						
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Progr	ram					
		Contents (Topics and subtopics)		Hot	ırs			
1	Introduction to Convex opti			4				
2		nvex sets with examples, operations that preserves convexity, rating and supporting cones, dual cones		1()			
3		tion and examples of convex functions, operations that		8				
		gate and quasi conjugate functions, log concave and convex						
	function							
4		stimization problems: Generalized optimization and convex						
		th examples. Linear and quadratic optimization problems,						
	Geometric programming pr							
5		ty and geometric interpretation, Optimality conditions,		10)			
	perturbation and sensitivity							
6	Geometric problems	timization: Approximation and fitting, Statistical estimation,		1()			
7		nequality constrained minimization problems, Logarithmic I path, The barrier method, Feasibility and phase I methods,		12	2			
		inequalities, Primal-dual interior-point methods						
	Mathematical software: Pyt							
		List of Textbooks/ Reference Books						
1		Yandenberghe, Convex Optimization, Cambridge University Pre	SS					
2		Analysis Princeton Univ. Press						
3	Algorithms, and Engineerin	adi Nemirovski, Lectures on Modern Convex Optimizati g Applications, SIAM Publication		An	alysis,			
4		an Lewis, Convex Analysis and Nonlinear Optimization, Spring	ger					
		rrse Outcomes (students will be able to)						
CO1	understand basic convex op							
CO2		f convex optimization problems.						
CO3		problems using standard algorithms.						
CO4		ethods to solve convex optimization problems.						
CO5	use concepts in convex opti	mization to solve real world problems.						

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	0	5	5	5	5	1	3	1	5	0	0	5	
CO2	0	5	5	5	4	0	4	0	5	1	0	5	
CO3	1	4	5	5	4	0	4	0	5	1	0	5	
CO4	0	4	5	5	5	0	4	0	5	1	0	5	
CO5	0	5	5	5	5	5	5	5	5	5	2	5	

	Course Code: MAT		Credits = 4							
	2646	Course Title: Time Series Analysis	L	T	P					
	Semester: IV (Elective – III)	Total contact hours: 60	3	1	0					
	(Elective – III)									
		List of Prerequisite Courses								
Probab 2323)	ility Theory (MAT 2321), St	atistical Inference (MAT 2322), Statistical Computing (MAT								
	List of	Courses where this course will be prerequisite								
	List of	Courses where this course will be prerequisite								
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Progr	ram							
This co	ourse enables to students to a	pply various time series models for forecasting problems which		unda	ınt in					
mausti	•	Contents (Topics and subtopics)		Hou	rs					
1		ne series: Graphical display, classical decomposition model,		4						
_		ty and cycle, estimation of trend and seasonal components.		-						
2		els: Concepts of weak and strong stationarity, AR, MA and		12						
		properties, conditions for stationarity and invertibility,								
		CF), partial autocorrelation function (PACF), identification								
	based on ACF and PACF, e	stimation, order selection and diagnostic tests.								
3		ary models: ARIMA model, determination of the order of		12						
	integration, trend stationarity and difference stationary processes, tests of nonstationarity									
		-Fuller (DF) test, augmented DF test, and Phillips-Perron test								
4		nential smoothing, Holt-Winters method, minimum MSE		10						
		ample and out-of-sample forecast.								
5	test (HEGY test).	ries: Seasonal ARIMA models, estimation; seasonal unit root		6						
6	1 1	ls: State space representation of ARIMA models, basic		8						
	structural model, and Kalma									
7	Spectral analysis of weakly	stationary processes: Spectral density function (s. d. f.) and		8						
		AR, MA and ARMA processes, Fourier transformation and								
- 0	periodogram									
8	Statistical software: R/Pytho									
1		List of Textbooks/ Reference Books								
1		Introduction to Time Series and Forecasting, Springer, Berlin.	1 . 1	D.						
2	Education.	Reinsel, Time Series Analysis-Forecasting and Control, 3rd	ı ea.,	, re	ırson					
3	W. A. Fuller, Introduction t	o Statistical Time Series.								
4		ion to Analysis of Financial Data with R, John Wiley.	-							
5		tical Analysis of Time Series.								
6		Stoffer, Time Series Analysis and Its Applications.								
7		of Time Series – An Introduction, Chapman and Hall / CRC, 4t	h ed.							
	Cou	rrse Outcomes (students will be able to)								

CO1	apply graphical techniques to descriptive exploration of time series data.	
CO2	understand different statistical properties of stationary time series models and apply them	
	in analysing real data.	
CO3	apply different forecasting techniques for time series data.	
CO4	apply state space models in forecasting problems.	
CO5	compute spectral density functions for different time series models.	

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	0	0	5	5	3	0	3	0	5	0	0	5		
CO2	0	0	5	5	4	3	4	0	5	3	0	5		
CO3	0	1	5	5	3	2	3	0	5	1	0	5		
CO4	0	1	5	5	4	2	5	5	5	0	3	5		
CO5	0	1	5	5	3	1	5	5	5	4	3	5		

	Course Code: MAT		3 1		s = 4							
	2647	Course Title: Operator Theory	L	T	P							
	Semester: IV (Elective – III)	Total contact hours: 60	3	1	0							
		The CD CO										
A 1'	1.1. 41.1 (3.4.7.22)	List of Prerequisite Courses										
	Functional Analysis (MAT 220)	01), Real Analysis-I (MAT 2202), Real Analysis – II (MAT 210)										
	List of	Courses where this course will be prerequisite										
Not Ap	pplicable	<u> </u>										
	Description of relevance	of this course in the M.Sc. Engineering Mathematics Progr	ram									
		Contents (Topics and subtopics)		Hot	ırs							
1		Adjoints of bounded operators on a Hilbert space, Normal, self-adjoint unitary Quasinormal, Subnormal, hyponormal operators and Normaloid										
2	Spectrum of bounded opera)								
3	Square roots of Operators a	nd Polar Decomposition Compact operator on Hilbert spaces)								
4	Spectral theorem for compa	ct self-adjoint operators, Singular value decomposition		1()							
5	Hilbert Schmidth and Trace	Class operators, Application to Sturm-Liouville Problems.		15	;							
		List of Textbooks/ Reference Books										
1	B.V. Limaye, Functional A	nalysis, 2nd Edition, New Age International.										
2	J. B. Conway, A Course in	Functional Analysis, 2 nd Edition, Springer.										
3	Carlos Kubrusly, Elements	of Operator Theory, Birkhauser.										
4		nctional Analysis with Applications, John Wiley & Sons.										
5	S. G. Mikhlin, Variation Me	ethods in Mathe-matical Physics, Pergaman Press, Oxford.										
		rrse Outcomes (students will be able to)										
CO1	identify various operators o	•										
CO2	compute spectrum of operation											
CO3		orem of compact operators and apply it to prove the singular										
	value decomposition.											
CO4	 	iouville boundary value problems.										
CO5	see the analogy between po	lar representation of complex numbers and operators.										

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	5	3	2	0	4	1	0	0	5	0	0	5		
CO2	5	3	0	0	5	0	2	0	5	2	0	5		
CO3	5	0	3	3	5	0	1	0	5	0	0	5		
CO4	5	0	0	0	4	2	2	0	5	0	0	5		
CO5	5	0	1	0	4	2	0	1	5	0	0	5		

	Course Code: MAT		Credits = 4				
	2648	Course Title: Bayesian Statistics	L	T	P		
	Semester: IV (Elective – III)	Total contact hours: 60	3	1	0		
	(Elective – III)						
		List of Prerequisite Courses					
Probab 2323)	oility Theory (MAT 2321), St	atistical Inference (MAT 2322), Statistical Computing (MAT					
	List of	Courses where this course will be prerequisite	1				
TI.		of this course in the M.Sc. Engineering Mathematics Progr		-			
	ourse gives the students an examt role in scientific computation	sposure to in depth understanding of Bayesian computations w	nich	play	very		
шрога		Contents (Topics and subtopics)		Hou	irc		
1		ective and frequentist probability, Bayesian inference, prior		15			
1		stribution, loss function, principle of minimum expected		1.0			
		and other common loss functions, advantages of being a					
		common problems of Bayesian inference, Point estimators,					
		intervals, testing, credible intervals, prediction of a future					
	observation.						
2	Large sample properties, Co Laplace's method.	onsistency and asymptotic normality of posterior distribution,		12	,		
3	Bayesian Computations:	Analytic approximation, E-M Algorithm, Monte Carlo Monte Carlo Methods, Metropolis-Hastings Algorithm,		18			
4		lear regression, generalized linear models, JAGS		15	;		
5	Software: R or Python	to a region of the second of t					
	,	List of Textbooks/ Reference Books					
1	Bolstad, W. M. Introduction	n to Bayesian Statistics, 2nd Edn. Wiley.					
2		7., Branscum, A. and Hanson T. E. Bayesian Ideas and Data	An	alysi	s: An		
		and Statisticians, Chapman & Hall.		•			
3	Congdon, P. Bayesian Stati	stical Modeling, Wiley.					
4		ion with R, 2nd Edn, Springer.					
5		yesian Thinking, Modeling & Computation, Handbook of Stat	istic	s, Vo	ol. 25.		
	Elsevier.						
6		Delampady, Tapas Samanta, An Introduction to Bayesian An	alys	is, T	heory		
	and Methods.	15 4:1:					
7	Richard McElreath, Statisti						
CO1		arse Outcomes (students will be able to)					
CO1		an inference and its application to real data.					
CO2		ayesian estimators with maximum likelihood estimators.					
CO3		simulate samples from the posterior distributions. pservations using Bayesian methods.					
CO5		symptotic distribution of Bayes estimators.					
COS	understand and derive the a	symptotic distribution of dayes estillators.					

	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	0	0	5	5	3	0	3	0	5	1	0	5		
CO2	0	0	5	5	4	3	4	0	5	3	0	5		
CO3	0	0	5	5	3	0	3	0	5	0	0	5		
CO4	0	0	5	5	4	0	5	5	5	0	3	5		
CO5	0	0	5	5	3	2	5	5	5	4	3	5		