SELF ASSESSMENT REPORT SUBMITTED TO

NATIONAL BOARD OF ACCREDITATION NBCC Place, 4th Floor East Tower, Bhisham Pitamah Marg,

Pragati Vihar New Delhi 110003

FOR THE ACCREDITATION OF

MASTER OF ENGINEERING

in

PLASTIC ENGINEERING

2023

DEPARTMENT OF GENERAL ENGINEERING INSTITUTE OF CHEMICAL TECHNOLOGY

DEEMED UNIVERSITY UNDER SECTION 3 OF UGC ACT 1956 UNIVERSITY PAR EXCELLENCE.

ELITE STATUS AND CENTER OF EXCELLENCE – GOVT. OF MAHARASHTRA NATHALAL PAREKH MARG, MATUNGA (E), MUMBAI 400 019, MAHARASHTRA

SAR Contents

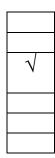
Section	Item	Page No.							
PART A	Institutional Information	3							
PART B	Departmental Information	10							
Criteria Summary									
1	Program Curriculum and Teaching – Learning Processes								
2	Program Outcomes and Course Outcomes								
3	Students' Performance	50							
4	Faculty Contributions	61							
5	Laboratories and Research Facilities	76							
6	Continuous Improvement	79							
Annexure-I	Program Outcomes (POs)	87							
PART C	Declaration by the Institution	88							

PART A: Institutional Information

1. Name and Address of the Institution:

Institute of Chemical Technology, Mumbai University under section 3 of UGC Act 1956 Estd.1933, Elite Status and Centre of Excellence-Govt. of Maharashtra ICT, Nathalal Parekh Marg, Matunga, Mumbai – 400019 Tel: +91-22-33612312, Fax: +91-22-33611020 Website: www.ictmumbai.edu.in

2. Name and Address of the Affiliating University, if applicable:


Institute of Chemical Technology, Mumbai University under section 3 of UGC Act 1956 Estd.1933, Elite Status and Centre of Excellence-Govt. of Maharashtra ICT, Nathalal Parekh Marg, Matunga, Mumbai – 400019 Tel: +91-22-33612312, Fax: +91-22-33611020 Website: www.ictmumbai.edu.in

3. Year of establishment of the Institution: 1933

4. Type of the Institution:

Institute of National Importance University Deemed University

Autonomous Affiliated Institution Any other (Please specify)

Note:

In the case of Autonomous and Deemed University, mention the year of grant of status by the authority

5. Ownership Status:

Central Government	
Deemed University	
Government Aided	
Self-financing	
Trust	
Society	
Section 25 company	
Any other (Please specify)	

Provide Details: Nil

6. Vision of the Institution:

We shall perennially strive to be a vibrant institute with continuously evolving curricula to brighten the future of the chemical, biological, materials and energy industries of the nation, and rank amongst the very best in the world through active participation and scholarship of our faculty, students and alumni. We shall be creators of sprouting knowledge and design cutting-edge technologies that will have the greatest impact on society and benefit mankind at large.

7. Mission of the Institution:

We shall generate and sustain an atmosphere conducive to germinating new knowledge at every available opportunity. The education we shall impart will enable our students to devise new solutions to meet the needs of all segments of society with regard to material and energy, while protecting the environment and conserving the natural resources. Our endeavors, while extending well beyond the confines of the classroom, will aim to enhance public welfare and our attempts to disseminate knowledge will spread to a greater multi- and cross-disciplinary platform to conduct research, discovery, technology development, service to industry and entrepreneurship, in consonance with India's aspirations to be a welfare state. We will team scientists and engineers with professionals in other disciplines to arrive at better solutions. We will provide all our students with a strong foundation to encourage them to be our ambassadors in the professional activities that they choose to undertake in service of society at national and international levels. Through our vision, we will serve the profession and society and strive to reach the summit as a team, and ultimately serve as role models to the younger generation.

8. Details of all the programs offered by the institution:

Sr. No.	Program Name	Name of the Department	Year of Start	Intake	Increase/ Decrease in intake if any	Year of Increase/ Decrease	AICTE Approval	Accreditation Status*
UND	ERGRADUATE PRO	OGRAMME (UG)						
1	B. Chemical Engineering	Chemical Engineering	1933	60	15	1995	AICTE Approved (F.No. Western/1- 10974417625/2022/EOA)	2022-2023 to 2027-2028 i.e. upto 30-06-2028
2	B.Tech - Dyestuff Technology	Dyestuff Technology	1944	16	2	1995	AICTE Approved (F.No. Western/1- 10974417625/2022/EOA)	2022-2023 to 2024-2025 i.e. upto 30-06-2025
3	B.Tech- Food Engineering and Technology	Food Engineering and Technology	1943	16	N.A.	N.A.	AICTE Approved (F.No. Western/1- 10974417625/2022/EOA)	2022-2023 to 2027-2028 i.e. upto 30-06-2028
4	B.Tech- Fibres and Textile Processing Technology	Fibres and Textile Processing Technology	1933	34	N.A.	N.A.	AICTE Approved (F.No. Western/1- 10974417625/2022/EOA)	2022-2023 to 2024-2025 i.e. upto 30-06-2025
5	B.Tech- Oils, Oleochemicals and Sufactant Technology	Oils, Oleochemicals and Sufactant Technology	1943	16	N.A.	N.A.	AICTE Approved (F.No. Western/1- 10974417625/2022/EOA)	2022-2023 to 2027-2028 i.e. upto 30-06-2028
6	B.Tech- Pharmaceuticals Chemistry and Technology	Pharmaceutical Sciences and Technology	1943	18	N.A.	N.A.	AICTE Approved (F.No. Western/1- 10974417625/2022/EOA)	2022-2023 to 2027-2028 i.e. upto 30-06-2028

7	B.Tech Polymer	Polymer and	1946	8	8	1995	AICTE Approved (F.No.	2022-2023 to
	Engineering and	Surface					Western/1-	2027-2028 i.e.
	Technology	Engineering					10974417625/2022/EOA)	upto 30-06-2028
8	B.Tech Surface	Polymer and	1946	8	16	1995	AICTE Approved (F.No.	2022-2023 to
	Engineering &	Surface					Western/1-	2027-2028 i.e.
	Technology	Engineering					10974417625/2022/EOA)	upto 30-06-2028
9	B. Pharmacy	Pharmaceutical	1959	18	30	1995	AICTE Approved (F.No.	2022-2023 to
		Sciences and					Western/1-	2027-2028 i.e.
		Technology					10974417625/2022/EOA)	upto 30-06-2028

S-r. No.	Program Name	Name of the Department	Year of Start	Intake	Increase/ Decrease in intake, if any	Year of Increase/ Decrease	AICTE Approval	Accreditation Status*
1	M. Chemical Engineering	Chemical Engineering	1958	30	N.A.	N.A.	AICTE Approved (F.No. Western/1- 10974417625/2022/EOA)	2022-2023 to 2027-2028 i.e. upto 30-06-2028
2	M.Tech- Dyestuff Technology	Dyestuff Technology	1961	4	14	2019	AICTE Approved (F.No. Western/1- 10974417625/2022/EOA)	2022-2023 to 2024-2025 i.e. upto 30-06-2025
3	M.TechFood Engineering &Technology	Food Engineering and Technology	1945	8	N.A.	N.A.	AICTE Approved (F.No. Western/1- 10974417625/2022/EOA)	2020-2021 to 2025-2026 i.e. upto 30-06-2026
4	M.Tech- Fibres and Textile Processing Technology	Fibres and Textile Processing Technology	1961	18	N.A.	N.A.	AICTE Approved (F.No. Western/1- 10974417625/2022/EOA)	2022-2023 to 2027-2028 i.e. upto 30-06-2028

5	M.Tech-Oils,	Oils,	1966	18	N.A.	N.A.	AICTE Approved (F.No.	2020-2021 to
	Oleochemicals and	Oleochemicals					Western/1-	2022-2023 i.e.
	Surfactant	and Surfactant					10974417625/2022/EOA)	upto 30-06-2023
	Technology	Technology						
6	M.Tech-	Pharmaceutical	1961	18	N.A.	N.A.	AICTE Approved (F.No.	2020-2021 to
	Pharmaceuticals	Sciences and					Western/1-	2025-2026 i.e.
	Sciences and	Technology					10974417625/2022/EOA)	upto 30-06-2026
	Technology							
7	M.Tech- Polymer	Polymer and	1966	18	N.A.	N.A.	AICTE Approved (F.No.	2022-2023 to
	Engineering and	Surface					Western/1-	2027-2028 i.e.
	Technology	Engineering					10974417625/2022/EOA)	upto 30-06-2028
8	M.Tech-Surface	Polymer and	1966	18	N.A.	N.A.	AICTE Approved (F.No.	2022-2023 to
	Engineering &	Surface					Western/1-	2027-2028 i.e.
	Technology	Engineering					10974417625/2022/EOA)	upto 30-06-2028
9	M.Tech-Food	Food Engineering	1966	2	8	2009	AICTE Approved (F.No.	2022-2023 to
	Biotechnology	and Technology					Western/1-	2027-2028 i.e.
							10974417625/2022/EOA)	upto 30-06-2028
10	M.Tech-	DBT-ICT Center	1994	30	N.A.	N.A.	AICTE Approved (F.No.	2020-2021 to
	Bioprocess	of Biosciences					Western/1-	2022-2023 i.e.
	Technology						10974417625/2022/EOA)	upto 30-06-2023
11	M.Tech- Perfumery	Dyestuff	1992	5	13	2017	AICTE Approved (F.No.	2022-2023 to
	and Flavor	Technology					Western/1-	2027-2028 i.e.
	Technology						10974417625/2022/EOA)	upto 30-06-2028
12	M.Tech. Green	Green	2010	30	N.A.	N.A.	AICTE Approved (F.No.	2022-2023 to
	Technology	Technology					Western/1-	2027-2028 i.e.
							10974417625/2022/EOA)	upto 30-06-2028
13	M. Tech.	Pharmaceutical	2017	15	N.A.	N.A.	AICTE Approved (F.No.	N.A.
	Pharmaceutical	Sciences and					Western/1-	
	Biotechnology	Technology					10974417625/2022/EOA)	

14	M.E. (Plastic	General	1972	18	N.A.	N.A.	AICTE Approved (F.No.	2020-2021 to
	Engineering)	Engineering					Western/1-	2022-2023 i.e.
							10974417625/2022/EOA)	upto 30-06-2023
15	M.Sc. (Chemistry)	Chemistry	2010	20	N.A.	N.A.	N.A.	N.A.
16	M.Sc. (Textile	Fibres and Textile	2010	20	N.A.	N.A.	N.A.	N.A.
	Chemistry)	Processing						
		Technology						
17	M.Sc. (Engineering	Mathematics	2012	20	N.A.	N.A.	N.A.	N.A.
	Mathematics)							
18	M.Sc. (Physics)	Physics	2014	20	N.A.	N.A.	N.A.	N.A.
19	M. Pharmacy	Pharmaceutical	1965	18	N.A.	N.A.	AICTE Approved (F.No.	01/07/2014 to
		Sciences and					Western/1-	30/06/2017
		Technology					10974417625/2022/EOA)	

Table: A.8.1

	0	11				
Sr. No.	Program Name	Current Year Sanctioned Intake	Current Year Admission (in Nos.)			
1.	Master of Technology in Bioprocess Technology	30	21			
2.	Master of Technology in Oils, Oleochemicals and surfactants Technology	18	18			
3.	Master of Engineering in Plastic Engineering	18	4			

9. Programs to be considered for Accreditation vide this application.

Table A.9.1

10. Contact Information of the Head of the Institution and NBA coordinator, if designated:

i. Name: Prof. A. B. Pandit Designation: Vice-Chancellor Mobile No: 022-33611001 Email id: vc@ictmumbai.edu.in

NBA coordinator Name: Professor V. N. Telvekar Designation: Dean, IQAC Mobile No: 022-33611111 Email id: vn.telvekar@ictmumbai.edu.in

iii. NBA co-coordinator

Name: Dr. Ashwin Mohan Designation: Associate Dean, IQAC Mobile No: 022-33611111 Extension 2665 Email id: <u>as.mohan@ictmumbai.edu.in</u>

PART B: Departmental Information

1. State the Vision and Mission of the Department

Vision:

The department aspires to contribute to India through excellence in technical education and research, to cater the growing needs of plastics manufacturing and processing industries and research institutions.

Mission:

M1: To develop the necessary skills in students with the current scenario, through collaboration with industries and research organization, to meet the expectations of the plastics industries.

M2: To undertake multi-disciplinary research and industry projects and to encourage innovation, growth and development in the emerging areas of new materials and technology.

M3: To develop analytical skills, leadership quality and team spirit in students through balanced curriculum and a judicial mix of co-curricular, extracurricular, and professional activities.

M4: To develop a spirit for product development through effective integration of mold design, design engineering and material study.

M5: To motivate the students to become job providers rather than job seekers.

2. Justification of consistency of the Department Vision and Mission with the Institute Vision and Mission

The department vision is aligned with the vision of the institute so as to generate a skilled and capable human resources and related technology development for industry and society. The program is inculcating a knowledge to enable the students to solve actual industrial problems. The M.E. Plastic Engineering program encourages students to work in cohort for further improvement in team spirit and leadership qualities in the students.

3. Details of all UG & PG Programs offered by the department.

Sr. No.	PG Program Name	Corresponding UG Program/Department Name	Current Year Sanctioned Intake	Current year Admission (in Nos.)
1	M.E (Plastic Engineering)	N.A.	18	4

Table: B.3.1 shows the details of all UG and PG programs offered by the department

Table: B.3.1

4. State the Program Educational Objectives (PEOs) for the PG program(s) under consideration for accreditation.

SR. NO.	PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)
1	To produce graduates who will work efficiently and productively as a Plastic Engineer and
	Scientist in academia as well as industry in supportive or leading role
2	Be a good learner at all stages of profession by acquiring higher education, professional
	degrees, or courses.
3	To produce graduates who can be employed successfully in plastic related industries or other
	related industries or accepted into research programs
4	Aware of the environmental and societal impact of plastic engineering and technology and
	work within the periphery.

Criteria Summary

Criteria No.	Criteria	Mark	Institute Mark
1.	Program Curriculum and Teaching-Learning Processes	125	125
2.	Program Outcomes and Course Outcomes	75	75
3.	Students' Performance	75	51.33
4.	Faculty Contributions	75	60
5.	Laboratories and Research Facilities	75	75
6.	Continuous Improvement	75	70
	Total	500	456.33

Name of the program: Master of Engineering in Plastic Engineering

•

1.1. Program Curriculum (35)

1.1.1 State the process for designing the program curriculum (10)

(Institute Marks: 10)

The evolution of the program curriculum is through the Board of Studies for the General Engineering Department comprising two experts, one from academia and the other from industry, and all faculty of the General Engineering Department.

PEOs are revised based on the suggestions from experts from industries, inputs from faculties of reputed institutes and the needs of the industries and society. The syllabus of IITs and other reputed institutes/universities were referred for finalizing the program curriculum.

Inputs from the faculty of the Department to revamp the syllabus and suggest the norms for the evaluation.

Figure 1.1.1a: Curriculum designing flowchart

Programme is designed based on:

- Recent trends in the field of plastic engineering sector and industry expectations from the plastic engineer.
- Improvements based on feedback from students, alumni.
- Including suggestion from industry expert
- Suggestions from experts from other institutes/universities and Board of studies and quality assurance committee.

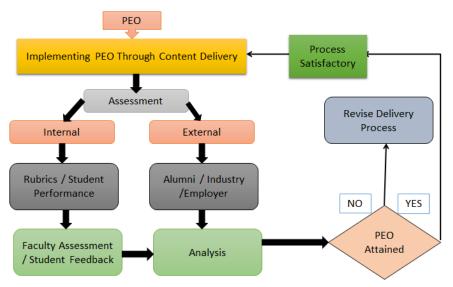


Figure 1.1.1b: Curriculum designing flowchart

Based on these comments, appropriate changes are incorporated-

- Based on recent trends in plastic industry, the course structure is revised.
- New course modules are introduced to ensure that the syllabus is a state of art.
- Laboratory courses are modified to get hands on experience to the students for enhancing their critical thinking based on the current requirements of plastic industries.
- Suggestions from existing students, faculty, passed-out students and industry experts and experts from other institution are taken.

1.1.2 Structure of the Curriculum (5)

(Institute Marks: 5)

Structure of curriculum (Syllabus) for the years 2020-21 and 2021-22

		To	tal No. of Co	ontact Hour	'S				
Course code	Course Title	L Lectures	T Tutorials	P Practical	Total Hours	Credits			
SEMESTER-I									
GET2101	Core I: Technology and Chemistry of Polymers.	2	1	0	3	3			
GET2102	Core II: Processing of Plastics	2	1	0	3	3			
GET2103	Core III: Plastic Product Design and Testing.	2	1	0	3	3			
Elective I (Open Elective)		2	1	0	3	3			

Elective II (Programme Elective)		2	1	0	3	3
GEP2104	Plastic Processing and Testing lab			6	6	3
GEP2105	Seminar and Critical Review			6	6	3
GEP2106	Research Project I			12	12	6
	SI	EMESTER	·II			
GET2107	Core IV: Design of Molds	2	1	0	3	3
GET 2108	Core V: Principles of Plastic Machinery Design	2	1	0	3	3
GET2109	Core VI: CAD/CAM/CAE	2	1	0	3	3
Elective III (Open elective)		2	1	0	3	3
Elective IV (Programme elective)		2	1	0	3	3
GEP2110	CAD/CAM/CAE and Design of Molds lab			6	6	3
GEP2111	Research Project II			12	12	9
	SEMESTER III					

Industrial Training of duration of minimum of 15 weeks to maximum of 6 months as per approval of research supervisor and Head of the Department with total assigned credits as 30 and marks as 450

SEMESTER IV

Research Projects, Thesis with total assigned credit as 30 and marks as 450

	List of elective subjects			
PHT2106	Research Methodology			
GET2129	Processing and Mechanics of Composites			
GET2116	Advanced Processing Technologies			
GET2113	Finite Element Analysis			
GET2117	Plastic Waste Management			
GET2119	Advance Polymer based materials in Engineering Applications			

Structure of curriculum for Syllabus 2022-23

		To	tal No. of Co	ontact Hou	rs	
Course code	Course Title	L Lectures	T Tutorials	P Practical	Total Hours	Credits
SEMESTER-I						
GET2120	Core I: Chemistry of Polymers and Plastic Materials.	2	1	0	3	3
GET2102	Core II: Processing of Plastics.	2	1	0	3	3
GET2103	Core III: Plastic Product Design and Testing.	2	1	0	3	3
Elective-I (Programme elective)		2	1	0	3	3
Elective-II (Open elective)		2	1	0	3	3
GEP2121 /HUT2101C /HUP2101C	Research Methodology	2	0	4	6	4
GEP2122	Plastic Processing and Testing Laboratory			6	6	3
GEP2123	Research Project I			4	4	2
	SE	MESTER-	II			
GET2124	Core IV: Design of Plastic Moulds and Dies	2	1	0	3	3
GET2108	Core V: Principles of Plastic Machinery Design	2	1	0	3	3
GET2117	Core VI: Plastic Waste Management	2	1	0	3	3
Elective III (Programme elective)		2	1	0	3	3
Elective IV (Open elective)		2	1	0	3	3
GEP2125	CAD/CAM/CAE and Design of Moulds laboratory	0	0	6	6	3
GEP2126	Research Project II	0	0	12	12	6
		MESTER-I	· · · · · · · · · · · · · · · · · · ·			
GEP2127	Research Project - III	0	0	48	48	24
		MESTER-I	(40	40	24
GEP2128	Research Project - IV	0	0	48	48	24

	ELECTIVES FOR SEMESTER-I				
	Elective-I			Elective-II	
GET2118	Mold Manufacturing Technologies		GET2113	Finite Element Analysis	
GET2129			Six Sigma and Statistics for industrial process improvement		
GET2130	Modeling and simulation of polymer rheology				
	ELECTIVES	5 F	OR SEMES	TER-II	
	Elective-III			Elective-IV	
GET2132	Advanced Processing Technologies		GET2134	Total Quality Management	
GET2133	Advanced Polymer based Materials in Engineering applications		GET2135	Project Management Methodology and Planning	
	Table: 1.1.2				

Table: 1.1.2

1.1.3 State the components of the curriculum (10)

(Institute Marks: 10)

Program curriculum grouping is done based on course components for years 2020-21 and 2021-22

Semester-I			
Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours/week	Total number of credits
Program Core	23.1%	9	9
Program Electives	7.7%	3	3
Open Electives	7.7%	3	3
Mini Projects	0.0%		
Internships/ Seminars	15.4%	6	3
Major Project	30.8%	12	6
Any other (Specify) Practical	15.4%	б	3
Total	100%	39	27

Semester-II			
Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours/week	Total number of credits
Program Core	23.1%	9	9
Program Electives	7.7%	3	3
Open Electives	7.7%	3	3
Mini Projects	0.0%		
Internships/ Seminars	0.0%		
Major Project	46.2%	18	9
Any other (Specify) Practical	15.4%	6	3
Total	100%	39	27

Semester-III			
Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours/week	Total number of credits
Major Project	100.0%	60	30
Total	100%	60	30

Semester-IV			
Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours/week	Total number of credits
Major Project	100.0%	60	30
Total	100%	60	30

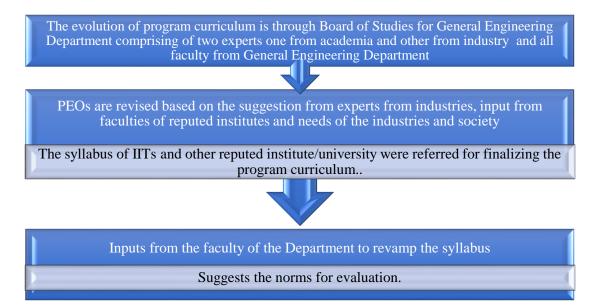
Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours/week	Total number of credits
Program Core	9.1%	18.00	18.00
Program Electives	3.0%	6.00	6.00
Open Electives	3.0%	6.00	6.00
Mini Projects	0.0%	0.00	0.00
Internships/ Seminars	3.0%	6.00	3.00
Major Project	75.8%	150.00	75.00
Any other (Specify) Practical	6.1%	12.00	6.00
Total	100%	198.00	114.00

Program curriculum grouping is done based on course components for years 2022-23

Semester-I			
Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours/week	Total number of credits
Program Core	29.0%	9	9
Program Electives	9.7%	3	3
Open Electives	9.7%	3	3
Mini Projects	-	-	-
Internships/ Seminars	12.9%	4	2
Major Project	-	-	-
Any other (Specify) Practical	38.7%	12	7
Total	100%	31	24

Semester-II			
Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours/week	Total number of credits

Program Core	27.3%	9	9
Program Electives	9.1%	3	3
Open Electives	9.1%	3	3
Mini Projects	0.0%	0	0
Internships/	36.4%	12	6
Seminars	30.4%	12	0
Major Project	0.0%		
Any other	18.2%	6	3
(Specify) Practical	10.270	0	5
Total	100%	33	24


Semester-III			
Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours/week	Total number of credits
Major Project	100.0%	48	24
Total	100%	48	24

Semester-IV			
Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours/week	Total number of credits
Major Project	100.0%	48	24
Total	100%	48	24

Course Component	Curriculum Content (% of total number of credits of the program)	Total number of contact hours/week	Total number of credits
Program Core	11.3%	18.00	18.00
Program Electives	3.8%	6.00	6.00
Open Electives	3.8%	6.00	6.00
Mini Projects	0.0%	0.00	0.00
Internships/ 10.0%		16.00	8.00
Major Project	60.0%	96.00	48.00
Any other (Specify) Practical	11.3%	18.00	10.00
Total	100%	160.00	96.00

1.1.4 Overall quality and level of program curriculum (10)

The syllabus was revised in the year 2017-18 and was in effect till the academic year 2021-22. Further revision has taken place and been implemented from the academic year 2022-23.

- M.E Plastic Programme focuses on polymer processing, materials, product design and mold design. Programme also include Computer Aided Design (CAD) and simulation software essential for plastic product development in the industry.
- Programme also encourages for industrial training and project, which provides insight of recent trends in the plastic industries and enhance the ability of the students to tackle industrial challenges and day-to-day problems.
- The students are allowed to complete their research work in the department laboratories as well as in the industries. During project work, the students undertake live-in commercial problem statement to work upon as a research hypothesis. Further literature, experimental work and analysis guidelines with a background of mandatory research methodology course mentioned in the curriculum help the students to carry out their research work and its publication in reputed journals. It also helps the students to gain practical aspect of technology acquiring problem solving skills.
- The courses such as Plastic waste management, Natural fibre composites helps the students to address environmental issues and remedial actions. Similarly, the course Project management methodology and planning provide an insight to the students about project scheduling and execution in the industries.

1.2. Teaching-Learning Processes (90)

(Institute Marks: 90)

1.2.1. Quality of end semester examination, internal semester question papers, assignments, and evaluation (20)

(Institute Marks: 20)

	In-Semester evaluation		End-		
	Continuous mode	Mid Semester- Exam	Semester- Exam	Components of continuous mode	
Theory	20%	30%	50%	Quizzes, class tests (open or closed book), home assignments, group assignments, <i>viva-voce</i> assignments, discussions	
Practical	50%	-	50%	Attendance, <i>viva -voce</i> , journal, assignments, project, experiments, tests	
Research Project-I, II, III, IV			100%	Evaluation will be based on written report evaluation and presentation in front of the external examiner within the Department	

The weightages of different modes of assessments shall be as mentioned below-.

In-Semester Evaluation:

- a) It is expected that the teacher would conduct at least two assessments (in any form as quizzes, tests, homework, group work etc) under the continuous mode in a Semester.
- b) The teacher will announce at the beginning of the respective course the method of conducting the tests under the continuous mode and the assignment of marks.
- c) In-semester performance of all students should be displayed and sent to the academic office by the teacher at least 15 days before the end-semester examination.
- d) For the theory courses, there will be one mid-semester test for each course to be held as per the schedule fixed in the Academic Calendar.

End-Semester examination:

- a) The semester-end examination will cover the full syllabus of the course as well as address all course outcomes designed for a course.
- b) For the end semester evaluation of research projects, the student will be expected to submit a written report and make a presentation enhancing their critical thinking and interpretation of results in a scientific manner.

1.2.2. Quality of student projects (30)

(Institute Marks: 30)

The objectives of the research projects enable the students to identify and address challenging problems of industry and their solution by using simulation softwares, the development of new materials such as polymer composites, to fulfill the functional requirement of the product and optimization of processing parameters to enhance the product quality.

- During their research project, the students carry out extensive literature survey to identify the latest development for their research topics. The critical review literature helps them to identify research gaps. Identification of research gap leads to development of methodology to achieve the research objective.
- The process variables are identified to achieve the required product quality and by carrying out simulations and their validation with experimental results. Similarly for composite materials, experimental set up are developed the study of effects of various fillers/fibres, nano-fillers on the material properties.
- The project leads to the development of product with optimum quality by eliminating all the defects and fulfilling industry requirements. Similarly, the development of new composite materials improves the specific property suitable for a particular application.
- The students are able to analyse and interpret the experimental results using various statistical tools, data processing softwares etc.
- Overall presentation includes identification of objective, literature survey, experimental setup, analysis and interpretation of results and its relevance to suitable application.

Project Yea	Project Year 2020-21			
Roll No.	Name of Student	Project Title		
19PLS201	Akash Valmik Mahajan	Development of Anti-rodent Drip Irrigation Lateral		
19PLS202	Harshal Janardan Shatalwar	To Study the Effect of Graphene, GO and RGO Filler Loading on the Properties of Epoxy Composite		
19PLS203	Jagadish R	Analysis of Injection Molded Industrial Components Using Existing Simulation Software		
19PLS204	Keyur kumar Sureshbhai Vadaliya	Synthesis of modified PVA/Cellulose ultrafiltration membrane for industrial application		
19PLS205	Mohit Prakash Salunkhe	Design development and analysis of automotive interior parts		
19PLS206	Naveen Nitin Tembhurnikar	Optimization of Injection Moulding Parameters Using Moldflow and Minitab		
19PLS207	Paras Manojkumar Tholiya	Design, development and Analysis of Glove Box		

List of research project:

19PLS208	Sachin Anant Kamble	Study of Effect of water absorption on Mechanical Properties of Hemp and Sisal Fiber reinforced Polyester Composite
19PLS211	Swagata Ray Chaudhury	Study of the mechanical properties of jute fiber reinforced hybrid composite using carbon nanotubes filler

Project Yea	Project Year 2021-22			
Roll No.	Name of Student	Project Title		
20PLS201	Dipashree Arun Penkar	Study of Wollastonite filled Polyphenylene oxide		
20PLS202	Dnyanada Chaudhari	Effect of Graphene Nano fillers on Properties of Polypropylene Composites along with Compatibilizer		
20PLS203	Meghna Pratham Humbal	Study of effect of coupling agent and nanofillers on properties of flax fiber reinforced polymer composites		
20PLS204	Mehul Sanju Karkar	Development of Polymer Based Filtration Membrane for Industrial applications		
20PLS205	Prajwal Suresh Ghadekar	Effect of PLA laminate to improve performance characteristics of Modified MCC reinforced Biodegradable Polyvinyl Alcohol (PVA)/Corn Starch (CS) blended film.		
20PLS206	Sai Shrikantrao Deshmukh	Product development of switch cavity injection mold with the help of Moldflow simulation software		
20PLS207	Shreyash Vijay Tayde	Simulation on Plastic Injection Molding Parts to Minimize The Defects Using Autodesk Moldflow Plastic Insight Simulation Software		
20PLS208	Deepshikha Katiyar	Evaluation of Mechanical Properties of Wollastonite filled Polypropylene Composite		
20PLS209	Nabraz Shaikh	Use of Plastic Waste for Asphalt-mixture for Roads		
20PLS210	Rutul Bhalchandra Thorat	Use of FRP Wraps in Enhancing the Strength of cement composite		
20PLS211	Tanvi Sanjay Suryawanshi	Development of Flax-Pineapple Leaf Fiber Reinforced Unsaturated Polyester resin composite by Dough Molding Compound		

Project Year 2022-23			
Roll No.	Name of Student	Project Title	
21PLS202	Akshay Shailesh Jain	Recycling of Non-food packaging materials and converting them into a useful household detergent bottles.	
21PLS203	Ashish Jayant Kulkarni	Mechanical and damping performance of Flax fiber Reinforced Polypropylene composites	
21PLS204	Avinash Ganesh Chavhan	Plastic process optimization using Taguchi method	

21PLS206	Mihir Machindra Jadhav	Replacement of metal parts in automobiles by polymers, composites, and blends	
21PLS208	S Jeya Varshini	Lifetime assessment of Recycled polyamide	
21PLS209	Sajit Ajithan	Optimization of injection molding process parameters for a studio bottom cover	
21PLS210	Shweta Sanjay Pandagale	Biodegradable polymer from banana peels for industrial application	
21PLS211	Suraj Rajendra Mhaske	Polypropylene nanocomposites with enhanced thermal and electrical properties for automotive and electronics applications	
21PLS212	Vikas Bhausaheb Mhaske	Synthesis of Biodegradable mulching film from bio-polymers and natural fibers for agriculture applications.	

1.2.3. Initiatives related to industry interaction including industry internship/ summer training (10)

(Institute Marks: 10)

The program curriculum for M.E. Plastic Engineering is designed by considering the feedback and suggestions of the academicians from various reputed institutions such as IIT's, NIT's, many central and state government institutions and industry personals.

Shri. K. Vysyaraju (Operational Manager, Siemens Industries, Dr. M B Parmar (Director, Polyblend Masterbatches Pvt. Ltd.), Shri. Gopal Kabra (Director, VEM Tools Pvt. Ltd.), Ms. Pranali Narvekar (Polyblend colour Concentrate) and Shri. Manoj Patil from Volkswagen suggested incorporating the use of various software's and their application from the industry point of view. Addition of new elective courses such as Mold Manufacturing Technologies, Modelling and simulation of polymer rheology, Six Sigma and Statistics for industrial process improvement, Advanced Processing Technologies, Total Quality Management, Project Management Methodology and Planning and other improvements in the existing courses is helpful in the overall improvement of the curriculum. This process of improving the program and curriculum development is carried out through the BOS (Board of Studies) committee.

• Industry involvement in partial delivery of any regular courses for students:

The involvement of the industry experts is considered for delivering lectures to subjects in the M.E. Plastic Engineering Programme.

Dr. Asit Samui (Retired scientist from Naval Materials Research Laboratory of Government of India) takes the course of Technology and Chemistry of Polymers, Dr. M B Parmar (Director, Polyblend Masterbatches Pvt. Ltd.) and Dr. Tipanna (Director, Polyset industry Pvt. Ltd.) conducts lectures for Plastic waste management (an elective subject) in second semester of M.E program. Shri Ravindrakumar Gupta (Vice president, Kokuyu Camlin Pvt. Ltd.) delivers his expertise in partially teaching the course of Plastic product design and testing.

The practical experience received from the visiting faculties helps the students to understand the usefulness of the subjects which are taught to them.

• Industrial Visit for students:

The industrial visits were organised for M.E students such as-

- Mutual Industries Ltd, Vasai, Dist: Palghar (12-May-2023)
- Sarvottam Polymers Ltd, Vasai, Dist: Palghar (12-May-2023)

• Industry Certification Training Program:

Five-days hands-on training cum workshop on ANSYS simulation software offered by CADFEM- ANSYS Ltd. Pune from 17th April to 21st April 2023 was organised.

• Expert Lectures by Industry Persons:

The department conducts expert lectures from various industries to expose the students to know the current developments on-going in the plastic industries.

Sr. No.	Торіс	Speaker Details	Date
1	Role of Simulation Softwares in Injection Molding of Plastics	Dr. Mahesh Divekar, CAE Leader, Performance Materials BASF India Ltd.	03 April 2022
2	Polymer R and D readiness	Dr. J.N. Kapadia, Head of Product Development at Henkel Adhesives Mumbai	28 March 2021
3	Prof. B.D. Tilak Endowment Lecture on "Industry 4.0"	Prof. Pradeep Kumar, IIT Roorkee	22 January 2021
4	Masterbatches for plastics	Dr. M.B. Parmar, Managing Director at Polyblend Colour Concentrates Vapi	15 January 2021
5	Advanced plastic product design-know how with case study	Mr. Ravindra Gupta, Vice President, Camlin Kokuyo Mumbai	02 January 2021
6	Cost effective water storage technologies for rural area	Mr. U.M. Paranjpe, Trustee, Jalavardhini Pratisthan Mumbai (a NGO)	29 November 2020
7	Integrated Urban Water Management-Why, What and How	Dr. Bhakti Devi, Sydney Water Corporation, Sydney, Australia	25 November 2020
8	Use of Glass and Carbon fibre Polymer composites for repairs, retrofit and rehabilitation of Structures	Dr. Mangesh Joshi, Founder and director at Sanrachana Structural Strengthening Pvt. Ltd. Mumbai.	21 November 2020
9	Plastic Pipes up to 2.5 m diameter for conveyance of water and wastewater	Dr. Madhusudan Chaudhari, Vice President, Jain Irrigation Systems Limited Pune	14 November 2020

Following are the list of industry expert speakers from various plastic industries-

In a semester one or two site visits are done to build better industry institute interaction. Many guest lectures of experts from these industries are organized, during these lectures faculty and students interact

with them to understand the latest know-how of plastic industry. Our faculty members regularly interact with various plastic industries, meet alumni, and observe the latest developments in various fields of plastic engineering. Such interactions have opened the doors of opportunities for the industry candidates. Currently two-Masters students from DOW and TVS motors have joined M.E Plastic Engineering course. One Ph.D. student from BASF has joined Ph.D. course.

The following table gives the details of the industries where students have done their industrial training-

Year 2020-21			
Sr. No.	Name of Student	Name of the industry providing training	
1.	Akash Valmik Mahajan	Tata Faurecia Ltd. Pune	
2.	Mohit Prakash Salunkhe	Tata Fauracia Ltd. Pune	
3.	Paras Manojkumar Tholiya	Tata Fauracia Ltd. Pune	

Year 2	Year 2021-22		
Sr. No.	Name of Student	Name of the industry providing training	
1.	Sai Shrikantrao Deshmukh	Varroc Engineering Ltd. Aurangabad	
2.	Shreyash Vijay Tayde	Motherson Automitive Technology and Engineering Khed, Pune	
3.	Deepshikha Katiyar	A.G. Industries Pvt. Ltd. Gujarat	
4.	Rutul Bhalchandra Thorat	Thermoplast Industries, Lonavala.	
5.	Tanvi S. Suryawanshi	Shubhada Polymer Products Pvt. Ltd. Mumbai	

Year 2022-23						
Sr. No.	Name of Student	Name of the industry providing training				
1.	Akshay Shailesh Jain	Dow Chemicals International Pvt. Ltd. Mumbai				
2.	S Jeya Varshini	Bosch India Pvt. Ltd. Banglore				
3.	Sajit Ajithan	Pro Mold Pvt. Ltd. Navi Mumbai				
4.	Suraj Rajendra Mhaske	Reliance Industries Pvt. Ltd. Mumbai				
5.	Vikas Bhausaheb Mhaske	280 Carbon Systems Pvt. Ltd. Mumbai				

Year 2023-24						
Sr. No.	Name of the industry providing training					
1.	Ankur Singh	Plastalloy Pvt. Ltd.				
2. Priya Sandip Kumar Gupta Avient Corporation Mumbai						
3.	Sudarshan Sanjay Kabugade	Avient Corporation Mumbai				
4.	Utkarsh Devidas Chavan	Avient Corporation Pune				

1.2.4. Participation of Industry professionals in curriculum development, as examiners, in major projects (10)

(Institute Marks: 10)

Experts from industry and academic institutions are invited for the evaluation of the thesis and for conducting the open defense examination of the students. The Board of Studies (BOS) for the General Engineering Department is comprising of many experts from industry who participate in the curriculum development along with the feedback of various stakeholders.

The following table gives the industry professionals, who always spare time for these activities.

Examiners appointed (in last three years):

Sr. No.	Name	Designation					
1.	Mr. Ravindra Kumar Gupta	Vice-President(R&D), Camlin Kokuyu India Ltd.					
2.	Dr. M.B. Parmar	Managing Director, Polyblend Masterbatch Industries					
3.	Mr. V. Karunakara Raju	Head - Manufacturing & supply management, Siemens Ltd.					
4.	Dr.Mahesh Dhekane	Manager Technology, Clariant Chemicals (India) Ltd.					
5.	Mr. Gopal Kabra	Director, VEM Tooling (India) Pvt. Ltd					
6.	Dr. Jitendra Kapadia	Head, Product Development Henkel Adhesive Technologies India Pvt Ltd					
7.	Manoj B. Patil	Head Supplier Readiness Management, Volkswagen Group (India)					
8.	Mr. Sagar Waghmare	Assistant Professor, SIES Nerul					
9.	Dr. Sandesh Ramteke	Assistant Professor, SIES Nerul					
10.	Mr. Girish Nandu Khadke	Heera Plastics Pvt. Ltd., Jalgaon					
11.	Dr. Kedar Chaudhari	Diversey India Pvt. Ltd.					
12.	Mr. Sachin Gawande	TATA Faurecia Pvt. Ltd.					

1.2.5. Quality of laboratory work given (20)

(Institute Marks: 20)

The laboratories of the department are well equipped, providing wide range of workability.

Sr. No.	Name of experiments/ syllabus	Equipment			
1	Extrusion of various polymer	Twin-screw extruder			
2	Preparation of polymer composites	Twin-screw extruder			
3	Compression molding	Compression Moulding machine			
4	Injection molding	Injection Moulding machine			
6	Preparation of composite samples and plastic components	3D printer			
7	Impact test to find out impact strength of the polymer	Izod impact testing machine			
8	To find the melt flow index of various polymers	Melt flow index apparatus			
9	Measurement of heat deflection temperature	Heat Deflection temperature tester			
10	Measurement of Hardness	Shore Hardness Tester			
11	Determination of Tensile Strength and percentage elongation	Universal Testing Machine			

GEP 2104 Plastic Processing and Testing laboratory:

GET 2110 Design of molds and CAD/CAM/CAE laboratory:

Sr. No.	Name of experiments/syllabus	Equipment/lab
1	Design and draw compression molds for plastic products	Drawing hall
2	Design and draw transfer molds for plastic products	Drawing hall
3	Design and draw Injection molds for plastic products	Drawing hall
4	Understand the basic principles of design of extrusion dies	Drawing hall
5	Make solid models of plastic and mechanical components	CAD/CAM lab
6	Design various molds and dies using computer-aided design	CAD/CAM lab
7	Understand the basics of the computer-aided manufacturing program	CAD/CAM lab
8	Analyze variation in pressure, temperature and time graph using Computer Aided program	CAD/CAM lab

2.1. Establish the connect between the courses and POs (15)

(Institute Marks: 15)

Connection between PO's and courses for the syllabus year 2020-21, 2021-22 and 2022-23

	РО	Course
-22	PO1	GET2101, GET2102, GET2103, GEP2106, GET2107, GEP2111, GET2117
2021	PO2	GEP2106, GEP2111
2020-21 and 2021-22	PO3	GET2101, GET2102, GET2103, GET2107, GET2117, GET2108, GET2109, GET2119
20-2	PO4	GET2103, GET2107.GET2108, GET2109, GET2119
50	PO5	GET2101, GET2102, GET2103, GET2107, GET2117, GET2108, GET2109, GET2119
	РО	Course
	PO1	GET2120, GET2102, GET2103, GET2129, GET2113, HUT2101C, GET2108, GET2117, GET2113, GET2135
23	PO2	GET2120, GET2102, GET2103, GET2129, GET2113, HUT2101C, GET2108, GET2117, GET2113, GET2135
2022-23	PO3	GET2120, GET2102, GET2103, GET2113, HUT2101C, GET2108, GET2117, GET2113, GET2135
	PO4	GET2120, GET2102, GET2103, GET2129, GET2113, HUT2101C, GET2108, GET2117, GET2113, GET2135
	PSO	GET2120, GET2102, GET2103, GET2129, GET2113, HUT2101C, GET2108, GET2117, GET2113, GET2135

Table 2.1.1

POs of M.E (Plastic Engineering) for the year 2020-21 and 2021-22:

SR. No.	PROGRAM OUTCOMES (POS)	Level
PO1	An ability to independently carry out research or investigation and development work to solve practical problems	K5
PO2	An ability to write and present a substantial technical report or document	K6
PO3	An ability to demonstrate a degree of mastery over the area of plastic engineering and technology	К5
PO4	An ability to use modern tools, software, equipment, etc. to analyze and obtain the solution to the problems	K5

PO5	An ability to systematically break up complex problems in realizable steps related	K4
105	to mold design, processing of plastic, plastic product design and solve them.	N 4

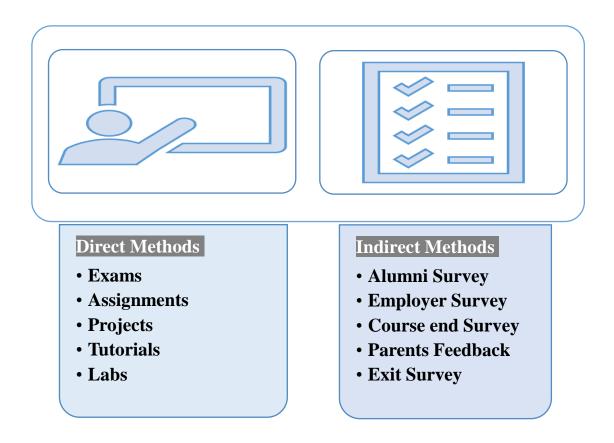
POs of M.E (Plastic Engineering) for the year 2022-23:

SR.	PROGRAM OUTCOMES (POS)	Level
No.		
PO1	An ability to be effective in the design of engineering technology solutions and the	K5
	practical application of engineering technology principles using high safety	
	standards.	
PO2	An ability to develop communication skills to write and present a substantial	K6
	technical report/document.	
PO3	An ability to understand and apply professional, ethical, and quality standards of	К5
	excellence consistent with plastics industry.	
PO4	An ability to serve their communities and the environment through innovations in	K5
	plastic technology/engineering.	
PSO	An ability to systematically break up complex problems in realizable steps related	K4
	to mold design, processing of plastics, plastic product design and solve them.	
PO4	An ability to serve their communities and the environment through innovations in	K5
	plastic technology/engineering.	
PSO	An ability to systematically break up complex problems in realizable steps related	K4
	to mold design, processing of plastics, plastic product design and solve them.	

Following table represents the correlation between COs and POs and PSOs for the year 2020-21 and 2021-22

SEMESTER I							
Subject			PO1	PO2	PO3	PO4	PO5
GET 2101:			K5	K6	K5	K5	K4
	CO1	K4	3	2	3	3	3
Technology and Chemistry of	CO2	K5	3	3	3	3	3
Polymers.	CO3	K3	2	2	2	2	3
I orymers.	CO4	K2	2	1	2	2	2
			PO1	PO2	PO3	PO4	PO5
			K5	K6	K5	K5	K4
GET 2102:	CO1	K3	2	2	2	2	3
Processing of	CO2	K3	2	2	2	2	3
Plastics	CO3	K5	3	3	3	3	3
	CO4	K3	2	2	2	2	3
	CO5	K3	2	2	2	2	3
			PO1	PO2	PO3	PO4	PO5
			K5	K6	K5	K5	K4
GET 2103 – Plastic	CO1	K4	3	2	3	3	3
Product Design and	CO2	K6	3	3	3	3	2
Testing.	CO3	K3	2	2	2	2	2
	CO4	K3	2	2	2	2	2
	CO5	K4	3	2	3	3	3

	Course	K6	3	3	3	3	2
			PO1	PO2	PO3	PO4	PO5
GEP2106: Research Project I CO1 K3 2 2 CO2 K4 3 2 2 CO3 K4 3 2 2 GEMESTER II CO3 K4 3 2 2 SEMESTER II PO1 PO2 I 1 </td <td>K5</td> <td>K5</td> <td>K4</td>	K5	K5	K4				
	earch Image: constraint of the second s	3					
Project I EMESTER II GET 2107 - Design of Moulds GET 2108- Principles of Plastic Machinery Design GET 2109- CAD/CAM/CAE: GEP21111: Research Project II GET 2117: Plastic waste Management GET 2119 -	CO2	K4	3	2	3	3	3
	PO1 PO2 PO3 PO4 PO4 K5 K6 K5 K5 K5 K5 C01 K3 2 2 2 2 2 C02 K4 3 2 3 3 3 C03 K4 3 2 3 3 3 C03 K4 3 2 3 3 3 C03 K4 3 2 2 2 2 C03 K4 3 2 3 3 3 C04 K6 3 3 3 3 3 C04 K6 3 3 3 3 3 C04 K3 2 2 2 2 2 2 C03 K3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3					
SEMESTER II			1	1	1	1	1
			PO1	PO2	PO3	PO4	PO5
							K4
GET 2107 -Design of	CO1	K6					2
0							3
		K4		2	3	3	3
							2
				PO2	PO3		PO5
							K4
	CO1	K3					3
							3
-							3
Machinery Design							2
							3
							3
	000			_	_		PO5
				K4			
GET 2109-	CO1	К3					3
							2
							3
							3
			-		-	-	PO5
-							K4
-	CO1	К3					3
Research Project II							3
GEP 2100: Research Project I CO1 K3 2 2 2 2 C02 K4 3 2 3 3 SEMESTER II CO3 K4 3 2 3 3 GET 2107 -Design of Moulds CO1 K6 3 3 3 3 GET 2107 -Design of Moulds CO1 K6 3 3 3 3 GET 2108- Principles of Plastic Machinery Design CO1 K3 2 2 2 2 2 CO3 K4 3 2 3 3 3 GET 2108- Principles of Plastic Machinery Design CO1 K3 2		3					
	005	111					PO5
-							K4
GET 2117: Plastic	CO1	K4					3
							3
							3
-						-	3
	007		-	_	-	-	PO5
							K4
	CO1	K6					2
							3
							3
							3
applications.							3
-	CO5	K3 K3	2	2	2	2	3
		КЭ	<u>ک</u>	<u> </u>			3


3, 2, 1 represent strong, moderate and weak correlation; '-' refers to no correlation.

SEMESTER-I							
	CO\PO		PO1	PO2	PO3	PO4	PSO
			K5	K6	K5	K5	K4
GET2110-	CO1	K2	2	2	-	1	3
Chemistry of plastics and polymer	CO2	K3	3	3	-	2	3
materials	CO3	K4	3	-	3	2	2
	CO4	K3	3	2	-	2	3
	CO5	K3	2	2	2	1	2
	CO\PO		PO1	PO2	PO3	PO4	PSO
			K5	K6	K5	K5	K4
GET 2102-	CO1	K5	3	2	-	2	3
Processing of Plastics	CO2	K4	3	2	-	2	3
Trocessing of Trastics	CO3	K3	3	2	3	1	2
	CO4	K3	2	-	-	1	2
	CO5	K2	2	2	-	2	2
	CO\PO		PO1	PO2	PO3	PO4	PSO
			K5	K6	K5	K5	K4
GET2103-	CO1	K4	3	2	2	1	2
Plastic Product design and testing	CO2	K6	3	2	3	2	2
Thashe Trouber design and testing	CO3	K3	2	2	3	2	2
	CO4	K3	2	1	-	2	2
	CO5	K4	3	2	-	3	2
	CO\PO		PO1	PO2	PO3	PO4	PSO
			K5	K6	K5	K5	K4
GET2129-	CO1	K4	3	2	-	3	2
Processing and Mechanics of Composites	CO2	K4	2	2	-	2	2
	CO3	K4	3	2	-	2	2
	CO4	K2	3	2	-	2	2
	CO\PO		PO1	PO2	PO3	PO4	PSO
			K5	K6	K5	K5	K4
GET2113-	CO1	K2	3	2	2	2	2
Finite Element Analysis	CO2	K6	2	-	-	-	2
	CO3	K3	2	-	-	-	2
	CO4	K3	2	-	-	-	2
	CO\PO		PO1	PO2	PO3	PO4	PSO
			K5	K6	K5	K5	K4
	CO1	K2	2	3	3	3	3
	CO2	K2	2	2	2	1	2
HUT2101C-	CO3	K3	2	3	3	3	2
Research Methodology	CO4	K2	2	3	2	2	2
	CO5	K4	2	3	2	2	2
	CO6	K5	-	3	-	3	2
		TZ 1	1	3	-	2	2
	CO7 CO8	K1 K6	- 2	3	-	3	4

Following table represents the correlation between COs and POs and PSOs for the year 2022-23

SEMESTER-II							
	CO\PO		PO1	PO2	PO3	PO4	PSO
			K5	K6	K5	K5	K4
	CO1	K2	3	2	2	-	2
GET2124-	CO2	K3	3	1	-	2	2
GE 12124- Design of plastic Molds and Dies	CO3	K2	3	-	2	-	2
Design of plastic Molds and Dies	CO4	K6	3	-	2	-	3
	CO5	K2	3	2	2	2	3
	CO6	K2	3	-	2	-	2
	CO7	K2	2	2	3	2	1
	CO\PO		PO1	PO2	PO3	PO4	PSO
			K5	K6	K5	K5	K4
GET2108-	CO1	K5	3	2	-	2	3
Principles of Plastic Processing	CO2	K4	2	-	-	2	2
Machinery Design	CO3	K2	2	-	-	2	3
	CO4	K4	3	2	-	2	3
	CO5	K2	2	-	-	1	2
	CO\PO		PO1	PO2	PO3	PO4	PSO
			K5	K6	K5	K5	K4
GET2117-	CO1	K2	2	2	3	3	2
Plastic Waste Management	CO2	K3	2	2	2	3	2
i lastic ivaste management	CO3	K5	2	-	2	3	2
	CO4	K4	2	1	2	3	2
	CO5	K2	2	1	3	2	2
	CO/PO		PO1	PO2	PO3	PO4	PSO
			K5	K6	K5	K5	K4
GET2113-	CO1	K6	2	3	-	2	2
Advanced Polymer Based	CO2	K3	1	2	-	2	2
Materials in Engineering Applications	CO3	K3	1	2	-	2	2
	CO4	K3	2	2	2	2	2
			3	2	3	2	3

3, 2, 1 represent strong, moderate and weak correlation; '-' refers to no correlation.

2.2.1. Describe the assessment tools and processes used to gather the data upon which the evaluation of Program Outcome is based (20)

(Institute Marks: 20)

The assessment of the students is carried out through the following methods:

- Assignments
- MCQ tests/ Class tests
- Student projects & presentations
- Experimental laboratory work
- Mid-Semester examination and
- End Semester examination

Calculation of Course Outcomes COs (Direct and Indirect)

- A) Assessment tools used to measure student learning and Course Outcomes:
 - End Semester Exam: End Semester Score (25 M),
 - Continuous Evaluation: Score for Continuous (10 M) and
 - Mid-SEM Examination (15 M)

The assessment of the course outcomes (COs) has been performed by the respective subject faculty. The corresponding steps have been discussed below.

B) The CO-attainment calculation for end-semester (Direct)

Step I: Percentage weightage (W) has been given to each of the COs of a course (AY2020-21) (GET2108: Principles of Plastic Machinery Design) corresponding to each question asked in the end semester question paper.

Qn No.	Maximum Marks allotted	CO1	CO2	CO3	CO4	CO5	CO6
Q1	5				100%		
Q2	5			100%			
Q3	5	100%					
Q4	5		100%				
Q5	5				60%	40%	
Q6	5						100%

Step II: Final marks for each question	n are entered for eacl	h individual student, for a subject
mentioned in the table.		

GET2108- Principles of Plastic Machinery Design	End Sem (ES) Marks						
	Q1	Q2	Q3	Q4	Q5	Q6	Total (ES)
Roll. No.	5	5	5	5	5	5	25
20PLS201	4	4	4	2	-	5	19
20PLS202	4	5	5	5	-	5	24
20PLS203	4	4	5	-	5	5	23
20PLS204	4	4	4	-	4	5	21
20PLS205	4	3	4	2	-	2	15
20PLS206	4	4	5	2	5	-	20
20PLS207	4	4	5	-	5	5	23
20PLS208	3	4	4	-	5	5	21
20PLS209	4	4	5	-	5	5	23
20PLS210	4	4	5	-	3	4	20
20PLS211	4	4	5	2	5	-	20

Step III: Calculation of CO wise score from Question wise marks. It is calculated as follows.

$$CO$$
 - attainment = \sum (Marks scored in the individual question) x $CO\%$

For example-1, consider calculation for seat number 20PLS203,

CO1 = (1.0 * Marks scored in Q3) CO1 = (1.0 * 5) CO1 = 5For example-2, consider calculation for seat number 20PLS203, CO4 = (1.0 * Marks scored in Q1) + (0.6 * Marks scored in Q5)CO4 = (1.0 * 4) + (0.6 * 5)CO4 = 4 + 3 = 7

Roll. No.	Marks attained in					
	CO1	CO2	CO3	CO4	CO5	CO6
20PLS201	4	2	4	4		5
20PLS202	5	5	5	4		5
20PLS203	5		4	7	2	5
20PLS204	4		4	6	2	5
20PLS205	4	2	3	4		2
20PLS206	5	2	4	7	2	
20PLS207	5		4	7	2	5
20PLS208	4		4	6	2	5
20PLS209	5		4	7	2	5
20PLS210	5		4	6	1	4
20PLS211	5	2	4	7	2	
No. of students attempted CO	11	5	11	11	8	9

The table below shows the calculation of the COs for each candidate as explained above.

Step-IV: Average marks for each CO's were calculated.

	CO1	CO2	CO3	CO4	CO5	CO6
Average marks of each CO	4.6	2.6	4.0	5.9	1.9	4.6

Step-V: No. of students equal and above average is counted.

No. of students equal and above	7	1	10	7	6	7
average (from Step-3)	7	1	10	1	0	/

Step-VI:

Percentage CO1 attainment for end semester = $\frac{\text{No. of students equal and above average}}{\text{No. of students attempted the CO}}$

$$=\frac{7}{11}*100\%=63.63\%$$

Step-VII: The table below shows all the attainment calculated as per Step-VI for End -Semester.

	CO1	CO2	CO3	CO4	CO5	CO6
% CO attainment (End Sem)	64%	20%	91%	64%	75%	78%

Step-VIII: Calculation of %CO attainment for Continuous assessment (Mid-Semester + Class test OR Assignment)

1. The continuous assessment (CA) marks (includes Class tests, assignments etc.) and Mid-semester (MS) marks of each student is tabulated and totalled.

i.e., Total Marks obtained by a student in CA and MS = (Marks scored in CA) + (Marks scored in MS)

- 2. Average marks are obtained for the entire class.
- 3. Determined the number of students scoring equal and above average.
- 4. Percentage CO attainment from CA and MS is determined.

% attainment = $\frac{No. of students equal and above average}{Total no. of students}$ = $\frac{6}{11} * 100\% = 55\%$

Roll. No.	CA Marks	MS Marks	Total					
	Out of 10	Out of 15						
20PLS201	7	12	19					
20PLS202	10	14	24					
20PLS203	8	13	21					
20PLS204	9	14	23					
20PLS205	7	14	21					
20PLS206	9	13	22					
20PLS207	8	14	22					
20PLS208	7	10	17					
20PLS209	9	14	23					
20PLS210	10	9	19					
20PLS211	9	13	22					
	Average		21.2					
No.	No. of students equal and above average							
	% CO attainment (CA and N	AS)	55%					

Step-IX: Final attainment (direct) is calculated and shown in the table below-

The final attainment is calculated by taking average of CO attainment of End Semester (ES) and CO attainment of Continuous Assessment and Mid Semester (CA and MS). We have set the target for a

particular course to calculate the % attainment for each CO's. The %CO obtained is divided by the set target to achieve the class attainment for course GET2108.

 $Average attainment = \frac{Attainment to CO for ES + Attainment to CO for MS and CA}{2}$

$$Final attainment = \frac{Average attainment (\%)}{Set target value (\%)}$$

If the final attainment obtained for a CO is greater than 100%, then we consider the target CO to be 100%.

Course Outcome	CO1	CO2	CO3	CO4	CO5	CO6
Attainment to CO for End Sem	64%	20%	91%	64%	75%	78%
Attainment to CO for Mid Sem and CA	55%	55%	55%	55%	55%	55%
Average attainment	59.09%	37.27%	72.73%	59.09%	64.77%	66.16%
Set Target attainment (%)	60%	60%	60%	60%	60%	60%
Final Attainment CO (%)	98.48%	62.12%	100.00%	98.48%	100.00%	100.00%

Calculation of CO Attainment (Indirect)

- 1. Feedback for all the subjects with respective COs has been taken from students using a google spreadsheet.
- 2. Score from each student is obtained for courses in the scale of 1 to 3 with respect to the Relevance of the courses in their present occupation, where 1 indicating weak relation, 2 indicating moderate relation and 3 indicating strong relation.

Relation	Score
High (Strong)	3
Medium	2
Weak (low)	1

3. Average score was calculated as below-

$$= \sum \frac{score\ from\ student\ *\ no.\ of\ students}{Total\ no.\ of\ students}$$

Indirect	Attainment	for year	2021-22
muneci	Attainment	IUI year	4041-44

Course Code	GET 2101	GET 2102	GET 2103	GEP 2104	GEP 2105	GET 2107	GET 2108	GET 2109	GEP 2110
Roll No.									
21PLS202	3	3	3	3	2	3	2	3	3
21PLS204	2	3	2	2	2	3	3	2	2

21PLS206	3	3	3	3	3	3	3	2	3
21PLS208	3	3	3	3	3	2	3	2	2
21PLS209	3	3	3	3	3	3	3	3	3
21PLS210	3	3	3	3	3	3	3	3	3
21PLS211	3	3	3	3	3	3	3	3	3
21PLS212	3	3	3	3	3	2	2	3	2
Average	2.88	3.00	2.88	2.88	2.75	2.75	2.75	2.63	2.63
Feedback above average	7	8	7	7	6	6	6	5	5
% CO attainment	87.50%	100%	87.50%	87.50%	75.00%	75.00%	75.00%	62.50%	62.50%

Indirect Attainment for year 2020-21

Course Code	GET 2101	GET 2102	GET 2103	GEP 2104	GEP 2105	GET 2107	GET 2108	GET 2109	GEP 2110
Roll No.									
20PLS202	3	2	2	3	3	3	3	3	3
20PLS204	2	3	3	2	3	3	2	3	3
20PLS205	3	3	3	3	3	3	3	3	3
20PLS206	3	3	3	3	2	3	2	3	2
20PLS208	2	3	3	3	3	3	3	3	3
20PLS209	3	3	3	3	3	3	3	3	3
Average	2.7	2.8	2.8	2.8	2.8	3.0	2.7	3.0	2.8
Feedback above average	4	5	5	5	5	6	4	6	5
% CO attainment	66.67%	83.33%	83.33%	83.33%	83.33%	100%	66.67%	100%	83.33%

C) Sample calculation for PO and PSO attainment for the subject GET2108 for the academic year 2020-21.

Step-I: The relation between course outcome and program outcome (for each course) is determined where 3, 2 and 1 denote strong, medium and weak correlation, respectively and '-'refers to no correlation, as shown in the table 2.2.1a

Subject Code	GET2108			Sem:	II
CO\PO	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2	2	3
CO2	2	2	2	2	3
CO3	2	2	2	2	3
CO4	3	2	3	3	2
CO5	3	2	3	3	3
CO6	2	2	2	2	3

Table 2.2.1a: Relation between CO and PO for course GET2108, for academic year 2020-21

Step-II: Using % CO attainment data, we calculate the %PO attainment for each course using the matrix defined in Step-I. Therefore, the contribution of each CO to each PO is calculated. An example of PO1 calculation for GET2108 (Principles of Plastic Machinery Design) for the academic year 2020-2021 is given below-

$$\%P0 \ attainment = \frac{(98.48 * 2 + 62.12 * 2 + 100 * 2 + 98.48 * 3 + 100 * 3 + 100 * 2)}{(2 + 2 + 2 + 3 + 3 + 2)} = 94.05\%$$

Step III: Table 2.2.1b shows the calculation of all the PO's corresponding to each %CO attainment for the course GET2108 for academic year 2020-21.

Subject Code	AY 2020-21	GET2108			Sem:	II
CO\PO	% CO attainment	PO1	PO2	PO3	PO4	PO5
CO1	98.48%	2	2	2	2	3
CO2	62.12%	2	2	2	2	3
CO3	100.00%	2	2	2	2	3
CO4	98.48%	3	2	3	3	2
CO5	100.00%	3	2	3	3	3
CO6	100.00%	2	2	2	2	3
% PO attainment		94.05%	93.18%	94.05%	94.05%	92.87%

Table 2.2.1b: %POs attained for course GET2108, for academic year 2020-21

Step-IV: Likewise, we calculated the %PO's attainment levels of all the courses for the academic year 2020-21, as represented in table 2.2.1c

Table 2.2.1c: %POs attained (Direct) for all courses, for academic year 2022-23

	Subject Code	PO1	PO2	PO3	PO4	PO5
	GET2101	71.97%	60.58%	60.85%	60.85%	60.75%
	GET2102	79.68%	79.68%	79.68%	79.68%	78.86%
-21	GET2103	84.40%	84.60%	84.40%	84.40%	84.49%
2020-21	GET2113	94.28%	100.00%	100.00%	100.00%	93.56%
ch 2	GET2107	90.39%	90.91%	90.39%	90.39%	91.48%
Batch	GET2108	94.05%	93.18%	94.05%	94.05%	92.87%
	GET2109	100.00%	100.00%	100.00%	100.00%	100.00%
	GET2119	78.42%	78.42%	78.42%	78.42%	75.65%
	Average % PO	86.65%	85.92%	85.97%	85.97%	84.71%

Step-V: The %PO attained for a particular course is converted on a scale of 3. The table below represents the PO's attained on a scale of 3.

PO attained = (Average % PO)
$$*\frac{3}{100}$$

	Subject Code	PO1	PO2	PO3	PO4	PO5
	GET2101	2.16	1.82	1.83	1.83	1.82
	GET2102	2.39	2.39	2.39	2.39	2.37
-21	GET2103	2.53	2.54	2.53	2.53	2.53
2020-21	GET2113	2.83	3.00	3.00	3.00	2.81
	GET2107	2.71	2.73	2.71	2.71	2.74
Batch	GET2108	2.82	2.80	2.82	2.82	2.79
	GET2109	3.00	3.00	3.00	3.00	3.00
	GET2119	2.35	2.35	2.35	2.35	2.27
	Average	2.60	2.58	2.58	2.58	2.54

Table 2.2.1d: POs attained (Direct) of all courses, for the academic year 2020-21

2.2.2. POs attainment levels with observations (40)

(Institute Marks: 40)

The PO attainment is tabulated below for the academic years 2020-21 (Table 2.2.2a), 2021-22 (Table 2.2.2b) and 2022-23 (Table 2.2.2c) respectively-

Table 2 2 2a, DOs attained	of all courses on a sould of 2	for the good amin your 2020 21
Tuble 2.2.20. TOS ullumed (ij un courses on a scale of 5	, for the academic year 2020-21

	Subject Code	PO1	PO2	PO3	PO4	PO5
	GET2101	2.16	1.82	1.83	1.83	1.82
	GET2102	2.39	2.39	2.39	2.39	2.37
_	GET2103	2.53	2.54	2.53	2.53	2.53
2020-21	GET2113	2.83	3.00	3.00	3.00	2.81
502(GET2107	2.71	2.73	2.71	2.71	2.74
ch 2	GET2108	2.82	2.80	2.82	2.82	2.79
Batch	GET2109	3.00	3.00	3.00	3.00	3.00
	GET2119	2.35	2.35	2.35	2.35	2.27
	Average PO attained (Direct)	2.60	2.58	2.58	2.58	2.54
	Average PO attained (indirect)	3.00	3.00	3.00	3.00	3.00
	PO attained 2020-21	2.72	2.70	2.71	2.71	2.68

(considering 70% weightage to direct PO attainment, and 30% weightage to in-direct PO attainment)

Table 2.2.2b: POs attained of all courses on a scale of 3, for the academic year 2021-22

121-	Subject Code	PO1	PO2	PO3	PO4	PO5
500	GET2101	2.18	2.37	2.18	2.18	2.26
2	GET2102	2.44	2.44	2.44	2.44	2.38
Batc	GET2103	2.29	2.43	2.29	2.29	2.23

HUT2101C	2.47	2.47	2.47	2.47	2.41
GET2119 HUT2101C	2.47 2.37	2.47 2.38	2.47 2.37	2.47 2.38	2.41 2.37
GET2109	3.00	3.00	3.00	3.00	3.00
GET2107 GET2108	2.93 2.87	2.93 2.90	2.93 2.87	2.93 2.87	2.95 2.89
GET2113	1.97	3.00	3.00	3.00	1.84

(considering 70% weightage to direct PO attainment, and 30% weightage to in-direct PO attainment)

	Subject Code	PO1	PO2	PO3	PO4	PSO
	GET2120	2.36	2.50	2.13	2.34	2.40
	GET2102	2.93	2.93	3.00	2.93	2.93
	GET2103	2.63	2.60	2.64	2.58	2.63
	GET2129	2.82	2.83	-	2.80	2.83
53	GET2113	2.89	3.00	3.00	3.00	2.88
2022-23	HUT2101C	2.83	2.89	2.83	2.92	2.87
	GET2117	2.80	2.83	2.79	2.79	2.80
Batch	GET2108	2.67	2.50	-	2.72	2.69
B	GET2124	2.63	2.64	2.69	2.67	2.60
	GET2133	2.45	2.46	2.50	2.50	2.50
	GET2135	2.29	2.29	2.13	2.34	2.29
	Average PO attained (Direct)	2.66	2.68	2.63	2.69	2.67
	Average PO attained (indirect)	3.00	3.00	3.00	3.00	3.00
	PO attained 2022-23	2.76	2.78	2.74	2.78	2.77

Table 2.2.2c: POs attained of all courses on a scale of 3, for the academic year 2022-23

(considering 70% weightage to direct PO attainment, and 30% weightage to in-direct PO attainment)

Observations on attainment levels for syllabus years 2020-21 and 2021-22

Course Code:	Course Title: Technology and Chemistry of Polymers		Credits 3		
GET 2101			Т	Р	
Semester: I	Total contact hours: 45	2 1		0	
Course Outco	mes (students will be able to)				
1.	Understand basics of polymer chemistry and types of polymerizations		K4		
2.	Classify and compare between various polymers.	K5			
3.	Understand synthesis, properties and applications of various polymers	K3			
4.	Apply effect of polymer morphology on processing conditions	K2			

5	Explain various additives used in plastics and importance of polymer	к2
5.	blends and alloys.	112

Course Code:	Course Title: Processing of Plastics		Course Title: Processing of Plastics		edits 3	s =
GET 2102		L	Т	Р		
Semester: I	Total contact hours: 45	2	1	0		
Course Outc	omes (students will be able to)					
1.	Understand basic principles of Injection Moulding and troubleshooting in Injection Moulding.		K3			
2.	Explain extrusion lines for various plastic parts such as profiles, pipes, tubing's, films, sheets and insulation coating on cables.		K3			
3.	Compare between compression and transfer moulding process on the basis of process variables.		K5			
4.	Understand processing methods such as blow moulding, rotational moulding for hollow articles.		K3			
5.	Understand basic principles and applications of calendaring, thermoforming and FRP processes		K3			

Course Code:	Code: Course Title: Plastic Product Design and Testing		Credits 3		
GET 2103		L	Т	Р	
Semester: I	Total contact hours: 45	2	1	0	
Course Outc	omes (students will be able to)				
1.	Understand basics of plastic product design		K4		
2.	Design engineering plastic products based on technical requirements.		K6		
3.	Understand various test standards for plastic product testing.		K3		
4.	Understand test procedure to evaluate mechanical, electrical, thermal, flow, optical, and general properties for plastic products.		K3		
5.	Analyse and interpret various test results		K4		

-	ourse Code:	e Code: Course Title: Finite Element Analysis		edit 3	s =
GET 2113			L	Т	Р
Semester: I	Elective – II	Total contact hours: 45	2	1	0
Course Out	tcomes (students will b	e able to)			
1.	Understand the concept	ots behind formulation methods in FEM.		K2	
2.	Develop element ch equation.	aracteristic equation and generation of global		K6	

3.	Relate the application and characteristics of FEA elements such as bars, beams, plane and iso-parametric elements.	K3
4.	Apply suitable boundary conditions to a global equation for bars, trusses, beams, circular shafts, heat transfer, fluid flow, axi symmetric and dynamic problems and solve them displacements, stress and strains induced	К3

Course Code:	Course Title: Design of Molds	Credits = 3			
GET 2107	Course rue. Design of Molus	L	Т	Р	
Semester: II	Total contact hours: 45		1	0	
Course Outcom	es (students will be able to)				
1.	Design and draw compression molds for plastic products		K6		
2.	Applying basic principles of design of transfer molds	K3			
3.	Analyze, design and draw Injection molds for plastic products	K4			
4.	Design of extrusion dies		K6		

Course Code:	Course Title: Principles of Plastic Processing Machinery Design		redits 3	\$ =
GET 2108		L	Т	Р
Semester: II	Total contact hours: 45	2	0	
Course Outco	mes (students will be able to)			
1.	Applying basic principles of hydraulics to working of hydraulic machinery		K3	
2.	Applications of various pumps, valves etc in hydraulic circuit		K3	
3.	Applications of hydraulic circuits in plastic processing machines		K3	
4.	Analysis of various design parameters for screw extruder		K4	
5.	Classifications and applications of clamping system for injection molding		K4	
6.	Applications of thermal heating and temperature control in plastic processing		K3	

Course Code:	Course Title: CAD/CAM/CAE	Cr	Credits = 3	
GET 2109		LT		Р
Semester: II	Total contact hours: 45	2	1	0
	Course Outcomes (students will be able to)			
1.	Construct solid models of plastic and mechanical components		K3	
2.	Design various molds and dies using computer-aided design		K6	

3.	Applying the basics of computer-aided manufacturing programme	K3
4.	Analyse variation in pressure, temperature and time graph using a computer-aided programme	K4

Course Code: GET 2119		Course Title: Advanced Polymer based Materials in Engineering applications		edit 3	s =	
GE	1 2117	Engineering applications	L	Т	Р	
Semester: II	Elective – III	Total contact hours: 45	2	1	0	
Course Out	aamaa (atudant	will be able to				
Course Out		s will be able to)				
1.	Design and an	Design and analysis of fiber reinforced polymer composites.				
2.	Applications of various methods of manufacturing fiber reinforced polymer composite.			K3		
3.	Applications of performance enhancing and special purpose construction chemicals, polymer modified cement mortars for repairs					
4.	Applications of different types of polymers in manufacturing of pipes for water supply/ wastewater, effluent transport, drainage system.			K3		
5.	Applications o	Applications of polymers in electrical applications				
6.	Applications applications	of polymer composites in automobile and medical		K3		

Course Code:	Course Title: Plastic Waste Management	Cr	redits 3	s =
GET 2117		LT		Р
Semester: II	Total contact hours: 45	2 1		0
Course Outco	mes (students will be able to)			
1.	Analyze sources of plastic waste and separation methods		K4	
2.	Classify various plastic waste management techniques		K4	
3.	Analyze the impact of the effect of various recycling processes		K4	
4.	Analyze the impact of Plastic process industry on the global, economic and societal context		K4	

Course Code: GET 2112		Course Title: Processing and Mechanics of	Credits 3		01001		010410		01001		01001		01001		01001		0100		0100		Cre		3 =
		Composites	L	Т	Р																		
Semester: I	Elective – I	Total contact hours: 45	2	1	0																		
	С	ourse Outcomes (students will be able to)																					
1.	Analyze poly	mer composites and factors affecting its performance		K4																			
2.	Analyze mec	hanical properties of polymer composites	K4																				
3.	Analyze defe	ormation behaviour of single ply or lamina		K4																			

K2

Observations on attainment levels for each of the POs for syllabus year 2022-23

Course Code:	Code: Course Title: Chemistry of Polymers and Plastic Materials GET 2120 Course Title: Chemistry of Polymers and Plastic Materials		Credits 3	
GET 2120			Т	Р
Semester: I	Total contact hours: 45	2	1	0
	Course Outcomes (students will be able to)			
1.	Understand basics of polymer chemistry and types of polymerizations		K2	
2.	Apply properties of polymers/smart polymers/industry-oriented polymers for suitable applications		K3	
3.	Analyze Synthesis of commodity, engineering and specialty plastics			
4.	Apply effect of polymer morphology on processing conditions	K3		
5.	Apply effect of various additives on polymer /polymer blend properties		K3	

Course Code:	Code: Course Title: Processing of Plastics		Credits = 3		
GET 2102		L	Т	Р	
Semester: I	Total contact hours: 45	2	1	0	
	Course Outcomes (students will be able to)				
1.	Evaluate the effect of various process parameters of injection molding on plastic products		K5		
2.	Analyze effect of various parameters on plastic products produced by extrusion		K4		
3.	Apply the effect of various process parameters of compression molding on product quality		K3		
4.	Apply principles of blow molding, rotational molding for plastic products.		K3		
5.	Understand basics of calendaring, thermoforming and FRP process in various applications		K2		

Course Code:	Course Title: Plastic Product Design and Testing	Cr	Credits = 3	
GET 2103		LT		Р
Semester: I	Total contact hours: 45	2	1	0
	Course Outcomes (students will be able to)			
1.	1. Analysing basics of plastic product design			
2.	Design engineering plastic products based on technical requirements	K6		
3.	Apply various test standards for plastic product testing		K3	

4	Applying various test procedure to evaluate mechanical, electrical,	К3
4.	thermal, flow, optical, and general properties for plastic product	KJ

	e Code: 2129	Course Title: Processing and Mechanics of	Cr	s =	
GEI	2129	Composites	L	Т	Р
Semester: I	Elective – I	Total contact hours: 45	2	1	0
	С	ourse Outcomes (students will be able to)			
1.	Analyze poly	mer composites and factors affecting its performance		K4	
2.	Analyze mec	hanical properties of polymer composites	K4		
3.	Analyze defo	ormation behaviour of single ply or lamina	K4		
4.	Understand p	processing and fracture modes of polymer composites		K2	

Course Code: GET 2113		Course Title: Finite Element Analysis	Cr	edit 3	s =
	GEI 2115		L	Т	Р
Semester: I Elective – II		Total contact hours: 45	2	1	0
	Course O	utcomes (students will be able to)			
1.	Understand the concept	Understand the concepts behind formulation methods in FEM.			
2.	Develop element ch equation.	Develop element characteristic equation and generation of global equation.			
3.	Relate the application and characteristics of FEA elements such as bars.			, K3	
4.	beams, circular shaft	ry conditions to a global equation for bars, trusses, s, heat transfer, fluid flow, axi symmetric and nd solve them displacements, stress and strains		K3	

Course Code: GET 2121/	Course Title: Course Title: Research Methodology			s =		
HUT2101c			Τ	Р		
Semester: I	Total contact hours: 90	2	0	4		
	Course Outcomes (students will be able to)					
1.	1. Understand the basic concepts of research and the components.					
2.	2. Understand and appreciate the significance of statistics in Plastic, Mechanical, Electrical and Civil Engineering.					
3.	3. Understand and apply importance of literature survey in research design					

induced

4.	Understand an in-depth knowledge on the documentation in research	К2
5.	Evaluate importance of various parts of a research report/paper/thesis in presentation of research results	K4
6.	Prepare and deliver a model research presentation	K5
7.	Understand the significance of various types of IPRs in research	K1
8.	Create a model research project	K6

Course Code: GET 2124		Course Title: Design of Plastic Molds and dies	Credit 3		s =
U			L	Т	P
Sei	mester: II	Total contact hours: 45	2	1	0
		Course Outcomes (students will be able to)			
1.	1. Understand the basic factors to be considered in plastic mold design.			K2	
2.	2. Understand and apply importance of mold design factors in mold design calculations.			K3	
3.	Understand	l basic principles of extrusion die design		K2	
4.	4. Design and draw injection, transfer and compression molds.			K6	
5.	5. Understand various injection mold design simulation softwares				
6.	6. Understand various materials used for molds and extrusion dies construction.				
7.	Understand	l concept of 3 D printing		K2	

Course Code:	le: Course Title: Principles of Plastic Machinery Design 2108 ster:		Credits = 3		
GET 2108 Semester:			Т 1	Р 0	
II	Total contact hours: 45				
	Course Outcomes (students will be able to)				
1.	Evaluate effect of various design parameters on plastic processing				
2.	Analyze effect of various hydraulic devices in plastic processing machinery		K4		
3.	Understand basics of mixers in plastic processing, Understand effect of thermal heating and temperature control in plastic processing.				
4.	Analyze effect of various design parameters for screw extruder.	K4			
5.	Understand classifications and applications of clamping system for injection molding.	m for K2			

Course Code:		Credits 3				
GET 2117		L	Т	P		
Semester: II	Total contact hours: 45	2	1	0		

Course Outcomes (students will be able to)					
1.	Understand Plastic Waste Management Practices.	K2			
2.	Apply knowledge for plastic resource recovery and circular economy.	K3			
3.	Decide suitability of process for mechanical recycling of plastics.	K5			
4.	Select better option from recycling, incineration and landfilling	K4			
5.	Understand Plastic waste Management rules in India, Global rules and regulations	К2			

Course Code: GET 2133		Course Title: Advanced Polymer based Materials in Engineering applications	Credits 3		s =
GEI	1 2133	Engineering applications	L	Т	Р
Semester: II	Elective – III	Total contact hours: 45		1	0
	Co	urse Outcomes (students will be able to)			
1.	1. Design and analysis of fiber reinforced polymer composites.				
2. Applications of performance enhancing and special purpose construction chemicals, polymer modified cement mortars for repairs					
3. Applications of different types of polymers in manufacturing of pipes for water supply/ wastewater, effluent transport, drainage system.				K3	
4. Applications of polymers in electrical applications					
5.	Applications of polymer composites in automobile and medical				

Course Code: GET 2135		Course Title: Project Management Methodology and Planning		Credits = 3		
GL	/1 /135	anu i ianning		Т	Р	
Semester: II Elective – IV		Total contact hours: 45	2	1	0	
	Cour	rse Outcomes (students will be able to)				
 To develop a critical understanding of project management to enable students to recognize the importance of discipline in a variety of organizational and functioning contexts. 						
2. Students will learn critical understanding of the concepts employed in project management at strategic, system and operational level.				3, K	(4	
3.		ble to develop knowledge and skills required for n an organization.	K	5, K	.6	

STUDENTS PERFORMANCE

Item (Information to be provided cumulatively for all the shifts with explicit headings, wherever applicable	CAY (2022-23)	CAYm1 (2021-22)	CAYm2 (2020-21)	CAYm3 (2019-20)	CAYm4 (2018-19)
Sanctioned intake of the program (<i>N</i>)	18	18	18	18	10
Total number of students admitted through GATE (N1)	0	0	0	1	2
Total number of students admitted through PG Entrance and others $(N2)$	4	11	11	9	6
Total number of students admitted in the Program $(N1 + N2)$	4	11	11	10	8

Table 3.1

CAY – Current Academic Year

CAYm1 – Current Academic Year minus 1 = Current Assessment Year

CAYm2 – Current Academic Year minus 2 = Current Assessment Year minus1

LYG – Last Year Graduate minus 1

LYGm2 – Last Year Graduate minus 2

Year of entry	N1 + N2 (As defined above)	Number of students who have successfully graduated					
		I Year	II Year				
CAY (2022-23)	4						
CAYm1 (2021-22)	11	11					
CAYm2 (2020-21)	11	11	9				
CAYm3 (2019-20)	10	10	9				
CAYm4 (2018-19)	8	8	8				

Table 3.2

3.1. Enrolment Ratio through GATE (20)

(Institute Marks: 0)

Enrolment Ratio= N1 /N; N is sanctioned intake; N1 is a number of students admitted through GATE.

Item (Students enrolled at the First Year Level on average basis during the last three years starting from Current Academic Year)				
>=80% students enrolled through GATE				
>=60% students enrolled through GATE	16			
>=50% students enrolled through GATE				
>=40% students enrolled through GATE				
>=20% students enrolled through GATE				
<20% students enrolled through GATE	0			

3.2. Success Rate in the stipulated period of the program (20)

(Institute Marks: 18.20)

S.I. = Number of students completing the program in stipulated duration/ Number of students admitted in the first year of the same batch. Average S.I.= Mean of SI for past 3 Batches Assessment points = 20 X Average S.I.

	Number of students admitted in first year of same batch (N)	Number of students completing program in stipulated duration	S.I.
2022-2023	4	-	-
2021-2022	11	-	-
LYG (2020-2021)	11	9	0.82
LYGm1 (2019-2020)	10	9	0.9
LYGm2 (2018-2019)	8	8	1
Average SI			0.91
	0.906*20 = 18.20		

Table 3	3.2
---------	-----

3.3. Placement, Higher Studies and Entrepreneurship (20)

(Institute Marks 18.13)

Assessment Points = $20 \times average$ placement; N is the total no. of students admitted in the first year

Item	LYG CAYm1 (2021-22)	LYGm1 CAYm2 (2020-21)	LYGm1 CAYm3 (2019-20)
Total No of students admitted in first year (N)	11	10	8
No. of students placed in companies or Government Sector (x)	9	8	7
No. of students pursuing PhD/ JRF/ SRF (y)	0	0	1
No. of students turned entrepreneur in engineering/ technology (z)	0	1	0
$\mathbf{x} + \mathbf{y} + \mathbf{z} =$	9	9	8
Placement Index: $(x + y + z)/N$	9/11 = 0.82	9/10 = 0.9	8/8 = 1
Average placement= $(P1 + P2 + P3) / 3$	0.91		
Assessment Points = 20 × average placement	=2	0*0.91 = 18.13	
Table: 3.3	1		

Table: 3.3.1

3.3.1a. Provide the placement data in the below-mentioned format with the name of the program and the assessment year:

Assessment Year 2022-23 (CAY)							
Sr.	Name of the	Enrollment	Name of the Employer	Appointment letter			
No.	student placed	No.	Name of the Employer	reference no. with date			
1.	Akshay Shailesh	21PLS202	Bhavi Plast Pvt. Ltd Mumbai	Letter Ref.: 24 th May			
	Jain			2023			
2.	Ashish Jayant	21PLS203	JJ Plast Alloy Pvt. Ltd.	Letter Ref.: 11 th May			
	Kulkarni			2023			
	Mihir			Letter Ref.: 3 rd May			
3.	Macchindra	21PLS206	JJ Plast Alloy Pvt. Ltd.	2023			
	Jadhav			2025			
4	S Jeya Varshini	21PLS208	Dow Chemicals Pvt. Ltd.	Letter Ref.: 1 st July			
4.	S Jeya Varshini	217L5206	Dow Chemicals Pvt. Etd.	2023			
5.	Solit Alithan	21DL 5200	Kingfa Science and	Letter Ref: 05th April			
5.	Sajit Ajithan	21PLS209	Technology Pvt. Ltd Pune	2023			
	Course: Design days		Henkel Adhesives				
6.	Suraj Rajendra	21PLS211	Technologies India Pvt Ltd,	Letter Ref.: Nil			
	Mhaske		Navi Mumbai				
-	Vikas Bhausaheb	21PLS212	Polyone Polymers India Pvt.	Letter Ref.: 25th April			
7.	Mhaske	21FL3212	Ltd, Ranjan gaon, Pune	2023			

Asses	Assessment Year 2021-22 (CAYm1)						
Sr. No.	Name of the student placedEnrollment		Name of the Employer	Appointment letter reference no. with date			
1.	Dipashree Arun Penkar	20PLS201	Henkel Adhesives Technologies India Pvt Ltd, Navi Mumbai	Letter Ref: 2097 Dt: 14 th Nov 2022			
2.	Dnyanada Diwakar Chaudhari	20PLS202	Henkel Adhesives Technologies India Pvt Ltd, Navi Mumbai	Letter Ref: 2097 Dt: 14 th Nov 2022			
3.	Meghna Pratham Humbal	20PLS203	Shree Bhagubai Mafatlal Polytechnic Institute (SBMP), Mumbai	Letter Ref.: Sponsored Candidate			
4.	Mehul Sanju Karkar	20PLS204 Kent Engineering India Pvt Ltd		Letter Ref. HR/330/22 Dt: 24 th Nov 2022			
5.	Prajwal Suresh Ghadekar	20PLS205	Kingfa Science and Technology (India) Ltd	Letter Ref. 17 th Dec 2021			
6.	Sai Shrikantrao Deshmukh	20PLS206	Brose India Automotive Systems Pvt Ltd,Pune	Letter Ref:29 th Sep 2022			
7.	Shreyash Vijay Tayde	20PLS207	Kingfa Science and Technology (India) Ltd	Letter Ref: 26 th Sep 2022			
8.	Deepshikha Katiyar	20PLS208	Kingfa Science and Technology (India) Ltd	Letter Ref: 17 th Sep 2022			
9.	Tanvi Sanjay Suryawanshi	20PLS211	Polyone Polymers India Pvt Ltd , Bhiwandi .	Letter Ref: 2 nd Nov 2022			

Assessment Year 2020-21 (CAYm2)							
Sr. No.	Name of the student placed	Enrollment No.	Name of the Employer	Appointment letter reference no. with date			
1	Akash Valmik Mahajan	19PLS201	FAURECIA India Pvt Ltd, Pune	Letter Ref.: Nil			
2	Harshal J. Shatalwar	19PLS202	Entrepreneur (Startup)	NA			
3	Jagadish R	19PLS203	Ashirvad Pipes Bengaluru	Letter Dt: 31 st May 2023			
4	Keyur kumar Sureshbhai Vadaliya	19PLS204	Lexcru Water Tech Pvt Ltd. Ahmedabad	Ref: LEX/ WATERTECH/ 2023/05			
5	Mohit Prakash Salunkhe	19PLS205	Capgemini Technology Services India Pvt Ltd, Pune	Letter Ref.: 2 nd March 2022			
6	Naveen Nitin Tembhurnikar	19PLS206	Shree Bhagubai Mafatlal Polytechnic Institute (SBMP), Mumbai	Letter Ref.: A1/541/2014-15, Dt.: 26.09.2014			
7	Paras Manojkumar Tholiya	19PLS207	FAURECIA India Pvt Ltd , Pune	Letter Dt:26 th April 2022			

8	Sachin Anant	19PLS208	Shree Bhagubai Mafatlal	Letter Ref.:
	Kamble		Polytechnic Institute	A1/134/2014-15, Dt.:
			(SBMP), Mumbai	20.05.2014
9	Swagata Ray	19PLS211	Sparsh Polychem, Delhi	
	Chaudhury		SG Control and	Letter Ref.: Nil
			Switchgears Gurgaon	

Assessment Year 2019-20 (CAYm3)							
Sr. No.	Name of the student placed	Enrollment No.	Name of the Employer	Appointment letter reference no. with date			
1	Arjun Vidyashankar Koli	18PLS201	Wilson Composites India Ltd, Pune	Letter Ref: 16 th September 2021 (Rs. 3.80LPA)			
2	Avinash Anil Raut	18PLS202	Higher studies: Conestoga College, Institute of technology and advanced learning	Ref: August 2022			
3	Vikrant Goswami	18PLS203	Henkel Adhesives Technologies India Pvt Ltd, Navi Mumbai	Letter Ref.: 15 th March 2022 (Rs.10.48 LPA)			
4	Kamlesh Jakhar	18PLS204	ABLE Design, Hubli, Karnataka	Ref: Nil			
5	Nishant Kumar Datta	18PLS205	Industry Sponsored, TVS Motor Company, Himachal Pradesh	Internally promoted in TVS motor			
6	Jaynish Rameshbhai Amipara	18PLS206	Tilara Polyplast, Rajkot	Letter Ref.: 05 th May 2019			
7	Sanjay Kumar Patel	18PLS207	Asst Prof, Govt Polytechnic, Lucknow	Ref. No.: 911/16/Letter No2-2022, Dt.: 24 th June 2022			
8	Deepak Kumar Sudhanshu	18PLS208	Asst Prof., CIPET, Bhubaneswar	Ref: Nil			

Table 3.1.1a

3.4. Professional Activities (15)

(Institute Marks: 15)

3.4.1. Student's participation in Professional societies/chapters and organizing engineering events (5)

(Institute marks: 5)

- Five-days hands-on training cum workshop on ANSYS simulation software offered by CADFEM- ANSYS Ltd. Pune from 17th April to 21st April 2023 was organised.
- Students are undergoing industrial training for 4 to 6 months in the various industries, to get industrial exposure and to observe professional practices which are been adopted by the industries.
- Students of M.E Plastic Engineering, attended Asia's largest exhibition on plastics, i.e., PlastIndia Exhibition and regularly attending training programs, seminars, and conferences organized by various professional bodies.
- The Vortex program is arranged by Technological association of Institute of Chemical Technology Mumbai. The ME students are actively involved in organizing and participation in such events. The students are getting great exposure of Industry defined problems to be solved as a one of the tasks in a competition.

3.4.2. Student's publications (10)

(Institute marks: 10)

Year 2020-21

- 1. Optimization of wet sliding wear parameters of Titanium grade 2 and grade 5 bioimplant materials for orthopaedic application using Taguchi method, SG Solanke, VR Gaval, Journal of Metals, Materials and Minerals 30 (3)
- Designing of Parabolic Trough Solar Concentrator Using Structural Steel, D Biswas, VH Dalvi, SP Deshmukh, SV Panse, JB Joshi, Proceedings of Industry Interactive Innovations in Science, Engineering
- 3. Assessment of strength of attachment of cotton fibre to seed, VG Arude, SP Deshmukh, SK Shukla, PG Patil, Journal of Cotton Research and Development
- 4. Single locking cotton feeder for enhancing ginning efficiency of double roller gin, VG Arude, SP Deshmukh, PG Patil, SK Shukla, Farm Machinery Industrial Research Corp. in cooperation with The Shin ...
- 5. Influence of single locking of cotton bolls on ginning performance of double roller gin for short staple cotton, VG Arude, SP Deshmukh, PG Patil, SK Shukla, Journal of Cotton Research and Development
- 6. To Optimize the Conduct of a Photovoltaic Structure using Different DC-DC Conversion Topologies with Emerging Methods for Control Algorithms, P Kulkarni, S Deshmukh, 2020 International Conference on Convergence to Digital World-Quo Vadis ...

- 7. Air side performance of tube bank of an evaporator in a window air-conditioner by CFD simulation with different circular tubes with uniform transverse pitch variation, PD Souza, D Biswas, SP Deshmukh, International Journal of Thermofluids 3, 100028
- 8. An overview: Applications of thermal energy storage using phase change materials, SP Deshmukh, Shahid Ali Materials Today: Proceedings 26, 1231–1237
- 9. Design of Three-Phase Five-Level Cascaded H bridge Inverter with Boost Converter s. p. deshmukh Pragya Jain , International Journal of Electronics, 1-21
- 10. Numerical simulations and optimization of solar air heaters, V. S Korpale, SP Deshmukh, CS Mathpati, VH Dalvi, Applied Thermal Engineering 180, 115744
- 11. Efficiency Intensification of a Solar Structure and Comparison of PI Controller Based Converter Topologies using MATLAB SIMULINK, PA Kulkarni, SP Deshmukh, 2020 IEEE International Conference for Innovation in Technology (INOCON), 1-7
- 12. Computational fluid dynamics of dual fluidized bed gasifiers for syngas production: Cold flow studies, N Hanchate, VS Korpale, CS Mathpati, SP Deshmukh, VH Dalvi Journal of the Taiwan Institute of Chemical Engineers 117, 156-163
- A techno-economic comparison between piston steam engines as dispatchable power generation systems for renewable energy with concentrated solar harvesting and thermal storage, DB Biswas, S Bose, VH Dalvi, SP Deshmukh, NV Shenoy, SV Panse, Energy 213, 118732
- 14. Quality improvement through soil stratum in non-mechanized treatment system for wastewater, SM Gawande, DD Sarode, ICRRM 2019–System Reliability, Quality Control, Safety, Maintenance and Management: Applications to Civil, Mechanical and Chemical Engineering, pg 21-27,2021
- 15. Effect of Biochar on Soybean yield and Soil Properties in Semi-arid Vertisol., RS Oak, DD Sarode, JB Joshi, SA Chavan, Journal of Plant Science Research 36
- Effect of biochar on growth and yield of soybean, RS Oak, DD Sarode, JB Joshi, SA Chavan, SS More, VG Salvi, BIOINFOLET-A Quarterly Journal of Life Sciences 17 (2), 255-263
- 17. A Water Resistant Phosphogypsum Composition Dukb, Dr D D Sarode, Dr P R Nemade, Dr V H Dalvi, Dr Sharad Sontakk, Rahul S,IN Patent 336,119, Journal of Cotton Research and Development.
- Preparation of low-density polyethylene–silver ion antimicrobial film with and without ethylenevinyl acetate, RSN Sahai, VR Gaval, B Bhat, Polymers and Polymer Composites 28 (8-9), 554-561.
- 19. Overview of generation of electricity using tidal energy, 2020 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC), 1-6
- AI based sustainable approach for metal extraction from e-waste: a comprehensive literature review, S Choubey, P Goswami, S Gautam, 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), 1445-1449
- 21. Review on Energy Management Systems for Hybrid E Vehicles, Vaishali A Katkar, Prerna Goswami, 2020, International Conference on Power, Energy, Control and Transmission Systems (ICPECTS),1-6.

- 22. Solar-Aided Coal Fired Power Generation-A review, Satish Ghorpade, Prerna Goswami, 2020 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS),1-11
- Analysis of Mumbai Grid Failure Restoration on Oct 12, 2020: Challenges and Lessons Learnt, S Kumar, A Pandey, P Goswami, P Pentayya, F Kazi, IEEE Transactions on Power Systems 37 (6), 4555-4567

Year 2021-22

- 1. Comparative study of effect of different coupling agent on mechanical properties and water absorption on wheat straw-reinforced polystyrene composites, RSN Sahai, RA Pardeshi, Journal of Thermoplastic Composite Materials 34 (4), 433-450
- 2. Effect of Water Absorption on the Mechanical Properties of Wheat Straw Fibre Reinforced Polystyrene Composites, R.S.N Sahai, Ankita Shinde, Deepankar Biswas and Asit B. Samui, 2022, ASM Sc. J., 17, 1-8
- Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC)-A review, PV Gharat, SS Bhalekar, VH Dalvi, SV Panse, SP Deshmukh, JB Joshi, Renewable and Sustainable Energy Reviews 145, 111002
- In vitro tribological investigation and osseointegration assessment for metallic orthopedic bioimplant materials, S Solanke, V Gaval, S Sanghavi, Materials Today: Proceedings 44, 4173-4178,
- Advancement in warpage prediction of thermoplastic glass filled material through integrative simulation approach, M Divekar, VR Gaval, A Wonisch, G Jadhav, Materials Today: Proceedings 44, 4216-4222
- 6. Crystallinity and cell viability in plasma-sprayed hydroxyapatite coatings, SG Solanke, V Gaval, A Pratap, M Pasarkar, Journal Tribologi 30, 61-72
- Tribological study of vegetable oil and its TMP esters as biolubricants, MM Hussain, V Gaval, A Pratap, D Sonawane, Jurnal Tribologi 31, 13-27
- 8. Tribology in Industry, MM Hussaina, AP Pratapb, VR Gaval
- Increase in Warpage Prediction Accuracy for Glass Filled Polyamide Material (PA66) through Integrative Simulation Approach, VR Gaval, M Divekar, A Wonisch, G Jadhav, Academy of Sciences Malaysia
- Increase in Warpage Prediction Accuracy for Glass Filled Polyamide Material (PA66) through Integrative Simulation Approach, M Divekar, VR Gaval, A Wonisch, G Jadhav, ASM Science Journal 15 (2021)
- 11. Most commonly used metallic biomaterials for plasma sprayed hydroxyapatite coatings, S Solanke, V Gaval, IOP Conference Series: Materials Science and Engineering 1168 (1), 012013
- 12. Study of Vegetable Oil Based Biolubricants and Its Hydrodynamic Journal Bearing Application: A Review.MM Hussain, AP Pratap, VR Gaval, Tribology in Industry 43 (4)
- 13. Composite Material Selection Analytics using Statistical and MCDM Techniques for Cotton-Glass Fibre, RK Garmode, VR Gaval, SG Solanke, SD Nikhade, Design Engineering, 2360-2378

- Composite Material Mechanical Characteristics Analysis by Non-Linear Regression and Error-Analysis Using Co-relation Matrix for Experimented Data, RK Garmode, VR Gaval, SG Solanke, SD Nikhade, Design Engineering, 4841-4863
- 15. Tribological studies of different bioimplant materials for orthopedic application using Taguchi experimental design, S Solanke, V Gaval, Tribologia-Finnish Journal of Tribology 38 (3-4), 4-14-4-14
- 16. Removal of fluoride contaminant in phosphate fertilizers through solid State thermal treatment, LP Ramteke, DD Sarode, YS Marathe, PK Ghosh, Journal of Fluorine Chemistry 241, 109693
- 17. An Overview on Dairy Industry Wastewater and Its Indian Scenario, International Journal of Engineering Applied Sciences and Technology, International Journal of Engineering Applied Sciences and Technology 6 (1) pg363-368.
- 18. Impact of co-application of biomethanated spent wash with bio-char on soil micronutrients and crop growth, RS Oak, DD Sarode, JB Joshi, SA Chavan, Society for Sugarcane Research and Development
- 19. Forward Osmosis: An Approach to Reclaim Dairy Waste Stream Whey, V Agrawal, D Sarode, S Mogha, B Honmane
- 20. Recovery of copper from waste PCB boards using electrolysis, S Choubey, P Goswami, S Gautam, Materials Today: Proceedings 42, 2656-2659

Year 2022-23

- Effect of Water Absorption on Mechanical Properties of Treated and Untreated Hemp Fiber Reinforced Polyester Composites, RSN Sahai, SA Kamble, D Biswas, M Yadav, AB Samui, Journal of The Institution of Engineers (India): Series E, 1-10
- Effect of alkali and silane treatment on water absorption and mechanical properties of sisal fiber reinforced polyester composites, RSN Sahai, D Biswas, MD Yadav, A Samui, S Kamble, Metallurgical and Materials Engineering 28 (4), 641-656.
- 3. Effect of packing pressure on stagnation weld-line strength for thermoplastic semicrystalline glass fiber reinforced material, G Jadhav, V Gaval, M Divekar, N Darade, Journal of Thermoplastic Composite Materials, 08927057221142244.
- 4. Comparative study of weld-line strength for unfilled and glass-filled thermoplastic polyamide-6 materials, G Jadhav, V Gaval, Polymer Engineering & Science.
- 5. Effect of weld-line on tensile properties for thermoplastic glass filled material, G Jadhav, V Gaval, M Divekar, Journal of Thermoplastic Composite Materials, 08927057221124480
- Improvement of warpage prediction through integrative simulation approach for thermoplastic material, M Divekar, VR Gaval, A Wonisch, Journal of Thermoplastic Composite Materials 35 (9), 1231-1248
- 7. Understanding the Operations of the Indian Dairy Industry-A Case Study, Vibha Agrawal, Mukesh Achari, Sanmesh Kharade, Keyur Vadaliya, Mehul Karkar, Dilip Sarode, Bhartiya Krishi Anushandhan Patrika, 1-7.

- 8. Effective Maxwell-Stefan diffusion model of near ambient air drying validated with experiments on Thomson seedless grape, AH Kulkarni, VH Dalvi, SP Deshmukh, AK Kelkar, JB Joshi, The Canadian Journal of Chemical Engineering, 1-23
- Cost effective non-evacuated receiver for line-concentrating solar collectors characterized by experimentally validated computational fluid dynamics model, JBJ, Mihir Panda1 | Durgesh Kumar2 | Punit V. Gharat2 | Ramchandra G. Patil3 The Canadian Journal of Chemical Engineering, 1-20
- 10. CC-LA: determining optimal switching angles in a cascaded H-bridge multilevel inverter with the aid of binary cat cubpool-based lion algorithm, P Jain, SP Deshmukh, Environmental Science and Pollution Research 29 (9), 12399-12413
- 11. Development of energy efficient nanocellulose production process by enzymate pretreatment and controlled temperature refining of cotton linters, SS A K Bharimalla, S. P Deshmukh, Sharmila Patil, Vigneshwaran Nadanathangam
- Harvest of the Sun: A cost effective solar thermal technology to simultaneously provide affordable energy and generate mass employment in developing Sun-belt regions, Punit V. Gharat1, | Snehal S. Bhalekar | Deepankar Biswas | Vishwanath H Journal of Advanced Manufacturing and Processing 1 (DOI: 10.1002/amp2.10157
- 13. Selection of vegetable oil based biolubricant using TOPSIS MCDM model, MM Hussain, VR Gaval, AP Pratap, Materials Today: Proceedings 62, 512-516
- Effect of Varying Stand-off Distance on Tribological and Mechanical Properties of Plasma Sprayed Hydroxyapatite Coated Metallic Substrates, S Solanke, V Gaval, R Thakur, A Pratap, Tribology in industry 44 (1), 97-112
- Comprehensive evaluation of materials for small wind turbine blades using various MCDM techniques, RK Garmode, VR Gaval, SA Kale, SD Nikhade, Inernational Journal of Renewable Energy Research 12 (2), 981-992
- 16. Cost effective non-evacuated receiver for line-concentrating solar collectors characterized by experimentally validated computational fluid dynamics model, M Panda, D Kumar, PV Gharat, RG Patil, VH Dalvi, CS Mathpati, The Canadian Journal of Chemical Engineering 100 (9), 2259-2278.
- 17. Tribological Study of Functional Fluids Based on Castor Oil, MMHSGS A. P. Pratap, Ankita P. Virulkar , V. R. Gaval, ASM Science Journal 17.
- Mechanical Properties Evaluation for Cotton/Glass/Epoxy Hybrid Composite, SGSSDN Ravindra K. Garmode, Vivek R. Gaval, ASM Science Journal 17
- Tribological study of sunflower TMP ester and silica nanoparticles additives for hydrodynamic journal bearing application under boundary lubrication condition, MM Hussain, V Gaval, A Pratap, S Rukhande, Industrial Lubrication and Tribology 75 (2), 190-196.
- 20. Thermal Conductivity Enhancement of Graphene Oxide Nanofluid Using an Improved Synthesis Method for Heat Transfer Applications, S Surve, RSN Sahai, N Jha, Journal of University of Shanghai for Science and Technology 25 (1), 98-106
- 21. Industrial Waste Utilization in Road Construction: A Review, SS Patil, DD Sarode, Recent Advancements in Civil Engineering: Select Proceedings of ACE 2020

- 22. Insight of Ipomoea carnea and its use in wastewater treatment as ecofriendly, sustainable solution, SM Gawande, DD Sarode, World Journal of Advanced Research and Reviews 13 (2), 483-491
- 23. Analysis of Collected Responses for understanding the Importance of Wastewater Reuse and its Awareness Among Stakeholders-A Case Study, SM Gawande, DD Sarode, Water and Energy International 65 (6), 28-32
- 24. Water Recovery from Dairy Industry Waste Stream Whey using Forward Osmosis Technology: Evaluating the Effects of Different Draw Solutions, V Agrawal, D Sarode, Water and Energy International 65 (7), 22-30
- 25. Analyses of uranium and fluoride in diammonium phosphate fertilizers marketed in India during 2021-2022, LP Ramteke, RS Soni, B Rebary, AWPDD Sarode, PK Ghosh, International Journal of Manures and Fertilizers 10 (2), 1-10
- Use of industrial waste for value-added products, DD Sarode, Advanced Materials from Recycled Waste, 179-198
- 27. Conversion of agriculture, forest, and garden waste for alternate energy source: Bio-oil and biochar production from surplus agricultural waste, DD Sarode, RS Oak, JB Joshi, Advanced Materials from Recycled Waste, 199-220
- Study on Critical Clearing Time of Mumbai Grid Based On Dynamic Simulation, JP Narayan, S Kumar, M Patil, P Goswami, P Pentayya, F Kazi, 2022 4th International Conference on Energy, Power and Environment (ICEPE), 1-6
- 29. Forecasting enhancement of Wind Power Generation using Adversarial Networks: A Data Driven Approach, Swapnil Shelake, Rishikesh Kondavathini, Mahedin Ansari, Punit Sonwadekar, Sunny Kumar, Prerna Goswami, Faruk Kazi, 2022 IEEE PES 14th Asia-Pacific Power and Energy Engineering Conference (APPEEC), 1-6.
- Compartmentalized microfluidic device for in vitro co-culture of retinal cells, D Jahagirdar, S Yadav, M Gore, V Korpale, CS Mathpati, S Chidambaram, Biotechnology Journal 17 (9), 2100530.

Year 2023-24

1. An Energy-Efficient Electrochemical Process for The Extraction of Copper From Scrap Electrical And Electronic Circuit, S Choubey, P Goswami, S Gautam, Journal Of Pharmaceutical Negative Results 14 (1), 113-120

	Qualification									Academic Research				
Name of the Faculty Member	Degree (highest degree)	University	Years of graduation	Association with the Institution	Designation	The date on which Designated as	Date of Joining the Institution	Department	Specialization	Research Paper Publications	Ph.D. Guidance	Faculty Receiving Ph.D. during Assessment Years	Currently Associated (Y/N) Date of leaving (in case of Currently	Nature of Association (Regular/Contract)
Prof. (Dr.) Dilip Dhondu Sarode	Ph.D.	Indian Institute of Technology,	2010	25 yrs 11 moths	Professor	01-03-2014	12-06-1997	Department of General Engineering	Civil Engineering	14	Guided: 02, Ongoing: 08	N/A	Yes	Regular
Prof. (Dr.) Suresh Pandurang	Ph. D. (Tech.)	Mumbai University	2009	26 yrs	Professor	01-01-2012	13-05-1997	Department of General Engineering	Mechanical, Plastic Engineering	35	Guided: 07, Ongoing: 12	N/A	Yes	Regular
Prof. (Dr.) Vivek R. Gaval	Ph.D. (Tech)	Mumbai	2012	31yrs 4 months	Professor in General Engineering (CAS)	01-07-2013	06-06-1992	General Engineering	Plastic Engineering	30	Guided: 04, Ongoing: 12	N/A	Yes	Regular

CRITERION-4

FACULTY CONTRIBUTIONS

60/75

Dr. Deepankar B. Biswas	Dr. Vikramsinha S. Korpale	Dr. Prerna Goswami	Dr. R.S.N. Sahai	Shri. Kerawalla Mohd. Amin K.
PhD.	PhD.	Ph.D.	Ph.D.	Master's in electrical engineering
ICT, Mumbai	ICT, Mumbai	ICT, Mumbai	Mumbai	University of Bombay (Mumbai)
2020	2021	2018	2013	1985
3 yrs 6 months	3 yrs 6 months	24 yrs 11 months	24 yrs 7 months	36yrs 3 months
Assistant Professor	Assistant Professor	Associate Professor	Professor	Associate Professor in General Engg.
N.A.	N.A.	08-02-2014	22-02-2017	12-03-1996
08 th Jan 2020	08 th Jan 2020	06-06-1998	17-10-1998	14-02-1987
Department of General Engineering	Department of General Engineering	General Engineering	General Engineering	General Engineering
Solar Thermal energy, Polymer composites	Plastic Product Design, Heat transfer	Electrical Engineering	Plastic Engineering	Electrical Power Systems
08	05	27	17	12
N.A.	N.A.	Guided: 0, Ongoing: 13	Guided: 0, Ongoing: 04	Nil
Yes (2021)	Yes (2021)	Yes (2018)	ON	N.A.
Yes	Yes	Yes	yes	No (31-03-2023)
Contract	Contract	Regular	Regular	Regular

4.1. Student-Faculty Ratio (SFR) (10)

(Institute Marks: 10)

(To be calculated at Department Level)

Table 4.1

Fractional workload of faculties in the Academic Year 2020-21

2020-21	PG	UG+PG	Ratio
Prof. V.R.Gaval	9	18	0.500
Prof. S.P.Deshmukh	6	16	0.375
Prof. D.D. Sarode	1	11	0.091
Prof. R.S.N. Sahai	8	16	0.500
Dr. Deepankar Biswas	4	16	0.250
Dr. Vikramsinha S. Korpale	11	23	0.478
Total (A)		·	2.19

Fractional workload of faculties in the Academic Year 2021-22

2021-22	PG	UG+PG	Ratio
Prof. V.R.Gaval	16	20	0.800
Prof. S.P.Deshmukh	7	17	0.412
Prof. D.D. Sarode	1	12	0.083
Prof. R.S.N. Sahai	10	14	0.714
Dr. Deepankar Biswas	5.5	21.5	0.256
Dr. Vikramsinha S. Korpale	5.5	21.5	0.256
Total (B)			2.52

Fractional workload of faculties in the Academic Year 2022-23

2022-23	PG	UG+PG	Ratio
Prof. V.R.Gaval	16	20	0.800
Prof. S.P.Deshmukh	6	16	0.375
Prof. D.D. Sarode	1	12	0.083
Prof. R.S.N. Sahai	16	20	0.800
Dr. Deepankar Biswas	5.5	21.5	0.256
Dr. Vikramsinha S. Korpale	5.5	21.5	0.256
Total (C)			2.57

Cumulative (A+B+C) / 3	2.43
Total students Intake (1 st year and 2 nd year) / Cumulative	14.82

Marks to be given proportionally from a maximum of 10 to a minimum of 05 for average SFR between 15:1 to 25:1, and zero for average SFR higher than 25:1. Marks distribution is given as below:

< = 15	-	10 Marks
< = 17	-	09 Marks
< = 19	-	08 Marks
< = 21	-	07 Marks
< = 23	-	06 Marks
< = 25	-	05 Marks

>25.0 - 0 Marks

4.1.1. Provide the information about the regular and contractual faculty as per the format mentioned below:

	Total number of regular faculty in the department	Total number of contractual faculty in the department
CAY (2022-23)	6	2
CAYm1 (2021-22)	6	2
CAYm2 (2020-21)	6	2

Table 4.1.1

4.2. Faculty competencies in the area of Program specialization (30)

(Institute Marks: 30)

(Relevant faculty information, in the area of Program specialization)

4.2.1. Faculty name and specialization for the program under consideration (10) (Institute Marks: 10)

Name of the	Relevant Area of Sp	pecialization
Faculty	CAY 2022-23	CAYm1 2021-22
Prof. D. D. Sarode	Concrete Technology Construction Chemicals - Risk Analysis and its mitigation. Recycling of wastes. Recycling of agricultural waste and improving soil fertility	ConcreteTechnology–PerformanceEnhancingConstructionChemicalsPlasticizers,Superplasticizers,VMA.RiskAnalysisand itsmitigation.Recyclingofagriculturalwasteandimprovingsoilfertility
Prof. S.P. Deshmukh	Polymeric Composites, Engineering Materials, Plastic Processing, Design of Molds, Analysis of Plastic component using CAD, CAE tools. Solar Hybrid Energy, Refrigeration Air Conditioning, Heat Transfer	Polymeric Composites, Engineering Materials, Plastic Processing, Design of Molds, Analysis of Plastic component using CAD, CAE tools. Solar Hybrid Energy, Refrigeration Air Conditioning, Heat Transfer through the microchannel.
Prof. V. R. Gaval	Particulate filled polymer composites, conversion of Metal parts into plastic using design software's, Tribology, Mold flow analysis	Particulate filled polymer composites, conversion of Metal parts into the plastic using Design soft wares
Shri. M.A.K. Kerawalla	Electrical Power System, Power Electronics, Power Control	Electrical Power System, Power Electronics, Power Control

Dr. R.S.N.	Polymer Composites, Nanocomposites and its applications in Mechanical	Polymer Composites, Mould Design, Thermal Engineering
Sahai	Engineering, Mould design, Energy Engineering.	Design, Thermal Engineering
Dr. Prerna Goswami	Sustainable Energy and MATLAB simulations	SustainableEnergy,MATLABsimulations,ElectricalEngineering
Dr. S. T. Mhaske	Rheological of polymers, Nanoparticle Synthesis, Impact Modification of Polymers, Development of Thermoplastics Vulcanizates, Development of Resins from renewable Sources, Synthesis of Polyamide based Hot Melt Adhesives, Functional Modification of Resin for coating Application, Development of Water-based or VOC free Coatings for Industrial Applications.	Polymer Composites, Cellulose based nanoparticles and whiskers, Bio Nanocomposites, Conductive coatings
Dr. Vikramsinha S. Korpale	Thermal design of equipment, Plastic products design and analysis, computational fluid dynamics, Equipment design and analysis, powder-flow equipment designs.	Thermal design of equipment, Plastic products design and analysis, computational fluid dynamics, Equipment design and analysis, powder-flow equipment designs.
Dr. Deepankar B. Biswas	Renewable energy, Solar Thermal, Heat Exchanger, Heat Transfer, Polymer composites	Renewable energy, Solar Thermal, Heat Exchanger, Heat Transfer, Polymer composites
	Table / 2.1.1	

Table 4.2.1.1

4.2.2. Faculty Research Publication (10)

(Institute Marks: 10)

	Academic Research					
Name of the Faculty	Number of quality publications in refereed/ SCI Journals, citation, Books/ Book Chapters etc.			tion, during the assessment perio		t period
	CAYm1 2021-22	CAYm2 2020-21	CAYm3 2019-20	CAYm1 2021-22	CAYm2 2020-21	CAYm3 2019-20
Prof. D. D. Sarode	3	4	-	1	1	-
Prof. S.P. Deshmukh	1	11	2	-	2	1
Prof. V. R. Gaval	12	2	-	3	1	-
Shri. M.A.K. Kerawalla	-	-	-	-	-	-
Dr. R.S.N. Sahai	2	1	-	-	-	-

Dr. Prerna Goswami	-	4	1	-	-	-
Dr. Vikramsinha S. Korpale	1	2	-	-	-	-
Dr. Deepankar B. Biswas	-	3	-	-	-	-

Table 4.2.2.1

4.2.3. Faculty Development work (10)

(Institute Marks: 10)

The faculty members in the department are extremely hard working. The faculties have pursued their Ph.D.'s in the relevant field of their research which in turn helps the department in their curriculum. The faculties also undergo various FDP's and STTP's for improvement of the subject knowledge and improve the teaching methodology.

The department also runs various Ph.D. programs in Civil, Mechanical, Electrical and Electronics and many external candidates have registered for Ph.D. under the faculties of the department. Presently 55+ Research Scholars are there in the department. Only 7 are working full-time whereas the remaining are part-time candidates.

Name of Faculty	Nos. of Research Scholars	Nos. of M E Students
Prof. D. D. Sarode	08	7
Prof. S.P. Deshmukh	15	2
Prof. V. R. Gaval	12	7
Shri. M.A.K. Kerawalla	-	-
Dr. R.S.N. Sahai	10	7
Dr. Prerna Goswami	11	-
Dr. S. T. Mhaske	17	-

Prof D D Sarode has received a project grant of Rs. 1.98 Crores from DST, Government of India. This project is for mitigation of water problems in the drought prone Marathwada region at Taluka Ausa in Latur District. This project involves the setting of R O unit, effective recycling of water, Reject water management, Rejuvenation of Lake, Wastewater treatment unit and construction of wastewater treatment unit. From this funding an Environmental Laboratory is set up in the department. Prof D D Sarode also set up a Cement Composites laboratory in the department which helps students to understand the effect of polymer-based construction chemicals used to improve the performance of cement composites.

The following patents are filed by the faculty of the department-

1. Title: System for continuous extraction of pure water from feeds with resaturation and reuse of draw (Application No.: PCT/IN2019/050875)

- Patent on lifting device filed in 2017 and design is registered (Design No 302238 dated 8/2/2018) in the name of Sangit Kadu, Dr Vivek Gaval, Sachin Solanke in the Government of India, Patent office.
- 3. Patent filled in 2014 on "A water-resistant Phoshpogypsum composition", (Application no. 4024/MUM/2014) by Dr. Dilip D Sarode and Dr. Parag R. Nemade in Government of India patent, Evaluation report received in September 2019.

FDP organized in the department-

• 5 days Faculty Development Programme on "Effective Curriculum Implementation", jointly organised with NITTTR Chandigarh, from 24th July to 28th July 2023.

4.3. Faculty as participants in Faculty development/ training activities/ STTPs (5)

(Institute Marks: 5)

The department faculties have attended various training programs from 2020 to 2023, as listed below-

Prof. V. R. Gaval				
Programme Details	Description	Date		
"5-day online FDP on DEEKSHARAMBH (Student Induction Program)"	The introduction of courses to the new students was discussed in the course	10-08-2020 to 14-08-2020		
I	Prof. R.S. Sahai			
Programme Details	Description	Date		
Introduction to Composites (FDP) NPTEL	The composite material properties and new processing methods were discussed in this course	12 weeks (September to November 2020)		
Heat Exchanger: Fundamentals and Design Analysis (FDP) NPTEL	The heat exchanger thermal and structural design were discussed in this course.	12weeks (September to November 2020)		
Transforming Pedagogy in India, NIT Jamshedpur	The writing skills beneficial for teaching was discussed in this course.	01-08-2020 to 03-08-2020		
Dr	Dr. Prerna Goswami			
Programme Details	Description	Date		
AICTE Training And Learning (ATAL) Academy FDP on 'Recent Trends in Renewable Energy'	The teaching and learning methodology was fully presented in	31 January 2022 to 04 February 2022		

	the course so as to ease the daily lectures to the institute students	
NPTEL: 8 weeks Online certification course on Solar Photovoltaic: Principles, Technologies & Material	The newer technologies, the basics and advanced materials for the manufacturing of solar photovoltaics were discussed in the FDP	31 January 2022 to 27 March 2022

Dr. Vikramsinha S. Korpale

Programme Details	Description	Date
Certificate Course on early-stage Technology Commercialization organized by TECHEX.IN, A TECH TRANSFER HUB AT VENTURE CENTER, Supported by Biotechnology Industry Research Assistance Council (BIRAC), Department of Biotechnology, GOI	The technology commercialization and entrepreneurship activities were discussed in the course	1 Feb 2021 to 8 th Mar 2021
Machine Learning Advanced Certification Training conducted by Simplilearn Ltd. Banglore	The data analysis and machine learning technique and related research were discussed in the course.	One-month Self- paced course, issued date was 31st March 2021

Dr. Deepankar B. Biswas

Programme Details	Description	Date
FDP "Virtual Experiments in Mechanical Engineering" organised by IIT-Guwahati	The virtual laboratories were demonstrated in the field of Mechanical Engineering	02-11-2020 to 06-11-2020
(ATAL) Academy Online FDP on "Design Thinking"	The design thinking and product development was discussed in this course	30-09-2020 to 04-10-2020
(ATAL) Academy Online FDP on "Computational Fluid Dynamics"	The computational design of different technologies was taught in this particular course	21-09-2020 to 25-09-2020
5 weeks FDP Course on "Basics of Finite Element Analysis-I", conducted by SWAYAM-NPTEL	The finite element analysis of different technologies was taught in this particular course	14-09-2020 to 18-10-2020
FDP course on "Product Design and Development", conducted by SWAYAM-NPTEL	The industrial product design technologies were discussed in this course	14-09-2020 to 18-10-2020

The faculties from the department different were also involved in many other program related activities as mentioned below: -

Prof. D.D.Sarode				
Programme DetailsDescriptionDate				

"Water Security with Responsible Care: Project Case Study of Ausa, Latur under WTI as Invited Speaker in India International Science Festival 2020 (IISF 2020) organised by Ministry of Science and Technology, Ministry of Earth Sciences, Master of Health and Family welfare of Government of India in collaboration with CSIR GOI	The invited talk was delivered about water scarity with responsible care for conservation of valuable water resource	20th Dec 2020 to 25th Dec 2023
Industry Oriented Syllabus Framing" in a Workshop On Curriculum Development with Learner Centric Approach oragnised by Mahatma Education Society's Pillai College of Engineering, New Panvel	The syllabus framing activity was conducted in the particular workshop	10th Jun 2021 to 14th Jun 2021
"Use of Biotechnology for Improving the properties of Materials" at National Conference on Recent Advances in Material Science and Technology at Government College of Engineering, Keonjhar, Odisha.	The member of organizing committee and also delivered a talk about improving material properties	30th and 31st March 2019
TEQIP Major Twinning activity of ICT Mumbai and twinning partner Government College of Engineering Keonjhar Odisha, about the Research and development insight	The first joint meeting was held for interaction with the faculties and Research and development work	2nd Sep 2018 to 4th Sep 2018
TEQIP Major Twinning activity of ICT Mumbai and twinning partner Government College of Engineering Keonjhar Odisha, about long tearm planning and outcome-based education	The second joint meeting was organized for discussion of long- term planning for the Government College of Engineering Keonjhar and outcome based teachning and learning methods	1st Oct 2018 to 4th Oct 2018
Seminar on Application of Metallurgy and Coatings with Lecture by Prof. D.D. Sarode, Dr. A.S. Sabnis and Mrs. K.V. Marathe	Organized the seminar on Application of Metallurgy and Coatings at Government College of Engineering Keonjhar	5th Feb 2019
Technical writing and consultancy advice to faculty members of Government College of Engineering Keonjhar	Organized and delivered a talk on ICT consultancy model, writing funding proposal and execution	5th Feb 2019

Use of Biotechnology for improving the properties of materials at National conference on Recent advances in Material science and Technology at Government College of Engineering Keonjhar Odisha International conference on Environmental	Keynote address was focusing on sustainable use of Concrete technology and further alternative materials which support sustainable development goal The talk was delivered on	30th and 31st March 2019 16 th March
Sustainability (ICES 2023) as the part of Centenary Year of VJTI Mumbai Prof.	sustainability and sustainable materials V.R. Gaval	2023 to 17 th March 2023
Programme Details	Description	Date
13 th International E conference on advancements in Polymeric Materials (APM2022) organised by CIPET, Chennai	Invited lecture and session chair in conference probing innovative and sustainable product design and manufacturing. The lecture delivered on advancement in warpage predictions accuracy for glass filled thermoplastics using integrative simulation approach.	8 th March 2022 to 12 th March 2022.
AttendedMeetingsofInternationalCommitteeoftheMoldTechnologiesDivision of SPE in the year 2021	Invited member of a meeting at Society of Plastic Engineers	14 th April 2021
	R.S. Sahai	
Programme Details	Description	Date
National conference on Advances in Mechanical Engineering at Government College of Engineering Keonjhar Odisha	Organized the conference alongwith Prof. Amit Pratap of Department of Oils discussing recent trends in Tribology and lubrication	26th Feb 2019

4.4. Research and Development (30)

(Institute Marks: 30)

The department of General Engineering curriculum is designed in a such a way to support the research and development activities by the students and faculties. The research funding is received by various government organizations as well as free industrial market organizations. The details of sponsored research projects and consultancies are mentioned below. The faculties of the department work on novel research projects. The patents filed and granted as an outcome of the novel R &D are mentioned below in this section.

4.4.1. Sponsored Research (15)

(Institute Marks: 15)

Sponsored Research

Year 2021-22 (CAYm1)

Sr. No.	Student Name	M.E / Ph.D.	Project Title	Duration	Funding Agency	Amount (in Rupees) (lakhs)
1.	Rohan Oak	Ph.D. Civil	Application of biochar for agriculture production un- der different agro-climatic conditions	5 years	Marathi Vidnyan Parishad	Rs. 22.5
2.	Ameya Kulkarni	Ph.D. Mechanical	Design and Scale-up of Dryer for Processing grapes to Raisins	5 years	Marathi Vidnyan Parishad	Rs. 10.0
3.	Punit Gharat	Ph.D. Mechanical	Development of solar thermal technologies for substituting fossil fuels for medium temperature applications.	5 years	Marathi Vidnyan Parishad	Rs. 15.0
4.	Ganesh Vitthal Jadhav	Ph.D. Mechanical	Investigation of weld-line strength for Polyamide-6 materials through experimental and simulation methods	5 years	BASF Chemicals Ltd.	Approx Rs. 7.0

Year 2020-21 (CAYm2)

Sr. No.	Student Name	M.E / Ph.D.	Project Title	Duration	Funding Agency	Amount (in Rupees) (lakhs)
1.	Mahesh Dnyandev Divekar	Ph.D. Mechanical	Improvement of warpagepredictionthroughintegrativesimulationapproachforthermoplastic material	2 years	BASF Chemicals Ltd.	Approx Rs. 6.5
2.	Ganesh Vitthal Jadhav	Ph.D. Mechanical	Investigation of weld- line strength for Polyamide-6 materials through experimental and simulation methods	5 years	BASF Chemicals Ltd.	Approx Rs. 7.0

3.	Nishant Kumar Dutta	M.E.	Development of superior scratch resistance 2K clearcoat with paradigm shift for the properties consisting of flexibility, impact, and recoat- ability.	2 years	TVS Motors	Rs. 6.0
4.	Rohan Oak	Ph.D. Civil	Applicationofbiocharforagricultureproductionunderdifferentagro-climaticconditions	5 years	Marathi Vidnyan Parishad	Rs. 22.5
5.	Ameya Kulkarni	Ph.D. Mechanical	Design and Scale-up of Dryer for Processing grapes to Raisins	5 years	Marathi Vidnyan Parishad	Rs. 10.0
6.	Punit Gharat	Ph.D. Mechanical	Development of solar thermal technologies for substituting fossil fuels for medium temperature applications.	5 years	Marathi Vidnyan Parishad	Rs. 15.0

Year 2019-20 (CAYm3)

Sr. No.	Student Name	M.E / Ph.D.	Project Title	Duration	Funding Agency	Amount (in Rupees) (lakhs)
1.	Deepankar Biswas	Ph.D. Mechanical	Design and Optimization of Concentrated Solar Thermal Systems	5 years	Marathi Vidnyan Parishad	Rs. 22.5
2.	Rohan Oak	Ph.D. Civil	Applicationofbiocharforagricultureproductionun-derdifferentagro-climaticconditions	5 years	Marathi Vidnyan Parishad	Rs. 22.5
3.	Ameya Kulkarni	Ph.D. Mechanical	Design and Scale-up of Dryer for Processing grapes to Raisins	5 years	Marathi Vidnyan Parishad	Rs. 10.0
4.	Punit Gharat	Ph.D. Mechanical	Development of solar thermal technologies for substituting fossil fuels for medium temperature applications.	5 years	Marathi Vidnyan Parishad	Rs. 15.0
5.	Mahesh Dnyandev Divekar	Ph.D. Mechanical	Improvement of warpagepredictionthroughintegrativesimulation	2 years	BASF Chemicals Ltd.	Rs. 6.5

			approach for thermoplastic material			
6.	Nishant Kumar Dutta	M.E.	Development of superior scratch resistance 2K clearcoat with paradigm shift for the properties consisting of flexibility, impact, and recoat- ability.	2 years	TVS Motors	Rs. 6.0

Research Projects Sanctioned

- Pilot Study and Evaluation of Production of Green Surfactants from Non-edible/Edible Oils and Treated Oil Seed Meals" sponsored by Rajiv Gandhi Science & Technology Commission (Project Sanctioned cost - 2.2 crore rupees) successfully completed by Prof. V.R.Gaval from April 2018 and submitted final report in February 2023. (Duration 3 years)
- 2. Processing and Compounding of plastics (Project cost Rs. 9.6 lakhs) sponsored by Varad Vinayak Enterprises, Mumbai, for duration of 3 years, starting from the date 23rd October 2021.

Patent

- 1. Patent filled in 2019 on "**System for continuous extraction of pure water from feeds with heat resaturation and reuse of draw**", (Application no. PCT/IN2019/050875) by Dr. Dilip D Sarode in Government of India patent, Evaluation report received on 29 November 2019.
- 2. Patent filled in 2014 on "A water resistant Phoshpogypsum composition", (Application no. 4024/MUM/2014) by Dr. Dilip D Sarode and Dr. Parag R. Nemade in Government of India patent, Evaluation report received in September 2019.
- 3. Patent on **lifting device** filed in 2017 and design is registered (Design No 302238 dated 8/2/2018) in the name of Sangit Kadu, Dr Vivek Gaval, Sachin Solanke in the Government of India, Patent office.

4.4.2. Consultancy (from Industry) (15)

(Institute Marks: 0)

Considering faculty members contributing to the program:

(Provide a list with Project Title, Funding Agency, Amount and Duration)

Funding Amount (Cumulative for CAYm1, CAYm2 and CAYm3):

Amount >10 Lacs	15 Marks,
Amount <10 and >8 Lacs	10 Marks,
Amount <8 and > 6 Lacs	8 Marks,
Amount <6 and >4 Lacs	5 Marks,
Amount <4 and >2 Lacs	2 Marks,
Amount <2 Lacs	0 Marks

A list of consultancy projects and grants received by department faculties is mentioned below-

Year 2022-23 (CAY)

Sr. No.	Faculty Name	Project Title	Duration	Funding Agency	Amount (in Rupees) (in Lakhs)
1.	Dr. V.S. Korpale	A Technical support for equipment design	1.5 years	Zoetis Pharmaceutical Research Ltd. Turbhe Navin Mumbai.	Rs. 9.75
2.	Dr. V.S. Korpale	A technical support in terms of simulation activity for equipment design	1 year	Amar Equipment Pvt. Ltd Bhandup Mumbai	Rs. 6.0

Year 2021-22 (CAYm1)

Sr. No.	Faculty Name	Project Title	Duration	Funding Agency	Amount (in Rupees) (in Lakhs)
1.	Nil	Nil	Nil	Nil	Nil

Year 2020-21 (CAYm2)

Sr. No.	Faculty Name	Project Title	Duration	Funding Agency	Amount (in Rupees) (in Lakhs)
1.	Nil	Nil	Nil	Nil	Nil

Year 2019-20 (CAYm3)

Sr. No.	Faculty Name	Project Title	Duration	Funding Agency	Amount (in Rupees) (in Lakhs)
1.	Nil	Nil	Nil	Nil	Nil

5.1. Adequate and well-equipped laboratories in area of Program specialization (30)

(Institute Marks: 30)

Sr. No.	Name of Laboratory	Specialized Equipment Name/ Software	Equipment details	Utilization details from the perspective of PO attainment
1.	Processing Lab	Twin Screw extruder	D22 mm CD co-rotating Twin Screw Extruder with Pelletizer	PO5
2.	Processing Lab	Injection molding machine	Injection molding machine microprocessor-based, fully automatic screw type 30 gm shot capacity, 30 T clamping force	PO5
3.	Processing Lab	Compression Testing machine	25 Tonnes with digital display	PO5
4.	Processing Lab	Blow Moulding machine	Blow Moulding machine vertical screw type having horizontal clamping of one litre	PO5
5.	Processing Lab	Rotational moulding machine	Laboratory scale equipment (fabricated by Ph.D. student in GE workshop)	PO5
6.	Processing Lab	Plastic granules mixing machine	Capacity- 2Kg, Drive: Electrical gear motor with output rpm less than 40	PO5
7.	Processing Lab	Hot Air Oven	Capacity: 2 to 3Kg Polymer granules Temperature range: ambient to 250 ^o C+/- 0.5 ^o C	PO5
8.	Testing Lab	Melt flow index testing equipment	Melt flow index testing equipment as per ASTM D 1236 / IS / BIS standards along with accessories & weight	PO3
9.	Testing Lab	Impact test equipment comp Izod Impact Tester	Impact test equipment comp. Izod Impact Tester	PO3
10.	Testing Lab	HDT / VST Apparatus	HDT / VST Apparatus	PO3
11.	Testing Lab	Hardness testing equipment	Hardness testing equipment durameter model DSHT II range 0 to 100 shore unit least count – 1 shore unit.	PO3

12.	Testing Lab	Universal Testing Machine	Consists of two separate load cells viz. for films and plastic dumbbell samples. ASTMD638	PO3
13.	CAD/CAM Lab	Altair Hyperworks CAE	125 Units Research Bundle with Unlimited Nodes	PO4
14.	CAD/CAM Lab	Workstation Computer	Intel i7-8 th Gen, 16GB RAM, 250GB SSD, 1TB HDD, 2GB Graphics, Win10	PO4
15.	CAD/CAM Lab	MiniTab 18	Statistical analysis software. DOE optimization and quality management	PO4
16.	CAD/CAM Lab	NX- Unigraphics	CAD CAM software by SIEMENS for CAD Design, NX Tooling, Mold wizard	PO4
17.	CAD/CAM Lab	Moldex3D	Mold Design Software, Educational Perpetuity: Professional – Generic Solution/Project/Designer/Designer BLM/ MDE/ MFE/ Flow/Pack/Cool/Warp/3D Coolant CFD	PO4

Table 5.1.1

5.2. Research facilities/center of excellence (30)

(Institute Marks: 30)

Sr. No.	Name of Facility	Specialized Equipment Name	Equipment details	Utilization details from the perspective of PO attainment
1.	3D Printing	3D Printer	3D Prototype Printer, FDM/ FFF Wanhao Duplicator-6 Plus; DLP Resin Wanhao Duplicator-7	PO4
2.	Optimization Software	Optimization Software	Statistical Module	PO4
3.	Altair Hyperworks CAE	Altair Hyperworks CAE	125 Units Research Bundle with Unlimited Nodes	PO4
4.	Workstation Computer	Workstation Computer	Intel i7-8 th Gen, 16GB RAM, 250GB SSD, 1TB HDD, 2GB Graphics, Win10	PO4
5.	Minitab 18	Minitab 18	Statistical Module	PO4
6.	NX- Unigraphics	NX- Unigraphics	CAD CAM software by SIEMENS for CAD Design, NX Tooling, Mold wizard	PO4
7.	Moldex3D	Moldex3D	Mold Design Software, Educational Perpetuity: Professional – Generic Solution/ Project/ Designer/ Designer BLM/ MDE/ MFE/ Flow/ Pack/ Cool/ Warp/ 3D Coolant CFD	PO4

8.	AutoCAD Software	AutoCAD Software	Drawing, Modelling and layout preparation of parts	PO4
----	---------------------	---------------------	--	-----

Table 5.2.1

5.3. Access to laboratory facilities, training in the use of equipment (15) (Institute Marks: 15)

Date	Description
April 17 th to April 21 ^{st,} 2023	Five-day hands-on training cum workshop on ANSYS Simulation software was organised for all the M.E and Ph.D. Scholars of the department.

Table 5.3.1

Most of the inhouse facilities are covered during the practicals of the course content. For postgraduate students, freedom is there to use the facilities after office hours with prior permission from the laboratory incharge and Head of the department.

Name of the laboratory	Laboratory Incharge	
Processing Lab	Prof V S. Korpale	
Testing Lab	Dr. R S N Sahai	
CAD/CAM/CAE	Dr Deepankar Biswas	
Cement Composites	Prof D D Sarode	
Table 5.3.2		

Table 5.3.2

Students are also using advanced software available in the CAD/CAE laboratory for simulation and product design for their project work and understanding. Exposure to new technology such as Rapid Prototyping (3D Printing technology), in CAD/CAE laboratory, helps students in understanding new developments in plastic industries. Students are also acceding the testing facilities present in the laboratory to prepare polymer composites and carrying out its characterization by using the existing laboratory facility for their research project. For other specialized equipment such as for characterization of materials, specialized training is organized at the institute level. Some students visit the facilities to understand more about specialized test machinery. For some advance testing and processing facilities from the Department of Polymer and Surface Engineering are available to our students. SEM facility from the Department of Chemical Engineering is used by students. Mutual interaction with Ph.D. students sometimes is useful to know more about the sampling, test methodology and interpretation of results. Students are aware of some of the central facilities in ICT and other educational and research institutes/organizations such as IIT Bombay, CIRCOT, BTRA. Specialized tests can be done by using the funds from the contingencies or from TEQIP-III or from the Departmental consumables grant. Most of the students handle these testing machines during there inplant training.

6.1. Actions are taken based on the results of the evaluation of each of the POs (25) (Institute Marks: 25)

Based on suggestions from the experts from the industry, feedback from pass out students, experts from reputed institute following actions were taken:

- 1. Based on the feedback obtained from alumni and opinion of Department of General Engineering BOS members course on Plastic waste management has been converted to core course with some important additions in the previous one. This course was offered to students as programme elective in the previous syllabus. Converting this course to core was necessary with new government regulations with regards to environment pollution and plastic waste management.
- 2. Department decided to offer Research Methodology course as mandatory with added practical component and four credits. Earlier this course was offered as an elective with only theory part and 3 credits. The syllabus was designed keeping in mind research required for Plastic Engineering students and Ph.D. students working in the department.
- 3. Based on the feedback obtained from alumni and opinion of Department of General Engineering BOS members, additions have been done in almost all the courses with regards to latest trends in plastic industries and expectations from our students by the industries.
- 4. Electives such as Processing and Mechanics of composites, Modelling and simulation of polymer rheology, six sigma and statistics for industrial process improvement, total quality management and project management methodology and planning were added in the new syllabus as per the feedback obtained from our alumni and industry experts. All these courses are significant from an industry point of view.
- 5. Invited Dr. M.B. Parmar, managing director, Polyblends Ltd to teach plastic waste management. Dr Parmar is very active in this area and is a part of various government committees and students have benefited a lot through his expertise.
- 6. Invited Dr Tippana from industry to teach plastic waste management. He is working in the area of chemical recycling of polymers. His vast practical experience culminated into effective teaching with more emphasis on practical aspects and the case study approach helps students to understand the subject quickly.
- 7. Procurement and Installation of 3D Printer: to keep pace with the industrial development, the 3D printer was procured which is used by Ph.D. and M E students. 3D printing is added in the course design of plastic molds and dies which is widely used for making prototypes using various polymers.
- 8. Looking at the need of the industry Upgradation of CAD/CAM Lab Presently we have following softwares.
 - Minitab is used for optimization,
 - Hyper works from Altair this is used to do FEA.
 - Unigraphics from Siemens for CAD modeling
 - Mold wizard used for Modeling of mold, working visualization, internal flow analysis,
 - Moldex 3D for analysis for warpage, air trapping, the strength of components, weld lines

- Matlab for mathematical modeling and to test loops.
- Solidworks Used for CAD Modeling
- 9. Training was organized for Unigraphics from Siemens and for Moldex3D to the M.E. Plastic Engineering students of the department.

> <u>Guest lectures by industry expert and industrial visits:</u>

Most of the topics of M.E. Plastic Engineering were covered providing recent trends and advancements in as compared to syllabus. The list of lectures is mentioned below.

- The guest lecture was organized on topic "Polymer R&D readiness" delivered by Dr. J.N. Kapadia
- The lecture "Advanced plastic product design-know how with case study" was related to the course Plastic Product Design and Testing and the lecture was delivered by Mr. Ravindra Gupta, A Vice President Camlin Kokuyo Ltd Mumbai.
- An insight of masterbatches was given by Dr. M.B. Parmar, Director, Polyblend color concentrates. He is the alumnae turned to be first generation entrepreneur from the department of General Engineering.
- The use of Glass fibers in Plastic composites for structure repair work was discussed by Dr. Mangesh Joshi, director, Sanrachana Structural strengthening Pvt. Ltd.
- The role of simulation softwares in Injection molding process was discussed by Dr. Mahesh Divekar, BASF, Moldflow simulation Division Mumbai.

Sr. No.	Торіс	Speaker Details	Date
1.	Cost effective water storage technologies for rural area	Mr. U.M. Paranjpe, Trustee, Jalavardhini Pratisthan Mumbai (a NGO)	29 th Sep 2020
2.	Advanced plastic product design-know how with case study	Mr. Ravindra Gupta, Vice President, Camlin Kokuyo Mumbai	2 nd Jan 2021
3.	Masterbatches for plastics	Dr. M.B.Parmar, Managing Director at Polyblend Colour Concentrates Vapi	15 th Jan 2021
4.	Prof. B.D.Tilak Endowment Lecture on "Industry 4.0"	Prof. Pradeep Kumar, IIT Roorkee	22 nd Jan 2021
5.	Polymer R and D readiness	Dr. J.N. Kapadia, Head of Product Development at Henkel Adhesives Mumbai	28 th March 2021
6.	Plastic Pipes upto 2.5 m diameter for conveyance of water and wastewater	Dr. Madhusudan Chaudhari, Vice President, Jain Irrigation Systems Limited Pune	14 th Sep 2020
7.	Use of Glass and Carbon fibre Polymer composites for repairs , retrofit and rehabilitation of Structures	Dr. Mangesh Joshi, Founder and director at Sanrachana Structural Strengthening Pvt. Ltd. Mumbai.	21 st Sep 2020

8.	Integrated Urban Water Management-Why, What and How	Dr. Bhakti Devi, Sydney Water Corporation, Sydney, Australia	25 th Sep 2020
9.	Role of Simulation Softwares in Injection Molding of Plastics	Dr. Mahesh Divekar, CAE Leader, Performance Materials BASF India Ltd.	03 rd Apr 2022

> Syllabus Revision

The feedback and suggestions of industrial personnels were taken for syllabus revision whenever they are invited to for a guest lecture or taking examination.

- Shri. Karuna Karan Raju, Siemens India Ltd., Kalwa, Thane.
- Dr. Nitin Parashram Gulhani, Department of Mechanical Engineering, VJTI Mumbai
- Dr. Jitendra Kapadia, Head, Product Development, IEMA Adhesive Technologies and consumer products Pvt. Ltd, Henkel Adhesives Pune.
- Dr. M. B. Parmar, Director, Polyblend Colour Concentrate, Goregaon, Mumbai 104
- Dr. Kedar Chaudhari, Director (Tech), Diversey India Pvt. Ltd., Ghatkopar (W).
- Dr. Jagdish Patil, Manager Chemtrols Ind Ltd., MIDC Taloja, Raigad 410208
- Mr. Ravindra Gupta, Vice President, Research and Development, Kokuyo Camlin Ltd. Mumbai.

• Dr. Mahesh Dhekane , Technology Head-India, Colour and Additives at Avient Corporation, Clariant Chemicals Pvt. Ltd, Mumbai.

6.2. Improvement in Quality of Projects (10)

(Institute Marks: 10)

Following list gives the various project undertaken by M.E. Plastic Engineering Students

Sr. No.	Name of Student	Project Title
1.	Avinash Anil Raut	Study of Asphalt Design Using Recycled Plastic Waste (PET) for Sustainable Flexible Pavement Construction
2.	Vikrant Goswami	Effect of various factors on properties of fly ash filled PPO (polyphenylene oxide)
3.	Keyur kumar Sureshbhai Vadaliya	Synthesis of modified PVA/Cellulose ultrafiltration membrane for industrial application
4.	Mohit Prakash Salunkhe	Design development and analysis of automotive interior parts
5.	Paras Manojkumar Tholiya	Design, development, and Analysis of Glove Box
6.	Sai Shrikantrao Deshmukh	Product development of switch cavity injection mold with the help of Moldflow simulation software
7.	Akshay Shailesh Jain	Recycling of Non-food packaging materials and converting them into a useful household detergent bottle.

8.	S Jeya Varshini	Lifetime assessment of Recycled polyamide		
9.	Sajit Ajithan	Optimization of injection molding process parameters for a studio bottom cover		
10.	Suraj Rajendra Mhaske	Polypropylene nanocomposites with enhanced thermal and electrical properties for automotive and electronics applications		

The students from M.E. Plastic Engineering are free to work on industrial projects. Also, some of their developed technologies have been commercialized by respective organizations. This is a significant contribution made by our ME students to current trends in the plastic industry sector.

Some of the students who have gone abroad for higher studies are also pursuing education in the topics relevant to the M.E. Plastic Engineering curriculum. From this it is clear that our curriculum is competent enhancing growth in plastic engineering sector.

6.3 Improvement in Placement, Higher Studies and Entrepreneurship (10)

(Institute Marks: 10)

Assessment is based on improvement in:

- Placement: number, quality placement, core industry, pay packages, etc. ٠
- Higher studies: admissions for pursuing Ph. D in premier institutions •
- Entrepreneurs

Year 2021-22				
Sr. No.	Name of the student placed	Enrollment No.	Name of the Employer	Appointment letter reference no. with date
1	Akshay Shailesh Jain	21PLS202	Bhavi Plast Pvt. Ltd Mumbai	Letter Ref.: 24 th May 2023
2	Ashish Jayant Kulkarni	21PLS203	JJ Plast Alloy Pvt. Ltd.	Letter Ref.: 11 th May 2023
3	Avinash Ganesh Chavhan	21PLS204	Not received	Not received
4	Mihir Macchindra Jadhav	21PLS206	JJ Plast Alloy Pvt. Ltd.	Letter Ref.: 3 rd May 2023
5	S Jeya Varshini	21PLS208	Dow Chemicals Pvt. Ltd.	Letter Ref.: 1 st July 2023
6	Sajit Ajithan	21PLS209	Kingfa Science and Technology Pvt. Ltd Pune	Letter Ref: 05 th April 2023
7	Shweta Sanjay Pandagale	21PLS210	Not yet employed	Not yet employed
8	Suraj Rajendra Mhaske	21PLS211	Henkel Adhesives Technologies India Pvt Ltd, Navi Mumbai	Letter Ref.: Nil
9	Vikas Bhausaheb Mhaske	21PLS212	Polyone Polymers India Pvt. Ltd, Ranjan gaon, Pune	Letter Ref.: 25 th April 2023

Year 2020-21					
Sr. No.	Name of the student placed	Enrollment No.	Name of the Employer	Appointment letter reference no. with date	
1	Dipashree Arun Penkar	20PLS201	Henkel Adhesives Technologies India Pvt Ltd, Navi Mumbai	Letter Ref: 2097 Dt: 14 th Nov 2022	
2	Dnyanada Diwakar Chaudhari	20PLS202	Henkel Adhesives Technologies India Pvt Ltd, Navi Mumbai	Letter Ref: 2097 Dt: 14 th Nov 2022	
3	Meghna Pratham Humbal	20PLS203	Shree Bhagubai Mafatlal Polytechnic Institute (SBMP), Mumbai	Letter Ref.: Sponsored Candidate	
4	Mehul Sanju Karkar	20PLS204	Kent Engineering India Pvt Ltd	Letter Ref. HR/330/22 Dt: 24 th Nov 2022	
5	Prajwal Suresh Ghadekar	20PLS205	Kingfa Science and Technology (India) Ltd	Letter Ref. 17 th Dec 2021	
6	Sai Shrikantrao Deshmukh	20PLS206	Brose India Automotive Systems Pvt Ltd,Pune	Letter Ref:29 th Sep 2022	
7	Shreyash Vijay Tayde	20PLS207	Kingfa Science and Technology (India) Ltd	Letter Ref: 26 th Sep 2022	
8	Deepshikha Katiyar	20PLS208	Kingfa Science and Technology (India) Ltd	Letter Ref: 17 th Sep 2022	
9	Nabraz Sheikh	20PLS209	Yet to complete his degree		
10	Rutul Bhalchandra Thorat	20PLS210	Yet to complete his degree		
11	Tanvi Sanjay Suryawanshi	20PLS211	Polyone Polymers India Pvt Ltd , Bhiwandi .	Letter Ref: 2 nd Nov 2022	

Year 2019-20				
Sr. No.	Name of the student placed	Enrollment No.	Name of the Employer	Appointment letter reference no. with date
1	Akash Valmik Mahajan	19PLS201	FAURECIA India Pvt Ltd, Pune	Letter Ref.: Nil
2	Harshal J. Shatalwar	19PLS202	Entrepreneur (Startup)	Not received
3	Jagadish R	19PLS203	Ashirvad Pipes Bengaluru	Letter Dt: 31 st May 2023
4	Keyur kumar Sureshbhai Vadaliya	19PLS204	Lexcru Water Tech Pvt Ltd. Ahmedabad	Ref: LEX/ WATERTECH/ 2023/05
5	Mohit Prakash Salunkhe	19PLS205	Capgemini Technology Services India Pvt Ltd, Pune	Letter Ref.: 2 nd March 2022

6	Naveen Nitin Tembhurnikar	19PLS206	Shree Bhagubai Mafatlal Polytechnic Institute (SBMP), Mumbai	Letter Ref.: Sponsored Candidate
7	Paras Manojkumar Tholiya	19PLS207	FAURECIA India Pvt Ltd , Pune	Letter Dt:26 th April 2022
8	Sachin Anant Kamble	19PLS208	Shree Bhagubai Mafatlal Polytechnic Institute (SBMP), Mumbai	Letter Ref.: Sponsored Candidate
9	Swagata Ray Chaudhury	19PLS211	Sparsh Polychem, Delhi SG Control and Switchgears Gurgaon	Letter Ref.: Nil

- The placement trend at the department of General engineering is very good and recognizable. Almost all the students are getting placed in a reputable company. Some of the students have joined R &D s, Production departments etc.
- It is also observed that most of the students were absorbed in the industries where they have done their Research Project I, II, III and IV courses.

Following is the list of our Alumni who have become successful entrepreneurs in the plastic manufacturing & product designs.

- Dr. M B Parmar, Director, Polyblemd Masterbatch Industries, Goregaon (W), Mumbai. Presently Chairman – Education and Plastic Image Committee, The All-India Plastics Manufacturers Association, (AIPMA), Marol, Andheri ((E), Mumbai 93
- Ajit More, SSV Piping Industries M I D C, Lote Parshuram, Tal: Khed, Dist: Ratnagiri is manufacturing pipes of different types and supplying them in various parts of India.
- Girish Khadake, Heera Agro Industries, Jalgaon he is manufacturing various plastic products required for Agro Industries and supplying them all over India. Recently he got Customer viewpoint – Youth Icon for his performance at Kaviyatri Bahinabai Chaudhari North Maharashtra University, Jalgaon on 29th August 2019

6.4. Improvement in the quality of students admitted to the program (10)

(Institute Marks: 05)

> Assessment is based on improvement in terms of ranks/score in GATE examination.

Mr. Durgesh Jaiswal from DOW Chemicals joined this program as a sponsored candidate and currently pursuing his M.E Plastic Engineering degree.

After getting feedback from the students, alumni about a unique interdisciplinary programme in plastic engineering, there is an increase in the number of publications for this program from the students from various specialization. The students are more inclined to join the M.E Plastic programme, because of the introduction of subjects like finite element analysis, plastic waste management, CAD/CAM/CAE and encouraging students for industrial projects and placement records.

GATE Score	CAY	CAYm1	CAYm2
Highest Score	-	-	321
Minimum Score	-	-	-

Table 6.4.1

6.5. Improvement in quality of paper publication (10)

(Institute Marks: 10)

- 1. It is observed that no. of publications, no. of peer-reviewed conference papers, invited lectures, has been increased from year 2020.
- 2. After completion of research projects, students publish their research work in reputed Scopus/SCI Indexed Journals, Conference proceedings, and present for Oral presentation.
- 3. Our M.E. students started publishing their research work in various conferences and journals. Due to the increase in the number of Ph.D. research Scholars from various disciplines in the department, M.E. Students started taking an interest in research activities. Sponsored candidate from industry and full-time Doctoral fellowship students, quality of writing of student improved in a lot.
- 4. List of research publications and conference proceedings papers of M.E Plastic Engineering students-
 - Effect of Water Absorption on the Mechanical Properties of Wheat Straw Fibre Reinforced Polystyrene Composites, R.S.N Sahai, Ankita Shinde, Deepankar Biswas and Asit B. Samui, 2022, ASM Sc. J., 17, 1-8
 - R S N Sahai and Ravindra Pardeshi, "Comparative study of the effect of different coupling agent on Mechanical Properties and water absorption on wheat straw reinforced polystyrene composites" in Journal of Thermoplastic Composite Materials April 2019.
 - Effect of Water Absorption on Mechanical Properties of Treated and Untreated Hemp Fiber Reinforced Polyester Composites, RSN Sahai, SA Kamble, D Biswas, M Yadav, AB Samui, Journal of The Institution of Engineers (India): Series E, 1-10
 - Effect of alkali and silane treatment on water absorption and mechanical properties of sisal fiber reinforced polyester composites, RSN Sahai, D Biswas, MD Yadav, A Samui, S Kamble, Metallurgical and Materials Engineering 28 (4), 641-656.
 - Understanding the Operations of the Indian Dairy Industry-A Case Study, Vibha Agrawal, Mukesh Achari, Sanmesh Kharade, Keyur Vadaliya, Mehul Karkar, Dilip Sarode, Bhartiya Krishi Anushandhan Patrika, 1-7.
 - M.E students have also achieved the best paper presentation award in conference titled "Advances in Sustainable Research for Energy and Environmental Management (ASREEM-2021)", organised by Department of Chemical Engineering, Sardar National Institute of Technology, Surat (India) on August 06-08, 2021.

6.6. Improvement in laboratories (10)

(Institute Marks: 10)

Due to the increase in postgraduate M.E. and Ph.D. student registration, each laboratory of the department is undergoing upgradation.

A. Processing Laboratory

- 1. Twin-screw Extruder, D22 mm co-rotating along with pelletizer, is used for processing of plastic materials.
- 2. Recently tumbler mixer and oven are purchased to upgrade the laboratory facility.
- 3. The processing lab is equipped with twin-screw extruder, injection, compression molding machines etc.

B. CAD/CAM/CAE Laboratory

- 1. 3D Printer
- 2. Looking at the need of the industry Upgradation of CAD/CAM Lab Presently we have
 - MiniTab which is used for optimization,
 - Hypermesh from Altair this is used to do basic FEA.
 - Unigraphics from Siemens for CAD modeling
 - Mold wizard used for Modeling of mold, working visualization, internal flow analysis,
 - Moldex 3D for analysis for warpage, air trapping, strength of components, weld lines
 - Matlab for mathematical modeling and to test loops.
 - Solidworks Used for CAD Modeling

C. Cement Composite Laboratory

- 1. To understand the effect of various polymer-based construction chemicals, concrete mixer, vibrating shaker machine, sieve analysis equipment, and cement setting time determination apparatus were procured and installed.
- 2. To demonstrate testing Compression testing machine, and permeability testing apparatus are installed.
- 3. Cement composite Lab is set up in the Department along with non-destructive testing facilities such as Hammer test, and ultrasonic pulse-velocity test apparatus are procured.

Annexure-I

Program Objectives (2020-21, 2021-22)

- **PO1:** An ability to independently carry out research /investigation and development work to solve practical problems.
- **PO2:** An ability to write and present a substantial technical report/document.
- **PO3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
- **PO4:** An ability to use modern tools, software, equipment etc. to analyze and obtain solutions to problems.
- **PO5:** An ability to systematically break up complex problems in realizable steps related to mold design, processing of plastic, plastic product design and solve them.

Program Objectives (2022-23)

- **PO1:** An ability to be effective in the design of engineering technology solutions and the practical application of engineering technology principles using high safety standards.
- **PO2:** An ability to develop communication skills to write and present a substantial technical report/document.
- **PO3:** An ability to understand and apply professional, ethical, and quality standards of excellence consistent with plastics industry.
- **PO4:** An ability to serve their communities and the environment through innovations in plastic technology/engineering.
- **PSO:** An ability to systematically break up complex problems in realizable steps related to mold design, processing of plastics, plastic product design and solve them.

Declaration

INSTITUTE OF CHEMICAL TECHNOLOGY Campuses - Matunga, Mumbai • IOC Bhubaneswar, Odisha • Marathwada, Jalna Category I Deemed to be University (MHRD/UGC) A++ Grade by NAAC (CGPA 3.77) Elite Status and Centre of Excellence-Govt. of Maharashtra

> Professor Aniruddha B. Pandit FNA, FTWAS, FASC, FNAE, FNASC, FMASC J.C. Bose National Fellow UGC Research Scientist, Professor Vice Chancellor

DECLARATION

I undertake that, the institution is well aware about the provisions in the NBA's accreditation manual concerned for this application, rules, regulations, notifications and NBA expert visit guidelines in force as on date and the institute shall fully abide by them.

It is submitted that information provided in this Self-Assessment Report is factually correct.

I understand and agree that an appropriate disciplinary action against the Institute will be initiated by the NBA in case any false statement/information is observed during pre-visit, visit, post visit and subsequent to grant of accreditation.

Date: 8-6-2023 Place: MUMBAI

Signature & Name Head of the Institution with seal

VICE CHANCELLOR Institute of Chemical Technology (University under Section-3 of UGC ACT OF 1956) N. P. Marg, Matunga, Mumbai - 400 019.

Nathalal Parekh Marg, Matunga MUMBAI - 400 019 Maharashtra, INDIA GSTIN : 27AAATI4951J1ZG Email : vc@ictmumbai.edu.in ab.pandit@ictmumbai.edu.in Website : www.ictmumbai.edu.in http://panditict.weebly.com $\begin{array}{l} \mbox{Tel.:} +91\mbox{-}22\mbox{-}32\mbox{-}1111\mbox{/}2222\mbox{}^{(B)}\\ \mbox{Tel.:} +91\mbox{-}22\mbox{-}33\mbox{-}1001\mbox{/}2012\mbox{}^{(D)}\\ \mbox{Fax:} +91\mbox{-}22\mbox{-}33\mbox{-}1020\mbox{}^{(B)} \end{array}$