

SELF ASSESSMENT REPORT

submitted to

NATIONAL BOARD OF ACCREDITATION

for the accreditation of

Bachelor of Chemical Engineering

[2nd CYCLE ACCREDITATION (TIER-I)]

Department of Chemical Engineering Institute of Chemical Technology

Deemed University under Section 3 of UGC Act 1956 Elite Status and Centre of Excellence – Govt. of Maharashtra Nathalal Parekh Marg, Matunga (E), Mumbai 400 019, India **NOVEMBER, 2022**

SAR Contents

Serial Code & Link to the Item	Item		
PART A	Institutional Information	3-10	
PART B	Criteria Summary	11	
	Program Level Criteria		
1	Course Outcomes and Program Outcomes	12-61	
2	Program Curriculum and Teaching – Learning Processes	62-108	
3	Students' Performance	109-132	
4	Faculty Information and Contributions	133-200	
5	Resources	201-219	
6	Continuous Improvement	220-239	
PART B	Declaration by the Institution	240	
Annexure I	Program Outcomes (POs) & Program Specific Outcomes (PSOs)	241-242	
Annexure II	Revised Syllabus 2021-22: Bachelor of Chemical Engineering	243-323	

PART A: Institutional Information

1. Name and Address of the Institution:

Institute of Chemical Technology, Mumbai University under section 3 of UGC Act 1956 Estd.1933, Elite Status and Centre of Excellence-Govt. of Maharashtra ICT, Nathalal Parekh Marg, Matunga, Mumbai – 400019 Tel: +91-22-33612312, Fax: +91-22-33611020 Website: www.ictmumbai.edu.in

2. Name and Address of the Affiliating University, if applicable:

3. Year of establishment of the Institution: 1933

4. Type of the Institution:

Institute of National Importance	
University	
Deemed University	\checkmark
Autonomous	
Affiliated Institution	
Any other (Please specify)	

5. Ownership Status:

Central Government	
State Government	\checkmark
Government Aided	
Self-financing	
Trust	
Society	
Section 25 Company	
Any Other (Please specify)	

6. Other Academic Institutions of the Trust/Society/Company etc., if any:

Name of the Institution(s)	Year of Establishment	Programs of Study	Location			

7. Details of all the programs offered by the institution:

Sr. No.	Program Name	Name of the Department	Year of Start	Intake	Increase/ Decrease in intake, if any	Year of Increase/ Decrease	AICTE Approval	Accreditation Status*
1.	B. Chemical Engineering	Chemical Engineering	1933	60	15	1995	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	27/12/2016 to 30/06/2022
2.	B.Tech - Dyestuff Technology	Dyestuff Technology	1944	16	2	1995	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	27/12/2016 to 30/06/2022
3.	B.Tech- Food Engineering and Technology	Food Engineering and Technology	1943	16	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	27/12/2016 to 30/06/2022
4.	B.Tech- Fibres and Textile Processing Technology	Fibres and Textile Processing Technology	1933	34	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	27/12/2016 to 30/06/2022
5.	B.Tech- Oils, Oleochemicals and Sufactant Technology	Oils, Oleochemicals and Sufactant Technology	1943	16	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	27/12/2016 to 30/06/2022
6.	B.Tech- Pharmaceuticals Chemistry and Technology	Pharmaceutical Sciences and Technology	1943	18	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	14/01/2017 to 30/06/2020
7.	B.Tech Polymer Engineering and Technology	Polymer and Surface Engineering	1946	08	08	1995	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	27/12/2016 to 30/06/2022
8.	B.Tech Surface Engineering & Technology	Polymer and Surface Engineering	1946	08	16	1995	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	27/12/2016 to 30/06/2022
9.	B. Pharmacy	Pharmaceutical Sciences and Technology	1959	18	30	1995	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	22/09/2016 to 30/06/2021

Sr. No.	Program Name	Name of the Department	Year of Start	Intake	Increase/ Decrease in intake, if any	Year of Increase/ Decrease	AICTE Approval	Accreditation Status*
1.	M. Chemical Engineering	Chemical Engineering	1958	30	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	28/09/2016 to 30/06/2021
2.	M.Tech- Dyestuff Technology	Dyestuff Technology	1961	4	14	2019	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	01/07/2015 to 30/06/2020
3.	M.TechFood Engineering &Technology	Food Engineering and Technology	1945	8	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	03/03/2020 to 30/06/2026
4.	M.Tech- Fibres and Textile Processing Technology	Fibres and Textile Processing Technology	1961	18	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	01/07/2015 to 30/06/2020
5.	M.Tech- Oils, Oleochemicals and Sufactant Technology	Oils, Oleochemicals and Sufactant Technology	1966	18	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	03/03/2020 to 30/06/2023
6.	M.Tech- Pharmaceuticals Sciences and Technology	Pharmaceutical Sciences and Technology	1961	18	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	03/03/2020 to 30/06/2026
7.	M.Tech- Polymer Engineering and Technology	Polymer and Surface Engineering	1966	18	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	01/07/2015 to 30/06/2020
8.	M.Tech- Surface Engineering & Technology	Polymer and Surface Engineering	1966	18	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	01/07/2015 to 30/06/2020
9.	M.Tech- Food Biotechnology	Food Engineering and Technology	2008	2	8	2009	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	28/09/2016 to 30/06/2021
10.	M.Tech- Bioprocess Technology	DBT-ICT Center of Biosciences	1994	30	N.A	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	03/03/2020 to 30/06/2023
11.	M.Tech- Perfumery and Flavor Technology	Dyestuff Technology	1992	5	13	2017	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	01/07/2015 to 30/06/2020

12.	M.Tech. Green Technology	Green Technology	2010	30	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	28/09/2016 to 30/06/2021
13.	M. Tech. Pharmaceutical Biotechnology	Pharmaceutical Sciences and Technology	2017	15	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	N.A.
14.	M.E. (Plastic Engineering)	General Engineering	1972	18	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	03/03/2020 to 30/06/2023
15.	M.Sc. (Chemistry)	Chemistry	2010	20	N.A.	N.A.	N.A.	N.A.
16.	M.Sc. (Textile Chemistry)	Fibres and Textile Processing Technology	2010	20	N.A.	N.A.	N.A.	N.A.
17.	M.Sc. (Engineering Mathematics)	Mathematics	2012	20	N.A.	N.A.	N.A.	N.A.
18.	M.Sc. (Physics)	Physics	2014	20	N.A.	N.A.	N.A.	N.A.
19.	M. Pharmacy	Pharmaceutical Sciences and Technology	1965	18	N.A.	N.A.	AICTE Approved (F.No. Western/1- 9318340850/2021/EOA)	01/07/2014 to 30/06/2017

Table: A.8.1

* Write applicable one:

- Applying first time
- Granted provisional accreditation for two/three years for the period (specify period)
- Granted accreditation for 5/6 years for the period (specify period)
- Not accredited (specify visit dates, year)
- Withdrawn (specify visit dates, year)
- Not eligible for accreditation
- Eligible but not applied

Note: 1. Add rows as needed. 2. Separate tables for UG and PG Programs to be prepared.

8. Programs to be considered for Accreditation vide this application

S. No.	Program Name	Current Year Sanctioned Intake	Current Year Admission (in Nos.)
1.	Bachelor of Chemical Engineering	75	87

9. Total number of Engineering Students:

Bachelor of Chemical Engineering						
Items	2021-2022	2020-2021	2019-2020			
Total no. of boys	68	66	66			
Total no. of girls	19	22	21			
Total no. of students	87	88	87			
B.Tech (Dyest	uff Technolog	gy)	• •			
Items	2021-2022	2020-2021	2019-2020			
Total no. of boys	11	14	15			
Total no. of girls	5	5	6			
Total no. of students	16	19	21			
B.Tech	(Pharma)	•	•			
Items	2021-2022	2020-2021	2019-2020			
Total no. of boys	13	16	11			
Total no. of girls	10	7	10			
Total no. of students	23	23	21			
B.Tech (Oils)						
Items	2021-2022	2020-2021	2019-2020			
Total no. of boys	11	15	13			
Total no. of girls	6	3	6			
Total no. of students	17	18	19			
B.Tech (Su	face Coating					
Items	2021-2022	2020-2021	2019-2020			
Total no. of boys	11	14	14			
Total no. of girls	3	5	5			
Total no. of students	14	19	19			
B.Tech (Foo	d engineering)				
Items	2021-2022	2020-2021	2019-2020			
Total no. of boys	13	13	10			
Total no. of girls	7	7	10			
Total no. of students	20	20	20			
B.Tech (Polymer)						
Items	2021-2022	2020-2021	2019-2020			
Total no. of boys	16	17	14			
Total no. of girls	3	2	5			
Total no. of students	19	19	19			
B.Tech	(Fibres)					
Items	2021-2022	2020-2021	2019-2020			

Total no. of boys	19	23	17
Total no. of girls	4	14	16
Total no. of students	23	37	33

Master of Chemical Engineering								
Items	2021-2022	2020-2021	2019-2020					
Total no. of boys	21	24	23					
Total no. of girls	5	5	7					
Total no. of students	26	29	30					
ME Plastic	Engineering	•						
Items	2021-2022	2020-2021	2019-2020					
Total no. of boys	8	5	9					
Total no. of girls	3	6	1					
Total no. of students	11	11	10					
M.Tech (Dyes	M.Tech (Dyestuff Technology)							
Items	2021-2022	2020-2021	2019-2020					
Total no. of boys	4	1	7					
Total no. of girls	4	5	8					
Total no. of students	8	6	15					
M.Tech (Textile)								
Items	2021-2022	2020-2021	2019-2020					
Total no. of boys	12	11	9					
Total no. of girls	3	5	6					
Total no. of students	15	16	15					
M.Tech	(Polymer)							
Items	2021-2022	2020-2021	2019-2020					
Total no. of boys	14	14	14					
Total no. of girls	2	4	4					
Total no. of students	16	18	18					
M.Tech (Foo	M.Tech (Food Engg & Tech)							
Itoms		.,	-					
	2021-2022	2020-2021	2019-2020					
Total no. of boys	2021-2022 8	2020-2021 10	2019-2020 12					
Total no. of boys Total no. of girls	2021-2022 8 9	2020-2021 10 8	2019-2020 12 5					
Total no. of boys Total no. of girls Total no. of students	2021-2022 8 9 17	2020-2021 10 8 18	2019-2020 12 5 17					
Total no. of boys Total no. of girls Total no. of students M.Tech (2021-2022 8 9 17 Green Tech)	2020-2021 10 8 18	2019-2020 12 5 17					
Total no. of boys Total no. of girls Total no. of students M.Tech (Items	2021-2022 8 9 17 Green Tech) 2021-2022	2020-2021 10 8 18 2020-2021	2019-2020 12 5 17 2019-2020					
Total no. of boys Total no. of girls Total no. of students M.Tech (Items Total no. of boys	2021-2022 8 9 17 Green Tech) 2021-2022 10	2020-2021 10 8 18 2020-2021 8	2019-2020 12 5 17 2019-2020 16					
Total no. of boys Total no. of girls Total no. of students M.Tech (Items Total no. of boys Total no. of girls	2021-2022 8 9 17 Green Tech) 2021-2022 10 13	2020-2021 10 8 18 2020-2021 8 20	2019-2020 12 5 17 2019-2020 16 10					
Total no. of boys Total no. of girls Total no. of students M.Tech (Items Total no. of boys Total no. of girls Total no. of students	2021-2022 8 9 17 Green Tech) 2021-2022 10 13 23	2020-2021 10 8 18 2020-2021 8 20 28	2019-2020 12 5 17 2019-2020 16 10 26					
Total no. of boys Total no. of girls Total no. of students M.Tech (Items Total no. of boys Total no. of girls Total no. of students M.Tec	2021-2022 8 9 17 Green Tech) 2021-2022 10 13 23 ch (Oils)	2020-2021 10 8 18 2020-2021 8 20 28	2019-2020 12 5 17 2019-2020 16 10 26					
Total no. of boys Total no. of girls Total no. of students M.Tech (Items Total no. of boys Total no. of girls Total no. of students M.Tec Items	2021-2022 8 9 17 Green Tech) 2021-2022 10 13 23 ch (Oils) 2021-2022	2020-2021 10 8 18 2020-2021 8 20 28 20 20 20 20 20 20 20 20 20 20 20 20 20	2019-2020 12 5 17 2019-2020 16 10 26 2019-2020					
Total no. of boys Total no. of girls Total no. of students M.Tech (Items Total no. of boys Total no. of girls Total no. of students M.Tech Items Total no. of boys	2021-2022 8 9 17 Green Tech) 2021-2022 10 13 23 ch (Oils) 2021-2022 12	2020-2021 10 8 18 2020-2021 8 20 28 2020-2021 12	2019-2020 12 5 17 17 2019-2020 16 10 26 2019-2020 8					
Total no. of boys Total no. of girls Total no. of students M.Tech (Items Total no. of boys Total no. of girls Total no. of students M.Tec Items Total no. of boys Total no. of boys Total no. of girls	2021-2022 8 9 17 Green Tech) 2021-2022 10 13 23 ch (Oils) 2021-2022 12 6	2020-2021 10 8 18 2020-2021 8 20 28 2020-2021 12 5	2019-2020 12 5 17 2019-2020 16 10 26 2019-2020 8 10 10 10 10 10 10 10 10 10 10 10 10 10					
Total no. of boys Total no. of girls Total no. of students M.Tech (Items Total no. of boys Total no. of girls Total no. of students M.Tech Items Total no. of students Total no. of girls Total no. of girls Total no. of girls Total no. of students	2021-2022 8 9 17 Green Tech) 2021-2022 10 13 23 ch (Oils) 2021-2022 12 6 18	2020-2021 10 8 18 2020-2021 8 20 28 2020-2021 12 5 17	2019-2020 12 5 17 2019-2020 16 10 26 2019-2020 8 10 10 18					

Items	2021-2022	2020-2021	2019-2020
Total no. of boys	8	6	9
Total no. of girls	8	12	9
Total no. of students	16	18	18
M.Tech (Su	rface-coating))	
Items	2021-2022	2020-2021	2019-2020
Total no. of hove	10	11	15
Total no. of girls	7	7	3
Total no. of students	, 17	18	18
M.Tech (I	Parma Tech)	10	10
Items	2021-2022	2020-2021	2019-2020
Total no. of boys	9	11	5
Total no. of girls	8	7	13
Total no. of students	17	18	18
M.Tech (Bio	process Tech)	•
Items	2021-2022	2020-2021	2019-2020
Total no. of boys	18	12	14
Total no. of girls	10	17	16
Total no. of students	28	29	30
M.Tech (F	ood Biotech)	I	
Items	2021-2022	2020-2021	2019-2020
Total no. of boys	3	1	5
Total no. of girls	7	8	5
Total no. of students	10	9	10
M.Tech (Ph	arma-biotech)		•
Items	2021-2022	2020-2021	2019-2020
Total no. of boys	3	5	3
Total no. of girls	4	5	7
Total no. of students	7	10	10

10. Vision of the Institution:

We shall perennially strive to be a vibrant institute with continuously evolving curricula to brighten the future of the chemical, biological, materials and energy industries of the nation, and rank amongst the very best in the world through active participation and scholarship of our faculty, students and alumni. We shall be creators of sprouting knowledge and design cutting-edge technologies that will have the greatest impact on society and benefit mankind at large.

11. Mission of the Institution:

We shall generate and sustain an atmosphere conducive to germinating new knowledge at every available opportunity. The education we shall impart will enable our students to devise new solutions to meet the needs of all segments of society with regard to material and energy, while protecting the environment and conserving the natural resources. Our endeavours, while extending well beyond the confines of the classroom, will aim to enhance public welfare and our attempts to disseminate knowledge will spread to a greater multi- and cross-disciplinary platform to conduct research, discovery, technology development, service to industry and entrepreneurship, in consonance with India's aspirations to be a welfare state. We will team scientists and engineers with professionals in other disciplines to arrive at better solutions. We will provide all our students with a strong foundation to encourage them to be our ambassadors in the professional activities that they choose to undertake in service of society at national and international levels. Through our vision, we will serve the profession and society and strive to reach the summit as a team, and ultimately serve as role models to the younger generation.

12. Contact Information of the Head of the Institution and NBA coordinator, if designated:

- i. Name: Prof. A. B. Pandit Designation: Vice-Chancellor Mobile No: 9820408037 Email id: <u>vc@ictmumbai.edu.in</u>
- NBA co-coordinator Name: Dr. Ashwin Mohan Designation: Associate Dean, Internal Quality Assurance Contact No. 022-33611019 Mobile No: 9869506632/9920084964 Email id: <u>associatedean.iqa@ictmumbai.edu.in</u>

PART B: Criteria Summary

<u></u>	Name o	f the	program:	Bachelor	of	Chemical	Eng	gineering
---------	--------	-------	----------	-----------------	----	-----------------	-----	-----------

Criteria No.	Criteria	Mark/Weightage
	Program Level Criteria	
1.	Course Outcomes and Program Outcomes	100/100
2.	Program Curriculum and Teaching –Learning Processes	75/75
3.	Students' Performance	71.30/75
4.	Faculty Information and Contributions	98.8/100
5.	Resources	75/75
6.	Continuous Improvement	75/75
	Total	495.1/500

e Outcomes and	Program Outcomes
s	se Outcomes and

1.1. State the Vision, Mission of the Department and Institute and Program Educational Objectives (5) (Institute Marks 5)

VISION OF INSTITUTE

We shall perennially strive to be a vibrant institute with continuously evolving curricula to brighten the future of the chemical, biological, materials and energy industries of the nation, and rank amongst the very best in the world through active participation and scholarship of our faculty, students and alumni. We shall be creators of sprouting knowledge and design cutting-edge technologies that will have the greatest impact on society and benefit mankind at large.

MISSION OF INSTITUTE

We shall generate and sustain an atmosphere conducive to germinating new knowledge at every available opportunity. The education we shall impart will enable our students to devise new solutions to meet the needs of all segments of society with regard to material and energy, while protecting the environment and conserving the natural resources. Our endeavors, while extending well beyond the confines of the classroom, will aim to enhance public welfare and our attempts to disseminate knowledge will spread to a greater multi- and cross-disciplinary platform to conduct research, discovery, technology development, service to industry and entrepreneurship, in consonance with India's aspirations to be a welfare state. We will team scientists and engineers with professionals in other disciplines to arrive at better solutions. We will provide all our students with a strong foundation to encourage them to be our ambassadors in the professional activities that they choose to undertake in service of society at national and international levels. Through our vision, we will serve the profession and society and strive to reach the summit as a team, and ultimately serve as role models to the younger generation.

VISION OF DEPARTMENT

We will strive to be a vibrant department, with continuously evolving curricula and program that will charter the future of chemical, biological, materials and energy industries of the nation and be on par with the very best in the world through the participation and scholarship of our faculty, and students who will be torch bearers in education and research and have great impact in solving societal needs for the benefit of mankind at large.

MISSION OF DEPARTMENT

The mission of the department are listed below:

M1) We will create an atmosphere conductive to generate new knowledge at every opportunity for our students at large. Our education will enable new chemical engineering solutions to meet the need of all segments of society with regard to material and energy, while protecting the environment and conserving the natural resources.

M2) Our endeavors will enhance the public welfare. Our activities will not be limited to class-rooms but will extend to a greater multi and cross disciplinary platform to conduct research, discovery, technology development, service to industry and entrepreneurship in consonance with India's aspiration to be a welfare state.

M3) We will team chemical engineers with professionals in other disciplines to arrive at better solutions. We will provide all students with a strong foundation in chemical engineering and applied sciences to encourage them to be our ambassadors at national and international level, in whatever professional activity they undertake to serve the society.

M4) Through our vision, we will sever the chemical engineering profession and society and strive to reach the summit as a team and stake-holders and as role models to the younger generation.

Program Education Objectives (PEOs)

PEO 1) Our graduates are expected to think critically, creatively and apply the fundamentals of Chemical Engineering to chemical and allied industries for the benefit of country in general, economy, society and environment in particular.

PEO 2) Our graduates are expected to adopt to evolving technologies and stay in tune with current needs of the country and society.

PEO 3) Our graduates are expected to undertake fundamental and applied research for development and implementation of new technologies for the benefit of mankind in general, economy, society and environment in particular.

PEO 4) Our graduates are expected to be innovative and have good entrepreneurship and project management skills.

Figure 1.1: Consistency of Department Vision & Mission with Institute Vision & Mission

1.2. Indicate where the Vision, Mission and PEOs are published and disseminated among stakeholders (5) (Institute Marks 5)

The Vision and Mission are published and disseminated in the following:

Published:

- 1. In ICT's Handbook
- 2. In the Annual Report
- 3. In Department's Profile
- 4. On ICT's website:

(https://www.ictmumbai.edu.in/Deptindex.aspx?page=a&ItemID=cc&nDeptID=c)

Publicized:

1. On walls of the Department's Premises, such as labs, corridors, classrooms, etc.

- 2. On the Head of the Department office
- 3. On plaques inside the faculty and staff cabins/rooms
- 4. In the student diary
- 5. Discussed with students in the classroom

Figure 1.2: Process for defining Vision and Mission of the Department

Stakeholders are the students, teaching staff, support staff, Industry that employs the graduates, Parents, Government, Society

- Students are the direct beneficiaries of the educational program.
- The teachers are responsible for the quality of the student output and hence an extremely important part of the activity.
- The support staff is responsible for the smooth conduct of administrative processes, laboratory activities, cleanliness, and maintenance. This activity plays a crucial role in influencing the ambiance and motivation levels to stimulate a progressive environment.
- Government is a contributor through financial support for the program.
- The industry is always looking for the best manpower available and the institute commits to delivering such manpower.
- Trained manpower in this health-related area who would contribute to bringing benefits to society.

1.3. Establish consistency of PEOs with Mission of the Department (5)

The Program Educational Objectives are established through a consultation process involving the core constituents such as Students, Alumni, Industry, Faculty, and Employers.

Table 1.1: Consistency of mission and PEO statements

PEO's	Mission							
	M1	M2	М3	M4				
PEO1: Our graduates are expected to think critically, creatively and	2	2	2	1				
apply the fundamentals of Chemical Engineering to chemical and	5	5	5	1				

(Institute Marks 5)

allied industries for the benefit of country in general, economy, society				
and environment in particular.				
PEO2: Our graduates are expected to adopt to evolving technologies	Э	2	2	С
and stay in tune with current needs of the country and society	Z	5	2	2
PEO3: Program Assessment Committee summarizes the collected				
views and expresses its opinion on the views and forwards the same	3	3	2	1
to Department Advisory Board.				
PEO4: Our graduates are expected to be innovative and have good	1	С	2	2
entrepreneurship and project management skills.	Ŧ	2	5	ר

Where, 3 2 1 refers to strong, medium and weak correlations, respectively.

1.4. Establish the correlation between the courses and the Program Outcomes (POs) & Program
Specific Outcomes (PSOs) (10)(Institute Marks 10)

Table 1.2: Course Outcomes for major core courses

Table 1.2. Course C	
CET1301	Chemical Engineering Thermodynamics I
1) Students, at the	e end of the course will be able to comprehend the fundamental concepts of
enthalpy, entropy,	, internal energy and free energy.(K3)
2) Students, at the	e end of the course will be able to describe non-ideal gas behavior through
volumetric equation	ons of state.(K3)
3) Students, at the	e end of the course will be able to use volumetric equations of state to estimate
saturation pressur	e of pure components.(K4)
4) Students, at the	e end of the course will be able to describe and relate property changes with
volumetric proper	ties.(K3)
5) Students, at the	e end of the course will be able to use the concept of ideal mixtures and binary
vapor-liquid equili	brium including bubble point, flash calculations.(K4)
6) Students, at the	e end of the course will be able to use the concept of thermodynamic consistency
of vapor-liquid equ	uilibrium data through Gibbs-Duhem equation and test consistency of data.(K4)
CET1101	Momentum and Mass Transfer
1) Calculate veloci	ity profiles, forces, pressure drops for simple 1 –D laminar flow situations.(K3)
2) Calculate press	ure drop in pipelines and equipment for different situations such as single and
two phase flow, fix	xed and fluidized beds.(K3)
Calculate forces	s on particles and terminal velocities of particles.(K3)
4) Calculate mass	transfer rates for simple multiphase processes.(K3)
5) Design pumps a	and piping systems for simple situations.(K5)
6) Design mass tra	ansfer equipment for simple mass transfer processes.(K5)
CET1102	Heat Transfer
1) select the contr	olling modes of heat transfer and calculate the heat transfer rates.(K1)
2) select proper in	sulation to avoid heat losses and determine thickness of insulations.(K3)
3) select a suitable	e heat exchanger as well as determine the performance of available heat
exchanger.(K3)	
4) design double p	pipe heat exchangers, shell and tube heat exchangers, plate heat
exchangers.(K3)	
5) solve problems	in various heat transfer heat equipment such as evaporators, furnace.(K3)
6) determine time	required for heating and cooling in batch reactor.(K3)
CET1201	Chemical Reaction Engineering
1) Solve energy a	nd material balance equations and analyze the performance of various multi-
phase reactors.(K	1)
2) Develop rate la	ws and determine kinetics of several homogenous and heterogeneous
reactions.(K2)	
3) Gain knowledge	e to design and interpret data of reactors for catalytic and non-catalytic
reactions.(K3)	
4) Solve integrate	d and differential rate equations for series and parallel reactions in a
system.(K4)	
5) Perform, evalua	ate and optimize the design and operation of catalyzed and non-catalyzed
chemical reactors.	.(K5)
CET1504	Chemical Project Engineering & Economics
1) Describe the ba	asic terminologies used in chemical project engineering and economics.(K5)

2) Identify variou	is parameters for the evaluation of product and convices for a variety of
2) Identify Variou	is parameters for the evaluation of product and services for a variety of
nuustries.(K4)	at and much set (1/2)
3) Evaluate proje	ect and product cost.(K2)
4) Compare vario	bus project financing options.(K3)
5) Predict project	t profitability, legality and feasibility.(K2)
6) Evaluate quan	titative and qualitative project execution methods.(K2)
CET1501	Material and Energy Balance Computations
1) Covert units o	f various quantities and equations.(K3)
2) Calculate quar	ntities, compositions, temperatures of different process streams from the given
data for processe	es involving single / multiple units.(K3)
 Students would from processes in 	ld be able to examine the effects of variation in inputs to their effects on outputs nvolving single / multiple units.(K4)
4) Students wou	ld be able to design and develop various options for carrying out processes
involvina sinale /	/ multiple units.(K5)
5) Students wou	Id be able to judge the process units from various angles such as: society,
environment, sus	stainability, etc.(K6)
CET1302	Chemical Engineering Thermodynamics II
1) Students, at t	he end of the course will be able to describe the concept of non-ideal behavior of
mixtures, activity	coefficients.(K3)
2) Students, at t	he end of the course will be able to use models for liquid phase non-ideality of
mixtures with m	ultiple levels of complexity and capability including predictive models.(K4)
3) Students, at t	he end of the course will be able to describe phase equilibria such as gas-liquid
liquid-liquid, soli	d-liquid with thermodynamic framework and correlate data and estimate
properties (K4)	a squarment der source and the constant and constant and constant
4) Students at t	he end of the course will be able to use the concent of chemical reaction
equilibrium in ide	pal gas reactions in thermodynamic terms (K4)
5) Students at t	he end of the course will be able to describe ponideal gas liquid solid and
multiphase chem	nical reaction equilibria and predict equilibrium conversions (K4)
CFT1401	Chemical Engineering Operations
1) Estimate no o	f stages and reflux rate for given separation using distillation (K3)
2)Size plate and	nacked column for distillation and absorption operations (KA)
3)Select Size dr	packed column for distination and absorption operations (K4) were and decide the operating conditions (K4)
4)Design single of	stage and multistage evaporators (K3)
5) Design filtratio	and multistage evaporators (K5) $(K4)$
CFT1203	Multiphase Peaction Engineering
1) Understand th	n interplay between mass transfer and chemical reaction in determining reactor
norformanco incl	uding concents of rate-controlling stops and kinetic regimes (K3)
2) Bo owaro of y	arious types of reactor configurations and the reactions they are entired for and
the standard mo	dos they are operated under (K2)
3) Understand th	ues they are operated under (NZ) a relationship between nower input and reactor performance of a variety of
standard reactor	configurations (K4)
A) Bo able to dee	computations.(N+)
CET1702	Instrumentation and Process Control
1) Cain Knowled	an relating to the design and working of various control systems used in
industrias (K1)	ye relating to the design and working of various control systems used in
2) Monouro and	calculate system parameters and systems the responses (1/2)
2) Measure and (calculate system parameters and evaluate the response.(K2)
tochniques (K2)	yse and control multi-variable systems by using several sophisticated
(K3)	as reaarding decigning multi loop and escende control systems and their
4) Gain Knowledg	ye regarding designing multi-loop and cascade control systems and their
E) Identify Deriv	an and Control various system variables and parameters for industrial processes
and reactors (VE	yn and Control various system variables and parameters for muustrial processes
) Decise and Applyois of Experimenta
	Design and Analysis of Lapenniellis
1)Understand the	e process of designing and analyzing experiments using several mathematical and
statistical technic	ques. (K1)
2)Understand the	e role of experimentation and validation in chemical process development and
improvement. (K	.Z)
3)Formulate and	interpret experimental data by using hypothesis testing and variance analysis.
(K3)	
4)Solve optimiza	tion problems in process systems engineering with help of different techniques
(K4)	

5)Design, choose and conduct experiments efficiently through systematic and scientific experimental strategy, statistical analysis of data and interpretation of results. (K5) CEP1701 Chemical Engineering Lab -I 1) To be able to perform experiments based on fluid mechanics such as Flow through pipes, coils and fittings.(K3) 2) Flow through packed beds and two phase flow. (K4) 3) Experiments based on mixing. (K2) 4) Heat transfer in shell and tube, and plate heat exchangers.(K3) Process Simulation Lab -I CEP1702 1) Several Examples from Chemical Engineering fields to be solved using self-developed programmes. (K5) 2) Stagewise calculations for unit operations, dynamics of linear and non-linear systems, simulation of heat transfer equipment, optimisation of equipment, process and plant.(K4) 3) Use of design softwares such as ASPEN(K2) CEP1704 Chemical Engineering Lab -II 1) Experiments related to mass transfer such as diffusion, absorption in a packed column(K5). 2) Adsorption isotherms. Drying characteristics. Differential and steam distillation. Homogeneous kinetics.(K3) 3) Properties of liquid fuels. Proximate analysis of coal. Study of spray nozzles, impellers, tower packings, dryers, filters, evaporators. (K2) CEP1705 Process Simulation Lab -II 1) simulation of reactors with multiple reactions (heat and material balances),(K5) 2) conduction / diffusion, stagewise calculations for unit operations, dynamics of linear and nonlinear systems, (K4) 3) Computational fluid dynamics.(K4) CEP1706 Chemical Engineering Lab -III 1) Performing experiments on absorption with and without chemical reactions in packed, plate and bubble columns.(K3) 2) Solid dissolution with or without chemical reaction; Sublimation of solids. Analogy between momentum, heat and mass transfer. (K2) 3) Dynamics of feedback control systems. Level and pH control.(K5) **CEP1707** Process Simulation Lab -III 1) simulation of reactors with multiple reactions (heat and material balances), (K2) 2) conduction / diffusion, stage wise calculations for unit operations, dynamics of linear and nonlinear systems,(K1) 3) Computational fluid dynamics (CFD).(K5)

Т	able 1.3	: Coi	rrelation	betwee	en the	core	cours	es an	d the	e POs	& PS	SOs	
	CET1201												

CEIT201																
	СО	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1) Comprehend	3	2	1	1	1	1	1	1	1	1	1	1	3	3
	CO2	2) Describe no	3	3	3	1	1	1	1	1	1	1	1	1	2	2
	CO3	3) Use volume	2	3	2	2	1	1	1	1	1	1	1	1	2	1
	CO4	4) Describe and	З	З	3	2	1	1	1	1	1	1	1	2	2	1
	CO5	5) Use the con	3	3	3	3	1	1	1	1	1	1	1	1	3	3
	CO6	6) Use the con	3	3	3	3	1	1	1	1	1	1	1	1	3	3

CET1101																
	СО	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	P011	PO12	PSO1	PSO2
	CO1	1) Calculate ve	3	3	2	2	1	1	1	2	1	1	1	2	3	1
	CO2	2) Calculate pr	3	3	2	2	2	1	1	2	2	1	1	1	3	1
	CO3	3) Calculate fo	3	3	2	2	2	1	2	2	1	1	2	2	3	1
	CO4	4) Calculate ma	3	3	2	2	1	2	1	2	1	2	1	1	3	1
	CO5	5) Design pump	3	2	3	2	3	1	1	2	1	1	1	2	3	1
	CO6	6) Design mass	3	2	3	2	3	1	1	2	1	1	1	1	3	1

CET1102																
	со	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	1) select the co	3	3	3	2	2	1	1	1	1	1	1	1	2	2
	CO2	2) select prope	3	3	3	3	1	1	1	1	2	1	1	1	2	2
	CO3	3) select a suit	3	3	2	3	1	1	1	1	2	1	1	1	2	2
	CO4	4) design doub	3	3	2	2	3	1	1	1	2	1	1	1	2	2
	CO5	5) solve proble	3	2	3	3	3	1	1	1	2	1	1	1	2	2
	CO6	6) determine ti	3	2	3	3	3	1	1	1	2	1	1	1	2	2

CET1201																
	СО	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1) Solve energy	3	3	3	2	2	1	1	1	2	1	2	1	2	2
	CO2	2) Develop rate	2	3	3	3	2	1	1	1	2	1	1	1	2	2
	CO3	3) Gain knowle	2	3	3	3	3	1	2	1	2	2	2	1	2	2
	CO4	4) Solve integra	3	3	3	2	3	1	1	1	2	1	1	1	2	2
	CO5	5) Perform, eva	2	3	3	3	3	2	2	2	3	2	3	2	3	3

CEP1702																
	СО	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1) Several Exar	3	3	2	1	1	3	1	3	1	2	1	1	3	3
	CO2	2) Stagewise ca	3	3	2	1	1	3	1	3	1	2	1	1	2	2
	CO3	3) Use of desig	3	3	2	2	1	3	1	3	1	2	1	2	2	2

CEP1704																
	со	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1) Experiments	1	1	1	1	1	1	1	1	1	1	1	1	3	3
	CO2	2) Adsorption i	3	2	1	1	1	1	1	1	1	1	1	1	2	2
	CO3	3) Properties o	3	3	2	2	2	1	1	1	1	1	1	1	2	2

CET1504																
	со	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1) Describe the	3	3	2	3	3	1	1	1	1	1	3	3	3	3
	CO2	2) Identify vari	3	3	3	3	3	1	1	1	1	1	3	1	3	3
	CO3	3) Evaluate pro	3	3	3	3	3	1	1	1	1	1	3	1	2	2
	CO4	4) Compare va	3	3	3	3	3	1	1	1	1	1	3	1	3	3
	CO5	5) Predict proje	3	3	3	3	3	1	1	1	1	1	3	1	3	3
	CO6	6) Evaluate qua	3	3	3	3	3	1	1	1	1	1	3	1	3	3

CET1501																
	со	Statements	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
	C01	1) Covert units	3	3	3	3	1	2	2	1	1	1	1	1	3	1
	CO2	2) Calculate qu	3	3	3	3	1	2	2	1	1	1	1	1	3	1
	CO3	3) Students wo	3	3	3	3	1	2	2	1	1	1	1	1	3	1
	CO4	4) Students wo	3	3	3	3	2	3	3	1	1	1	1	1	3	1
	CO5	5) Students wo	3	3	3	3	2	3	3	1	1	1	1	1	3	1

CEP1701																
	СО	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	1) To be able to	3	3	3	2	2	1	1	1	2	1	2	2	2	3
	CO2	2) Flow throug	2	3	3	3	2	1	1	1	2	1	1	1	3	3
	CO3	3) Experiments	2	3	3	3	3	1	2	1	2	2	2	2	3	3
	CO4	4) Heat transfe	3	3	3	2	3	1	1	1	2	1	1	1	3	3

CET1302																
	со	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1) Describe the	3	3	2	2	1	1	1	1	1	1	1	1	1	2
	CO2	2) Use models	3	3	3	2	1	1	1	1	1	1	1	1	2	2
	CO3	3) Describe pha	3	3	3	1	1	1	1	1	1	1	1	1	2	2
	CO4	4) Use the con	3	3	3	1	1	1	1	1	1	1	1	1	2	2
	CO5	5) Describe no	3	3	3	1	1	1	1	1	1	1	1	1	2	2

CET1401																
	СО	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	1) Estimate no	3	3	3	2	2	1	1	1	2	1	1	2	2	3
	CO2	2)Size plate an	2	3	3	3	2	1	1	1	2	1	1	1	3	3
	CO3	3)Select, Size d	2	3	3	3	3	1	2	1	2	2	1	2	3	3
	CO4	4)Design single	3	3	3	2	3	1	1	1	2	1	1	1	2	3
	CO5	5) Design filtra	2	3	3	3	3	2	2	2	3	2	2	3	2	3

CET1601																
	СО	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	1) Correlate st	3	3	2	1	1	3	1	3	1	2	1	1	2	2
	CO2	2) Structure pro	3	3	2	1	1	3	1	3	1	2	1	1	2	2
	CO3	3) Understand	3	3	2	2	1	3	1	3	1	2	2	1	2	2
	CO4	4) Industrial tro	3	3	2	3	1	3	1	3	1	2	2	1	2	2
	CO5	5) Different typ	3	3	2	2	1	3	3	3	1	2	1	1	3	3
	CO6	6) Corrosion m	3	3	2	3	1	3	3	3	1	2	2	1	3	3

CEP1706																
	СО	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1) Performing	3	3	3	3	1	1	2	1	1	1	1	1	2	2
	CO2	2) Solid dissolu	3	3	3	3	1	1	1	1	1	2	1	1	2	2
	CO3	3) Dynamics of	3	3	3	3	1	1	1	1	1	1	1	1	3	3

CEP1705																
	со	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	1) simulation o	3	3	3	2	2	1	1	1	1	1	1	1	3	3
	CO2	2) conduction	3	3	3	3	1	1	1	1	2	1	1	1	2	2
	CO3	3) Computatio	3	3	2	3	1	1	1	1	2	1	1	1	2	2

CET1203																
	со	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1) Understand	3	3	2	1	1	1	1	1	1	1	1	1	2	2
	CO2	2) Be aware of	3	3	3	2	1	1	1	1	1	1	1	1	2	2
	CO3	3) Understand	3	3	3	2	1	1	1	1	1	1	1	1	2	2
	CO4	4) Be able to d	3	3	3	3	1	1	1	1	1	1	1	1	3	3

CET1703																
	СО	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1) Gain Knowle	2	3	3	2	1	1	1	1	1	3	1	1	2	2
	CO2	2) Measure an	3	2	3	2	1	1	1	1	1	3	1	1	2	2
	CO3	3) Identify, and	3	2	3	2	1	1	1	1	1	3	1	1	2	2
	CO4	4) Gain knowle	3	3	3	2	1	1	1	1	1	3	1	1	2	2
	CO5	5) Identify, Des	3	3	3	2	2	1	1	1	1	1	2	3	3	3

MAT1106																
	со	Statements	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	C01	1) Understand	3	3	3	3	3	1	1	1	1	2	1	2	2	3
	CO2	2) Understand	2	3	3	3	3	2	1	2	1	1	1	2	2	3
	CO3	3) Formulate a	2	3	3	3	3	1	1	2	1	1	1	1	3	2
	CO4	4) Solve optim	3	3	3	3	3	1	1	2	1	1	1	1	3	3
	CO5	5) Design, choo	3	3	3	3	3	1	1	1	2	1	3	2	2	1
						Ta	bla I	D 1 /	-							

Table B.1.4a

Table 1.4: Program Articulation Matrix

CourseCode	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	PO11	PO12	PSO1	PSO2
CHT1131	3	2	1	1	1	2	2	1	2	1	1	1	1	1
MAT1101	3	3	3	3	3	2	1	2	2	2	2	3	2	2
PYT1101	3	3	1	1	1	1	1	1	1	1	1	2	1	1
MAT1103	3	3	3	3	3	2	1	2	2	2	2	3	2	2
CHT1211	3	3	3	3	3	2	1	1	2	2	2	3	2	1
CET1501	3	3	3	3	3	3	3	1	2	2	2	3	3	3
PYT1103	3	3	1	1	1	1	1	1	1	1	1	2	1	1
CHT1231	3	2	1	1	1	2	2	1	2	1	1	1	1	1
PYT1201	3	3	1	1	1	1	1	1	1	1	1	2	1	1
GET1303	3	3	2	3	1	1	1	1	1	1	1	1	1	2
CET1301	3	3	3	2	2	1	2	1	1	1	1	3	2	2
BST1102	3	3	3	3	2	2	2	1	3	1	1	3	1	2
GET1102	3	3	3	1	1	1	1	1	1	1	1	1	1	1
CET1101	3	3	3	3	2	2	2	3	2	1	1	1	3	3
CHT1403	3	3	3	3	3	2	1	2	2	2	2	3	2	1
CHT1341	3	3	3	3	3	2	1	1	2	2	2	3	1	1
GET1109	2	3	1	1	1	1	1	1	1	1	1	1	1	1
CET1302	3	3	3	3	2	1	1	1	1	1	1	2	2	2
GET1107	3	3	3	1	1	1	1	1	1	1	1	1	1	2
CET1401	3	3	3	3	3	2	2	2	3	2	3	2	2	3
CET1502	3	3	3	3	1	3	2	3	2	3	2	2	2	2
CET1102	3	3	3	3	3	2	2	2	3	1	1	3	3	3
CET1201	3	3	3	3	3	2	2	2	3	2	3	2	3	3
CET1402	3	3	3	3	2	2	2	1	2	1	1	2	2	3
CET1202	3	3	3	3	2	1	2	1	2	2	1	2	2	3
CET1601	3	3	3	3	1	3	2	3	2	3	2	2	2	2
CET1203	3	3	3	3	1	1	1	1	1	1	1	3	3	3
CET1503	3	3	3	3	3	3	3	2	2	1	1	2	2	2
CET1703	3	3	3	3	2	1	1	2	1	3	2	2	2	3
CET1510	3	3	3	3	3	2	2	2	2	3	3	2	2	2
CET1408	3	3	3	3	3	2	1	2	2	2	2	3	2	2
CET1504	3	3	3	3	3	2	1	2	2	2	3	2	3	3
CET1505	3	3	3	3	3	2	1	2	2	2	2	3	2	2
HUT1102	3	3	3	3	3	3	3	3	3	2	1	2	3	2
CET1511	3	3	3	3	3	2	1	2	2	2	2	3	2	2
HUT1108	2	3	1	3	1	3	3	3	3	3	3	3	1	2
HUT1105	2	3	1	3	1	3	3	3	3	3	3	3	1	2
MAT1106	3	3	3	3	3	2	1	1	2	1	3	1	3	1
HUT1109	2	3	1	3	1	3	3	3	3	3	3	3	1	2
CET1607	3	3	3	3	3	3	2	2	3	1	1	3	1	1
CEP1701	3	3	3	3	2	1	2	1	2	2	1	3	3	3
CEP1702	3	3	3	3	1	3	2	3	2	3	2	1	3	1
CEP1704	3	3	3	3	2	1	2	1	2	2	1	3	3	3
CEP1705	3	3	3	3	3	2	2	2	3	1	1	1	3	1
CEP1706	3	3	3	3	2	1	2	1	2	2	1	3	3	3

Table B.1.4b

Note:Correlation levels 1, 2 or 3 as defined below:1:Slight (Low)2:Moderate (Medium)

3: Substantial (High)

1.5.1. Describe the assessment tools and processes used to gather the data upon which the
evaluation of Course Outcome is based (5)(Institute Marks 5)

The assessment of the students is carried out through the following methods:

- Classroom/online teaching
- Assignments
- MCQ tests
- Quiz
- Student projects & presentations
- Group discussion
- Case studies
- Experimental laboratory work

Figure 1.3: Assessment tools for CO attainment

Calculation Methodology with Sample Calculation

We will illustrate the calculation methodology with sample calculation using the example of the course CET1201 for the academic year 2020-2021.

A. Sample calculation for CO attainment:

1. First a matrix is created which maps the COs with the various assessment exams. The same table also maps the COs with the POs, where 3, 2, and 1 denote strong, medium, and weak correlations, respectively. The matrix is shown in Table 1.5.

СО	СА	MidSem	EndSem	CO Statement								
Marks	20	30	50									
CO1	5	25	10	Solve energy and material balance equations and analyze the performance of various multi-phase reactors. (K1)								
CO2	30	25	15	Develop rate laws and determine kinetics of several homogenous and heterogeneous reactions. (K2)								
CO3	30	25	15	Gain knowledge to design and interpret data of reactors for catalytic and non-catalytic reactions. (K3)								
CO4	30	0	30	Solve integrated and differential rate equations for series and parallel reactions in a system. (K4)								
CO5	5	25	30	Perform, evaluate and optimize the design and operation of catalyzed and non-catalyzed chemical reactors. (K5)								

Table 1.5: Mapping of CO with assessment exams.

2. As can be seen from Table 1.5, each assessment exam (CA – continuous assessment, MidSem – midsemester exam, EndSem – end-semester exam) is associated with a distribution of COs – the distribution summing up to 100%. Marks scored in that exam are automatically distributed amongst the COs in proportion to the distribution allocated to the COs in that exam.

Hence, the maximum attainment for CO1 in the semester is $5 \times 20 + 25 \times 30 + 10 \times 50 = 1350$.

Now, we turn to the results of the assessment for each student on the student roll. Table 1.6 shows a partial table of the scores in each assessment by the students. Taking the example of the first student i.e. 17CHE103, we have the student's attainment in CO1 as $5 \times 19 + 25 \times 23 + 10 \times 28 = 950$.

Sr. No.	Roll No	CA	MidSem	EndSem
1	17CHE103	19	23	28
2	18CHE151	20	18	18
3	19CHE101	19	18	28
4	19CHE102	19	18	23
5	19CHE103	20	17	42
6	19CHE104	20	24	37
7	19CHE105	19	24	40
8	19CHE106	20	24	35
9	19CHE107	20	24	35
10	19CHE108	19	18	27
11	19CHE110	17	24	33
12	19CHE111	19	30	17

Table 1.6: Results of the direct assessment

3. We also defined the initial target attainment for a classroom course as 0.8. Hence the CO1 attainment of the student 17CHE103 is $\frac{950}{1350} \times \frac{100}{0.8} = 87.96$. For a number greater than 100, we set it as 100. We calculate the attainments of each student in the class for each CO as shown in Table 1.7.

Table 1.7: COs calculated as	a result of direct assessment	for CET1201 f	for the academic ye	ar 2020-2021.
------------------------------	-------------------------------	---------------	---------------------	---------------

Sr. No.	Roll No	СА	MidSem	EndSem	CO1	CO2	CO3	CO4	CO5
1	17CHE103	19	23	28	87.96	93.15	93.15	83.93	80.32
2	18CHE151	20	18	18	67.59	78.57	78.57	67.86	57.98
3	19CHE101	19	18	28	76.39	85.71	85.71	83.93	73.67
4	19CHE102	19	18	23	71.76	81.25	81.25	75	65.69
5	19CHE103	20	17	42	87.5	98.51	98.51	100	94.95
6	19CHE104	20	24	37	99.07	100	100	100	96.28
7	19CHE105	19	24	40	100	100	100	100	100
8	19CHE106	20	24	35	97.22	100	100	98.21	93.09
9	19CHE107	20	24	35	97.22	100	100	98.21	93.09
10	19CHE108	19	18	27	75.46	84.82	84.82	82.14	72.07
11	19CHE110	17	24	33	93.98	95.54	95.54	89.29	89.1
12	19CHE111	19	30	17	93.98	93.75	93.75	64.29	72.07

4. We then calculated overall % CO attainment by taking an average of each CO column. We thus obtained a percent CO attainment for each subject as shown in Table 1.8 for CET1201 for the academic year 2020-2021.

СО	CA	MidSem	EndSem	% CO Attainment
Marks	20	30	50	100
C01	5	25	10	83.53
CO2	30	25	15	90.09
CO3	30	25	15	90.09
CO4	30	0	30	87.4
CO5	5	25	30	80.9

Table 1.8: %CO attainment for CET1201 for the academic year 2020-2021.

1.5.2. Record the attainment of Course Outcomes of courses with respect to set attainment levels(20) (Institute Marks 20)

CourseCode	СО	CO	Attainm	ent	Target	CO Attainment is satisfactory. CO Attainment is not satisfactory in 2019-202 This is a laboratory course. The CO Attainmen in the year 2019-2020 was impacted by the COVID-19 pandemic. The laboratory courses were taken online in 2019-2020. The attainment is again back to better than expected in 2020- 2021. CO Attainment is satisfactory. CO Attainment is satisfactory.				
		2018-	2019-	2020-						
		2019	2020	2021						
	CO1	91.64	91.93	94.15	80-85					
	CO2	87.4	87.11	96.63	80-85					
BST1102	CO3	88.06	89.17	95.13	80-85	CO Attainment is satisfactory				
0511102	CO4	83.24	81.43	98.23	80-85	CO Attainment is satisfactory.				
	CO5	89.74	87.2	98.23	80-85					
	CO6	87.55	84.51	96.23	80-85					
	CO1	95.55	73.7	99.29	80-85	CO Attainment is not satisfactory in 2019-2020.				
	CO2	95.63	77.23	98.84	80-85	in the year 2019-2020 was impacted by the				
CEP1701	CO3	95.55	82.16	99.34	80-85	COVID-19 pandemic. The laboratory courses				
	CO4	95.39	77.23	99.12	80-85	is again back to better than expected in 2020- 2021.				
	CO1	96.58	96.23	88.6	90-95					
CEP1702	CO2	97.12	96.46	90.38	90-95	CO Attainment is satisfactory.				
	CO3	97.12	96.46	90.38	90-95					
	CO1	99.27	98.61	91.49	80-85					
CEP1704	C02	99.55	98.6	89.69	80-85	CO Attainment is satisfactory.				
	CO3	99.55	98.6	89.69	80-85					
	CO1	82.64	63.73	97.27	80-85	CO Attainment is not satisfactory in 2019-2020. This is a laboratory course. The CO attainment				
CEP1705	CO2	81.32	60.73	97.47	80-85	in the year 2019-2020 was impacted by the COVID-19 pandemic. The laboratory courses				
	CO3	77.01	50.92	98.03	80-85	were taken online in 2019-2020. The attainment is again back to better than expected in 2020-2021.				
	CO1	94.47	62.75	95.91	80-85	CO Attainment is not satisfactory in 2019-2020. This is a laboratory course. The CO attainment				
CEP1706	CO2	95.71	70.17	96.63	80-85	in the year 2019-2020 was impacted by the COVID-19 pandemic. The laboratory courses				
	CO3	96.03	72.45	96.81	80-85	were taken online in 2019-2020. The attainment is again back to better than expected in 2020-2021.				

Table 1.9: %CO attainment major subjects for the academic year 2018-2019, 2019-2020, 2020-2021.

6554545	001	00.00	06.05	00.00	00.05	
CEP1/15	01	88.99	86.25	89.33	80-85	
	CO2	93.1	86.25	93.17	80-85	
	CO3	87.26	85.27	89.33	80-85	CO Attainment is satisfactory.
	C04	88.36	86.25	88.78	80-85	1 '
	C05	80.68	86.83	80.33	80-85	4
	0.05	09.00	00.05	09.55	00-05	
CEP1717	CO1	91.54	99.35	99.23	90-95	CO Attainment is satisfactory
	CO2	96.08	98.19	99.06	90-95	CO Attainment is satisfactory.
	CO1	73 69	64 29	65 22	60-65	
	CO1	60.10	64.62	67.06	60 65	
	002	09.19	04.02	07.00	00-03	CO Attainment is satisfactory. Based on the
CFT1101	CO3	68.06	65.42	62.82	60-65	rigorous evaluation and expected outcomes from
0211101	CO4	78.21	64.8	64.89	60-65	the students this CO attainment is set low
	CO5	73.61	63.66	63.98	60-65	
	C06	78.74	63.64	63.06	60-65	
				00.00		
	CO1	77 /	70 02	76.07	70 7F	
		77.4	70.82	/0.0/	70-75	CO Attainment is not satisfactory. More
	CO2	74.13	66.54	67.57	70-75	numericals were included to understand the
CET1102	CO3	74.23	67.03	67.79	70-75	concepts and troubleshooting of various heat
CETTIOZ	CO4	72.63	64.83	63.69	70-75	transfer equipment. Extra lectures were also
	C05	74 13	66 54	67 57	70-75	organized for modern design software such as
	C06	71.47	62.11	60.02	70 75	
	000	/1.4/	02.11	00.92	70-75	
	COL	00.05	02.61	02.52	00.05	
	CO1	80.95	93.61	83.53	80-85	CO Attainment is not satisfactory in 2018-2019.
	CO2	72.41	92.07	90.09	80-85	More emphasis was given to understanding the
CET1201	CO3	72.41	92.07	90.09	80-85	problem statement, problem-solving and
	CO4	57.33	92.07	87.4	80-85	thought-provoking problems resulted in better
	C05	80.95	81.06	80.9	80-85	CO attainment in subsequent years.
	005	00.55	01.00	00.5	00 05	
	CO1	97.05	06.01	00.21	00.05	
	001	87.05	86.81	88.21	80-85	
CET1202	CO2	87.91	84.25	86.9	80-85	CO Attainment is satisfactory.
	CO3	93.43	80.34	86.76	80-85	
	CO1	74.32	76.55	79.3	75-80	CO Attainment is not satisfactory in 2018-2019.
	CO2	73.82	76 56	76.2	75-80	Industry problems were added to understand
CET1203	CO2	74.15	76.00	79.04	75 00	the design concents. Lectures by eminent
CLITZOS	05	74.15	70.07	70.94	75-00	professors contributed to better CO attainment
	CO4	73.93	76.56	76.82	75-80	professors contributed to better CO attainment
						in subsequent years.
	CO1	78.13	69.56	78.13	75-80	CO Attainment is not satisfactory in 2010, 2020
	CO2	78.13	69.56	78.13	75-80	CO Attainment is not satisfactory in 2019-2020.
	CO3	78.97	69.39	78.97	75-80	More emphasis put on understanding the
CET1301	C04	76 71	69.13	76 71	75-80	problem at hand rather than directly jumping on
	COF	75.95	68.00	75.95	75 00	solving the problem resulted in better CO
	005	75.65	00.99	75.65	75-60	attainment in the subsequent year.
	C06	74.04	67.6	74.04	75-80	
	<u>CO</u> 1	74.91	76.54	67.92	<u>75-80</u>	CO Attainment is not estisfactory in 2020 2021
	CO2	74.14	78.17	69.41	75-80	CO Attainment is not satisfactory in 2020-2021.
CFT1302	CO3	73 27	79 35	70.68	75-80	Encouraged students for lateral thinking and
0211002	CO4	72.2	77.26	60.51	75 00	group exercises for the various problems should
	C04	73.3	77.30	09.51	75-60	result in better CO attainment in the next year.
	05	70.3	76.9	/0./1	75-80	
	-			-		
	CO1	83.04	79.57	96.85	75-80	
	CO2	83.76	81.65	97.16	75-80	
CET1401	CO3	85.11	80.52	96.85	75-80	CO Attainment is satisfactory.
-	CO4	88 5	87	94.61	75-80]
		86.70	86.62	02.07	75-80	4
	005	00.79	00.02	55.07	75-00	
		0.4.5-	07.7	00.55		
	CO1	84.23	97.76	89.59	80-85	1
CET1402	CO2	84.23	97.76	89.59	80-85	CO Attainment is satisfactory.
	CO3	84.32	97.9	89.73	80-85	

	CO4	84.32	97.9	89.73	80-85	
	CO5	84.63	98.35	90.19	80-85	
	C06	84.63	98.35	90.19	80-85	
	000	01100	50.55	50.15	00 00	
	CO1	66.6	76 38	64 49	60-65	
	CO2	66.9	71.42	63 58	60-65	CO Attainment is satisfactory. Based on the
CET1501	CO3	67.83	68 73	63.04	60-65	rigorous evaluation and expected outcomes from
CETISUI	C03	67.00	72 0	62 14	60.65	the students this CO attainment is set low
	C04	07.90	75.0	65.14	00-03	
	05	07.58	/5.2	05.38	60-65	
	CO1	74.60	74.21	00.05	75.00	
	<u> </u>	74.68	74.31	80.05	75-80	CO Attainment is not satisfactory in 2018-2019
	002	70	/3.1/	78.59	75-80	and 2019-2020. The students were given case
CET1502	<u>CO3</u>	/2.2/	/2.11	81.13	/5-80	studies to analyze the problems and find the
	C04	70.76	68.52	87.32	75-80	appropriate solutions in the manufacturing
	C05	73.62	71.07	84.21	75-80	sector resulting in better CO attainment in 2020-
-	C06	71.94	68.52	87.47	75-80	2021.
	CO1	83.97	79.74	98.36	75-80	
	CO2	80.58	78.64	97.59	75-80	
CET1502	CO3	81.38	77.84	97.83	75-80	CO Attainment is satisfactory
CE11505	CO4	79.44	77.61	97.3	75-80	
	CO5	80.58	78.64	97.59	75-80	
	CO6	75.73	79.94	95.43	75-80	
	CO1	85.54	87.27	90.46	80-85	
	CO2	84.89	87.56	90.2	80-85	
0571504	CO3	85.15	87.11	91.04	80-85	
CE11504	CO4	85.22	87.63	91.04	80-85	CO Allainment is satisfactory.
	CO5	84.67	87.11	89.26	80-85	
	CO6	85.28	88.71	91.98	80-85	
	CO1	92.19	61.1	97.64	80-85	CO Attainment is not satisfactory in 2019-2020.
	CO2	93.4	60.11	97.32	80-85	More emphasis was given to understanding the
0	CO3	96.13	64.47	97.08	80-85	problem statement, practice problems, and the
CE11505	CO4	95.12	65.06	96.51	80-85	use of e-teaching platforms and flipped
	CO5	93.04	50.74	97.34	80-85	classrooms resulted in better CO attainment in
	CO6	88.92	56.05	97.34	80-85	the subsequent year.
	CO1	82.98	89.61	86.05	80-85	
	CO2	82.28	90.68	81.4	80-85	•
CET1509	CO3	85.02	90.6	81	80-85	CO Attainment is satisfactory.
	C04	84.88	90.96	82.42	80-85	
	001	0 1100	50150	0ETTE	00 00	
	CO1	87.86	88.52	81.69	80-85	
CET1515	CO2	87.43	87.8	80.63	80-85	CO Attainment is satisfactory
0211010	CO3	87.23	90.57	81 99	80-85	
	005	0,125	50.57	01.75	00 00	
	CO1	62.13	82.19	64.59	70-75	CO Attainment is not satisfactory in 2018, 2010
	CO^2	56.68	80.19	67.87	70-75	and 2020-2021 Emphasis is given to the
	CO3	59.00	80.21	64.69	70-75	material failure analysis and mechanical failure
CET1601	CO4	62 11	Q1 21	62 5	70-75	of chemical process equipment to understand
	C04	42.04	77.06	77 16	70-75	the root cause analysis. This should contribute
	C05	43.94	77.00	77.10	70-75	nositively to CO attainment in subsequent years
	000	43.94	77.00	//.10	70-75	positively to co attainment in subsequent years.
	CO1	02 ED	02 54	05 0	80 0F	
	C01	03.52	93.30	93.0	00-0J	
CET1608	602	04.00	95.66	97.57	00-05	CO Attainment is satisfactory.
	CO3	04.00	93.98	90.23	00-05 00 0F	
	04	0/./5	97.75	99.06	00-05	
	COL	72.26	70.05	02.06	75.00	
0574 700	001	/2.36	70.95	82.86	72-80	CO Attainment is not satisfactory in 2018-2019
CE11703	CO2	60.22	60.01	/6.1	/5-80	and 2019-2020. More real-world problems and
	CO3	57.71	56.57	73.49	75-80	assignments were given to the students on the

	CO4	64.47	61.03	75.87	75-80	design of multivariable control systems resulting
	CO5	62	60.77	76.34	75-80	in better CO attainment in 2020-2021.
		02	00177	7 010 1	/ 5 66	
	CO1	02.40	00	00.21	00.05	
00000	001	92.49	99	99.21	90-95	
CE11/16	C02	91.21	98.92	99.13	90-95	CO Attainment is satisfactory.
	CO3	91.56	99.29	96.47	90-95	
	CO1	85.2	92.43	83.92	80-85	
0501101	CO2	85.2	92.43	81.67	80-85	CO Attainment is estisfactory
GEPIIOI	CO3	85.83	92.97	81.07	80-85	- CO Attainment is satisfactory.
	C04	85.83	92.97	87.59	80-85	
		00.00	5	07.00		
	CO1	95 32	Q1 33	98 11	80-85	
	CO1	04.81	01.3	08.22	80-85	-
GEP1103	C02	94.01	91.5	90.22	00-05	CO Attainment is satisfactory.
	C03	95.32	91.33	98.11	80-85	-
	C04	95.25	91.28	97.8	80-85	
	C01	94.38	97.5	94.32	80-85	
GED1108	CO2	87.05	97.5	93.3	80-85	CO Attainment is satisfactory
0171100	CO3	91.29	97.5	84.33	80-85	
	CO4	91.29	97.5	92.03	80-85	
	CO1	99.91	99.97	100	80-85	
GEP1112	CO2	99.77	100	100	80-85	CO Attainment is satisfactory.
	CO3	99.88	100	100	80-85	
	005	55.00	100	100	00 05	
	CO1	01 75	70 20	05.01	75 00	
	<u>CO1</u>	01.75	70.39	95.91	75-00	-
	002	82.50	79.44	95.02	75-80	-
GET1102	03	79.35	79.3	95	75-80	- CO Attainment is satisfactory.
	C04	82.56	/9.1/	94.25	75-80	- '
	C05	77.78	78.18	94.25	75-80	
	C06	75.7	80	93.13	75-80	
	CO1	82.43	87.64	93.55	80-85	
	CO2	83.13	86.76	92.72	80-85	
0574407	CO3	79.83	88.3	96.11	80-85	
GE11107	CO4	83.36	88.02	94.68	80-85	CO Attainment is satisfactory.
	CO5	81.54	87.04	92.73	80-85	
	C06	79.4	100	96.28	80-85	
				50.20		
	CO1	88.88	93.09	99.41	80-85	
	C01	97.01	93.09	00.22	00-05	-
	<u>CO2</u>	07.91	94.0	99.55	80-85	-
HUT1102	003	88.88	95.13	99.68	80-85	CO Attainment is satisfactory.
	C04	88.88	95.13	99.68	80-85	- '
	C05	90.24	95.36	99.28	80-85	
	C06	87.2	95.61	99.19	80-85	
	CO1	93.25	64.98	99.17	80-85	
	(0)	93 25	64 98	99 17	80-85	- CO Attainment is not satisfactory in 2019-2020.
	002	05.20	04.50	00.50	00 05	incre emphasis was given to understanding the
MAT1106	CO3	85.93	90.16	98.53	80-85	design of the experiments, hands-on problem
	CO4	85.93	90.16	98.64	80-85	solving and assignments resulted in better CO
	CO5	85 82	95 56	98 1	80-85	attainment in the subsequent year.
1	005	05.02	55.50	JO.1	0000	

1.6.1. Describe assessment tools and processes used for measuring the attainment of each ProgramOutcome and Program Specific Outcomes (5)(Institute Marks 5)

Figure 1.4: Assessment tools for PO attainment

B. Sample calculation for PO and PSO attainment (Direct Assessment)

1. First a matrix is created which maps the COs, POs, and PSOs with the various assessment exams. The matrix is as shown in Table 1.10, where 3, 2, and 1 denote strong, medium, and weak correlation, respectively. Table 1.10 is fundamentally an extension of Table 1.5.

СО	СА	MidSem	EndSem	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012	PSO1	PSO2
Marks	20	30	50														
CO1	5	25	10	3	3	3	2	2	1	1	1	2	1	2	1	2	2
CO2	30	25	15	2	3	3	3	2	1	1	1	2	1	1	1	2	2
CO3	30	25	15	2	3	3	3	3	1	2	1	2	2	2	1	2	2
CO4	30	0	30	3	3	3	2	3	1	1	1	2	1	1	1	2	2
CO5	5	25	30	2	3	3	3	3	2	2	2	3	2	3	2	3	3

Table 1.10: Mapping of CO with assessment exams and with POs and PSOs

86.25%.

2. Using % CO attainment information from Table 1.8, we calculated the PO attainment for each subject using the matrix defined in Table 1.10. Therefore, the contribution of each CO to each PO is calculated. An example of PO1 calculation for CET1201 for the academic year 2020-2021 is given by $\frac{(83.53\times3+90.09\times2+90.09\times2+87.4\times3+80.9\times2)}{3+2+2+3+2} =$

3. Table 1.11 reflects all the percent POs and PSOs calculated corresponding to each CO percentage for CET1201. Likewise, we calculated the PO and PSO Attainment levels of all the subjects. Table 1.12 represents % of direct PO attainment for each subject in the academic year 2020-21.

со	% CO Attainment	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012	PSO1	PSO2
Marks	100														
CO1	83.53	3	3	3	2	2	1	1	1	2	1	2	1	2	2
CO2	90.09	2	3	3	3	2	1	1	1	2	1	1	1	2	2
CO3	90.09	2	3	3	3	3	1	2	1	2	2	2	1	2	2
CO4	87.4	3	3	3	2	3	1	1	1	2	1	1	1	2	2
CO5	80.9	2	3	3	3	3	2	2	2	3	2	3	2	3	3
% PO	Attainment	86.25	86.4	86.4	86.55	86.34	85.49	86.14	85.49	85.9	86.14	85.27	85.49	85.9	85.9

Table 1.11: % PO and % PSO attainment for CET1201 for the academic year 2020-2021.

Table 1.12. Direct %PO and %PSO attainment for each course in the academic year 2020-2021. DO10

CourseCode	PO1	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012	PSO1	PSO2
BST1102	96.55	96.27	96.44	96.74	96.63	96.41	96.11	96.43	96.81	96.43	96.43	96.55	96.27	96.55
CEP1701	99.16	99.15	99.15	99.14	99.16	99.15	99.19	99.15	99.15	99.19	99.21	99.21	99.14	99.15
CEP1702	89.78	89.78	89.78	89.93	89.78	89.78	89.78	89.78	89.78	89.78	89.78	89.93	89.61	89.61
CEP1704	89.95	89.99	90.14	90.14	90.14	90.29	90.29	90.29	90.29	90.29	90.29	90.29	90.46	90.46
CEP1705	97.59	97.59	97.54	97.63	97.51	97.59	97.59	97.59	97.66	97.59	97.59	97.59	97.55	97.55
CEP1706	96.45	96.45	96.45	96.45	96.45	96.45	96.32	96.45	96.45	96.5	96.45	96.45	96.5	96.5
CEP1715	89.53	89.88	89.83	89.88	89.99	89.99	89.99	90.15	89.99	90.55	89.99	89.83	90.04	89.99
CEP1717	99.14	99.14	99.14	99.14	99.17	99.14	99.14	99.14	99.11	99.11	99.11	99.14	99.14	99.14
CET1101	64.5	64.63	64.36	64.5	64.25	64.56	64.26	64.5	64.87	64.56	64.26	64.34	64.5	64.5
CET1102	67.27	67.65	67.46	66.94	66.47	67.27	67.27	67.27	66.47	67.27	67.27	67.27	67.27	67.27
CET1201	86.25	86.4	86.4	86.55	86.34	85.49	86.14	85.49	85.9	86.14	85.27	85.49	85.9	85.9
CET1202	87.29	87.29	87.29	87.29	87.29	87.29	87.52	87.29	87.29	87.19	87.29	87.29	87.29	87.29
CET1203	77.81	77.81	77.68	77.51	77.81	77.81	77.81	77.81	77.81	77.81	77.81	77.81	77.7	77.7
CET1302	69.65	69.65	69.77	69.37	69.65	69.65	69.65	69.65	69.65	69.65	69.65	69.65	69.84	69.65
CET1401	95.71	95.71	95.71	95.7	95.51	95.27	95.49	95.27	95.47	95.49	95.27	95.37	95.92	95.71
CET1402	89.87	89.89	89.92	89.9	89.85	89.89	89.84	89.84	89.93	89.84	89.84	89.84	89.89	89.89
CET1408	95.12	95.02	95.49	95.17	95.26	95.12	95.12	95.12	95.12	95.12	95.23	95.3	95.12	95.22
CET1501	63.93	63.93	63.93	63.93	64.02	63.98	63.98	63.93	63.93	63.93	63.93	63.93	63.93	63.93
CET1502	83.05	83.77	84.22	82.91	84.46	83.13	83.01	83.57	83.13	83.73	83.89	84.2	83.46	83.61
CET1503	97.35	97.22	97.33	97.34	97.27	97.35	97.59	97.35	97.08	97.35	96.87	97.35	97.28	97.28
CET1504	90.67	90.67	90.68	90.67	90.67	90.67	90.67	90.67	90.67	90.67	90.67	90.61	90.64	90.64
CET1505	97.2	97.21	97.17	97.21	97.21	97.23	97.19	97.21	97.21	97.21	97.15	97.21	97.18	97.17
CET1509	95.2	95.2	95.19	95.19	95.2	95.2	95.2	95.2	95.2	95.2	95.2	95.2	95.2	95.2
CET1510	97.35	97.34	97.47	97.35	97.47	97.47	97.22	97.47	97.47	97.81	97.67	97.48	97.34	97.34
CET1515	81.44	81.44	81.44	81.32	81.54	81.44	81.44	81.44	81.44	81.44	81.6	81.26	81.44	81.37
CET1601	69.16	69.16	69.16	69.84	69.16	69.16	72.36	69.16	69.16	69.16	68.92	69.16	70.3	70.3
CET1607	97.58	97.39	97.38	97.36	97.28	97.3	97.5	97.47	97.48	97.5	97.4	97.48	97.45	97.54
CET1608	97.66	98.04	97.46	97.46	97.04	97.21	97.04	97.46	97.04	97.62	97.12	97.37	97.67	97.61
CET1703	76.51	77.26	76.93	76.93	76.83	76.93	76.93	76.93	76.93	77.02	76.83	76.76	76.88	76.88
CET1716	98.27	98.27	98.27	98.27	98.27	98.27	98.51	98.27	98.27	98.49	98.27	98.27	98.16	98.16
CHP1132	100	100	100	100	100	100	100	100	100	100	100	100	100	100

CHP1342	84.84	84.84	84.87	84.87	84.79	84.84	84.84	84.8	84.84	84.84	84.84	84.81	84.87	84.84
CHT1131	75.1	74.92	75.12	75.17	75.12	75.04	75.03	74.92	74.87	74.97	75.02	75.03	75.03	74.97
CHT1211	86.04	86.04	86.04	86.04	86.1	86.04	86.04	86.04	86.04	86.04	86.04	85.91	86.05	86.04
CHT1231	93.09	93.25	93.09	93.09	93.09	93.09	93.09	93.09	93.09	93.09	93.09	93.09	93.09	93.09
CHT1341	75.22	75.22	75.33	75	75.09	75.39	75.29	75.44	75.17	75.22	75.22	75.29	75.14	75.29
CHT1403	97.52	97.52	97.52	97.52	97.52	97.52	97.52	97.52	97.52	97.52	97.57	97.48	97.52	97.52
GEP1101	83.56	83.56	83.56	83.56	83.56	83.31	83.92	83.18	83.41	83.63	83.51	83.56	83.79	83.79
GEP1103	98.06	98.06	98.06	98.06	98.06	98.06	98.06	98.06	98.06	98.06	98.06	98.06	98.06	98.06
GEP1108	90.99	90.99	90.99	91.25	90.99	90.99	90.99	90.99	91.43	90.99	90.44	90.43	91.6	90.99
GEP1111	78.04	78.4	78.4	78.4	78.4	79.02	78.4	78.4	76.37	78.4	77.81	78.4	77.69	77.69
GEP1112	100	100	100	100	100	100	100	100	100	100	100	100	100	100
GET1102	94.59	94.59	94.59	94.59	94.59	94.59	94.59	94.59	94.59	94.59	94.59	94.59	94.73	94.73
GET1107	94.31	94.22	94.07	93.94	94.35	94.35	94.35	94.35	94.35	94.35	94.35	93.98	94.22	94.35
GET1109	88.25	88.32	88.25	88.25	88.25	88.25	88.25	88.25	88.25	88.25	88.25	88.25	88.25	88.25
HUT1102	99.43	99.46	99.4	99.43	99.42	99.42	99.42	99.43	99.42	99.4	99.39	99.36	99.43	99.42
HUT1105	97.44	97.44	97.51	97.44	97.44	97.51	97.44	97.44	97.44	97.44	97.44	97.44	97.44	97.44
HUT1108	99.91	99.91	99.91	99.91	99.91	99.91	99.91	99.91	99.92	99.91	99.91	99.91	99.91	99.91
HUT1109	99.82	99.87	99.86	99.87	99.86	99.83	99.85	99.85	99.83	99.85	99.85	99.86	99.86	99.85
MAT1101	85.8	85.8	85.91	85.8	85.91	85.8	85.98	85.38	85.98	85.8	85.98	85.8	85.8	85.8
MAT1103	89.11	88.66	88.13	88.73	88.67	87.43	89.11	89.11	89.11	89.11	89.11	89.17	87.94	88.1
MAT1106	98.7	98.72	98.72	98.72	98.72	98.8	98.72	98.74	98.62	98.8	98.54	98.76	98.7	98.84
OLT1120	99.08	99.11	99.11	99.14	99.14	99.19	99.17	99.19	99.15	99.17	99.17	99.19	99.15	99.15
PYP1102	96.71	96.68	96.71	96.71	96.74	96.68	96.74	96.71	96.73	96.71	96.71	96.71	96.71	96.71
PYT1101	88.14	88.23	88.14	88.14	88.14	88.14	88.14	88.14	88.14	88.14	88.14	88.14	88.14	88.14
PYT1103	86.48	86.57	86.48	86.48	86.48	86.48	86.48	86.48	86.48	86.48	86.48	86.48	86.49	86.48
Average	89.59	89.64	89.62	89.61	89.61	89.57	89.67	89.6	89.56	89.65	89.57	89.6	89.62	89.62

C. Sample calculation for PO and PSO attainment (Indirect Assessment)

1. We carried out surveys from the students, alumni, and employers for the indirect assessment (sample feedback forms in Figures 1.5, 1.6, and 1.7). The survey questions were asked on a scale of 5 and then connected to POs and PSOs for the calculation of PO and PSO attainment.

(Current Student Feedback for Accreditation of Chemical Engineering Courses
(F a i i	Greetings from the Institute of Chemical Technology, Mumbai. We are currently in the process of applying for accreditation for our Chemical Engineering Programmes. As a requirement we have to collect and produce the student/alumni feedback to National Board of Accreditation (NBA) committee. The accreditation process is Outcome Based Education (OBE). The delivery of the programme needs to focus on the future needs of students and train them accreditation. The achievements of the objectives set for the programme needs to be evaluated by considering the data of current students. At present the information is required from current students. The feedback form is designed in such a way that it will not take more than 2 minutes to complete the information. It is a sincere request to fill this form so that the education objectives can be evaluated and appropriate action plan can be prepared".
	Regards, Accreditation Committee Department of Chemical Engineering Email: <u>chemeng@staff.ictmumbai.edu.in</u> / <u>chemeng.acred@faculty.ictmumbai.edu.in</u>
* R	equired
1.	Please specify the year of joining the programme. e.g. 2016 *
2.	Present Academic year *
	Mark only one oval.
	Second Year Skip to question 20
	Third Year Skip to question 19
	Fourth Year Skip to question 18
3.	How do you rate the programme you studying at ICT to the level of meeting your expectations in terms of technical/engineering * knowledge?
	Mark only one oval.
	1 2 3 4 5
	Lowest Definition Highest
4.	How do you rate the programme you studying at ICT in terms of Problem analysis skills *
	Mark only one oval.
	1 2 3 4 5
	Lowest D Highest
5.	How do you rate the programme you studying at ICT in terms of Designing and development of Solutions to engineering Problems? *
	Mark only one oval.
	1 2 3 4 5
	Lowest O Highest
L	

Figure 1.5: Sample student feedback form

	Alumni Feedback for Accreditation of Chemical Engineering Courses Dear Alumni,
	Greetings from the Institute of Chemical Technology, Mumbai. We are currently in the process of applying for accreditation for our Chemical Engineering Programmes. As a requirement we have to collect and produce the student/alumni feedback to National Board of Accreditation (NBA) committee. The accreditation process is Outcome Based Education (OBE). The delivery of the programme needs to focus on the future needs of students and train them accordingly. The achievements of the objectives set for the programme needs to be evaluated by considering the data of Alumni. At present the information is required from students who have passed out between 2016 to 2021. The feedback form is designed in such a way that it will not take more than 2 minutes to complete the information. It is a sincere request to fill this form so that the education objectives can be evaluated and appropriate action plan can be prepared ⁸ .
	Regards, Accreditation Committee Department of Chemical Engineering Email: <u>chemeng@staff.ictmumbai.edu.in</u> / <u>chemeng.acred@faculty.ictmumbai.edu.in</u>
* F	Required
1.	Please specify the year of joining the programme. e.g. 2016 *
2.	Please specify the year of completion of programme. e.g. 2020 *
3.	Please specify the name of your current employer/organization. *
4	Please select the type role in your current organization. *
	Mark only one oval.
	Research & Development
	Management
	Industry
	Academic
	Entrepreneur
	Higher Studies
	Techno-commercial/Marketing
	Uthers Uthers
5.	What was the annual remuneration/salary/fellowship (INR in lakhs) you were offered during the campus placement at ICT? *
	Mark only one oval.
	<u> </u>
	4-6
	6-8
	○ 8-10
	> 1Z
	Opted for Higher Education
	No Campus Placement

mployer Feedba ar Employer, eetings from the Institute creditation for our Bachel ard of Accreditation (NBA u to provide your valuable gards, creditation Committee partment of Chemical En- nail: <u>chemeng@staff.ictm</u> uired	aCk of Chemiors of Che) commit feedback gineering umbai.edu	cal Techno emical Eng tee. As you based on <u>J.in / chem</u>	logy, Murr ineering P I have recr your expe your expe	nbai (Forme rogramme, ruited/men riences wit <u>l@faculty,ic</u>	erly known As a requi tored our B h the cand
Evaluation parameter (from mo	st relevar	nt to l east	t relevant,	*
	5	4	3	2	1
Technical/Engineering Knowledge					
Problem Analysis (problem understanding, literature review, suggesting solutions)					
Design/development of solutions					
Conducting Investigation of complex problems					
Modern engineering software/tool usage					
Responsibility towards the society					
Responsibility towards the environment					
Ethics					
Team work skills					
Communicational skills					
Project Management skills					
Life-long Learning					
Innovative ideas					
Motivation for higher studies/research					
Desire to serve					

Figure 1.7: Sample employer feedback form

2. Table 1.13 shows the calculation of PO attainment from alumni feedback. We took the average of the scores obtained from the number of students for each PO on a scale of 5 and then converted the value on a scale of 100 to obtain % attainment. For example, PO1 attainment is calculated as (3 + 4 + 5 + 5 + 4 + 5 + 5 + 5 + 5 + 5 + 4 + 3 + 5 + 3 + 4 + 4 + 5 + 4 + 4 + 5 + 4)/20 = 4.30. The average PO1 is then converted to % attainment as $\frac{4.30}{5} \times 100 = 86.00\%$.

The PO1 attainment on a scale of 3 is calculated as $\frac{4.30}{5} \times$ 3 = 2.58%

3. The same procedure we followed for the indirect assessment through the student and employer feedback and is tabulated in Table 1.14 and 1.15, respectively. Refer to Figures 1.8, 1.9, and 1.10 for satisfaction survey analysis in Section 1.6.2.

	Alumni	Feedbac	ck Analys	sis (2016	-2020)									
Sr No	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012	PSO1	PSO2
A1	3	3	3	3	3	5	4	3	3	4	5	4	2	3
A2	4	3	3	3	3	3	3	5	4	4	4	4	4	3
A3	5	5	5	5	4	5	5	4	5	4	4	5	5	3
A4	5	5	5	4	3	5	5	5	5	5	5	5	5	3
A5	4	4	3	3	4	2	3	4	3	4	2	3	4	3
A6	5	5	5	5	5	4	4	3	2	2	5	5	5	1
A7	5	5	5	5	5	5	5	5	5	5	5	5	4	5
A8	5	5	5	5	5	5	5	5	5	5	5	5	5	3
A9	5	5	5	5	5	5	5	5	5	5	5	5	4	4
A10	4	4	4	4	2	2	4	4	4	5	4	4	4	1
A11	3	4	4	4	3	4	3	4	4	3	4	3	3	3
A12	5	5	5	5	5	5	5	5	5	5	5	5	5	5
A13	3	4	3	4	4	5	4	4	5	4	4	5	3	5
A14	4	4	4	4	4	4	4	4	4	4	4	4	4	4
A15	4	3	3	3	2	3	4	4	4	4	4	4	4	4
A16	5	5	5	5	4	4	4	5	4	3	4	5	5	3
A17	4	4	5	4	3	4	4	4	4	3	4	4	5	3
A18	4	4	5	5	5	5	5	5	5	4	4	5	3	3
A19	5	5	5	5	5	5	5	5	5	5	5	5	5	4
A20	4	5	4	5	5	5	5	5	5	5	5	5	5	5
Average	4.30	4.35	4.30	4.30	3.95	4.25	4.30	4.40	4.30	4.15	4.35	4.50	4.20	3.40
PO Att	2.58	2.61	2.58	2.58	2.37	2.55	2.58	2.64	2.58	2.49	2.61	2.70	2.52	2.04
%PO Att	86.00	87.00	86.00	86.00	79.00	85.00	86.00	88.00	86.00	83.00	87.00	90.00	84.00	68.00
									•					•

Table 1.13: Indirect PO and PSO attainment through alumni feedback

Table 1.14: Indirect PO attainment through student feedback

	Studer	nt Feedba	ick Analy	/sis (202	0-2021)								
Sr No	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	P010	P011	P012	PSO1	PSO2
S1	5	5	5	5	5	5	5	5	5	5	5	5	5	5
S2	5	5	5	4	3	4	5	4	4	5	4	5	5	3
S3	5	5	5	4	3	5	5	5	5	5	5	4	5	4
S4	3	3	4	4	4	3	4	4	4	2	2	3	2	4
S5	5	5	5	5	4	5	5	5	5	5	5	5	5	5
S6	3	3	3	3	3	4	3	3	3	3	3	3	4	3
S7	5	5	5	5	5	5	5	5	5	5	5	5	5	5
S8	5	5	5	5	4	4	4	5	3	3	4	4	4	3
S9	3	3	3	3	3	3	3	3	3	3	3	3	4	3
S10	4	4	4	4	4	4	4	4	4	4	4	4	4	4
S11	4	4	4	3	3	3	4	4	3	3	4	4	2	5
S12	4	3	3	3	3	4	3	3	3	3	4	3	3	3
S13	5	4	4	5	5	4	3	4	4	5	4	4	5	4
S14	5	4	5	4	5	4	4	4	5	5	4	4	3	4
S15	4	4	4	4	4	3	4	3	3	3	4	3	4	4
S16	1	1	1	1	1	1	1	1	1	1	1	1	1	1
S17	5	5	5	5	5	5	5	5	5	5	5	5	5	5
S18	4	4	4	4	4	4	4	4	4	4	4	4	4	5
S19	5	4	4	4	4	3	5	4	3	4	3	4	2	4
S20	4	4	4	4	4	4	4	4	4	3	3	3	4	3

S21	3	4	3	3	3	3	3	3	3	3	3	3	3	3
S22	4	4	4	4	4	4	4	4	4	4	4	4	4	4
S23	4	4	5	4	3	2	4	3	4	3	3	3	4	4
S24	3	3	3	3	3	2	3	3	3	3	3	3	3	3
S25	4	4	4	3	3	5	3	3	4	4	3	4	4	2
S26	4	4	4	4	4	4	5	5	4	4	3	5	5	4
S27	4	4	4	4	4	4	4	4	5	4	4	4	4	4
S28	5	5	5	5	5	5	5	5	5	5	5	5	3	5
S29	4	4	3	3	3	3	4	4	3	4	3	4	4	3
S30	4	3	4	4	4	4	4	4	4	4	4	4	4	4
S31	5	4	3	4	2	4	5	5	4	4	5	5	4	3
S32	4	3	3	4	4	3	4	4	4	3	4	4	4	5
S33	4	4	4	4	3	3	3	4	4	4	3	4	4	3
S34	3	3	3	3	3	3	3	3	3	3	3	3	3	3
S35	5	5	4	4	4	4	4	4	4	4	4	4	4	4
S36	5	4	5	4	5	4	4	4	5	5	3	4	3	4
S37	5	4	4	4	4	4	4	4	4	4	4	4	4	5
S38	4	3	4	5	4	4	4	4	4	5	5	4	5	5
S39	4	4	4	4	4	4	4	4	3	4	4	4	4	4
S40	4	4	4	4	4	4	4	4	4	4	4	4	4	4
S41	3	3	3	3	4	2	3	3	3	3	3	3	3	3
S42	4	3	4	4	3	4	3	3	3	3	3	3	3	4
S43	3	2	2	3	3	3	2	3	3	3	3	3	3	3
S44	5	5	5	4	4	4	4	4	4	4	4	4	4	4
S45	5	5	5	4	4	4	4	4	5	5	5	5	5	4
S46	4	4	4	4	5	5	5	5	4	5	4	5	4	5
Average	4.13	3.89	3.96	3.87	3.74	3.74	3.89	3.89	3.83	3.85	3.74	3.87	3.80	3.83
PO Att	2.48	2.33	2.37	2.32	2.24	2.24	2.33	2.33	2.30	2.31	2.24	2.32	2.28	2.30
%PO Att	82.61	77.83	79.13	77.39	74.78	74.78	77.83	77.83	76.52	76.96	74.78	77.39	76.09	76.52

Table	1.15:	Indirect PO	attainment	through	emplover	feedback
TUDIC .		muncerro	accannicit	unougn	Cimpioyer	ICCUDUCK

	Employ	ver Feedb	ack Ana	lysis										
Sr No	P01	PO2	PO3	PO4	P05	PO6	P07	PO8	PO9	PO10	P011	P012	PSO1	PSO2
E1	5	5	5	5	5	5	5	5	5	5	5	5	5	5
E2	4	4	4	4	3	3	3	4	3	3	3	3	5	5
E3	4	4	3	3	3	4	4	4	4	4	3	3	4	5
E4	5	5	5	5	5	5	5	5	5	5	5	5	5	5
E5	5	5	5	5	3	5	5	5	3	3	4	5	4	5
E6	5	5	5	5	4	4	4	5	4	4	5	4	3	3
E7	5	5	4	4	5	5	5	5	5	4	4	5	5	5
E8	4	4	3	4	5	4	4	3	3	4	4	4	5	3
E9	4	4	5	4	4	4	5	3	4	4	5	4	5	5
E10	5	4	5	5	5	4	4	5	5	5	4	4	5	5
E11	4	4	4	5	5	4	5	5	5	4	4	4	5	5
E12	5	5	5	5	5	5	5	5	5	5	4	5	5	5
E13	5	5	5	5	4	4	5	4	5	5	5	5	3	5
E14	4	5	5	4	5	4	5	5	4	5	5	5	5	4
E15	5	4	5	5	4	5	4	4	4	5	5	5	4	4
E16	5	4	5	5	4	4	4	5	5	5	5	5	5	5
E17	4	3	3	4	4	4	4	4	5	5	4	5	4	4
Average	4.59	4.41	4.47	4.53	4.29	4.29	4.47	4.47	4.35	4.41	4.35	4.47	4.53	4.59
PO Att	2.75	2.65	2.68	2.72	2.58	2.58	2.68	2.68	2.61	2.65	2.61	2.68	2.72	2.75
%PO Att	91.76	88.24	89.41	90.59	85.88	85.88	89.41	89.41	87.06	88.24	87.06	89.41	90.59	91.76

1.6.2. Provide results of evaluation of each PO & PSO (20)

D. Sample calculations for overall PO and PSO attainment

1. For overall PO and PSO calculations, we converted all the (Direct) % attainment values to a scale of 3 for each subject. Table 1.16 depicts the PO attainment for each subject in the academic year 2020-2021. This table is another representation of Table 1.12.

2. We also included the values of Indirect attainment (Alumni, Student, and Employer feedback forms) from Tables 1.13, 1.14, and 1.15 (converted to the scale of 3) in Table 1.16.

3. The overall PO and PSO attainment are then calculated as $0.8 \times \text{Average}$ of Direct attainment + $0.2 \times \text{Average}$ of Indirect attainment. For example, PO1 is calculated as $0.8 \times 2.69 + 0.2 \times 2.6 = 2.67$.

Table 1.16: PO and PSO attainment (on the scale of 3) for each course in the academic year 2020-2021.

CourseCode	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2
BST1102	2.9	2.89	2.89	2.9	2.9	2.89	2.88	2.89	2.9	2.89	2.89	2.9	2.89	2.9
CEP1701	2.97	2.97	2.97	2.97	2.97	2.97	2.98	2.97	2.97	2.98	2.98	2.98	2.97	2.97
CEP1702	2.69	2.69	2.69	2.7	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.7	2.69	2.69
CEP1704	2.7	2.7	2.7	2.7	2.7	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71
CEP1705	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93
CEP1706	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.9	2.9
CEP1715	2.69	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.72	2.7	2.7	2.7	2.7
CEP1717	2.97	2.97	2.97	2.97	2.98	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97
CET1101	1.94	1.94	1.93	1.94	1.93	1.94	1.93	1.94	1.95	1.94	1.93	1.93	1.94	1.94
CET1102	2.02	2.03	2.02	2.01	1.99	2.02	2.02	2.02	1.99	2.02	2.02	2.02	2.02	2.02
CET1201	2.59	2.59	2.59	2.6	2.59	2.56	2.58	2.56	2.58	2.58	2.56	2.56	2.58	2.58
CET1202	2.62	2.62	2.62	2.62	2.62	2.62	2.63	2.62	2.62	2.62	2.62	2.62	2.62	2.62
CET1203	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33
CET1302	2.09	2.09	2.09	2.08	2.09	2.09	2.09	2.09	2.09	2.09	2.09	2.09	2.1	2.09
CET1401	2.87	2.87	2.87	2.87	2.87	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.88	2.87
CET1402	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
CET1408	2.85	2.85	2.86	2.86	2.86	2.85	2.85	2.85	2.85	2.85	2.86	2.86	2.85	2.86
CET1501	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.92
CET1502	2.49	2.51	2.53	2.49	2.53	2.49	2.49	2.51	2.49	2.51	2.52	2.53	2.5	2.51
CET1503	2.92	2.92	2.92	2.92	2.92	2.92	2.93	2.92	2.91	2.92	2.91	2.92	2.92	2.92
CET1504	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72	2.72
CET1505	2.92	2.92	2.91	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.91	2.92	2.92	2.92
CET1509	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86
CET1510	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.93	2.93	2.92	2.92	2.92
CET1515	2.44	2.44	2.44	2.44	2.45	2.44	2.44	2.44	2.44	2.44	2.45	2.44	2.44	2.44
CET1601	2.07	2.07	2.07	2.1	2.07	2.07	2.17	2.07	2.07	2.07	2.07	2.07	2.11	2.11
CET1607	2.93	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.93
CET1608	2.93	2.94	2.92	2.92	2.91	2.92	2.91	2.92	2.91	2.93	2.91	2.92	2.93	2.93
CET1703	2.3	2.32	2.31	2.31	2.3	2.31	2.31	2.31	2.31	2.31	2.3	2.3	2.31	2.31
CET1716	2.95	2.95	2.95	2.95	2.95	2.95	2.96	2.95	2.95	2.95	2.95	2.95	2.94	2.94
CHP1132	3	3	3	3	3	3	3	3	3	3	3	3	3	3
CHP1342	2.55	2.55	2.55	2.55	2.54	2.55	2.55	2.54	2.55	2.55	2.55	2.54	2.55	2.55
CHT1131	2.25	2.25	2.25	2.26	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25

CHT1211	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58
CHT1231	2.79	2.8	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79
CHT1341	2.26	2.26	2.26	2.25	2.25	2.26	2.26	2.26	2.26	2.26	2.26	2.26	2.25	2.26
CHT1403	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.92	2.93	2.93
GEP1101	2.51	2.51	2.51	2.51	2.51	2.5	2.52	2.5	2.5	2.51	2.51	2.51	2.51	2.51
GEP1103	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94
GEP1108	2.73	2.73	2.73	2.74	2.73	2.73	2.73	2.73	2.74	2.73	2.71	2.71	2.75	2.73
GEP1111	2.34	2.35	2.35	2.35	2.35	2.37	2.35	2.35	2.29	2.35	2.33	2.35	2.33	2.33
GEP1112	3	3	3	3	3	3	3	3	3	3	3	3	3	3
GET1102	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84
GET1107	2.83	2.83	2.82	2.82	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.82	2.83	2.83
GET1109	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65
HUT1102	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98
HUT1105	2.92	2.92	2.93	2.92	2.92	2.93	2.92	2.92	2.92	2.92	2.92	2.92	2.92	2.92
HUT1108	3	3	3	3	3	3	3	3	3	3	3	3	3	3
HUT1109	2.99	3	3	3	3	2.99	3	3	3	3	3	3	3	3
MAT1101	2.57	2.57	2.58	2.57	2.58	2.57	2.58	2.56	2.58	2.57	2.58	2.57	2.57	2.57
MAT1103	2.67	2.66	2.64	2.66	2.66	2.62	2.67	2.67	2.67	2.67	2.67	2.67	2.64	2.64
MAT1106	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.97
OLT1120	2.97	2.97	2.97	2.97	2.97	2.98	2.98	2.98	2.97	2.98	2.98	2.98	2.97	2.97
PYP1102	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
PYT1101	2.64	2.65	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64
PYT1103	2.59	2.6	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59	2.59
Direct Average	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69
Student Survey	2.48	2.33	2.37	2.32	2.24	2.24	2.33	2.33	2.3	2.31	2.24	2.32	2.28	2.3
Alumni Survey	2.58	2.61	2.58	2.58	2.37	2.55	2.58	2.64	2.58	2.49	2.61	2.7	2.52	2.04
Employer Survey	2.75	2.65	2.68	2.72	2.58	2.58	2.68	2.68	2.61	2.65	2.61	2.68	2.72	2.75
Indirect Average	2.6	2.53	2.55	2.54	2.4	2.46	2.53	2.55	2.5	2.48	2.49	2.57	2.51	2.36
Overall Attainment	2.67	2.66	2.66	2.66	2.63	2.64	2.66	2.66	2.65	2.65	2.65	2.66	2.65	2.62

Table B.1.6.2a & B.1.6.2b

4. Likewise, following the above-mentioned methodology in sections A, B, C, and D (Section 1.5 and 1.6 of this document), we calculated the overall average PO attainment for the academic years 2021-22, 2020-2021, 2019-2020, and 2018-19 which is presented in Table 1.16, 1.16a, 1.17 and 1.18, respectively (Figure 1.11).

|--|

	•						,							
CourseCode	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012	PSO1	PSO2
BST1102	2.39	2.41	2.38	2.39	2.42	2.41	2.46	2.42	2.38	2.42	2.42	2.39	2.41	2.39
CEP1701	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64	2.64
CEP1702	2.69	2.69	2.69	2.7	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.7	2.69	2.69
CEP1704	2.7	2.7	2.7	2.7	2.7	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71
CEP1705	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87
CEP1706	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
CEP1715	2.5	2.52	2.51	2.52	2.52	2.52	2.52	2.52	2.52	2.54	2.52	2.52	2.52	2.52
CEP1717	2.91	2.91	2.91	2.91	2.92	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91
CET1101	2.05	2.06	2.05	2.05	2.06	2.04	2.07	2.05	2.08	2.04	2.07	2.07	2.05	2.05
	2.02	2.02		0.01	1.00	2.02	2.02	2.02	1.00	2.02	2.02	2.02	2.02	2.02
--------------------	------	------	------	------	------	------	------	------	------	------	------	------	------	------
CET1102	2.02	2.03	2.02	2.01	1.99	2.02	2.02	2.02	1.99	2.02	2.02	2.02	2.02	2.02
CET1201	2.58	2.58	2.58	2.58	2.59	2.55	2.57	2.55	2.56	2.57	2.53	2.55	2.56	2.56
CET1202	2.62	2.62	2.62	2.62	2.62	2.62	2.63	2.62	2.62	2.62	2.62	2.62	2.62	2.62
CET1203	1.79	1.79	1.78	1.77	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.79	1.78	1.78
CET1301	2.06	2.06	2.05	2.03	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.04	2.03
CET1302	1.97	1.97	1.97	1.98	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97	1.97
CET1401	2.18	2.18	2.18	2.18	2.2	2.2	2.2	2.2	2.19	2.2	2.2	2.19	2.17	2.18
CET1402	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
CET1501	1.88	1.88	1.88	1.88	1.89	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88	1.88
CET1502	2.07	2.06	2.05	2.08	2.04	2.07	2.08	2.05	2.07	2.05	2.06	2.05	2.06	2.06
CET1503	1.95	1.93	1.93	1.95	1.94	1.95	1.96	1.95	1.95	1.95	1.94	1.95	1.96	1.96
CET1504	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.54	2.52	2.54	2.54
CET1505	2.27	2.28	2.3	2.28	2.28	2.32	2.27	2.28	2.28	2.28	2.28	2.29	2.28	2.29
CET1515	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.51	2.52	2.52
CET1601	1.59	1.59	1.59	1.56	1.59	1.59	1.47	1.59	1.59	1.59	1.59	1.59	1.54	1.54
CET1604	2.87	2.86	2.86	2.85	2.85	2.82	2.83	2.82	2.84	2.83	2.82	2.82	2.84	2.84
CET1703	1.75	1.81	1.78	1.78	1.77	1.78	1.78	1.78	1.78	1.79	1.77	1.76	1.77	1.77
CET1716	2.95	2.95	2.95	2.95	2.95	2.95	2.96	2.95	2.95	2.95	2.95	2.95	2.94	2.94
CHP1132	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95	2.95
CHP1342	2.78	2 78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2 78	2.78
CHT1131	2.69	2.67	2.7	2.7	2.7	2.68	2.68	2.67	2.66	2.67	2.68	2.68	2.68	2.67
CHT1211	2.05	2.87	2.7	2.7	2.7	2.00	2.00	2.07	2.00	2.07	2.00	2.00	2.00	2.07
CHT1231	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71
CHT12/2	2.7	2.72	2.7	2.4	2.4	2.4	2.7	2.4	2.4	2.7	2.7	2.4	2.7	2.4
CHT1402	2.47	2.47	2.47	2.40	2.40	2.40	2.40	2.40	2.40	2.47	2.47	2.40	2.47	2.40
CED1101	2.52	2.52	2.52	2.52	2.52	2.52	2.52	2.32	2.32	2.32	2.34	2.5	2.52	2.52
GEP1101 CED1102	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49
GEP1103	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70
GEP1108	2.00	2.00	2.00	2.07	2.00	2.00	2.00	2.00	2.7	2.00	2.71	2.09	2.00	2.00
GEPIIIO	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89
GEPIIII	2.21	2.22	2.22	2.22	2.22	2.24	2.22	2.22	2.15	2.22	2.2	2.22	2.19	2.19
GEP1112	3	3	3	3	3	3	3	3	3	3	3	3	3	3
GE11102	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.65	2.67	2.66
GET1107	2.1	2.09	2.13	2.05	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.16	2.09	2.06
GET1109	2.79	2.78	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79	2.79
HUT1102	2.63	2.64	2.62	2.63	2.63	2.63	2.63	2.63	2.63	2.61	2.61	2.63	2.63	2.62
HUT1105	2.68	2.68	2.69	2.68	2.68	2.69	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68
HUT1108	2.73	2.73	2.73	2.73	2.73	2.73	2.73	2.73	2.75	2.73	2.73	2.73	2.73	2.73
HUT1109	2.75	2.7	2.71	2.7	2.71	2.74	2.72	2.72	2.74	2.72	2.72	2.72	2.71	2.72
MAT1101	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
MAT1102	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75
MAT1106	2.31	2.33	2.33	2.33	2.33	2.43	2.33	2.3	2.26	2.43	2.21	2.43	2.26	2.43
OLT1120	2.76	2.77	2.77	2.78	2.78	2.8	2.79	2.8	2.79	2.79	2.8	2.8	2.78	2.78
PET1712	2.63	2.61	2.61	2.6	2.61	2.58	2.6	2.58	2.59	2.6	2.57	2.58	2.61	2.61
PHT1093	2.87	2.87	2.87	2.87	2.87	2.87	2.89	2.86	2.87	2.87	2.88	2.86	2.87	2.87
PHT1095	2.54	2.54	2.51	2.54	2.53	2.54	2.54	2.54	2.54	2.54	2.52	2.53	2.53	2.53
PHT1097	2.87	2.87	2.87	2.86	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87
PYP1102	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48
PYT1101	2.49	2.48	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49
					1									

PYT1103	2.62	2.63	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.62	2.64	2.63
Direct Average	2.51	2.52	2.51	2.51	2.51	2.52	2.51	2.51	2.51	2.52	2.51	2.52	2.51	2.51
Student Survey	2.48	2.33	2.37	2.32	2.24	2.24	2.33	2.33	2.3	2.31	2.24	2.32	2.28	2.3
Alumni Survey	2.58	2.61	2.58	2.58	2.37	2.55	2.58	2.64	2.58	2.49	2.61	2.7	2.52	2.04
Employer Survey	2.75	2.65	2.68	2.72	2.58	2.58	2.68	2.68	2.61	2.65	2.61	2.68	2.72	2.75
Indirect Average	2.6	2.53	2.55	2.54	2.4	2.46	2.53	2.55	2.5	2.48	2.49	2.57	2.51	2.36
Overall Attainment	2.53	2.52	2.52	2.52	2.49	2.51	2.52	2.52	2.51	2.51	2.51	2.53	2.51	2.48

Table 1.17: PO and PSO attainment (on a scale of 3) for each course in the academic year 2019-2020. CourseCode PO1 PO3 PO4 PO5 PO3 PO4 PO5 PO3 PO4 PO5 PO3 PO4 PO5 PO3 PO4 PO3 PO4 PO5 PO3 PO4 PO3 PO3 PO4 PO3 <														
CourseCode	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	PO10	P011	P012	PSO1	PSO2
BST1102	2.59	2.6	2.58	2.59	2.6	2.6	2.63	2.61	2.58	2.61	2.61	2.59	2.6	2.59
CEP1701	2.31	2.33	2.33	2.34	2.34	2.33	2.35	2.33	2.33	2.35	2.33	2.33	2.34	2.33
CEP1702	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89
CEP1704	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96
CEP1705	1.75	1.75	1.78	1.73	1.79	1.75	1.75	1.75	1.72	1.75	1.75	1.75	1.78	1.78
CEP1706	2.05	2.05	2.05	2.05	2.05	2.05	2.01	2.05	2.05	2.07	2.05	2.05	2.07	2.07
CEP1715	2.59	2.59	2.58	2.59	2.59	2.59	2.59	2.58	2.59	2.58	2.59	2.59	2.58	2.59
CEP1717	2.96	2.96	2.96	2.96	2.97	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96	2.96
CET1101	1.93	1.94	1.93	1.93	1.93	1.93	1.94	1.93	1.93	1.93	1.94	1.93	1.93	1.93
CET1102	1.99	2	1.99	1.98	1.97	1.99	1.99	1.99	1.98	1.99	1.99	1.99	1.99	1.99
CET1201	2.72	2.71	2.71	2.69	2.69	2.66	2.67	2.66	2.68	2.67	2.66	2.66	2.68	2.68
CET1202	2.51	2.51	2.51	2.51	2.51	2.51	2.54	2.51	2.51	2.52	2.51	2.51	2.51	2.51
CET1203	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29	2.29
CET1301	2.07	2.07	2.07	2.06	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07
CET1302	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33	2.33
CET1401	2.49	2.49	2.49	2.49	2.5	2.51	2.5	2.51	2.5	2.5	2.51	2.5	2.48	2.49
CET1402	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94
CET1501	2.19	2.19	2.19	2.19	2.21	2.2	2.2	2.19	2.19	2.19	2.19	2.19	2.19	2.19
CET1502	2.14	2.13	2.12	2.14	2.11	2.14	2.14	2.13	2.14	2.13	2.12	2.12	2.13	2.13
CET1503	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.36	2.37	2.36	2.37	2.36	2.37	2.37
CET1504	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.62	2.63	2.63
CET1505	1.8	1.78	1.78	1.78	1.78	1.77	1.81	1.79	1.79	1.79	1.8	1.81	1.81	1.8
CET1509R	2.51	2.51	2.51	2.51	2.51	2.51	2.5	2.51	2.51	2.51	2.51	2.51	2.51	2.52
CET1509	2.48	2.48	2.47	2.47	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48	2.48
CET1511	2.08	2.08	2.07	2.07	2.08	2.1	2.08	2.08	2.1	2.1	2.08	2.09	2.06	2.07
CET1515	2.67	2.67	2.67	2.66	2.67	2.67	2.67	2.67	2.67	2.67	2.68	2.67	2.67	2.66
CET1601	2.39	2.39	2.39	2.38	2.39	2.39	2.36	2.39	2.39	2.39	2.39	2.39	2.38	2.38
CET1608	2.87	2.89	2.86	2.86	2.85	2.85	2.85	2.86	2.85	2.87	2.85	2.86	2.87	2.87
CET1703	1.84	1.87	1.86	1.86	1.85	1.86	1.86	1.86	1.86	1.86	1.85	1.85	1.85	1.85
CET1716	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97	2.97
CHP1132	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.74	2.75	2.75	2.75
CHP1342	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93
CHT1131	2.39	2.34	2.38	2.39	2.38	2.38	2.37	2.34	2.33	2.35	2.37	2.37	2.37	2.35
CHT1211	2.81	2.81	2.81	2.81	2.81	2.81	2.81	2.81	2.81	2.81	2.81	2.81	2.82	2.81
CHT1231	2.68	2.72	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68	2.68

CHT1403	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.54	2.53	2.53	2.53
GEP1101	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78
GEP1103	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74	2.74
GEP1108	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.93
GEP1110	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84	2.84
GEP1111	1.51	1.54	1.54	1.54	1.54	1.6	1.54	1.54	1.36	1.54	1.49	1.54	1.48	1.48
GEP1112	3	3	3	3	3	3	3	3	3	3	3	3	3	3
GET1102	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.37	2.38	2.38
GET1107	2.68	2.68	2.66	2.67	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.66	2.68	2.69
GET1109	1.96	1.97	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96	1.96
GET1303	2.6	2.61	2.59	2.61	2.58	2.6	2.6	2.58	2.6	2.6	2.6	2.6	2.59	2.58
HUT1102	2.85	2.85	2.84	2.84	2.83	2.83	2.83	2.84	2.83	2.84	2.84	2.85	2.85	2.85
HUT1105	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83	2.83
HUT1108	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.85	2.86	2.86	2.86	2.86	2.86
HUT1109	2.42	2.64	2.63	2.64	2.71	2.52	2.59	2.59	2.45	2.59	2.59	2.57	2.69	2.59
MAT1101	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
MAT1103	2.55	2.55	2.55	2.55	2.55	2.54	2.55	2.55	2.55	2.55	2.55	2.56	2.55	2.55
MAT1106	2.45	2.44	2.44	2.44	2.44	2.35	2.44	2.44	2.51	2.35	2.56	2.37	2.48	2.34
PHT1095	2.53	2.53	2.51	2.52	2.52	2.53	2.53	2.53	2.53	2.53	2.52	2.53	2.52	2.52
PHT1097	2.49	2.49	2.46	2.44	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.49	2.48	2.48
PYP1102	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
PYT1101	2.19	2.19	2.19	2.19	2.19	2.19	2.19	2.19	2.19	2.19	2.19	2.19	2.19	2.19
PYT1103	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.75	2.76	2.75
PYT1201	2.51	2.52	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.54	2.48
Direct Average	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Student Survey	2.43	2.37	2.3	2.29	2.22	2.23	2.37	2.37	2.32	2.28	2.24	2.36	2.33	2.37
Alumni Survey	2.61	2.52	2.52	2.43	2.01	2.37	2.52	2.61	2.52	2.49	2.46	2.43	2.31	2.34
Employer Survey	2.75	2.65	2.68	2.72	2.58	2.58	2.68	2.68	2.61	2.65	2.61	2.68	2.72	2.75
Indirect Average	2.6	2.51	2.5	2.48	2.27	2.39	2.52	2.55	2.48	2.47	2.44	2.49	2.45	2.49
Overall Attainment	2.52	2.51	2.5	2.5	2.46	2.48	2.51	2.51	2.49	2.5	2.49	2.5	2.49	2.5

Table B.1.6.2a & B.1.6.2b

Table 1.18: PO and PSO attainment (on a scale of 3) for each course in the academic year 2018-2019.

CourseCode	PO1	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2
BST1102	2.63	2.63	2.62	2.63	2.64	2.64	2.65	2.64	2.63	2.64	2.64	2.63	2.63	2.63
CEP1701	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87	2.87
CEP1702	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91	2.91
CEP1704	2.99	2.99	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98	2.98
CEP1705	2.41	2.41	2.42	2.4	2.43	2.41	2.41	2.41	2.4	2.41	2.41	2.41	2.42	2.42
CEP1706	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86
CEP1715	2.67	2.68	2.68	2.68	2.68	2.68	2.68	2.69	2.68	2.69	2.68	2.68	2.69	2.68
CEP1717	2.81	2.81	2.81	2.81	2.79	2.81	2.81	2.81	2.84	2.84	2.84	2.81	2.81	2.81
CET1101	2.21	2.2	2.22	2.21	2.21	2.23	2.18	2.21	2.19	2.23	2.18	2.19	2.21	2.21
CET1102	2.22	2.22	2.22	2.22	2.21	2.22	2.22	2.22	2.21	2.22	2.22	2.22	2.22	2.22
CET1201	2.17	2.18	2.18	2.2	2.17	2.23	2.22	2.23	2.21	2.22	2.26	2.23	2.21	2.21
CET1202	2.68	2.68	2.68	2.68	2.68	2.68	2.67	2.68	2.68	2.67	2.68	2.68	2.68	2.68

CET1203	2.22	2.22	2.22	2.22	2.22	2.22	2.22	2.22	2.22	2.22	2.22	2.22	2.22	2.22
CET1301	2.31	2.31	2.3	2.29	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.31	2.3	2.3
CET1302	2.2	2.2	2.19	2.21	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.19	2.2
CET1401	2.56	2.56	2.56	2.56	2.57	2.57	2.57	2.57	2.57	2.57	2.57	2.56	2.56	2.56
CET1402	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53	2.53
CET1501	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02
CET1502	2.16	2.17	2.17	2.17	2.16	2.17	2.17	2.15	2.17	2.16	2.17	2.17	2.17	2.17
CET1503	2.41	2.39	2.4	2.41	2.4	2.41	2.43	2.41	2.39	2.41	2.37	2.41	2.41	2.41
CET1504	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.55	2.56	2.55	2.55
CET1505	2.8	2.8	2.8	2.8	2.8	2.78	2.81	2.79	2.79	2.79	2.8	2.8	2.79	2.8
CET1509	2.72	2.71	2.71	2.71	2.71	2.71	2.72	2.71	2.71	2.71	2.72	2.71	2.71	2.71
CET1510	2.63	2.63	2.62	2.63	2.62	2.62	2.64	2.62	2.62	2.58	2.59	2.62	2.63	2.63
CET1511	1.89	1.89	1.91	1.9	1.9	1.9	1.89	1.89	1.9	1.9	1.89	1.9	1.89	1.89
CET1515	2.63	2.63	2.63	2.62	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.62	2.63	2.63
CET1601	1.64	1.64	1.64	1.61	1.64	1.64	1.51	1.64	1.64	1.64	1.65	1.64	1.6	1.6
CET1603	2.52	2.54	2.52	2.51	2.5	2.52	2.52	2.52	2.51	2.52	2.52	2.52	2.5	2.5
CET1604	2.53	2.54	2.54	2.55	2.55	2.58	2.56	2.58	2.56	2.56	2.58	2.58	2.56	2.56
CET1608	2.56	2.57	2.55	2.55	2.54	2.54	2.54	2.55	2.54	2.56	2.54	2.55	2.56	2.56
CET1703	1.88	1.92	1.9	1.9	1.89	1.9	1.9	1.9	1.9	1.91	1.89	1.89	1.9	1.9
CET1716	2.75	2.75	2.75	2.75	2.75	2.75	2.76	2.75	2.75	2.75	2.75	2.75	2.75	2.75
CHP1132	2.4	2.41	2.4	2.41	2.4	2.42	2.42	2.4	2.41	2.41	2.43	2.4	2.41	2.41
CHP1342	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6
CHT1131	2.16	2.13	2.17	2.18	2.17	2.15	2.15	2.13	2.12	2.14	2.15	2.15	2.15	2.14
CHT1211	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.46	2.47	2.47
CHT1231	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06	2.06
GEPIIOI	2.57	2.57	2.57	2.57	2.57	2.56	2.56	2.56	2.56	2.56	2.57	2.57	2.56	2.56
GEP1103	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80
GEP1108	2.75	2.75	2.75	2.72	2.73	2.75	2.75	2.75	2.74	2.75	2.73	2.73	2.75	2.75
GEP1110	2.07	2.03	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07
GEP1112	3	3	3	2.23	2.23	3	3	3	2.15	3	3	3	3	3
GET1102	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.41	2.4
GET1107	2.45	2.45	2.46	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.45	2.46	2.45	2.45
GET1109	2.3	2.29	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
GET1303	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69
HUT1102	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66
HUT1105	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66	2.66
HUT1108	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.38	2.39	2.38	2.38	2.38	2.38	2.38
HUT1109	2.92	2.93	2.93	2.93	2.93	2.93	2.93	2.93	2.92	2.93	2.93	2.93	2.93	2.93
MAT1101	2.51	2.51	2.51	2.51	2.51	2.51	2.51	2.5	2.51	2.51	2.51	2.51	2.51	2.51
MAT1103	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.63	2.62	2.63
MAT1106	2.66	2.67	2.67	2.67	2.67	2.69	2.67	2.66	2.65	2.69	2.64	2.69	2.65	2.69
PHT1095	2.39	2.39	2.35	2.38	2.37	2.39	2.39	2.39	2.39	2.39	2.37	2.38	2.38	2.38
PYP1102	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
PYT1101	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18
PYT1103	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58
PYT1201	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.58	2.59	2.57

TXT1501	2.54	2.54	2.54	2.55	2.54	2.54	2.55	2.54	2.54	2.54	2.54	2.53	2.54	2.54
Direct Average	2.5	2.5	2.5	2.5	2.5	2.51	2.5	2.5	2.5	2.51	2.51	2.51	2.5	2.5
Student Survey	2.59	2.57	2.48	2.48	2.14	2.36	2.4	2.36	2.36	2.36	2.42	2.55	2.59	2.63
Alumni Survey	2.57	2.4	2.57	2.06	2.06	2.23	2.4	2.06	2.49	2.31	2.23	2.49	2.06	2.06
Employer Survey	2.75	2.65	2.68	2.72	2.58	2.58	2.68	2.68	2.61	2.65	2.61	2.68	2.72	2.75
Indirect Average	2.64	2.54	2.58	2.42	2.26	2.39	2.49	2.37	2.49	2.44	2.42	2.57	2.45	2.48
Overall Attainment	2.53	2.51	2.52	2.49	2.45	2.48	2.5	2.48	2.5	2.49	2.49	2.52	2.49	2.5

Figure 1.8: Alumni Satisfaction Survey Connected to POs and PSOs

Figure 1.9: Student Satisfaction Survey Connected to POs and PSOs

Figure 1.10: Employer Satisfaction Survey Connected to POs and PSOs

Figure 1.11: Yearwise PO and PSO attainment levels

1.7. Evidence of solving complex engineering Problems (25)

(Institute Marks 25)

The students are assessed through mini projects (Seminar), major projects (Home Paper), independent studies (Laboratory), and industrial exposure (In-plant Training) throughout the course duration which involves solving complex engineering problems.

Table 1.19: List of laboratory experiments: S. Y. B. Chem. Engg. Sem IV

No	Name of the experiment	Subject
1	Flow through Rough & Smooth pipes, Static mixers	Momentum Transfer
2	Flow of Non-Newtonian Fluid through Pipes	Momentum Transfer
3	Characteristics of Flow through Coil	Momentum Transfer
4	Orifice and Venturi Meter	Momentum Transfer
5	Pressure Drop across Pipe Fittings	Momentum Transfer
6	Liquid Solid Fluidization	Momentum Transfer
7	Two-Phase Flow in Pipes	Momentum Transfer
8	Sedimentation Characteristics	Momentum Transfer
9	Batch Sedimentation	Momentum Transfer
10	Capillary Viscometer	Momentum Transfer
11	Flow Characteristics of Control Valves	Momentum Transfer
12	Characteristics of a Centrifugal Pump	Momentum Transfer
13	Diffusivity of Benzoic Acid	Mass Transfer
14	Diffusivity of Acetone in Air	Mass Transfer
15	Ion exchange Isotherm	Thermodynamics
16	Thermodynamic properties of liquid mixtures	Thermodynamics
17	Estimation of Mass Transfer Coefficient Camphor balls	Chem Engg Operations
18	Differential Distillation of Acetic acid water	Chem Engg Operations
19	Steam Distillation	Chem Engg Operations
20	Distillation of toluene-xylene in Packed & Plate column	Chem Engg Operations
21	Spinning Band Distillation Column Acetic acid water	Chem Engg Operations
22	Filtration Characteristics of Sparkler Filter and ANF	Chem Engg Operations
23	Hydrodynamics of Gas – Liquid Packed Columns	Chem Engg Operations

Table 1.20: List of laboratory experiments: T. Y. B. Chem. Engg. SEM V

No	Name of the experiment	Subject
1	Characterization of Gas-Solid Fluidization	Momentum Transfer
2	Double Pipe Heat Exchanger and Gas fired hot water generator	Heat Transfer
3	Shell and tube heat exchanger	Heat Transfer
4	Plate Heat Exchanger	Heat Transfer
5	Unsteady state heat transfer	Heat Transfer
6	Heat transfer by Natural Circulation (thermosiphon)	Heat Transfer
7	Fin Efficiency	Heat Transfer
8	Finned tube heat exchanger	Heat Transfer
9	Heat transfer by natural convection	Heat Transfer
10	Kinetics of PFR and CSTR	Chemical Rection Engineering
11	Dye degradation by Photocatalysis	Chemical Rection Engineering
12	Kinetics of Condensation Polymerization	Chemical Rection Engineering
13	Vapor Liquid Equilibrium	Thermodynamics
14	LLE: AcOH-Water-Xylene or cyclohexane, tie lines	Thermodynamics
15	L-L Mutual solubility and upper consolute temperature	Thermodynamics
16	Kinetics of Drug Dissolution	Chem Engg Operations
17	Mass Transfer in Packed Column	Chem Engg Operations
18	Vacuum drying	Chem Engg Operations
19	Ion-Exchange breakthrough and Isotherm	Chem Engg Operations
20	Liquid holdup and axial dispersion in packed column	Chem Engg Operations
21	Hydrodynamics and Mass transfer Spray Extraction	Chem Engg Operations
22	Hydrodynamics of Packed Extraction Column	Chem Engg Operations
23	Analysis of Cooling tower (small / big)	Chem Engg Operations

Table 1.21: List of laboratory experiments: T. Y. B. Chem. Engg. Sem VI

No	Name of the experiment	Subject
1	Kinetics of dehydration of tert-Butanol	Chemical Rection Engineering
2	Kinetics of Phenol degradation	Chemical Rection Engineering
3	Residence time distribution in PFR & CSTR	Chemical Rection Engineering
4	Chiller characterization	Thermodynamics
5	Solid suspension in MAC use different impellers	Multiphase Reactors
6	Gas liquid dispersion in MAC use different of impellers	Multiphase Reactors
7	Mixing time in MAC in presence & absence of gas	Multiphase Reactors
8	Hydrodynamics of bubble column (water, CMC, NaCl)	Multiphase Reactors
9	Mixing time bubble column & sectionalized bubble column	Multiphase Reactors
10	Jet Loop Ejector	Multiphase Reactors
11	Hydrodynamics of Gas induced impeller	Multiphase Reactors
12	Reactive Gas absorption in packed column	Multiphase Reactions
13	Reactive Gas absorption in MAC	Multiphase Reactions
14	Reactive Gas absorption in bubble Column	Multiphase Reactions
15	Copper disc dissolution	Multiphase Reactions
16	Solid dissolution with instantaneous reaction	Multiphase Reactions
17	Dynamics of first order systems (tank, Thermometer)	Dynamics and Control
18	Linearization of dynamics of tapering tank	Dynamics and Control
19	Dynamics of Interacting tanks	Dynamics and Control
20	Dynamics of non-interacting	Dynamics and Control
21	Dynamics of overdamped and underdamped systems	Dynamics and Control
22	Yokogawa Process Control Module 1 Level and Flow	Dynamics and Control
23	Yokogawa Process Control Module 2 Temperature and Pressure	Dynamics and Control

	Q. No.	Start writing from	n here.					6	ITT				Vale			1		OSper
								100		Graph	or or	fittings '	· /2 ·			1	1.0.1.2.2.2	
		Smilarty for	· QATE	TO / OH = 2	16 ×10-1 m	n ³ /s									- /	E CALL		
		g	Varia	asac m/s	10 AUG 11			1 413							3 00000	3Call	is the	5 kg/s
		Tabulah	V4 = 0	1.4346 11/3.				- 200						1				
		Inducati	ing calci	dattons:				-									1	
			-	1	140	T	1.	. 14	1				4-		2		1 (m - 10	o pa
		httings	00	APorecisived	APsp	APfitting	Leg	1100				1			5.2.8			
	0		cmj	([**)	(pa)	(pa)	(m)	±000				1		-				
	6	Ballvalve	0.03	194.3	74.55	219.75	2.2.0924	90										
	0	Globe value	0.2	1962	12.81	1849.19	18.5823				1 42			From	graphor	APArting	\$ 1/2 50	
	0	trate valve	0.05	990.5	112.81	419.3	4.51496	1608								0		
	0	Bencl value	0.045	491.45	78.979	342 971	3.647	17	1					-	51	noe = hea	d loss conf	ficient
	0	Elbow	0.05	490 5	11.20	949.3	4514	160	-									
	0	coupling	0.03	2.94.3	64.7451	216.55	1.2.1.7	10							Late port	25		
	0	Expander	0.002	19.62	85.346	65.31	2.300F	Tribig					G-E	1 mar 212	a 00 - 12			
-	0	Reducer	0.018	176.58	96.137	80 442	0.5607	(pa) #	-				01	Bend da Bali ja	Ive and	2		D
-		and	For FLOW	ate, Q= R	Solot	201112	0.8085	13	50				1					
		_		V sy== 0	14.439.58								-	Reducer	8-			1
	-	- the tag	20 100	/2 4										Expan	CAX.		1	
								The second	20				4-	G Che 1	mine date	8	1 mile	
1	1	From the	Graph of	OP	VS 1/ SV	*	-	Here and the second sec	1 cee					1				
1	-		-	1 fittings	12 W	reget		and the second se	- 40							/		
		Slope =	head loss a	coefficient. (k)	0		8	-						15			
			1	1.12				1						1				
		- F	from Linea	r regression	a								1 1			F		ter R
-	0	6 . I	Finding	slope by fit	Hing data	12		0					4-			TT		
	0	K Ball valve	* 3.993	,	~	3 13			19	T- partie		0-1	9-			17		Z
-	0	· Couste val	ve = 17.3	68	-	2.1		4	0.1									
	0	k and val	we= 11.49						Biby								TT	
	6	k Eller	1.1539	19.91	and a				-			1						
	0	k (audion	1 9015		and a state		_				1,11		SPI-	-				16
	Ð	KEpanda	- 1-850	-	-			18			1			10 13	10 1	2 292	1210	
	3	k and use	= 0.40		-			- (m)	間		NP	2			12- (KA)	m52)		

Figure 1.12: Evidence of solving complex problems - Laboratory examination answerbook sample

$\langle \rangle$			Q Search			Institute Of Chemical Technology 🤬 – 🗇 🗙
Advite .	Teams	ni.	General Posts Files - Class Notebook Assignments Grades Insights +			🗅 Meet 🗸
(in) Charles	Vour tearns		+ New V 👎 Upload V 🕾 Copy link 🖓 Sync 🛓 Download 🛱 Add shortcut to Or	eDrive 🛛 🚸 Open in Sha	ePoint	\equiv All Documents* \vee
(iji)	MChem Research Group	29981	Documents $>$ General $>$ TYCE 2022 Chemical Engineering Laboratory Submissions			*
Â	TYCE 2021 Chemical Engineering Lab		Name ~	Modified	Modified By \sim	1
Assignments	Final Year Tech 2021-22	177	Abhishek Kulkami_19CHE127	December 20, 2021	Abhishek Kulkarni	
Calendar	FinCE Home Paper 2021-22	544) -	Aditi Patil_19CHE117	January 16	Sachin Jadhav	
S. Can	MChem 2022 Seminar	(144) (144)	Adritya Agarwal_19CHE131	January 10	Aditya Agarwal 19.	4
Filme	TYCE 2022 CE Lab III		Aditye Sangave_19CHE155	December 19, 2021	Hrishabh Singh	
	General		Adwait Joshi_19CHE115	December 19, 2021	Adwait Joshi	
	MChem 2021 Seminar	***	Akanksha Warade_19CHE154	December 19, 2021	Akanksha Warade	
	ChemEng Review Paper Team	***	Akshat Jain_19CHE136	January 10	Akshat jain	
	Hidden teams		Akshayaa Jagtap_19CHE170	December 19, 2021	Akshayaa Jagtap	
			Amit yadav_19CHE187	December 20, 2021	Amit Yadav	
			19CHE178 Amogh Gaikwad_19CHE178	December 20, 2021	Amogh Gaikwad	
			Amoghraj Prabhu S S_19CHE130	December 20, 2021	Amoghraj Prabhu .	-
			Anant Sohale_19CHE113	December 19, 2021	Anant Schale	
			10 Anikat Rajul_19CHE109	December 23, 2021	Aniket Rajul	
			Animesh Chaturvedi_19CHE137	December 20, 2021	Animesh Chaturvec	5i
10			Aguil Attar_19CHE104	December 19, 2021	Aquil Attar	
Арра			Ashish Bhave_19CHE174	December 19, 2021	Ashish Bhave	
(?) Helu	So Join or create a team	\$	Atharv Kulkami_19CHE168	December 19, 2021	Athary Kulkami (19	-

Figure 1.13a: Sample chemical engineering laboratory journal submission (Online I)

< >			Q. Search			🚥 Institute Of Chemical Technology 🧕 — 🔲 🗙
Q Activity	Teams	li.	General Posts Files - Class Notebook Assignments Grades Insights +			🗅 Meet 🕓
(E) Chat	Your tearns		+ New 🗸 🕴 Upload 🗸 👁 Copy link 😳 Sync 🗄 Download 🖾 Add shortcut to OneD	rive 🔹 Open in S	iharePoint	$=$ All Documents* \sim
(1)	MChem Research Group	29991	Documents: > General: > TYCE 2022 Chemical Engineering Laboratory Submissions: > Amoghraj Prabhu S :	5_19CHE130		
anna A	TVCE 2021 Chemical Engineering Lab		🗅 Name 🗸	Modified	Modified By ~	
Asigments	Final Year Tech 2021-22	777	19CHE130_Amoghraj Prabhu S.S_ Chiller Characteristics.pdf	April 10	Amoghraj Prabhu	
Celendar	FinCE Home Paper 2021-22		19CHE130_Amoghraj Prabhu S 5_Exp-12 -Hydrodynamics of Gas-Liq Packed Column.pdf	April 26	Amoghraj Prabhu	
& can	MChem 2022 Seminar	(+++)	O 🔓 19CHE130_Amoghraj Prebhu S S_Exp-14_Shell and Tube Heat Exchanger.pdf …	April 26	Amoghraj Prabhu	
0	TYCE 2022 CE Lab III		19CHE130_Amoghraj Prabhu S 5_Exp_09_Gas Absorption with reaction in MAC.pdf	February 3	Amoghraj Prabhu	-
Filme	General		19CHE130_Amoghraj Prabhu S S_Exp_10_Dynamics of First Order Systems.pdf	February 7	Amoghraj Prabhu	2
	MChem 2021 Seminar		19CHE130_Amoghraj Prabhu S S_Exp_18-Residence Time Distribution in CSTR.pdf	April 26	Amoghraj Prabhu	996 197
	ChemEng Review Paper Team		19CHE130_Amoghraj Prabhu S.S_Exp_Distillation in Plate Column.pdf	April 10	Amoghraj Prabhu	
	Hidden teams		39CHE130_Amoghraj Prabhu S S_Exp_Sedimentation Characteristics.pdf	April 10	Amoghraj Prabhu	
			19CHE130_Amoghraj Prabhu S.S_Exp01_Axial Dispersion.pdf	January 16	Amoghraj Prabhu	
			19CHE130_Amoghraj Prabhu S S_Exp-05_Photocatalysis.pdf	January 20	Amoghraj Prabhu	Me. ave
			19CHE130_Amoghraj Prabhu S S_Exp-06_Gas Liquid dispersion in MAC using different impellers.pdf	January 20	Amoghraj Prabhu	
			19CHE130_Amoghraj Prabhu S 5_Exp-07_Solid Suspension in MAC using different inpellers.pdf	January 27	Amoghraj Prabhu	
			19CHE130_Amoghraj Prabhu S S_Exp-08_Copper Disc Dissolution .pdf	January 27	Amoghraj Prabhu	
			I9CHE130_Amoghraj Prabhu S S_Exp-11_Dynamics of Non Interacting tanks.pdf	February 27	Amoghraj Prabhu	**
			19CHE130_Amoghraj Prabhu S S_Exp-11_Filtration Characteristics of Sparkler Filter.pdf	April 26	Amoghraj Prabhu	10. In the second se
Appa			19CHE130_Amoghraj Prabhu S S_Exp-13_Dynamics of Interacting tanks.pdf	March 5	Amoghraj Prabhu	
(?) Helu	👸 Join or create a team	1	19CHE130_Amoghraj Prabhu S S_Exp-14_Solid Dissolution with instantaneous reactions.pdf	March 5	Amoghraj Prabhu	

Figure 1.13b: Sample chemical engineering laboratory journal submission (Online II)

Figure 1.14: Sample chemical engineering laboratory journal submission front page (Physical)

Table 1.22: List of B. Chem	. Engg.	Home Paper	(Major	Projects	2019-20
-----------------------------	---------	------------	--------	----------	---------

Roll No.	Student Name	Торіс
16CHE107	Akash Sanjay Nogaja	Design a plant to manufacture 10 TPD of Isopropyl Acetate
16CHE142	Naman Anil Jachi	Design a plant to manufacture 5 TPD Lanolin
100112142		Alcohol
16CHE150	Raunak Shiocharan	Design a plant for solar Electricity Based H_2
100112130	Balkote	generation through water electrolysis
14CHE1062	Rohan Rajesh	Design a plant to manufacture 10TPD of Mango Butter
TICHEIOOZ	Parlikar	
16CHE164	Shriram Rajendra	Design a plant to manufacture 10 TPD of Refused derived
100112101	Chavan	Fuel(RDF)
16CHE105	Aditi Anil Sawant	Design a plant to manufacture 10 TPD of L-
100112105		menthol
		Design a plant for separation and purification of methane and
16CHE125	Chinmay Vidyadhar	carbon dioxide from 100,000 m ³ / day biogas obtained from
100112125	Mhatre	anaerobic digestion.
16CHE126	Darshana Uttam	Decign a plant to manufactre 100 TPD of acrylic acid
100112120	Malusare	
16CHE128	Dishit Pankaj	Design a plant for gasification of 100 TPD of used & waste oils
100112120	Ghumra	and hydrogen production
16CHE168	Siddhesh Dilip Sarda	Design a plant to manufacture 20 TPD of alpha pinene
16CHE134	Kalach Pajondra Paj	Design a plant to manufacture lubricants from
100112134	Kalash Rajehura Pal	epoxidised vegetable oil.
16CHE141	Monik Sanjay Magiya	Design a plant to manufacture methylene diphenyl isocyanate.
16045151	Razeen Ramzan	Design a plant to manufacture iron gluconate.
100112131	Shaikh	Design a plant to manufacture non gluconate.
16CHE166	Shubham Gangaram	Decign a plant to manufacture L-accorbic acid
100112100	Ravan	
16CHE111	Amol Bharat Khatke	Design a plant to manufacture 5 TPD trimellitic anhydride
16CHE120	Asmee Maruti Prabhu	Design a plant to manufacture 500 TPA of Carbon Fiber
16CHE124	Kaustubh Chaitanya	Design a plant to recover Uranium from 100 TPD phosphoric
100112124	Rane	acid plant
16CHE145	Ninad Chandrakant	Design a plant to manufacture 50000 tha polylactic acid
100112145	Khelukar	
16CHE149	Dujit Sunil Juneja	Design a plant to Manufacture 10 TPD of
100112149	rujit Sumi Suneja	tetrabutyl ammonium hydroxide
16CHE113	Aniket Jayendra	Design a plant to produce 5 TPA of 3,4-
100112115	Murumkar	ethylenedioxy aniline
16CHE119	Ashin Antony Sunny	Design a plant to produce 100000 MTPA of
TOCHLIIO		phenol
16CHE131	Gaurav Vasudevan	Design a plant to produce 100 TPA of crotamiton
IUCHLIJI	Mampally	besign a plane to produce 100 mA or crotalinton

16CHE140	Mihir Mahendra Kulkarni	Design a plant to produce 5000 MTPA of aluminium fluoride
16CHE157	Sai Mukund Nazare	Design a plant to produce 100 MTPA of ortho nitrotoluene
16CHE115	Anirudh Venkatesh - -	Design a plant for the manufacture of 10,000 TPA 4-methoxy propiophenone using a green method
16CHE116	Ankit Sanjay Gaikwad	Design a plant for 50,000 TPA of m-phenylene diamine
16CHE154	Saaksshi Chandrashekhar Tenpe	Design a plant for 25,000 TPA of m-phenoxy benzyl alcohol.
16CHE179	Vidit Vivek Shah	Design a plant for the manufacture of 5,000 TPA diphenyl carbonate
16CHE106	Aditya Dilip Phad	Design a plant to manufacture potassium dichromate
16CHE133	Harshada Gangaram Gabhale	Design a plant to manufacture saccharin
16CHE135	Kaushal Sanjayrao Kaloo	Design a plant to manufacture salicylic acid
16CHE153	Saagar Shaival Gandhi	Design a plant to manufacture poly vinyl chloride
16CHE165	Shubham Ashokrao Shinde	Design a plant to manufacture hydrogen peroxide
16CHE110	Amogh Sandip Nagarkar	Design a plant to manufacture p-methoxy acetophenone.
16CHE117	Anu Sanjay Deshmukh	Design a plant to manuactre p-methyl acetophenone
16CHE161	Shivani Uday Kulkarni	Design a plant to manufacture Benzophenone
16CHE104	Abhinav Vivek Handu	Design a plant to manufacture 1000 TPA of Polyoxymethylene dimethyl ethers
16CHE108	Akshay Suhas Patil	Design a plant to manufacture 100 TPA of (Z)-5- (4- hydroxybenzylidene)thiazolidine-2,4-dione
16CHE147	Ojaswi Sandeep Rathi	Design a plant to manufacture 1000 TPA of n- butyl acrylate
16CHE159	Shalaka Sunil Dhande	Design a plant to manufacture 1000 TPA of 1,1- Diethoxybutane
16CHE163	Shreekant Sudheer Gokhale	Design a plant to manufacture 2,6- naphthalenedicarboxylic acid (1000 tpa)
16CHE119	Ashish Shyam Tangade	Design a plant to manufacture 10 TPD iodized salt

16CHE127	Dhiraj Manoj Jain	Design a plant to manufacture 10 TPD Fe + I
100112127		Double Fortified Salt
16CHE146	Nishant Narendra	Design a plant to manufacture 10 TPD bioethanol from mixed
100112140	Pardeshi	feed of lignocellulosic biomass
16CHE160	Shital Vikas	Design a plant to manufacture Spray/Freeze-dried re-
100112100	Suryavanshi	dispersible powder from 1 TPD sugarcane juice
16CHE171	Surabh Santhosh K t	Design a plant to manufacture 10 TPD sodium chlorite, an
100112171		important water treatment chemical
16CHE130	Eashaan Girish	Design a plant to produce alachlor at a capacity suitable for
100112130	Godbole	Indian context
16CHE139	Malhar Satish	Design a plant to produce Isoborneol at a capacity suitable for
100112139	Mankar	Indian context
16CHE143	Namita Nitin Jadhay	Design a plant to produce methyl tert-butyl phenol at a capacity
100112145		suitable for Indian context
16CHE148	Prathamesh Milind	Design a plant to produce 1-3 Cyclohexanedione at a capacity
100112140	Bolaj	suitable for Indian context
16CHE162	Shivani Krishna	Design a plant to produce p-toluene sulfonic acid at a capacity
100112102	kumar Bisen	suitable for Indian context
16CHE101	Aadesh Satish	Design a plant to manufacture lauryl glycine at a suitable scale
100112101	Bhakkad	besign a plane to manufacture ladi yr giyelne at a saltable scale
16CHE121	Avinash Suresh	Design a plant to manufacture coco fatty acid
100112121	Nayak	chloride at a suitable scale.
16CHE152	Rounak Vinod	Design a plant to manufacture hydroxylamine
100112102	Naryani	solution at a suitable scale.
16CHE167	Shubham Pradip	Design a plant to manufacture benzyl chloride at a suitable
100112107	Adarkar	scale.
16CHE181	Vishal kumar	Design a plant to manufacture 2,6-dichloro phenol at a suitable
100112101	Binay	scale.
16CHF122	Bharthi	Design a plant to manufacturing of methyl bromide
	Ponrathnam	
16CHE123	Bosco Johny	Design a plant to manufacturing of xanthan gum
16CHE177	Vartul Jain	Design a plant to Manufacture of Chloropicrin
16CHE182	Yash Manoj Budhe	Design a plant to Manufacture of para nitrophenol
16CHE114	Aniket Sonba Pote	Design a plant to manufacture 50 TPD of dihydrofuran
16CHE136	Keith Anthony	Design of a Plant to manufacture 50 TPD of 7- ethyl tryptophol
	Dsouza	
16CHE144	Nayantara Rajendra	Design of a plant to manufacture 2,3-butanediol by
	Pradhan	biotechnological route
16CHE155	Sahil Vasantrao	Design a plant to manufacture 100 TPD of furan dicarbolylic acid
	Ghormare	from sugar (5% solution)
16CHE170	Sreejith Thampan	Design a plant to manufacture 1 TPD of cyclophosphamide
	Nair	

16CHE102	Aagamkumar	Design a plant to manufacture 10 TPD of polycarboxy ether for
100112102	Kirtikumar Khandor	use as concrete viscosity modifier
16CHE129	Dnyanesh Deepak	Design a plant to manufacture 10 TPDof Isoindoline pigment
	Sarawate	5 1 15
16CHF132	Gautami Rajendra	Design a plant to manufacture 25 TPD of 2 phenylethanol
100112102	Kelkar	
16CHE156	Sahil Surendra	Design a plant to dry 50 TPD of grapes to make raisins using
100112130	Khatavkar	solar concentrator
		Design a plant to generate compressed biogas suitable for
16CHE175	Suyog Girish Shaha	transportation purposes from 100 tons per day of agricultural
		waste
16CHE109	Amitej Nageswara	Design a plant to manufacture 10 TPD Camphorsulfonic acid
100112105	Neti	besign a plane to manufacture 10 m b campnorsarionic dela
16CHE112	Amrut Deepak Bagdi	Design a plant to manufacture 10 TPD of Metformin HCL
16CHE160	Snehal Sanjay Patil	Design a plant to produce 1 CMD of Jamun seed extract
100112109		concentrate
16CHE176	Vaishnavi Girish	Design a plant to manufacture 1 TPD of Boreneol
100112170	Honavar	besign a plane to manufacture 1 in D or boreneor

Table 1.23: List of B. Chem. Engg. Home Paper (Major Projects) 2020-2021

Roll No	Student Name	Topics
17CHE105	Abhishek - Bhardwaj	Design a Plant to manufacture 10 to 50TPD of Choline Chloride
17CHE113	Anosh Mehernosh Dumasia	Design a plant for 5 TPD of Sodium Meta – bisulphite.
17CHE123	Chirag Mandar Mule	Design a plant to manufacture 50 TPD of Lithium Hydroxide.
17CHE124	Chirag Sanjay Jain	Design a plant to manufacture 2 TPD of Lithium Silicate.
17CHE148	Pranav Vinayak Mhatre	Design a plant to manufacture 10 TPD of Ammonium Citrate.
17CHE125	Dev Pramod Malu	Design a plant to manufacture of L- alpha-glyceryl phosphoryl choline.
17CHE139	Mayur Surendra Pimpalkar	Design a plant to manufacture Juglone.
17CHE180	Riddhesh Nitin Kumtakar	Design a plant to manufacture Carbomer 940 (polyacrylic acid).
17CHE169	Sukhada Sanjeev Gharat	Design a plant to manufacture Lawsone.
16CHE174	Sushmita Shekhar Khole	Design a plant to manufacture Propofol.
17CHE118	Atharva Vijay Suryavanshi	Design a plant to manufacture 1 TPD TODGA
17CHE136	Madhur Ramesh Khadke	Design a plant to manufacture 10000 TPA beta picoline
17CHE163	Shruti Unnikannan	Design a plant to manufacture 5 TPD TOPO
17CHE166	Siddhant Sanjay Mehta	Design a plant to generate 10 Nm ³ /hr Hydrogen from LOHC: di benzyl toluene

17CHE172	Tushar Pyarelal Chaudhari	Design a plant to recover 1 TPD bromine form sea water
17CHE134	Kunal Pralhad Magare	Design a plant to manufacture 500 TPA of n-nonyl phenol ethoxylate
17CHE157	Salil Sandeep Narvekar	Design a plant to manufacture 5000 TPA of benzene using toluene
17CHE160	Saurabh Sukhadeo Bagal	Design a plant manufacture 200 TPA of Diclofenac Sodium
17CHE164	Shubham Gangaram Wanje	Design a plant to manufacture 5000 TPA of 4-anisaldehyde
17CHE178	Siddharth Gautam Vaishnav	Design a plant to manufacture 1000 TPA of bromobenzene
17CHE112	Ankit Balkrishna Kolpe	Design a plant to manufacture 5 TPD of Stearyl amine using a greener and safer process
17CHE131	Jay Dinesh Sankhe	Design a plant to manufacture 15 TPD of diphenyl amine using a catalytic process
16CHE137	Kovi Rishya Shrung	Design a plant to manufacture 25 TPD of 4-tert-butylcatechol
17CHE154	Rajarshi - Samajdar	Design a plant to manufacture 10 TPD of styrene carbonate using a green process
17CHE168	Sriram Pramod Tendulkar	Design a plant to manufacture 5 TPD of caffeine
17CHE106	Aditya Hemant Jain	Design a plant to manufacture liquid oxygen.
17CHE110	Amitkumar Harigovind Chauhan	Design a plant to manufacture di iso Nonylpthalate (DINP)
17CHE130	Hritik Rakesh Jain	Design a plant to manufacture calcium stearate.
17CHE170	Sumant Yogesh Salphale	Design a plant to manufacture methyl tert butyl ether (MTBE)
17CHE173	Uma Gopinath Kulkarni	Design a plant to manufacture epoxy resin
17CHE104	Abhishek Kundu	Design a Plant to Manufacture 2- Chloropyridine
17CHE116	Ashlesha Girish Tiple	Design a plant to Manufacture Favipiravir
17CHE153	R Ramya Ragunathan	Design a plant to Manufacture Remdesivir
17CHE179	Samiksha Jugalkishore Asawa	Design a Plant to manufacture tributyl amine
17CHE126	Gautam Manoj Borkar	Design a plant to manufacture 1 TPD of Coumarin.
17CHE101	Junaid Gul Naikoo	Design a plant to manufacture 5 TPD of Benzyl salicylate.
17CHE133	Kshitija Dipak Waikar	Design a plant to manufacture 2 TPD of Metanilic acid.
17CHE138	Makarand Ravindra Jagtap	Design a plant to manufacture 2 TPD of Cyclamen aldehyde.
17CHE174	Vedant Kiran Wankhede	Design a plant to manufacture 3 TPD of Styrallyl acetate.
17CHE129	Hrishikesh Girish Mane	Design a plant for the production of methane from carbon dioxide
17CHE132	Joel Biju	Design a plant to manufacture taurine
17CHE142	Neha Rajendra Gadekar	Design a plant to manufacture light olefins from crop residue
17CHE144	Nirmit Shantilal Solanki	Design a plant to manufacture Camphorane
17CHE171	Tanmay Nagesh Salvi	Design a plant to manufacture L- Arabitol
17CHE140	Merul Ritesh Shah	Design of brine preparation unit for 2000 TPD soda ash manufacture using seawater as water source.

17CHE182	Sarvesh Subhash Pandey	Design of dilute molasses preparation unit for 1000 TPD ethanol production using spent wash as water source.
17CHE161	Shantanu Sanjay Shembade	Design of 1 MLD heavy brine preparation unit (for offshore oil drilling) using seawater as water source.
17CHE167	Siddhi Santosh Kotnis	Design of 15 m3 reject water (generated from brackish water RO plants) Dewatering unit with co-production of dissolved fertilizer for fertigation.
17CHE165	Srushti Sanjeev Kumar Sindagi	Design of 1 MW solar PV unit integrated with pre-heating assembly for solar thermal energy storage
17CHE119	Burhanuddin Husain	Design a plant to manufacture camphor at a capacity suitable for Indian context
17CHE128	Himanshu Prashant Sail	Design a plant to manufacture cyclohexanol at a capacity suitable for Indian context
17CHE145	Nitin Ramchandra Karande	Design a plant to manufacture Nitrofurantoin at a capacity suitable for Indian context
17CHE150	Prateek Shriram Badgujar	Design a plant to manufacture ethylenediamine at a capacity suitable for Indian context
17CHE151	Priyanka Subhash Humane	Design a plant to manufacture Ondansetron hydrochloride dihydrate at a capacity suitable for Indian context
17CHE107	Aishwarya Suhas Khandekar	Design a plant to manufacture anthraquinone at a suitable scale.
17CHE114	Apurva Ajay Pawar	Design a plant to manufacture 2- hydroxy-3-naphthoic acid and its anilide from 2-naphthol at a suitable scale.
17CHE122	Chinmayee Pradeep Sarode	Design a plant to manufacture 2-methyl resorcinol solution at a suitable scale.
17CHE135	Lakshay - Vashist	Design a plant to manufacture propranalol from 1-naphthol at a suitable scale.
17CHE156	Rushikesh Gorakhnath Rathod	Design a plant to manufacture naphthalene-2,6-dicarboxylic acid at a suitable scale
17CHE108	Akshaykumar Dundappa Bhangari	Design a plant to manufacture polystyrene at a suitable capacity
17CHE115	Arya Kirti Pavani	Design a plant to manufacture resistant starch at a suitable capacity
17CHE121	Chinmay Prasad Deshpande	Design a plant to manufacture titanium dioxide at a suitable capacity
17CHE181	Meenal Shyam Rathi	Design a plant to manufacture ammonium polyphosphate at a suitable capacity
17CHE155	Rasik Gurunath Wathare	Design a plant to manufacture cellulose acetate at a suitable capacity
17CHE120	Burhanuddin Esmail Samiwala	Design a plant to manufacture 5 TPD of Ciprofloaxcin
17CHE137	Mahesh Subhash Patil	Design a plant to manufacture 5 TPD of Norfloxacin
17CHE143	Niraj Devdas Bhavar	Design a plant to manufacture 1 TPD of butyl-glucoside
17CHE149	Prasanna Prasad Khare	Design a plant to manufacture 5 TPD of Levofloaxcin
17CHE175	Vipul Moreshwar Karekar	Design a plant to manufacture 5 TPD of Tinidazole
17CHE111	Aniket Rajay Surwade	Design a plant to produce 500 kw of electricity on a 24 hour basis using (do not use any fossil fuels).
17CHE117	Ashutosh Arvind Kulkarni	Design a plant to produce 10 TPD of diphenyl amine
17CHE127	Harsh Prakash Solanki	Design a plant to treat 10,000 litres per hour of 30,000 ppm COD liquid waste using microalgal photobioreactors.

17CHE176	Yash Ghanashyam Barhate	Design a plant to process 10 TPD of Agricultural Residue using Catalytic Thermal Liquefaction
17CHE177	Yashraj Sanjay Jagtap	Design a plant to produce 30 kl/day of absolute ethanol from sugarcane juice
17CHE109	Alankrita Shreekant Patil	Design a plant to Manufacture 10 TPA acetyl acetone
17CHE146	Omkar Narayan Korke	Design a plant to manufacture 10000 TPA sulphuric acid
17CHE147	Palkit Vinod Shahdadpuri	Design a plant to Manufacture Isobornyl cyclohexanol
17CHE152	Purva Harshad Paranjape	Design a plant to manufacture γ - pipradrol
17CHE158	Sanil Govind Yadav	Design a plant to Manufacture 10 TPA of ethyl butyrate via green route

Table 1.24: List of B. Chem. Engg. Home Paper (Major Projects) 2021-2022

Roll No	Student Name	Торіс
19CHE114	Tanay Ashish	Design a plant to manufacture of Benzyl
100110114	Jawdekar	sulphonyl chloride
18CHE116	Neha Madhukar	Design a plant to manufacture 10 TPD of
100110110	Sangle	sophorolipids
18CHE121	Prajwal Shilkumar	Design a plant to manufacture D-Fartanic acid
	Shambharkar	
18CHE176	Aniruddha Rajesh Jain	Design a plant to manufacture of Para-chloro
		troiphenol
R18CHE135	Diksha Sunil Raut	Design a plant to manufacture Tetra Hydro Furan
18CHE122	Advay Naval	Design a plant to manufacture of selected alkyl
	Shirrwalkar	lithiums
18CHE145	Bharat Prasad	Design a plant to manufacture Methylene blue
18CHE152	Aryan Razdan	Design a plant to manufacture epichloronydrin
18CHE166	Bhavya Jain	Design a plant to manufacture Lopinavir
18CHE181	Varun Inamdar	Design a plant to manufacture avocado oil
18CHE102	Shikhar Dinesh Singh	Design a plant to manufacture 50 TPD ethyl
	5	vaniline
18CHE123	Krishnakant Pandey	Design a plant to manufacture 30 TPD p-anisyl
18CHE127	Yash Subhash Butale	Design a plant to manufacture 10 TPD 4-hydroxy
	Margalantan Margan	pnenyi acetic acid
18CHE146	Vyankatesh Nagesh	Design a plant to manufacture 10 IPD 4-nitro
	Puri	Orthoxylene
18CHE162	Yash Anil Bartakke	Design a plant to manufacture 5 TPD of gallic
		dClu Desire a glast to menufacture of 25 ton (month of
18CHE134	Durvesh Eknath Parab	Design a plant to manufacture of 25 ton/month of
		Perior a plant to manufacture of 25 ton (month of
18CHE139	Neil Graig Dias	Design a plant to manufacture of 25 ton/month of
		Design a plant to manufacture of 100 ton (month
18CHE153	Amey Amoi	of phonowy othered
		Design a plant to manufacture of 100 ton (annum
18CHE155	Harshall Valmik	of methowyamine chlerebenzene
	Sharuu	Design a plant to manufacture of E00 ton (annum
18CHE157	Ramakrishna S	of methyl ethyl ketone
		Design a plant to manufacture 5 TPD of $A_{-}(A_{-} \text{ bydrownhonyl})$
19CHE112	Aditva Mabayoor Patil	sulfonvinhonol by a groop
TOCHLITZ	Aultya Mahaveer Path	

		process
100000127	Abhishek Devendra	Design a plant to manufacture 10 TPD of
18CHE137	Avhad	difenoconazole technical using latest process
		Design a plant to manufacture 1500 TPA of 4-
10005147	Harikrishnan R	methyl-3-nitroaniline using modern reactor and separation
18CHE147	Namboothiri	technologies
		Design a plant to manufacture 300 TPD of
10005150		carbon dioxide from a fermenter into methanol using latest
18CHE150	Sonti Siddharth	technologies
		Design a plant to manufacture E000 TDA of 1.2.4 trianing
10000	Atharva Shailesh	Design a plant to manufacture 5000 IPA of 1,2,4- triazinone
18CHE180	Sonavane	with an environment menuly process
10005102	Tanmay Nitin	Design a plant to manufacture Connex Sulfate
10CHE103	Kothawade	Design a plant to manufacture copper Sunate
19045106	Vaishnavi Rajendra	Decian a plant to manufacture Sodium hydroxide
IOCHEIUO	Bhalekar	Design a plant to manufacture Socium hydroxide
18CHE129	Tanvi Mahendra Apte	Design a plant to manufacture Zinc sulphate
100000126	Shruti Sarjerao	Design a plant to manufacture aluminium
10000130	Kadam	chloride
19045140	Krishna Gopal	Decign a plant to manufacture nickel flouride
10000149	Jakhotiya	
18CHE105	Shekhar Ganapati	Design a plant to manufacture xulited from xulese
100112105	Shinde	
18CHE100	Aniruddha Dhondiram	Design a plant to manufacture Sorbitol from
100112109	Pinjari	Glucose
18CHE133	Aakanksha Gubbala	Design a plant to manufacture 1,2-pentane diol
18CHE164	Omkar Sambhaji	Design a plant to manufacture Alanine from
100112104	Thube	lactic acid
17CHE150	Sanket Bhojraj	Design a plant to manufacture Cenhalevin
17CHE139	Dadmal	
18CHE124	Geet Arun Chheda	Design a plant to manufacture Cefixime
1001124		Trihydate
18CHF144	Dhaval Divakar	Design a plant to manufacture Sodium
100/12111	Dhande	Nitrotetrazolate
18CHE154	Abhinav Umesh Patil	Design a plant to manufacture Tipifarnib
18CHE165	Anmol Aiay Rathi	Design a plant to manufacture Lofexidine
100112100		Hydrochloride
18CHE140	Aniket Rajendra Mali	Design a plant to manufacture dinitronapthalene
18CHE159	Akshayu Pramod	Design a plant to manufacture solketal
	Ambatkar	
18CHE161	Akash Dilip Pawar	Design a plant to manufacture ethylene glycol
		diacetate
18CHE168	Aditva Namdeo Naik	Design a plant to manufacture 2-methyl-1,4-
		napthoquinone
18CHE171	Aditya Rajkumar	Design a plant to manufacture p-methyl
	Ratnapagol	cyclohexylamine
		Design a plant for production of Forward Osmosis membrane
17015100	Shrushti Anand	module from dialysis membrane module (coating of 100 m2
1/CHE102	Chaudhari	
		died per udy)
	Siddbarth Managach	(intermediate of metformin)
18CHE117	Potaro	(intermediate of metionilin)
		Design a 10 TPD plant for production of vacuum ovanorated
18CHE1/1		salt (sodium chloride) from solar-
100110171		

	Shrinivas Anand Acharya	concentrated (24 oBe') sea or sub-soil brine, forward integrated to jodized salt production
		Design a plant to manufacture 50 TPD
	Shantanu Uttam	anhydrous HF plant integrated with fluoride separation from
18CHE148	Kadam	fertilizer grade phosphoric acid
		Design a plant for production of 300 TPA plant of D2EHPA-
		TOPO solvent composition (required for uranium recovery
18CHE163	Atharv Hemendra	from phosphoric
	Tiwari	acid) from basic chemicals
	Shubhalaxmi Dillip	
18CHE119	Swain	Design a plant to manufacture acetamiprid
	Rushad Mehernosh	
18CHE138	Dumasia	Design a plant to manufacture indoxacarb
	Kushagra Manoi	
18CHE143	Dwivedi	Design a plant to manufacture acephate
	Rajas Milind	
18CHE160	Mehendale	Design a plant to manufacture pendimethalin
	Varun Satish Kumar	Design a plant to manufacture para tert butyl
R16CHE178	Raina	phenol
	Akanksha Sanjay	Design a plant to manufacture ethyl acetate from
18CHE110	Chougule	acetic acid and ethylene
	Saloni Surendra	Design a plant to manufacture 3-methoxy butanol via
18CHE111	Varunkar	crotonaldehyde
	Anui Pundalik	
18CHE113	Farakate	Design a plant to manufacture adiponitrile
	Durgeshpandini	
18CHE132	Rajendra Shinde	Design a plant to manufacture tetralin
	Amey Santosh	Design a plant to manufacture acetaldehyde by
18CHE178	Murudkar	ethylene oxidation
	Kshitij Narendra	Design a plant to manufacture methylene
16CHE138	Thaware	dinhenyl diisocyanate
	Mihir Shriniyas	
18CHE125	Dakappagari	Design a plant to manufacture whey protein
	Naresh Khushalchand	
18CHE142	Dhanwani	Design a plant to manufacture cyanoacrylate
	lavesh Chander	Design a plant to manufacture phosphorus
18CHE158	Saraogi	trichloride
	Tejas Sriniwas	Design a plant to manufacture notassium
18CHE167	Abhyankar	permanganate
18CHE175	Meenal Rawlani	Design a plant to manufacture acetylsalicylic acid
		Design a plant to manufacture 5 TPD of .2.4-
16CHE172	Suraj Bhagwat Shinde	Trimethyl-1,2-dihydroguinoline
		Design a plant to manufacture 5 TPD of 4.2 -
18CHE115	Monil Manish Shah	Mercapto-benzimidazole
	Anushka Manoi	Design a plant to manufacture 5 TPD of Diarvl-p-
18CHE128	Khodake	phenylenediamine
		Design a plant to manufacture 5 TPD of N-
18CHE170	Nagashravan Hemadri	Isopropyl-N'-phenyl-p-phenylenediamine
		Design a plant to manufacture 5 TPD of
18CHE169	Shubham Maruti Mali	5.Octyl-diphenylamine
		Design a plant to manufacture 1 GW worth of
18CHE101	Arun Sadotra	solar grade silicon ingots per vear
		Design a plant to manufacture 100 tons per day
18CHE107	Aditya Rajesh Gedam	of methanol from CO2 and water

		Design a plant to manufacture 10 m3 per day of compressed
	Mayank Mukesh	biogas suitable for transportation
100112130	Kumrawat	fuel from agricultural waste
		Design a plant to manufacture to reform enough
18CHE172	Dharam Dilip Parwani	ethanol to Hydrogen to drive a 50 kW hydrogen fuel cell
18CHE173	Bhalekar Snehal	Design a plant to manufacture 100 tons per day
18CHE173	Sakharam	of ethanol from agricultural waste
10045104	Vrushal Rajendra	Design a plant to manufacture p-hydroxy
100112104	Varude	acetophenone
18CHE108	Tanvi Swapnil	Design a plant to manufacture nicotinic acid
100/12100	Varadkar	
18CHE120	Mayur Devendra	Design a plant to manufacture hydrochloric acid
100112120	Kulmethe	
18CHE130	Sayalee Chandrasing	Design a plant to manufacture 1,3 Difluro
TOCHETOO	Pawara	benzene
18CHE131	Saad Jamal	Design a plant to manufacture acetyl acetone

Table 1.25: List of B. Chem. Engg. Seminar (Mini Projects) 2021-22

Roll No	Student Name	Торіс		
18CHE101	Arun Sadotra	Bioreactors for COVID vaccine manufacturing		
18CHE102	Shikhar Dinesh Singh	Hydrogen peroxide free from metals and organics		
18CHE103	Tanmay Nitin Kothawade	Recent advances in membranes for organic solvent nanofiltration		
18CHE104	Vrushali Rajendra Varude	Electrochemical CO2 Reduction		
18CHE105	Shekhar Ganapati Shinde	Design aspects of Impinging Jet Crystallizers		
18CHE106	Vaishnavi Rajendra Bhalekar	Techno-economic evaluation of alternatives for drying of organic solvents		
18CHE107	Aditya Rajesh Gedam	Recent advances in Graphitic Carbon Nitride based photocatalytic materials		
18CHE108	Tanvi Swapnil Varadkar	Recent advances in spray drying for pharmaceuticals		
18CHE109	Aniruddha Dhondiram Pinjari	Land fill Bio-reactor Management		
18CHE110	Akanksha Sanjay Chougule	Recent trends in hydrogenation of vegetable oils with focus on catalyst and reactor types		
18CHE111	Saloni Surendra Varunkar	Henry reaction using heterogeneous catalysts		
18CHE112	Aditya Mahaveer Patil	Recent advances in continuous crystallization of pharmaceutical products		
18CHE113	Anuj Pundalik Farakate	Recent developments in Zeolite membrane based gas separation		
18CHE114	Tanay Ashish Jawdekar	Hydrodeoxygenation of bio-oil: Catalysis and modeling		
18CHE115	Monil Manish Shah	N-Oxidation of tertiary amines using heterogeneous catalysts		
18CHE116	Neha Madhukar Sangle	Role of HAZOP analysis in Chemical Industry		
18CHE117	Siddharth Mangesh Petare	Developments in process plant failure detection techniques		
18CHE118	Mihir Madhav Gokhale	Critical review of electrolytic hydrogen production		
18CHE119	Shubhalaxmi Dillip Swain	Opportunities for energy recovery in zero liquid discharge systems		
18CHE120	Mayur Devendra Kulmethe	The Concept of Waste Refinery and its Potential		
18CHE121	Prajwal Shilkumar Shambharkar	Recent advances in dye-sensitised solar cells		
18CHE122	Advay Shirwalkar	Photo-reforming of methanol for production of hydrogen		
18CHE123	Krishnakant Pandey	Advances in heteropoly acid based ionic liquids and their applications		

18CHE124	Geet Arun Chheda	Recent developments in biosensors in continuous manufacturing
18CHE125	Mihir Shrinivas Dakappagari	Circular Economy: Concept and Utility
18CHE126	Gayatri Chikarmane	Review of processes for uranium separation from phosphoric acid and isolation of recovered uranium in pure form
18CHE127	Yash Subhash Butale	Recent Advances in Power-to-X Technology for the Production of Fuels and Chemicals
18CHE128	Anushka Manoj Khodake	Trends and future scope in fabric lamination adhesives
18CHE129	Tanvi Mahendra Apte	Environmental Applications of Fungal and Plan Systems
18CHE130	Sayalee Chandrasing Pawara	Catalysis in direct oxidation of methane to methanol
18CHE131	Saad Jamal	Applications of heat pumps for heating
18CHE132	Durgeshnandini Rajendra Shinde	Solar Desalination
18CHE133	Aakanksha Gubbala	Recent advances in smart membrane materials and systems for separation
18CHE134	Durvesh Eknath Parab	Applications of Nanotechnology in Oil and Gas Industry
18CHE135	Diksha Sunil Raut	Modeling of gas liquid flows using VOF-DBM
18CHE136	Shruti Sarjerao Kadam	Land fill mining
18CHE137	Abhishek Devendra Avhad	The Problem of Line Tension
18CHE138	Rushad Mehernosh Dumasia	Creep deformations in fibre reinforced composites
18CHE139	Neil Graig Dias	Nano-Sorbents based on Polysaccharide in Water Remediation
18CHE140	Aniket Rajendra Mali	Critical review on recent advances on graphene oxide/cement- based composites
18CHE141	Shrinivas Anand Acharya	Industrial applications of meso scale reactors in continuous flow chemistry
18CHE142	Naresh Khushalchand Dhanwani	Design aspects of Co-axial mixers
18CHE143	Kushagra Manoj Dwivedi	Wittig reaction using heterogeneous catalysts
18CHE144	Dhaval Divakar Dhande	Recent trends in desulfurization of turpentine as feed stock for perfumery chemicals
18CHE145	Bharat Prasad	Current Status of Residual Sugarcane Bagasse Conversion in India
18CHE146	Vyankatesh Nagesh Puri	Critical review of chemistry aspects of hydrogenation/reduction in the manufacture of pharmaceutical intermediates
18CHE147	Harikrishnan R Namboothiri	Application of Biotechnology for odour control
18CHE148	Shantanu Uttam Kadam	Recent advances on process based on Perfusion bioreactors for mAb production
18CHE149	Krishna Gopal Jakhotiya	Recent developments in cooling tower design and operation
18CHE150	Sonti Siddharth	Comparative assessment of the Birkeland-Eyde process vis-à- vis the Haber process in the context of future sustainability
18CHE152	Aryan Razdan	Deep Reinforcement Learning
18CHE153	Amey Amol Suryavanshi	MSW Segregation techniques and scaling them
18CHE154	Abhinav Umesh Patil	Zwitterionic silicone materials derived from amino functional PDMS with acrylic acid
18CHE155	Harshali Valmik Shardul	Non-Intrusive in-line Rheometery
18CHE156	Mayank Mukesh Kumrawat	Recent advances in the manufacturing process development of mass spectrometry grade trypsin
18CHE157	Ramakrishna S	Recent advances in membranes for organic pervaporation/membrane distillation
18CHE158	Jayesh Chander Saraogi	Dry vacuum pumps: applications, selection and operating guidelines

18CHE159	Akshayu Pramod Ambatkar	Oil Spill Treatment using Oil eating Microbes
18CHE160	Rajas Milind Mehendale	Data –Driven models in Chemical Engineering Research and applications
18CHE161	Akash Dilip Pawar	Design considerations for a cold storage unit
18CHE162	Yash Anil Bartakke	Industrial processes for extraction of natural products
18CHE163	Atharv Hemendra Tiwari	high temperature degradation in power plants and refineries
18CHE164	Omkar Sambhaji Thube	Recent developments in reboiler design
18CHE165	Anmol Ajay Rathi	Recent advances in the manufacturing process development of PNGaseF (recombinant)
18CHE166	Bhavya Jain	Design of spiral plate heat exchanger
18CHE167	Tejas Sriniwas Abhyankar	Wadsworth -Emmons reaction using heterogeneous catalysts
18CHE168	Aditya Namdeo Naik	Developments in application and modification of niobium oxides as catalysts in industrially important reactions
18CHE169	Shubham Maruti Mali	Developments in eco-pesticides
18CHE170	Nagashravan Hemadri	Recent advances in the purification process development of pepsin
18CHE171	Aditya Rajkumar Ratnapagol	Green Hydrogen Production
18CHE172	Dharam Dilip Parwani	Review of technology options for small-scale and large-scale seawater desalination
18CHE173	Bhalekar Snehal Sakharam	Ultrasound applications for water treatment and recycle
18CHE175	Meenal Rawlani	Effect of cold working on creep rupture strength
18CHE176	Aniruddha Rajesh Jain	The Role of Carbon Capture and Storage in the Energy Transition
18CHE177	Nikhil Manjunath Devadiga	Intensified biogas production based on use of cavitation
18CHE178	Amey Santosh Murudkar	Recombinant DNA Technology in synthesis of Insulin
18CHE180	Atharva Shailesh Sonavane	Icy ball design for small refrigerated storage
18CHE181	Varun Inamdar	Taurine surfactants
16CHE138	Kshitij Narendra Thaware	VOC emissions and mitigation techniques in manufacturing industries
16CHE172	Suraj Bhagwat Shinde	Review of use of natural products in paints, ink and adhesives
16CHE178	Varun Satish Kumar Raina	Recent advances in the manufacturing process development of mass spectrometry grade chymotrypsin
17CHE159	Sanket Bhojraj Dadmal	Development of non-invasive sensors for medical applications
17CHE162	Shrushti Anand Chaudhari	Recent trends in treatment of effluent containin antibiotics

Figure 1.15: Sample home paper (major project) submission front page

Sr. No.	Name of the student	Roll Number	Company
1	Aayush Bhat	19CHE101	Lanxess
2	Shivani Manhas	19CHE102	RCF ltd
3	Sagar Vivek Mudaliar	19CHE103	Reliance Industries Ltd
4	Aquil Abdulhamid Attar	19CHE104	Reliance
5	Parth Thakkar	19CHE105	BASF
6	Pranay Shah	19CHE106	BASF
7	Parth Patel	19CHE108	AMI Lifesciences Ltd
8	Sahil Birwatkar	19CHE111	Aarti Industries
9	Tanish Agrawal	19CHE112	Jubilant Ingrevia
10	Anant Prasanna Sohale	19CHE113	Eternis
11	Prithvi Dake	19CHE114	Tridiagonal Solutions Ltd
12	Adwait Joshi	19CHE115	Tridiagonal Solutions Ltd
13	Jay Piyushbhai Thakkar	19CHE116	Kiri Industries ltd

Table 1.26: List of students completing industrial training 2021-22

14	Aditi Sachin Patil	19CHE117	RCF ltd
15	Dhruv Gohil	19CHE118	Fairmate
16	Sudarshan Shreenivas	19CHE119	Jayant Agro
17	Shaikh Mohd Shoeb Sher Ali	19CHE120	Reliance
18	Hrishabh Singh	19CHE121	Deccan Fine Chemicals Ltd.
19	Nimish Vaidya	19CHE122	Beetachem Industries
20	Harsh Upadhyay	19CHE123	Thyssenkrupp Industrial Solutions
21	Pankti Paresh Savla	19CHE124	Jayant Agro
22	Gargee Yadav	19CHE125	Akry Organics
23	Vivin Sibi	19CHE126	Piramal - Ennore
24	Abhishek Shashikant Kulkarni	19CHE127	Tridiagonal Solutions Ltd
25	Uma Rajesh Tulsiani	19CHE128	Rubamin Pvt Ltd
26	Shrivatsa Korde	19CHE129	Tridiagonal Solutions Ltd
27	Amoghraj Prabhu S S	19CHE130	Gmm Pfaudler
28	Aditya Agarwal	19CHE131	Sudarshan Chemicals
29	Darshil Jain	19CHE132	Aarti Inds
30	Saloni Vaidya	19CHE133	Atul Ltd
31	Siddharth Nitin Shah	19CHE134	Jayant Agro
32	Vyankatesh Shyam Tarkase	19CHE135	Gharda Chemicals
33	Akshat Jain	19CHE136	Lanxess
34	Animesh Chaturvedi	19CHE137	Gharda Chemicals (Absent)
35	Vikram Vinayak Shanbhag	19CHE138	Tridiagonal Solutions
36	Prathamesh Patil	19CHE139	Atul Itd
37	Sahil Unmesh Patil	19CHE140	Harman Finochem Itd
38	Makrand Tanaji Barge	19CHE141	Piramal Thane
39	Ria Gada	19CHE142	JB Pharmaceuticals Pvt Ltd
40	Vignesh Krishnan	19CHE143	Solara
41	Sanskar Shridhar Tanvidkar	19CHE144	Excel
42	Parikshit Subhash Kadu	19CHE145	Lanxess
43	Vinod Mamraj Rathod	19CHE146	Lanxess
44	Utkarsh Pravin Patil	19CHE147	Reliance
45	Abhijeet Agatrao Tarange	19CHE148	Laxmi Organics
46	Gouresh Vinay Gargate	19CHE149	Piramal Thane
47	Snehal Bhosale	19CHE150	Vanita Agrochem pvt Itd
48	Vaibhav Khapekar	19CHE151	Eternis
49	Umesh Jaiswal	19CHE152	Shell
50	Vashishth Purohit	19CHE153	Jubilant ingrevia
51	Akanksha Warade	19CHE154	Biocon
52	Aditya Sangave	19CHE155	Eternis
53	Sanmesh Pravin Kharade	19CHE156	Jubilant ingrevia
54	Priyanshu Singh	19CHE157	Deccan Fine Chemicals Ltd.
55	Prehas Madke	19CHE158	Eternis
56	Falguni Akulwar	19CHE159	Jubilant ingrevia
57	Shivraj Chandrakant Gove	19CHE160	Lanxess
58	Vaidehi Padamwar	19CHE161	Jubilant ingrevia
59	Bhushan Murjani	19CHE162	Piramal Thane
60	Suraj Kekane	19CHE163	Solara
61	Shyam Gandhi	19CHE164	Reliance

62	Dhaval Chaudhari	19CHE165	UPL
63	Nikita Mohta	19CHE166	Akry Organics
64	Soham Mamidwar	19CHE167	Aarti inds
65	Atharv Prasad Kulkarni	19CHE168	Tridiagonal Solutions Ltd
66	Rutuja Pingale	19CHE169	Gharda Chemicals, Lote
67	Akshayaa Jagtap	19CHE170	Exxon Mobil
68	Priya Katkar	19CHE171	Gharda Chemicals, Lote
69	Harsh Mohane	19CHE172	Aarti Inds
70	Ashish Bhave	19CHE174	Tridiagonal Solutions Ltd
71	Sahil Sabne	19CHE175	Deepak Nitrite - Baroda
72	Manasi Bansod	19CHE176	Biocon
73	Amogh Subhash Gaikwad	19CHE178	Gharda Chemicals Dombivli(
74	Janhavi Sunil Waghachoude	19CHE179	Aarti Industries, Vapi
75	Ruchita Baban Laswante	19CHE180	Aarti Industries, Vapi
76	Rakhi Narnaware	19CHE181	Gharda Chemicals, lote
77	Sushant Hemant Moule	19CHE182	Aarti inds
78	Onkar Rajendra Salavi	19CHE185	Excel
79	Vinay Sharma	19CHE186	Deepak Nitrite - Baroda
80	Amit Dinesh Yadav	19CHE187	UPL
81	Yashvir Koul	19CHE188	Aarti Industries
82	Sakshi Pandit Patil	19CHE189	Gharda Chemicals, Lote
83	Prasanna Gangawane	19CHE190	Harman Finochem Ltd
84	Abhigyan Ray	17CHE103	Piramal Thane
85	Siddhesh Borole	18CHE151	Laxmi Organics
86	Kalyan Hanumant Mali	18CHE179	UPL

CRITERION 2	Program Curriculum and Teaching - Learning Processes	75/75
--------------------	---	-------

2.1. Program Curriculum (15)

2.1.1. State the Structure and Component of the Curriculum (5)

The Departmental Academic Committee looks at the curriculum of leading universities such as MIT, Purdue, Waterloo, NUS (International) and IITB, IITD, and IITKGP (Indian). The committee formulates the draft curriculum plan which is sent to (a) Alumni (b) external examiners (3) Visiting faculty (4) Subject experts from IIT, NCL, other eminent institutes (5) Industry experts (6) recently graduated students (7) Subject experts from foreign universities. Based on their suggestions, the final draft is prepared and proposed to UGPC for final implementation.

Figure 2.1: Process of defining the curriculum

(Institute Marks 15)

(Institute Marks 5)

CourseCode	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	Credits
	Semester	I				
CHT1131	Organic Chemistry-I	45	15	0	60	4
CHT1341	Physical Chemistry	30	15	0	45	3
MAT1101	Applied Mathematics-I	45	15	0	60	4
PYT1101	Applied Physics – I	45	15	0	60	4
GEP1101	Engineering Graphics-I	30	0	60	90	4
PYP1102	Physics Laboratory	0	0	60	60	2
CHP1132	Organic Chemistry Laboratory	0	0	60	60	2
	Semester	I		1	1	
CHT1231	Organic Chemistry-II	45	15	0	60	4
CHT1211	Analytical Chemistry	30	15	0	45	4
CET1501	Material & Energy Balance Calculations	45	15	0	60	4
MAT1103	Applied Mathematics-II	45	15	0	60	4
PYT1103	Applied Physics – II	30	15	0	45	2
CHP1342	Physical & Analytical Chemistry Lab.	0	0	60	60	2
HUP1101	Communication Skills	0	0	60	60	2
	Semester I	II	·	·		
CET1301	Chem. Eng. Thermodynamics-I	45	15	0	60	4
CET1101	Momentum and Mass Transfer	45	15	0	60	4
GET1102	Structural Mechanics	30	15	0	45	3
GET 1109	Electrical Engineering and Electronics	30	15	0	45	3
CET 1502	Industrial & Engineering Chemistry	45	15	0	60	4
GEP1103	Structural Mechanics Lab.	0	0	60	60	2
GEP1110	Electrical Engg and Electronics Laboratory	0	0	60	60	2
CEP1715	Engineering Applications of Computers	0	0	60	60	2
	Semester I	V				
GET1107	Energy Engineering	45	15	0	60	4
BST1102	Introduction to Biological Sci. & Bioengineering	45	15	0	60	4
CET 1401	Chemical Engineering Operations	30	30	0	60	4
CET 1302	Chem. Eng. Thermodynamics-II	45	15	0	60	4
GET/CHT/ PYT/MAT	Elective 1 (Outside Department)	30	15	0	45	3
GEP1108	Engineering Graphics -II	0	0	60	60	2
CEP 1701	Chemical Engineering Laboratory-I	0	0	90	90	3
	Semester	V				
CET1716	Mathematical Methods in Chem. Engg.	45	15	0	60	4
CET1102	Heat Transfer	30	30	0	60	4
CET1201	Chemical Reaction Engineering I	30	30	0	60	4
CET1402	Separation Processes	30	30	0	60	4
CET1202	Biochemical Engineering	30	15	0	45	3
CEP1704	Chemical Engineering Laboratory-II	0	0	90	90	3
CEP1702	Process Simulation Lab – I	0	0	60	60	2
	Semester V	/I				
CET1601	Material Science and Engineering	30	15	0	45	3

Table 2.1: Structure and Components of the Curriculum

CET1203	Multiphase Reaction Engineering	30	15	0	45	3
CET1503	Environmental Engg & Process Safety	30	30	0	60	4
CET1703	Chemical Process Control	45	15	0	60	4
CET	Department Elective 1	30	15	0	45	3
CEP1706	Chem. Eng. Laboratory-III	0	0	90	90	3
CEP1705	Process Simulation Lab – II	0	0	60	60	2
GET1111	Equipment Design and Drawing-I	30	0	60	90	2
CEP 1710	Internship	0	0	120	0	6
	Semester V	'II				
CET1504	Chemical Project Engineering & Economics	30	10	0	40	3
CET1505	Process Development and Engineering	40	20	0	60	4
HUT1102	Perspectives of Society, Sci. & Tech.	30	10	0	40	3
CET	Department Elective 2	30	20	0	50	3
CET1511	Optimization of Chem. Engg. Systems	20	0	40	60	2
CEP1708	Project 1: Seminar	0	0	40	40	2
CEP1709	Project 2: Home Paper – I	0	0	40	40	2
	Semester V	III				
HUT 1103	Ind. Psychology & H. R. Management	30	15	0	45	3
HUT1108	Industrial Management – I	30	15	0	45	3
HUT1105	Industrial Management – II	30	15	0	45	3
MAT1106	Design & Analysis of Experiments	30	15	0	45	3
CET	Department Elective 3	30	15	0	45	3
GEP1112	Equipment Design and Drawing -II	30	0	60	90	2
CEP1711	Project 3: Home Paper – II	0	0	90	90	3
TOTAL		1470	645	1380	3375	186

Table B.2.1.1a

Table 2.2: Program curriculum grouping based on course components

Course Component	Curriculum Content (% of the total number of credits of the program)	Total Number of Contact hours	Total Credits	
Basic Sciences	21%	675	39	
Engineering Sciences	13%	600	24	
Humanities and Social Sciences	6%	175	12	
Program Core	45%	1510	84	
Program Electives	3%	90	6	
Open Electives	3%	95	6	
Project(s)	3%	130	5	
Internships/Seminars	4%	160	8	
Employment Enhancement Courses/Skill Based Courses	1%	60	2	
Total number of Credits				

Table B.2.1.1b

2.1.2. State the process used to identify the extent of compliance of the curriculum for attaining the Program Outcomes and Program Specific Outcomes as mentioned in Annexure I (10) (Institute Marks 10)

The process used to identify the extent of compliance with the curriculum: The

curriculum for B. Chem. Engg. Program maintains a balance among various categories of courses from Science, Mathematics, Engineering, Humanities and Management, Projects, and Internship components. The syllabus for each course has been designed to meet compliance with the curriculum for attaining PO's and PSO's defined for the program. All the courses in the program are very closely related to the Program Outcomes and Program Specific Outcomes. At the end of each semester, the attainment of course outcomes is estimated and is related to program outcome attainment. A similar analysis of compliance of curriculum for attaining the PO and PSO is carried out by taking student, alumni, and employer feedback. Institute also has a process to collect student feedback at the end of each semester. The feedback helps in evaluating the POs and PSOs. The curriculum design and component-wise distribution are in accordance with leading universities.

- 1. Courses are offered in a sequence of order in a logical manner to make the students aware of how to arrive at the solution for a particular problem
- 2. Laboratory experiments are designed to characterize the material and lab-scale behavior of the relevant materials for real field applications
- 3. The performance of students is appraised through direct and indirect assessments.
- 4. Assignments are provided to the students to verify the theory and solve the practical problems
- 5. State-of-the-art technologies are adopted for real-time practice to solve the problems in the field of civil engineering
- 6. Internships, technical field visits, and seminars are made part of the curriculum to make the students aware of industry practices and presentation of the work completed
- 7. Projects are assigned to the students related to field problems
- 8. Minor and Major projects are reviewed by the faculty of the department for the betterment of the project results

9. Special attention is given to weak students by conducting lecture sessions

Figure 2.2: Compliance of curriculum with CO, PO and PSO

2.2. Teaching-Learning Processes (60)

2.2.1. Describe Processes followed to improve the quality of Teaching & Learning (15)

(Institute Marks 15)

The following steps are taken throughout the academic year to improve the quality of teaching and learning:

- The academic calendar is strictly followed so far as classes and examinations are concerned
- Based on the credits, the number of contact hours has been allotted in the academic timetable and is strictly followed by the faculty
- Course feedback is evaluated by the concerned faculty to improve the quality of teaching
- Real field problems are addressed in the assignments or the lectures.
- Giving demonstrations of key components through PowerPoint presentations, and academic videos and recommending case studies
- Laboratory experiments are designed to make the student aware of the real-world scenario. Demonstration experiments are planned every year to visually explain the different governing principles. These experiments are conducted by the research students and also some experiments are catered to explain the novel concepts and recent trends in Chemical Engineering
- The industry or field internship reports assessing the learning outcomes of the student (s) are examined
- Bright students are encouraged to participate in conferences and technical fests
- The weaker students based on their class performance are identified and accordingly, some extra classes are conducted to improve their performance for their benefits
- Students are encouraged to apply for R&D projects under various schemes.
- We have a state-of-art library facility with an e-journals facility. Students are encouraged for learning beyond the syllabus.
- Technical events, fests, seminars, workshops, and short term courses corresponding to different specializations are regularly conducted

Figure 2.3: Processes followed to improve the quality of Teaching & Learning

Adherence to Academic calendar:

Department prepares its action plan in alignment with to academic calendar before the commencement of the semester. The action plan includes major routine tasks for the timely execution of the teaching/learning and other academic activities.

Academic	calendars	are	aiven	below:
Academic	calcillaars	are	given	DCIOW.

The following shall be the Academic Ca	llendar :	
(A) DIVISION OF SEMESTERS F Odd Semester	OR ALL COURSES	
First Year and Final Year (UG Second (UG & PG) & Third Ye Ganpati Vacation (UG and PG) Diwali Vacation (UG and PG) Even Semester First Year and Final Year (UG Second (UG & PG) & Third Ye Summer Vacation	& PG) : August 08, 2019 (Thu ar (UG) : July 01, 2019 (Mon.)) : September 02 2019 (: October 28, 2019 (Mu : December 16, 2019 (& PG) : January 01, 2020 (W ar (UG) : December 16, 2019 (: May 17, 2020 (Sat.) 1	u.) to December 31, 2019 (Tue.) to November 30, 2019 (Sat.) (Mon.) to September 07, 2019 (Sat.) on.) to November 05, 2019 (Tue.) Mon.) to May 16, 2020 (Sat.) ed.) to May 16, 2020 (Sat.) Mon.) to May 16, 2020 (Sat.) to June 30, 2020 (Tue.)
(B) EXAMINATION SCHEDULE Mid Semester Examination Odd Semester First Yeer and Final Year (UG	FOR ALL COURSES	nt) to October 25, 2019 (Fri)
Second (UG & PG) & Third Ye Even Semester (UG and PG)	ar (UG) : August 23, 2019 (Fri. : February 07, 2020 (F	.) to August 30, 2019 (Fri.) Fri.) to February 14, 2020 (Fri.)
(C) SEMESTER EXAMINATIONS Odd Semester	FOR ALL COURSES	
a) Theory First Year and Final Year (UG Second (UG & PG) & Third Ye	& PG) : December 16, 2019 (ar (UG) : November 11, 2019 (Mon.) to December 23, 2019 (Mon.) (Mon.) to November 19, 2019 (Tue.)
 b) Fractical First Year and Final Year (UG Second (UG & PG) & Third Year C) Evaluation & Declaration of R 	& PG) : December 24, 2019 (ar (UG) : November 20, 2019 (esults : Within 45 days after	Tue.) to December 31, 2019 (Tue.) (Fri.) to November 30, 2019 (Mon.) examinations
Even Semester a) Theory First, Second and Final Yea Third Year (UG) First and Second Year (PG)	ar (UG) : April 24, 2020 (Fri.) : April 15, 2020 (Wed.) : May 08, 2020 (Fri.) to	to May 04, 2020 (Mon.)) to April 22, 2020 (Wed.) o May 16, 2020 (Sat.)
b) Practical First, Second and Final Yea Third Year (UG) First and Second Year (PG)	ar (UG) : May 05, 2020 (Tue.) : April 23, 2020 (Thu.)) : April 24, 2020 (Fri.)	to May 16, 2020 (Sat.) to April 30, 2020 (Thu.) to May 07, 2020 (Thu.)
 c) Evaluation & Declaration of Students Activities:- Orientation programme for new st Psychometric analysis :- 1) Final year of under graduate, so 2) S.Y., T.Y. UG and F.Y. of P. G. studi 3) First year under graduate studies Sharing and physical data analysis 	ot Kesults : Within 45 days after rudents : Three weeks of academic session econd year of Master and Ph. D. students - ents — during PG orientation programme ents — during UG orientation programme s : -	examinations – March
 First year of under graduate an Final year of under graduate an 	d first year of Master students — Novembe nd second year of Master students — April	ar -
Technological Association festivals	5 \$# 0010 00	2020.01
estival Funtech	Jan 3-14, 2019 (14th January non- instructional day)	2020-21 Jan 3-14, 2020 (14th January non-instructional day)
Aanzar (Intercollegiate Cultural Festival)	Jan 31 to February 03, 2019 (31st Jan & 1st Feb non-instructional days)	Jan 31 to Feb 03, 2020 (31st Jan & 3rd Feb non-instructional days)
Sportsaga (Intercollegiate Sports Festival)	March 14-24, 2019	March 14-24, 2020
/ortex (Intercollegiate Technical Festival)	Sept 30 to October 03, 2019 (30th Sept & 03	Brd Oct non-instructional days)

Figure 2.4a: Academic Calendar 2019-2020

INSTITUTE OF CHEMICAL TECHNOLOGY ACADEMIC CALENDER 2020-21 The following shall be the academic calendar: A) ODD SEMESTER First Year (UG) As per GoM directive First Year (PG) Nov 3, 2020 (Tue) to Feb 27, 2021 (Sat) Final Year (PG) Oct 01, 2020 (Thu) to Dec 31, 2020 (Thu) Second, Third & Final Year (UG) : Aug 01, 2020 (Sat) to Dec 31, 2020 (Thu) : No Diwali vacation Diwali Vacation (UG and PG) **MIDSEMESTER EXAMINATIONS** : Oct 01, 2020 (Thu) to Oct 07, 2020 (Wed) Second, Third & Final Year (UG) First Year (PG) : Dec 28, 2020 (Mon) to Jan 2, 2021 (Sat) First Year (UG) : As per GoM directive END SEMESTER **EXAMINATIONS** a) Theory Second, Third & Final Year (UG) : Dec 15, 2020 (Tue) to Dec 23, 2020 (Wed) First Year (PG) : Feb 22, 2021 (Mon) to Feb 27, 2021 (Sat) b) Practical All practical examinations timetable will be dealt separately as per prevailing situation. c) Evaluation & Results : Within 45 days after examinations **B) EVEN SEMESTER** First Year (PG) Mar 01, 2021 (Mon) to Jun 26, 2021 (Sat) 1 First Year (UG) As per GoM directive Final Year (UG & PG) : Jan 01, 2021 (Fri) to May 15, 2021 (Sat) Second Year (UG & PG) Jan 01, 2021 (Fri) to May 15, 2021 (Sat) . Third Year (UG) : Jan 01, 2021 (Fri) to May 15, 2021 (Sat) MIDSEMESTER EXAMINATIONS Second, Third, Final Year (UG) : Feb 19, 2021 (Fri) to Feb 26, 2021 (Fri) First Year (UG) : As per GoM directive Final Year (PG) : Feb 19, 2021 (Fri) to Feb 26, 2021 (Fri) First Year (PG) Apr 26, 2021 (Mon) to May 3, 2021 (Mon) END SEMESTER EXAMINATIONS a) Theory First Year (UG) : As per GoM directive Second and Final Year (UG) April 26, 2021 (Mon) to May 4, 2021 (Tue) 2 Third Year (UG) : April 16, 2021 (Fri) to April 23, 2021 (Fri) : May 07, 2021 (Fri) to May 15, 2021 (Sat) Final Year (PG) First Year (PG) Jun 24, 2021 (Thu) to Jun 30, 2021 (Wed) b) Practical First Year (UG) : As per GoM directive Second and Final Year (UG) : May 05, 2021 (Wed) to May 10, 2021 Third Year (UG) : (Mon) Final Year PG : April 26, 2021 (Mon) to April 30, 2021 (Fri) Apr 26, 2021 (Mon) to Apr 30, 2021 (Fri) First Year (PG) Jun 21, 2021 (Mon) to Jun 23, 2021 (Wed) c) Evaluation & Results : Within 45 days after examinations C) Summer Vacation No summer vacation in 2021 Students Activities: No student activities till further notice. Registrar

Figure 2.4b: Academic Calendar 2020-2021

Classroom discussion:

- Lecture notes are distributed as per the lesson plan
- Special attention is given to the students who are lagging behind
- Possibilities of computer-aided learning are always explored to assist students' learning
- Asking questions that engage students in innovative thinking or application of basic principles is encouraged

Use of Various instructional methods and pedagogical initiatives:

- The faculty is now oriented toward outcome-based education and are actively utilizing the OBE to cater to the learning need of students by innovative methods.
- The faculty of the department adopts various innovative Teaching & Learning methodologies to create the best learning environment for students. These methodologies include traditional blackboard teaching, presentations, video lecturing, collaborative learning methods, etc.
- Students' projects and seminar presentations, various modes of continuous assessment such as MCQ tests, Quiz, group discussion, skits, poster making, and ppt preparations on case studies, industrial visits, etc. help students to develop interpersonal skills, subject knowledge, team work, and peer learning or cooperative learning, problem-solving approach, etc.

Extramural Lectures:

Extramural lectures are presented by the students to help them to improve their presentation and public speaking skills. The student themselves select the topic, prepare slides and deliver the presentation to faculty and students.

ICT based learning:

The institute is equipped with a sufficient number of computers, LCD projectors, internet facility, application software, and system software which are effectively used for teaching and learning.

Self-Learning Courses:

The registration and participation of students in MOOC Courses like NPTEL, Coursera, and Edx are evidence of their self-learning capabilities

Project-based learning

The project-Based Learning is significantly more effective than traditional instruction to train competent and skilled practitioners and it promotes long-term retention of knowledge and skills. It is an innovative practice that is used to implement Outcome Based Education. The students are encouraged to carry out research projects in the final year. The faculty mentor and the students collectively identify the Projects based on societal needs and issues. At the end of the semester, projects are evaluated by industry personnel and external faculty members.

Collaborative learning

Through collaborative learning, students are exposed to learn various topics and hands-on experience in different laboratories, related to the program curriculum.

Assignments based problem solving:

Assignments are given to students on problems and they solve them by themselves. Assignments are based on COs which helps to achieve Program Outcomes.

Student feedback on the teaching-learning process and actions taken

- After the End-semester exams, all the students are required to undergo filling the online feedback form to apprise the faculty on a scale of 1 (low) to 5 (high).
- Based on the students' feedback, the HOD of the Department and senior Professors give valuable suggestions to improve the quality of teaching-learning wherever essential.
- Faculty development programs are conducted by professional experts to enhance the teaching skills of faculty.

Impact Analysis:

- Improvement in the communication skills of the students.
- Active involvement of weaker students in coaching classes is observed.
- More students have undergoing internships in industries at national and international levels.
- More students publications in national, and international conferences and journals.
- Improvement in students analytical capability, and soft skills in their placements.

2.2.2. Quality of end semester examination, internal semester question papers, assignments and evaluation (15) (Institute Marks 15)

The examinations are done at three levels: that is at least two class tests per course and one mid semester and one end semester exam are conducted. Though Mid and End semester examinations are purely written and practical examinations are based on experimentation followed by viva-voce, internal exams may include, seminar or topic presentations, skits, poster presentations, quizzes, etc. The questions set to the students are at three levels, knowledge and information level, justification and explanation level and last is comprehension and application for problem-solving. The whole syllabus till the last lecture becomes the syllabus for the test at a given time.

- The quality and the difficulty level of the question papers are adjusted based on the analysis of the performance of the students
- Each course typically has continuous assessment evaluations (typically 3 to 4) based on the short tests, quizzes, presentations, etc
- The question paper typically has distribution catered to test the basic understanding, problemsolving abilities as well as thinking capacity
- For some courses, group assignments are also given such that a team-building ability is developed. The presentations for the group are planned in such a way to test the understanding of all the team members
- After each midterm examination, the course instructor explains the model answers to the students and also tells the expectations for ideal solutions
- An audit committee comprising COEs from other universities/Institutes is constituted to oversee the exam quality.

End-Semester examination:

The semester-end examination covers the full syllabus of the course and is conducted as per the Institutional timetable at the end of each semester.

For end–semester examinations in theory papers, the duration of the examination are 1 hour for 3 credit courses and 2 hours for 4 credit courses

For the end semester evaluation of seminar/home paper, students are expected to submit a written report and also make a presentation. The evaluation is based on the quality of the written report and presentation.

The impact of the delivery of the course and course content is assessed in two ways:

- 1. Examination/evaluation conducted by the course teacher.
- 2. Students feedback about teacher and course.

Table 2.3: Weightages of different modes of assessments

	In Semester Evaluation		End Somostor	Components of	
	Continuous mode	Mid semester Exam	End Semester	Continuous Mode	
Theory	20%	30%	50%	Quizzes, class tests (open or closed book), home assignments, group assignments, viva-voce, assignments, discussions.	

Practical 50% -	50%	Attendance, viva -voce, journal, assignments, project, experiments, tests
-----------------	-----	--

In-Semester Evaluation:

- a) It is expected that the teacher would conduct at least two assessments under the continuous mode in a Semester.
- b) The teacher announces at the beginning of the respective course the method of conducting the tests under the continuous mode and the assignment of marks.
- c) In-semester performance of all students is displayed and sent to the academic office by the teacher at least 15 days before the end-semester examination.
- d) For the theory courses, there is one mid-semester test for each course to be held as per the schedule fixed in the Academic Calendar.
- e) For mid-semester examinations in theory papers, the duration of the examination is 1 hour for 3 credit courses and 2 hours for 4 credit courses

Figure 2.5: Sample End Semester Examination Question Paper

CET1402 – Separation Processes – Mid-Semester Examination Marks: 30, Date: 1st Sep'2021, Time: 11 am – 1.15 pm.

Attempt any three questions.

- Q1 a. Discuss mass transfer considerations and breakthrough curves in adsorption [6 m].
- Q1 b. The following data were collected at T=25 °C for batch ultrafiltration of 2% BSA (mol. wt.=69,000 dalton) using a membrane of 10,000 dalton MWCO. The applied pressure difference was maintained constant at 27.1 kPa. Calculate the membrane resistance and the cake resistance. Assume complete rejection. The viscosity of water is 0.9 cP [4 m].

Time, s	11	19	31	42	52	61	72	83
100×J _w L/m ² -h	6.63	5.14	4.49	3.86	3.55	3.21	3.17	2.96

- Q2 a. Differentiate between temperature swing adsorption and pressure swing adsorption [4 m].
- Q2 b. It is desired to decolorize an oil sample (1.5 tonnes) using a new type of clay. The density of oil is 945 kg/m³. The initial colour concentration of 59 units in the oil is to be reduced to 7 units. A series of lab-scale trials was performed to obtain adsorption equilibrium data. If Y and X* denote the number of colour units per kg oil and the number of colour units per kg clay in equilibrium, a Henry's law type relation holds Y = 3.3×10⁻⁴ X*. The specific surface area of the solid adsorbent is 39 m²/kg and the surface mass transfer coefficient is 4.6×10⁻³ mm/s (on the basis of the solid-phase concentration). Find the minimum amount of the adsorbent required. Also, find the required contact time if 1.5 times the minimum amount of adsorbent is used [6 m].
- Q3 a. Differentiate between different general types of ion exchange resins [4 m].
- Q3 b. A solute-solid pair is to be tested in a pilot trial. The solid has a bulk density of 613 kg/m³. A liquid (density = 976 kg/m³) with 0.13% solute is to flow at 96 m³/day. A superficial velocity of 1.8 mm/s and sorption capacity of 0.3 g-solute/g-solid are suitable. It is desired to have 51 h of time-on-stream before regeneration is necessary. Find the diameter of column and height of packing [6 m].
- Q4 a. Using a suitable example, discuss how membranes can be applied for process intensification [4 m].
- Q4 b. A macromolecular solution (mol. wt. = 6500; concentration = 1.2 mass%) is passed through a tubular ceramic UF membrane of 0.9 cm internal diameter and 1.1 m length at 27 °C. The membrane has a pure water permeability of 1.3 m³/m²-day-atm. Find the flow velocity to be maintained in the tube to prevent the formation of a gel layer on the membrane surface. Rejection coefficient R' = 0.99; applied pressure difference, $\Delta P = 1.6$ bar; diffusivity of the solute, $D = 8.4 \times 10^{-7}$ cm²/s; viscosity of the solution = 3.2 cP; density of the solution = 990 kg/m³; concentration at which the solute forms a gel, C_g = 11%. Pore leakage and fouling may be ignored [6 m].

Figure 2.6: Sample Mid Semester Examination Question Paper

-----X------

Figure 2.7: Sample answer booklet

2.2.3. Quality of student projects (15)

(Institute Marks 15)

- All the student projects are relevant to the needs of Chemical Engineering.
- Students are encouraged to bring new dimensions to the project considering the latest trends.
- Periodic meetings are planned by each professor to check the progress of the project. The periodic evaluation helps the students to adjust the progress of the project and also ensure its correctness.
- Students are encouraged to the search the available e-resources to get the required information on Process design and economic analysis
- Students are also required to present a brief summary of the complete project and justify the feasibility of the project
- Project 1: Seminar ((Semester VII, CEP 1708, 2 Credits, 4 hours/week, 50 Marks) include the Literature Survey, Planning, and Cost estimation of the given topic.
- Project 2: Home Paper- I ((Semester VII, CEP 1709, 2 Credits, 4 hours/week, 50 Marks) includes the Literature Survey, Process & site selection block diagram, Kinetics & thermodynamic feasibility, Material & Energy Balance, Report Submission and Viva Voce.
- Project 3: Home Paper-II ((Semester VIII, CEP 1711, 3 Credits, 6 hours/week 50 Marks) includes the Sizing of all the equipment, Detailed mechanical design, one equipment fabrication, P & ID diagram, controls, safety costing, references, waste management system, Report Submission and Viva Voce.
- A typical Project Report consists of sections viz. Introduction, Literature Review, Process & site selection, block diagram, Kinetics & thermodynamic feasibility, material and energy balance, Sizing of all equipment, detailed mechanical design, P & ID diagram, controls, safety, waste management system, Cost Estimation, Summary, and Conclusion.
- The Final report is evaluated by one External and one Internal Examiner and the students defend their Project work in front of batch mates and faculty.

Item	Assessment criterion	Marks
	Technical content and completeness of report	/15
Report	Bibliography, illustration of table/ figures	/10
	Summary/ Conclusions	/05
Presentation	Clarity of presentation	/10
(Average of	Presentation skill	/05
both faculty)	Question and Answer	/05
	Total	/50

Table 2.4: Rubrics for evaluation of Seminar (Project I)

	(University under Section - Elite Status and Centre of Exce N.M.Parekh Marg, Matung Ph: 491-22-33611111/2222, Fax: +91-	3 of the UGC Act 1956) Ilence – Govt. of Maharashtra 23. Mumbai 400019 India. 22-33611020, www.ictmumb	pai edu in	
	Bachelor of Chem	ical Engineering		
Eva	aluation of Project- I (seminar) by	the Internal and Externa	al Examiner	
Data of Pres		Dec 22 2021		
one of Fres	EMIALUM.			
Name of the	student:	Geet Arun Chheda		
Name of the	Research Supervisor:	Dr. Sachin Vijay Jadhav		
Degree:		Bachelor of Chemical Engineering		
Title of the P	roject:	-		
Department:		Department of Chemical Eng	gineering	
Sr No.	Assessment Cri	iterion	Marks (Total 50)	
1	Technical Content and Completeness	of report	15/15	
2	Bibliography, illustration of table/Fig	gures	9/10	
3	Summary/conclusions	2 O	5/5	
4	Clarity of presentation	9	9/10	
5	Presentation skill	C:	5/5	
6	Question and Answer	12-	5/5	
	4	Total marks (out of 50) :	48/50	
Outstandin Reasonable	g: 100%-90%; Excellent: 89.99%-80 : 59.99%-50% (these are only guideli	%; Very Good: 79.99%-70 nes))%; : 69.99%-60%;	
Recommend	ation (please choose ONE):			
The report su	bmitted (Project- I (seminar)) by the car	udidate is:		
	Accentable and may be manded as for	al in the present form		

Figure 2.8: Sample evaluation of Seminar (Project I)

Table 2.5: Rubrics for evaluation of Home Paper I (Project II)

Sr. No.	Item	Marks
1	Compound overview	/5
2	Literature, process and site selection	/10
3	Material and Energy balance	/10
4	Report writing as per instruction	/5
5	Presentation (Average of two examiners)	/20
	Total	/50

Table 2.6: Rubrics for evaluation of Home Paper II (Project II)

	1 (5	/
Sr. No.	Item	Marks
1	Design Protocol and its correctness	/10
2	Process control and waste management	/8
3	Safety analysis and cost estimation	/7
4	Report writing as per instruction	/5
5	Presentation (Average of two examiners)	/20
	Total	/50

INSTITUTE OF CHEMICAL TECHNOLOGY (University under Section -3 of the UGC Act 1956)

Elite Status and Centre of Excellence – Govt. of Maharashtra N.M.Parekh Marg, Matunga, Mumbai 400019 India. Ph: +91-22-33611111/2222, Fax: +91-22-33611020, www.ictmumbai.edu.in

Bachelor of Chemical Engineering Evaluation of Home Paper Submission 2 by the Internal and External Examiner

Date of Presentation: Name of the student:

Name of the Research Supervisor:

Dec 03,2020 Akshaykumar Dundappa Bhangari Sachin Vijay Jadhav Bachelor of Chemical Engineering

Title of the Project:

Degree:

Department:

Department of Chemical Engineering

Sr No.	Assessment Criterion	Marks (Total 50)
1	Compound overview	5/5
2	Literature, process and site selection	9/10
3	Material and energy balance	9/10
4	Report writing as per instructions	4/5
5	Presentation (Average of two examiners)	17/20
	Total marks (out of 50) :	44/50
	g: 100%-90%; Excellent: 89.99%-80%; Very Good: 79.99%-70 : 59.99%-50% (these are only guidelines)	%; : 69.99%-60%;

Recommendation (please choose ONE):

The report submitted (Home Paper Submission 2) by the candidate is:

1. Acceptable, and may be regarded as final in the present form.

2. Acceptable with minor revisions. The revisions have been indicated to the student during the presentation.

Figure 2.9: Sample evaluation of Home Paper submission I (Project II)

and the second	INSTITUTE OF	CHEMICAL TECH	NOLOCY		
Cines 1	UNSITIUTE OF V	in Section 2 of the UGC Act 1050			
	Elite Status and Ce	ntre of Excellence – Govt. of Maha	arashtra		
THE PARTY OF	N.M. Parekh Mar	g. Matunga, Mumbai 40001	9 India		
	Ph: +91-22-33611111/2222,1	Fax: +91-22-33611020, www	w.ictmumbai.edu.in		
	Bachelor	of Chemical Engineering			
Evaluat	ion of Project Iv : Home	Paper - Iv by the Interna	l and External Examiner		
Date of Pres	entation:	Apr 04,2022			
Name of the	student:	Naresh Khushalch	and Dhanwani		
Name of the Research Supervisor:		Dr. Sachin Vijay J	adhav		
Degree:		Bachelor of Chem	Bachelor of Chemical Engineering		
Title of the Project:		2			
Department:		Department of Che	emical Engineering		
Sr No.	Asses	sment Criterion	Marks (Total 50)		
1	Design Protocol and its cor	rectness	10/10		
2	Process Control and Waste	management	8/8		
3	Safety analysis and cost est	imation	6/7		
4	Report writing as per instru	ictions	4/5		
5	Presentation (Average of tw	wo examiners)	18/20		
		Total marks (ou	t of 50) : 46/50		
Outstandin 60%: Reas	g: 100%-90%; Excellent: 89 onable: 59.99%-50% (these	9.99%-80%; Very Good: 7 are only guidelines)	9.99%-70%; Good: 69.99%-		
an schröder Harsen					
Recommend	ation (please choose ONE):				
The report sul	bmitted (Project Iv : Home Pa	per - Iv) by the candidate is:			
1	Acceptable, and may be regard	ded as final in the present for	m.		
2	a state and state and state and state		· F . 1. A . 1 . 1 . 1		

Figure 2.10: Sample evaluation of Home Paper submission II (Project II)

Table 2.7: Rubrics for evaluation	of Home Paper I (Final Submission)
-----------------------------------	------------------------------------

				Re	eport		-			
Sr. No.	Name of student	Literature, process and site selection (10)	Material & energy balance (10)	Design of equipment (10)	Process flow diagram and Instrumentation (05)	Project cost estimation & environment analysis (10)	Overall Impression (5)	Viva (50)	Total (100)	Examiner
1										Internal
										External
2										
3										

Figure 2.10: Sample Home Paper submission front page

				5	B Che	Chemical J m Engg Sem	VIII Exam	7, Matun a. April/M	ga, Mum av 2022	bai				
					E	Iome paper V	iva Voce E	xaminatio	n					
					1	Day & Date: S	aturday, 30	April 20	22					
Time	Gr. 1	Gr. 2	Gr. 3	Gr. 4	Gr. 5	Gr. 6	Gr. 7	Gr. 8	Gr. 9	Gr. 10	Gr. 11	Gr. 12	Gr. 13	Gr. 14
Venue	CE Office	AVP Office	AWP Office	GDY Office	KVM Office	Process control	PRG Office	CE Office	PKG Office	SSB Office	Process Control	VGG Office	CE Office	Visiting Faculty
Examiners	ABP/KS	AVP/MT	AWP/MK	GDY/VS	KVM/JP	MDY/AS	PRG/MB	PDV/RD	PKG/SM	SSB/KR	SVJ/OG	VGG/PG	VKR/MP	VHD/VM
9.30 to 10.30	S. Swain T. Apte	S. G. Shinde H. Naboothin	S. Jamal V. Inamdar	A. Pinjari A. Naik	V. Varude A. Khodke	P. Sambharkar A Sadotra	N. Dias A. Ratnagopal	S. Pawara A Farkate	A. Patil T. Abhyankar	D. Dhande T Kothawade	A. Suryavashi S Mali	T. Waradkar D. Raut	R. Mehendale N Hemadri	A. Rathi R. Dumasi
							Break						1	
Examiners	ABP/VM	AVP/KS	AWP/MT	GDY/MK	KVM/VS	MDY/JP	PRG/AS	PDV/MB	PKG/RD	SSB/SM	SVJ/KR	VGG/OG	VKR/PG	VHD/MI
11.00 to 12.00	G. Cheeda K Jakhotiya	S. Dadmal A. Tiwari	H. Shardul M Shrinivas	A. Gubbala S Acharya	A. Sonavane A. Gedam	B. Prasad M Kumrawat	O. Tubhe S Kadam	K. Pandey S Petare	M. Kulmathe A. Pawar	A. Razdan S Chaudhari	A. Avhad S Varunkar	T. Javdekar A Murudkar	S. Sonti A. Ambatkar	A. Mali J. Saraogi
	1						Break						1	
Examiners	ABP/MP	AVP/VM	AWP/KS	GDY/MT	KVM/MK	MDY/VS	PRG/JP	PDV/AS	PKG/MB	SSB/RD	SVJ/SM	VGG/KR	VKR/OG	VHD/PC
12.15 to 1.15	B. Jain Y. Butale	A. U. Patil M Shah	K. Dwivedi M Rawlani	A. Shirwalkar	G. Chikarmane S. Shinde	S. Ramkrishna	D. Parab N Dhanwani	A. Jain V Puri	A. Chaugule	V. Raina D. Parvani	Y. Bartakke D. shinde	V. Bhalekar S. Singh	N. Sangle S. Bhalekar	S U Kadam
						2	Lunch			•				
		ABP - A. B	. Pandit		PDV - P. D. 1	Vaidya		KS - K Sa	hasranaman		RD - R. M. D)esai		
		AVP - A. V	. Patwardhan	L	PKG - P. K. (Ghosh	1	MT - Mili	nd Talathi		SM - Sanjay	Mande	1	
		AWP - A.V	W. Patwardha	n	SSB - S. S. B	hagwat	1	MK - Mar	oj Kharkar		OG - O. P. G	oyal	1	
		GDY - G. I), Yadav		SVJ - S. V. J.	adhav		VS - V Su	bramanian		KR - K. Ravi			
		KVM - K.	V. Marathe		VGG • V. G.	Gaikar		JP - Janki	Patwardhan		PG - Pradnya	Gune		
		MDY - M.	D. Yadav		VKR - V. K.	Rathod		AS - Anin	idh Shenvi		MP - M. Pale	kar]	
		PRG - P. R	Gogate		VHD - V. H.	Dalvi		MB - Man	ish Bhole		VM - Vinaya	k Marathe		

Figure 2.11: Sample Home Paper Viva Voce Examination with externals (2022)

Table 2.8a: List of B. Chem. Engg. Seminar 2019-2020

Sr. No.	Student Name	Торіс	Guide
	Aadesh Satish	Process intensification of biogas generation	Prof. V. G.
IOCHLIUI	Bhakkad	from municipal solid waste	Gaikar
16CHE102	Aagamkumar Kirtikumar Khandor	Regeneration of Activated Carbon	Dr. V. H. Dalvi
16CHE104	Abhinav Vivek Handu	Mineralisation of salicylic acid by catalytic ozonation	Prof. K. V. Marathe
16CHE105	Aditi Anil Sawant	Review of applications of reaction calorimetry in chemical engineering and process safety	Prof. P. K. Ghosh
16CHE106	Aditya Dilip Phad	Valorisation methods of surplus activated sludge	Dr. S. V. Jadhav
16CHE107	Akash Sanjay Nogaja	Life cycle analysis: A tool for sustainability	Prof. K. V. Marathe
16CHE108	Akshay Suhas Patil	Soil Fertility Evaluation techniques/Analysis	Prof. A. B. Pandit
16CHE109	Amitej Nageswara Neti	Design guidelines of rising film evaporators	Dr. C. S. Mathpati
16CHE110	Amogh Sandip Nagarkar	Concrete Admixtures	Dr. S. V. Jadhav
16CHE111	Amol Bharat Khatke	Mathematical models to predict stability of probiotics	Dr. R. D. Jain
16CHE112	Amrut Deepak Bagdi	Solid Fuel Based boilers: Comparison between Coal and Biomass Pellets	Prof. A. B. Pandit
16CHE113	Aniket Jayendra Murumkar	Improvements in photocatalytic reactions	Prof. P. R. Gogate

16CHE114	Aniket Sonba Pote	Sustainable production of zeolites	Prof. P. D. Vaidva
16005115	Animudh) (ankatach	Metal organic framework for separation of	Prof. V. K.
16CHE115	Aniruan venkatesh	compounds	Rathod
16CHE116	Ankit Sanjay Gaikwad	Recent Advances in living radical polymerization	Prof. A. W.
	Anu Sanjay		Palwarunan Prof P K
16CHE117	Deshmukh	Review of emerging applications of graphene	Ghosh
16CHE118	Ashin Antony Sunny	Review of Biomass-to-Liquid Technologies	Prof. A. M. Lali
16CHE119	Ashish Shyam Tangade	Two Stage Anaerobic Digestion	Dr. V. H. Dalvi
16CHE120	Asmee Maruti Prabhu	Recovery of organic acids from dilute aqueous streams	Dr. C. S. Mathpati
16CHE121	Avinash Suresh Nayak	Critical review of green solvent-free synthesis of active pharmaceutical ingredients (API).	Prof. A. V. Patwardhan
16CHE122	Bharthi Ponrathnam	Deep Shaft Aerators for Wastewater Secondary Treatment	Dr. V. H. Dalvi
16CHE123	Bosco Johny	Dry anerobic digestion	Prof. S. S. Bhagwat
16CHE124	Kaustubh Chaitanya Rane	Ultra-fine grain steel	Prof. K. V. Marathe
16CHE125	Chinmay Vidyadhar Mhatre	Direct air carbon capture technologies	Dr. S. V. Jadhav
16CHE126	Darshana Uttam Malusare	Bioreactor process parameters and its impact on mAb production	Dr. R. D. Jain
16CHE127	Dhiraj Manoj Jain	Silane based surfactants	Prof. S. S. Bhagwat
16CHE128	Dishit Pankaj Ghumra	Recent advances in effluent treatment options in	Prof. P. R. Gogate
16CHE129	Dnyanesh Deepak Sarawate	Recent advances in hydro-desulfurization catalysts	Prof. P. D. Vaidya
16CHE130	Eashaan Girish Godbole	Climate change mitigation potential of carbon capture and utilization in the chemical industry	Prof. P. K. Ghosh
16CHE131	Gaurav Vasudevan Mampally	Foam synthesis from bio-based polyols	Prof. S. S. Bhagwat
16CHE132	Gautami Rajendra Kelkar	Al-beta zeolites for important acid and redox catalysed reactions.	Prof. G.D. Yadav
16CHE133	Harshada Gangaram Gabhale	Turing Structures	Dr. V. H. Dalvi
16CHE134	Kalash Rajendra Pai	Techno Economic evaluation of Biomass valorisation option	Prof. A. B. Pandit
16CHE135	Kaushal Sanjayrao Kaloo	CFD Modeling of spiral membrane modules	Prof. A. W. Patwardhan
16CHE136	Keith Anthony Dsouza	Advances in Covalent organic frameworks (COF)	Prof. G.D. Yadav
16CHE139	Malhar Satish Mankar	Application of AI in structural product design	Prof. V. G. Gaikar
16CHE140	Mihir Mahendra Kulkarni	Recent development in synthesis of m- aminophenol	Prof. L. K. Mannepalli
16CHE141	Monik Sanjay Magiya	Cracking of waste polyethylene	Prof. A. M. Lali
16CHE142	Naman Anil Joshi	3D Printing of pharmaceutical products	Dr. R. D. Jain
16CHE143	Namita Nitin Jadhav	Flurinated surfactants - properties and substitutes	Prof. S. S. Bhagwat

16CHE144	Nayantara Rajendra Pradhan	Surfactants for rare earth separations	Prof. S. S. Bhagwat
16CHE145	Ninad Chandrakant Khelukar	Why and How of Protein Engineering	Prof. A. M. Lali
16CHE146	Nishant Narendra Pardeshi	Moving bed reactors: Challenges and progress	Prof. P. D. Vaidya
16CHE147	Ojaswi Sandeep Rathi	Measurement and prediction of flow patterns in packed beds	Prof. A. W. Patwardhan
16CHE148	Prathamesh Milind Bolaj	Merits of single site gold catalysts	Prof. G.D. Yadav
16CHE149	Pujit Sunil Juneja	Recent technologies for process intensification of reversible reactions	Dr. C. S. Mathpati
16CHE150	Raunak Shiocharan Balkote	Process intensification in production of p- hydroxy acetphenone	Prof. L. K. Mannepalli
16CHE151	Razeen Ramzan Shaikh	Solid-liquid separation in continuous hydrogenation processes	Dr. C. S. Mathpati
16CHE152	Rounak Vinod Naryani	Challenges and opportunities for bio-oil refining	Prof. P. D. Vaidya
16CHE153	Saagar Shaival Gandhi	Process for synthesis of 1,2-pentanediol	Prof. L. K. Mannepalli
16CHE154	Saaksshi Chandrashekhar Tenpe	Metal Erosion by Hydrodynamic Cavitation	Prof. A. B. Pandit
16CHE155	Sahil Vasantrao Ghormare	Mass transfer aspects of super/sub critical extraction of natural products	Prof. V. K. Rathod
16CHE156	Sahil Surendra Khatavkar	Critical review of Grignard chemistry in process development of active pharmaceutical ingredients (API).	Prof. A. V. Patwardhan
16CHE157	Sai Mukund Nazare	Smart bio manufacturing and plug and play manufacturing plants	Dr. R. D. Jain
16CHE159	Shalaka Sunil Dhande	Numerical studies in tidal turbine designs	Dr. C. S. Mathpati
16CHE160	Shital Vikas Suryavanshi	Selective hydrogenation of carboxylic acid derivatives using novel catalysts	Prof. G.D. Yadav
16CHE161	Shivani Uday Kulkarni	Recent advances in synthesis of biodiesel based	Prof. P. R. Gogate
16CHE162	Shivani Krishna kumar Bisen	Rectors for Enzyme catalysed reactions	Prof. V. K. Rathod
16CHE163	Shreekant Sudheer Gokhale	Critical review of hydride reductants alternative to lithium aluminium hydride.	Prof. A. V. Patwardhan
16CHE164	Shriram Rajendra Chavan	CRISPR-Cas Technology: An Overview	Prof. A. M. Lali
16CHE165	Shubham Ashokrao Shinde	Recent advances in synthesis processes for micr	Prof. P. R. Gogate
16CHE166	Shubham Gangaram Ravan	Advance ceramic fibres	Prof. K. V. Marathe
16CHE167	Shubham Pradip Adarkar	Kinetics of polymerization of Acrylonitrile	Prof. A. W. Patwardhan
16CHE168	Siddhesh Dilip Sarda	Recent developments in Energy storage in solar power	Prof. V. G. Gaikar
16CHE169	Snehal Sanjay Patil	Recent advances in treatment of frac water	Prof. P. R. Gogate
16CHE170	Sreejith Thampan Nair	Determination of Hydrophobicity of Immersed Surfaces	Dr. V. H. Dalvi

16CHE171	Surabh Santhosh K	Artificial intelligence in chemical synthesis	Prof. V. G.
			Gaikar
16CHE175	Suwag Cirich Shaha	Bolaform surfactants - synthesis, properties and	Prof. S. S.
100112175		applications	Bhagwat
	Vaishnavi Girish	Alternative to Protein A chromatography for	Dr. D. D. Join
IOCHEI/O	Honavar	mAb purification	DI. R. D. Jaili
16045177	Vartul Jain	Synthesis and purification of anticancer drugs	Prof. V. G.
IOCHEI//		Synchesis and purnication of anticancer drugs	Gaikar
		Critical review of enantio-selective achiral	Drof A V
16CHE179	Vidit Vivek Shah	ketones to corresponding chiral non-racemic	PIULA.V.
		alcohols.	Patwarunan
16015101	Viebel kumer Diney	Design concerts of five bootons	Prof. V. K.
10CHE101	visnal kumar binay	Design aspects of fire fleaters	Rathod
16005100	Vach Manai Dudha	Overview of the TRIZ methodology and its	Prof. P. K.
10CHE102	rash Manoj buune	application in inventive problem solving	Ghosh
140051062	Dahan Daiaah Darlikar	Dala of surfactants in ach urathenes	Prof. S. S.
14CHE1062	Kunan Kajesh Parlikar	Kole of surfactants in polyurethanes	Bhagwat
150451007	Dunanchi Anand	Removal of fluoride form ground water by	Prof. K. V.
IJCHEI08/		adsorption	Marathe

Table 2.8b: List of B. Chem. Engg. Seminar 2020-2021

Roll No	Student Name	Topics	Guide
17CHE101	Junaid Gul Naikoo	Root cause of pitting and its prevention.	Prof. K. V. Marathe
17CHE104	Abhishek Kundu	Process design and optimization of vibratory fluidized bed dryer	Dr. C. S. Mathpati
17CHE105	Abhishek Bhardwaj	Photocatalysis by graphite carbon nitride	Prof. G. D. Yadav
17CHE106	Aditya Hemant Jain	One dimensional modelling of blood flow in the cardiovascular system	Dr. C. S. Mathpati
17CHE107	Aishwarya Suhas Khandekar	C-C coupling by homogenous catalysis	Prof. L. K. Mannepalli
17CHE108	Akshaykumar Dundappa Bhangari	Corrosion and its prevention in high pressure, high temperature reactor.	Prof. K. V. Marathe
17CHE109	Alankrita Shreekant Patil	Transitions in petroleum product utilization	Prof. S. S. Bhagwat
17CHE110	Amitkumar Harigovind Chauhan	Kinetics and thermodynamics aspects of enzyme catalysed reactions	Prof. V. K. Rathod
17CHE111	Aniket Rajay Surwade	Risk management in supply chain	Prof. V. G. Gaikar
17CHE112	Ankit Balkrishna Kolpe	Combustible dust and safety measures	Prof. V. G. Gaikar
17CHE113	Anosh Mehernosh Dumasia	Critical Review on C-N Coupling reactions	Prof. L. K. Mannepalli
17CHE114	Apurva Ajay Pawar	Industrial Reactor safety	Prof. V. K. Rathod
17CHE115	Arya Kirti Pavani	Chiral synthesis of API	Prof. A. B. Pandit
17CHE116	Ashlesha Girish Tiple	Regime map for liquid-liquid two phase flow in micro channels	Prof. A. W. Patwardhan
17CHE117	Ashutosh Arvind Kulkarni	Review of face mask technology and	Prof. P. K. Ghosh

17CHE118	Atharva Vijay Suryavanshi	Selective halogenation of aromatic compounds	Prof. S. S. Bhagwat
17CHE119	Burhanuddin Husain	Recent advances in venturi scrubbing for dust collection	Dr. C. S. Mathpati
17CHE120	Burhanuddin Esmail Samiwala	Recent advancement in Heterogenous Catalysis	Prof. L. K. Mannepalli
17CHE121	Chinmay Prasad Deshpande	Mathematical modelling and simulation of bag filters	Dr. C. S. Mathpati
17CHE122	Chinmayee Pradeep Sarode	Improved Synthesis of microspheres for food technology applications	Prof. P.R. Gogate
17CHE123	Chirag Mandar Mule	Compressed Biogas	Dr. V.H. Dalvi
17CHE124	Chirag Sanjay Jain	monoterpenoid based perfumery compounds	Prof. A. V. Patwardhan
17CHE125	Dev Pramod Malu	Contact angle and line tension	Dr. V.H. Dalvi
17CHE126	Gautam Manoj Borkar	Advances in dry reforming	Dr. S. V. Jadhav
17CHE127	Harsh Prakash Solanki	Machine learning for catalyst design and discovery	Dr. M. D. Yadav
17CHE128	Himanshu Prashant Sail	Rain - Water Harvesting Options: Quantitative Analysis	Prof. A. B. Pandit
17CHE129	Hrishikesh Girish Mane	Augmented reality in Chemical process safety	Prof. V. G. Gaikar
17CHE130	Hritik Rakesh Jain	Critical review of chemistry aspects of hydrogenation/reduction in vitamin manufacture	Prof. A. V. Patwardhan
17CHE131	Jay Dinesh Sankhe	Li-ion battery recycling: key issues and challenges	Dr. M. D. Yadav
17CHE132	Joel Biju	Synthesis of transparent superhydrophobic coatings and their	Prof. G. D. Yadav
17CHE133	Kshitija Dipak Waikar	Overview of TRIZ methodology and its application in chemical industry	Prof. P. K. Ghosh
17CHE134	Kunal Pralhad Magare	Kinetics and thermodynamics aspects of adsorbents for natural gas for vehicular application	Prof. A. W. Patwardhan
17CHE135	Lakshay Vashist	Digital reliability for process optimization and safety	Prof. V. G. Gaikar
17CHE136	Madhur Ramesh Khadke	Technics for separation of hydroquinone and catechol	Prof. V. K. Rathod
17CHE137	Mahesh Subhash Patil	Advances in Lyophilization process for bio molecules	Dr. R. D. Jain
17CHE138	Makarand Ravindra Jagtap	Improvement in delignification process	Prof. P.R. Gogate
17CHE139	Mayur Surendra Pimpalkar	Biohydrogen Production from Organic Waste	Prof. P.D. Vaidya
17CHE140	Merul Ritesh Shah	Mathematical modelling of aerosol transport: coughing and sneezing	Dr. C. S. Mathpati
17CHE142	Neha Rajendra Gadekar	Combined power and cooling cycles	Prof. S. S. Bhagwat
17CHE143	Niraj Devdas Bhavar	Sonochemistry in Biotechnology	Prof. P.R. Gogate
17CHE144	Nirmit Shantilal Solanki	Hard surface, foods and human skin decontamination formulations for SARS- CoV-2	Prof. S. S. Bhagwat
17CHE145	Nitin Ramchandra Karande	Technoeconomic feasibility of hydrogen storage method	Prof. A. W. Patwardhan

17CHE146	Omkar Narayan Korke	Biochemical Conversion of Microalgae Biomass	Prof. P.D.
17 6112140	offikal Narayan Korke	into Biofuel	Vaidya
17CHE147	Palkit Vinod	Corrosion prevention methods in underground	Prof. K. V.
	Shahdadpuri	pipes for gasoline.	Marathe
17CHE148	Pranav Vinayak	Production of Chemicals from Chemical Looping	Prof. P.D.
	Minatre Drogonno Drogod	Conversion of Gaseous and Liquid Fuels	
17CHE149	Prasanna Prasau	Types and prevention of corrosion in cooling	Prol. K. V. Maratha
	Prateek Shriram	Recent Development on C-H Coupling by	
17CHE150	Badquiar	Heterogenous catalysis	Mannenalli
	Privanka Subhash		Dr. S. V.
17CHE151	Humane	Recent development in precision farming	Jadhav
17015152	Purva Harshad	Recovery of rare earths and precious metals	Dr. M. D.
1/CHE152	Paranjape	from E-waste	Yadav
		Critical review of membrane applications in	Drof A V
17CHE153	R Ramya Ragunathan	pharma industry, including the effluent	PIUL A. V. Patwardhan
		treatment	Fatwalullall
17CHE154	Rajarshi - Samaidar	Review of advances in industrial wastewater	Prof. P. K.
17 6112131		treatment and recycle	Ghosh
17CHE155	Rasik Gurunath	Recent advances in catalytic oxidation process	Dr. M. D.
	Wathare	of p-xylene	Yadav
17CHE156	Rushikesh Gorakhnath Rathod	Cellulase Enzymes: Production and Application	Dr. V.H. Dalvi
	Salil Sandeep	Review of innovations in the use of edible	Prof. P. K.
17CHE157	Narvekar	containers and cutlery advances in face mask	Ghosh
		sterilization and reuse	Duct C D
17CHE158	Sanil Govind Yadav	splitting applications	Prol. G. D. Vadav
	Saurabh Sukhadeo	Progress toward Applications of Perovskite	
17CHE160	Bagal	Solar Cells	Vaidva
	Shantanu Saniav		Prof. K. V.
17CHE161	Shembade	Corrosion in oil wells.	Marathe
17015162	Chruti Unnikannan	Hyper-branched lignin derivatives: Synthesis	Prof. G. D.
I/CHEI03	Shruu Unnikannan	and applications	Yadav
17CHE164	Shubham Gangaram	Design of Domestic Air purifiers	Prof. A. B.
17CHL104	Wanje		Pandit
17CHE165	Srushti Sanjeev	Economics of biopharmaceutical production	Dr. R. D. Jain
	Kumar Sindagi		
	Siddhant Sanjay	Critical review of case studies in crystallization	Prof. A. V.
1/CHE166	Mehta	and polymorphism in active pharmaceutical	Patwardhan
		Ingredients	
17CHE167	Siddhi Santosh Kotnis	Use of artificial intelligence in plant	Dr. S. V. Jadhay
	Sriram Pramod		Jauliav
17CHE168	Tendulkar	Biomass Pre-treatment for Anaerobic Digestion	Dr. V.H. Dalvi
	Sukhada Sanieev	Composite phase change materials for thermal	Prof. G. D.
17CHE169	Gharat	energy utilization	Yadav
17015170	Sumant Yogesh		Prof. A. B.
I/CHE1/0	Salphale	Co-pyrolysis of Plastic and Biomass	Pandit
17045171	Tanmay Nagach Salui	Non-classical crystal growth of organic	Dr. M. D.
	rannay Nayesh Salvi	materials	Yadav
17CHF172	Tushar Pyarelal	Biojet and Biogasoline Fuel Production from	Prof. P.D.
I/CHLI/Z	Chaudhari	Castor Oil	Vaidya

17046172	Uma Gopinath	Recent development in separation of heat	Prof. V. K.
I/CILI/S	Kulkarni	sensitive biomaterials	Rathod
17CHE174	Vedant Kiran Wankhede	Machine Learning for drug discovery	Dr. R. D. Jain
17CHE175	Vipul Moreshwar Karekar	Recent development in fire retardants	Dr. S. V. Jadhav
17CHE176	Yash Ghanashyam Barhate	IoT in biomanufacturing and smart biofactory	Dr. R. D. Jain
17CHE177	Yashraj Sanjay Jagtap	Ultrasound application in Medicine	Prof. P.R. Gogate
17CHE178	Siddharth Gautam Vaishnav	Critical review of Chemistry aspects of Emu oil and similar other oils, and their applications	Prof. A. V. Patwardhan
17CHE179	Samiksha Jugalkishore Asawa	Fluidized Bed Pyrolysis of Biomass	Prof. A. B. Pandit
17CHE180	Riddhesh Nitin Kumtakar	Microbial Fuel Cell	Dr. V.H. Dalvi
17CHE181	Meenal Shyam Rathi	Boiling in microchannels	Prof. A. W. Patwardhan
17CHE182	Sarvesh Subhash Pandey	Role of Microwaves in Heterogenous reaction	Prof. V. K. Rathod
16CHE137	Kovi Rishya Shrung	Exergetic comparison of various types of thermal power plants	Prof. S. S. Bhagwat
16CHE174	Sushmita Shekhar Khole	Ethylene ethane separation by membranes - Recent Advancement	Prof. A. W. Patwardhan

Table 2.8c: List of B. Chem. Engg. Seminar 2021-2022

Roll No	Student Name	Торіс	Guide
18CHE101	Arun Sadotra	Bioreactors for COVID vaccine manufacturing	Prof. V. G. Gaikar
18CHE102	Shikhar Dinesh Singh	Hydrogen peroxide free from metals and organics	Prof. S. S. Bhagwat
18CHE103	Tanmay Nitin Kothawade	Recent advances in membranes for organic solvent nanofiltration	Prof. A. V. Patwardhan
18CHE104	Vrushali Rajendra Varude	Electrochemical CO2 Reduction	Dr. V.H. Dalvi
18CHE105	Shekhar Ganapati Shinde	Design aspects of Impinging Jet Crystallizers	Prof. A. W. Patwardhan
18CHE106	Vaishnavi Rajendra Bhalekar	Techno-economic evaluation of alternatives for drying of organic solvents	Prof. A. W. Patwardhan
18CHE107	Aditya Rajesh Gedam	Recent advances in Graphitic Carbon Nitride based photocatalytic materials	Dr. M. D. Yadav
18CHE108	Tanvi Swapnil Varadkar	Recent advances in spray drying for pharmaceuticals	Dr. M. D. Yadav
18CHE109	Aniruddha Dhondiram Pinjari	Land fill Bio-reactor Management	Prof. A. B. Pandit
18CHE110	Akanksha Sanjay Chougule	Recent trends in hydrogenation of vegetable oils with focus on catalyst and reactor types	Prof. P.R. Gogate
18CHE111	Saloni Surendra Varunkar	Henry reaction using heterogeneous catalysts	Prof. L. K. Mannepalli
18CHE112	Aditya Mahaveer Patil	Recent advances in continuous crystallization of pharmaceutical products	Dr. M. D. Yadav

18CHE113	Anuj Pundalik	Recent developments in Zeolite membrane	Dr. M. D.
100112115	Farakate	based gas separation	Yadav
18CHE114	Tanay Ashish	Hydrodeoxygenation of bio-oil: Catalysis and	Prof. G. D.
100112111	Jawdekar	modeling	Yadav
18CHE115	Monil Manish Shah	N-Oxidation of tertiary amines using	Prof. L. K.
100112113		heterogeneous catalysts	Mannepalli
18CHE116	Neha Madhukar	Role of HAZOP analysis in Chemical Industry	Prof. V. K.
	Sangle		Rathod
18CHF117	Siddharth Mangesh	Developments in process plant failure detection	Dr. S. V.
	Petare	techniques	Jadhav
18CHE118	Mihir Madhav Gokhale	Critical review of electrolytic hydrogen production	Prof. P. K. Ghosh
100000110	Shubhalaxmi Dillip	Opportunities for energy recovery in zero liquid	Dr. C. S.
18CHEI19	Swain	discharge systems	Mathpati
100000100	Mayur Devendra	The Concept of Wester Definence and its Detential	Prof. P.D.
18CHE120	Kulmethe	The Concept of Waste Refinery and its Potential	Vaidya
10005101	Prajwal Shilkumar		Prof. A. V.
18CHEIZI	Shambharkar	Recent advances in dye-sensitised solar cells	Patwardhan
10045100	Advay Chimuallan	Photo-reforming of methanol for production of	Prof. G. D.
10000122	Auvay Shirwaikar	hydrogen	Yadav
10005100	Krishnakant Danday	Advances in heteropoly acid based ionic liquids	Prof. G. D.
18CHE123	Krishnakant Pandey	and their applications	Yadav
100000104	Cost Arun Chhada	Recent developments in biosensors in	Dr. S. V.
18CHE124	Geet Arun Chneda	continuous manufacturing	Jadhav
100000100	Mihir Shrinivas	Circular Economy, Concent and Utility	Prof. A. B.
10CHE125	Dakappagari	Circular Economy: Concept and Otinty	Pandit
		Review of processes for uranium separation	Prof P K
18CHE126	Gayatri Chikarmane	from phosphoric acid and isolation of recovered	Chosh
		uranium in pure form	Ghosh
18CHE127	Yash Subhash Butale	Recent Advances in Power-to-X Technology for	Prof. P.D.
1001127		the Production of Fuels and Chemicals	Vaidya
18CHF128	Anushka Manoj	Trends and future scope in fabric lamination	Dr. S. V.
100112120	Khodake	adhesives	Jadhav
18CHE129	Tanvi Mahendra Ante	Environmental Applications of Fungal and Plan	Prof. V. K.
100112129		Systems	Rathod
18CHE130	Sayalee Chandrasing	Catalysis in direct oxidation of methane to	Prof. G. D.
	Pawara	methanol	Yadav
18CHE131	Saad Jamal	Applications of heat pumps for heating	Prof. S. S.
		· · · · · · · · · · · · · · · · · · ·	Bhagwat
18CHE132	Durgeshnandini Rajendra Shinde	Solar Desalination	Dr. V.H. Dalvi
10045122	Aakankeha Cubhala	Recent advances in smart membrane materials	Prof. A. V.
10000133	Aakanksila Gubbala	and systems for separation	Patwardhan
18CHE134	Durvesh Eknath Darah	Applications of Nanotechnology in Oil and Gas	Prof. P.D.
100112134		Industry	Vaidya
18CHE135	Diksha Sunil Raut	Modeling of gas liquid flows using VOE-DBM	Prof. A. W.
100112133			Patwardhan
18CHE136	Shruti Sarjerao	Land fill mining	Prof. A. B.
100112100	Kadam		Pandit
18CHE137	Abhishek Devendra Avhad	The Problem of Line Tension	Dr. V.H. Dalvi
	Rushad Mehernosh	Creep deformations in fibre reinforced	Prof. K. V.
18CHE138	Dumasia	composites	Marathe
		· ·	1

18CHE139	Neil Graig Dias	Nano-Sorbents based on Polysaccharide in	Prof. V. K.
100112133		Water Remediation	Rathod
18CHE140	Aniket Rajendra Mali	Critical review on recent advances on graphene	Dr. M. D.
		oxide/cement-based composites	Yadav
18CHE141	Shrinivas Anand	Industrial applications of meso scale reactors in	Dr. C. S. Mathaati
	Acharya		
18CHE142	Naresh Khushaichanu Dhanwani	Design aspects of Co-axial mixers	Prol. A. W. Patwardhan
	Kushagra Manoi		
18CHE143	Dwivedi	Wittig reaction using heterogeneous catalysts	Mannepalli
18CHE144	Dhaval Divakar	Recent trends in desulfurization of turpentine as	Prof. P.R.
100112144	Dhande	feed stock for perfumery chemicals	Gogate
18CHE145	Bharat Prasad	Current Status of Residual Sugarcane Bagasse	Prof. P.D.
		Conversion in India	Vaidya
	Vvankatesh Nagesh	Critical review of chemistry aspects of	Prof. A. V.
18CHE146	Puri	hydrogenation/reduction in the manufacture of	Patwardhan
		pharmaceutical intermediates	
18CHE147	Namboothiri	Application of Biotechnology for odour control	Prof. V. G. Gaikar
18CHE140	Shantanu Uttam	Recent advances on process based on Perfusion	Dr. P. D. Join
10CHL140	Kadam	bioreactors for mAb production	DI. R. D. Jaili
18CHE1/0	Krishna Gopal	Recent developments in cooling tower design	Dr. C. S.
100112149	Jakhotiya	and operation	Mathpati
		Comparative assessment of the Birkeland-Eyde	Prof P K
18CHE150	Sonti Siddharth	process vis-à-vis the Haber process in the	Ghosh
		context of future sustainability	Ghosh
18CHE152	Aryan Razdan	Deep Reinforcement Learning	Dr. V.H. Dalvi
18CHE153	Amey Amol Suryavanshi	MSW Segregation techniques and scaling them	Prof. A. B. Pandit
18CHE154	Abbinay Umoch Patil	Zwitterionic silicone materials derived from	Prof. K. V.
100112134	Abhinav omesn radi	amino functional PDMS with acrylic acid	Marathe
18CHE155	Harshali Valmik	Non-Intrusive in-line Rheometery	Prof. A. W.
100112135	Shardul		Patwardhan
	Mayank Mukesh	Recent advances in the manufacturing process	
18CHE156	Kumrawat	development of mass spectrometry grade	Dr. R. D. Jain
		trypsin	-
18CHE157	Ramakrishna S	Recent advances in membranes for organic	Prof. A. V.
		pervaporation/membrane distillation	Patwardhan
18CHE158	Jayesh Chander	Dry vacuum pumps: applications, selection and	Dr. C. S.
	Saraogi	operating guidelines	Mathpati
18CHE159	Akshayu Pramod	Oil Spill Treatment using Oil eating Microbes	Prof. V. G.
		Data Driven models in Chamical Engineering	
18CHE160	Kajas milinu Mehendalo	Pasaarsh and applications	Prol. A. D. Dandit
	Menenuale		
18CHE161	Akash Dilip Pawar	Design considerations for a cold storage unit	Bhagwat
18CHE162	Yash Anil Bartakke	Industrial processes for extraction of natural	Prof. V. K.
	Athany Hemendra	high temperature degradation in power plants	
18CHE163	Tiwari	and refineries	Marathe
	Omkar Samhhaii		
18CHE164	Thube	Recent developments in reboiler design	Mathpati
18CHE165	Anmol Ajay Rathi	Recent advances in the manufacturing process development of PNGaseF (recombinant)	Dr. R. D. Jain

18CHE166	Bhavya Jain	Design of spiral plate heat exchanger	Prof. V. K. Rathod
18CHE167	Tejas Sriniwas Abhyankar	Wadsworth -Emmons reaction using heterogeneous catalysts	Prof. L. K. Mannepalli
18CHE168	Aditya Namdeo Naik	Developments in application and modification of niobium oxides as catalysts in industrially important reactions	Prof. G. D. Yadav
18CHE169	Shubham Maruti Mali	Developments in eco-pesticides	Dr. S. V. Jadhav
18CHE170	Nagashravan Hemadri	Recent advances in the purification process development of pepsin	Dr. R. D. Jain
18CHE171	Aditya Rajkumar Ratnapagol	Green Hydrogen Production	Dr. V.H. Dalvi
18CHE172	Dharam Dilip Parwani	Review of technology options for small-scale and large-scale seawater desalination	Prof. P. K. Ghosh
18CHE173	Bhalekar Snehal Sakharam	Ultrasound applications for water treatment and recycle	Prof. P.R. Gogate
18CHE175	Meenal Rawlani	Effect of cold working on creep rupture strength	Prof. K. V. Marathe
18CHE176	Aniruddha Rajesh Jain	The Role of Carbon Capture and Storage in the Energy Transition	Prof. P.D. Vaidya
18CHE177	Nikhil Manjunath Devadiga	Intensified biogas production based on use of cavitation	Prof. P.R. Gogate
18CHE178	Amey Santosh Murudkar	Recombinant DNA Technology in synthesis of Insulin	Prof. V. G. Gaikar
18CHE180	Atharva Shailesh Sonavane	Icy ball design for small refrigerated storage	Prof. S. S. Bhagwat
18CHE181	Varun Inamdar	Taurine surfactants	Prof. S. S. Bhagwat
16CHE138	Kshitij Narendra Thaware	VOC emissions and mitigation techniques in manufacturing industries	Dr. S. V. Jadhav
16CHE172	Suraj Bhagwat Shinde	Review of use of natural products in paints, ink and adhesives	Prof. P. K. Ghosh
16CHE178	Varun Satish Kumar Raina	Recent advances in the manufacturing process development of mass spectrometry grade chymotrypsin	Dr. R. D. Jain
17CHE159	Sanket Bhojraj Dadmal	Development of non-invasive sensors for medical applications	Prof. V. G. Gaikar
17CHE162	Shrushti Anand Chaudhari	Recent trends in treatment of effluent containin antibiotics	Prof. P.R. Gogate

Table 2.9a: List of B. Chem. Engg. Home paper 2019-2020

Roll No.	Student Name	Торіс	Guide
16CHE107	Akash Sanjay Nogaja	Design a plant to manufacture 10 TPD of Isopropyl Acetate	
16CHE142	Naman Anil Joshi	Design a plant to manufacture 5 TPD Lanolin Alcohol	_
16CHE150	Raunak Shiocharan Balkote	Design a plant for solar Electricity Based H_2 generation through water electrolysis	Prof. A. B. Pandit
14CHE1062	Rohan Rajesh Parlikar	Design a plant to manufacture 10TPD of Mango Butter	

16CHE164	Shriram Rajendra Chavan	Design a plant to manufacture 10 TPD of Refused derived Fuel (RDF)	
16CHE105	Aditi Anil Sawant	Design a plant to manufacture 10 TPD of L- menthol	
16CHE125	Chinmay Vidyadhar Mhatre	Design a plant for separation and purification of methane and carbon dioxide from 100,000 m ³ / daybiogas obtained from anaerobic digestion.	
16CHE126	Darshana Uttam Malusare	Design a plant to manufactre 100 TPD of acrylic acid	Prof. A.M.Lali
16CHE128	Dishit Pankaj Ghumra	Design a plant for gasification of 100 TPD of used & waste oils and hydrogen production	
16CHE168	Siddhesh Dilip Sarda	Design a plant to manufacture 20 TPD of alpha pinene	
16CHE134	Kalash Rajendra Pai	Design a plant to manufacture lubricants from epoxidised vegetable oil.	
16CHE141	Monik Sanjay Magiya	Design a plant to manufacture methylene diphenyl isocyanate.	Prof. A. V.
16CHE151	Razeen Ramzan Shaikh	Design a plant to manufacture iron gluconate.	Patwardhan
16CHE166	Shubham Gangaram Ravan	Design a plant to manufacture L-ascorbic acid.	
16CHE111	Amol Bharat Khatke	Design a plant to manufacture 5 TPD trimellitic anhydride	
16CHE120	Asmee Maruti Prabhu	Design a plant to manufacture 500 TPA of Carbon Fiber	
16CHE124	Kaustubh Chaitanya Rane	Design a plant to recover Uranium from 100 TPD phosphoric acid plant	Prof. A. W. Patwardhan
16CHE145	Ninad Chandrakant Khelukar	Design a plant to manufacture 50000 tpa polylactic acid	
16CHE149	Pujit Sunil Juneja	Design a plant to Manufacture 10 TPD of tetrabutyl ammonium hydroxide	
16CHE113	Aniket Jayendra Murumkar	Design a plant to produce 5 TPA of 3,4- ethylenedioxy aniline	
16CHE118	Ashin Antony Sunny	Design a plant to produce 100000 MTPA of phenol	
16CHE131	Gaurav Vasudevan Mampally	Design a plant to produce 100 TPA of crotamiton	Dr. C. S. Mathpati
16CHE140	Mihir Mahendra Kulkarni	Design a plant to produce 5000 MTPA of aluminium fluoride	
16CHE157	Sai Mukund Nazare	Design a plant to produce 100 MTPA of ortho nitrotoluene	
16CHE115	Anirudh Venkatesh	Design a plant for the manufacture of 10,000 TPA 4-methoxy propiophenone using a green method	Prof. G. D.
16CHE116	Ankit Sanjay Gaikwad	Design a plant for 50,000 TPA of m-phenylene diamine	Yadav

16CHE154	Saaksshi Chandrashekhar Tenpe	Design a plant for 25,000 TPA of m-phenoxy benzyl alcohol.	
16CHE179	Vidit Vivek Shah	Design a plant for the manufacture of 5,000 TPA diphenyl carbonate	
16CHE106	Aditya Dilip Phad	Design a plant to manufacture potassium dichromate	
16CHE133	Harshada Gangaram Gabhale	Design a plant to manufacture saccharin	
16CHE135	Kaushal Sanjayrao Kaloo	Design a plant to manufacture salicylic acid	Prof. K. V. Marathe
16CHE153	Saagar Shaival Gandhi	Design a plant to manufacture poly vinyl chloride	
16CHE165	Shubham Ashokrao Shinde	Design a plant to manufacture hydrogen peroxide	
16CHE110	Amogh Sandip Nagarkar	Design a plant to manufacture p-methoxy acetophenone.	
16CHE117	Anu Sanjay Deshmukh	Design a plant to manuactre p-methyl acetophenone	Prof. L. K. Mannepalli
16CHE161	Shivani Uday Kulkarni	Design a plant to manufacture Benzophenone	
16CHE104	Abhinav Vivek Handu	Design a plant to manufacture 1000 TPA of Polyoxymethylene dimethyl ethers	
16CHE108	Akshay Suhas Patil	Design a plant to manufacture 100 TPA of (Z)- 5- (4-hydroxybenzylidene)thiazolidine-2,4- dione	
16CHE147	Ojaswi Sandeep Rathi	Design a plant to manufacture 1000 TPA of n- butyl acrylate	Prof. P.D. Vaidya
16CHE159	Shalaka Sunil Dhande	Design a plant to manufacture 1000 TPA of 1,1- Diethoxybutane	
16CHE163	Shreekant Sudheer Gokhale	Design a plant to manufacture 2,6- naphthalenedicarboxylic acid (1000 tpa)	
16CHE119	Ashish Shyam Tangade	Design a plant to manufacture 10 TPD iodized salt	
16CHE127	Dhiraj Manoj Jain	Design a plant to manufacture 10 TPD Fe + I Double Fortified Salt	
16CHE146	Nishant Narendra Pardeshi	Design a plant to manufacture 10 TPD bioethanol from mixed feed of lignocellulosic biomass	Prof. P. K. Ghosh
16CHE160	Shital Vikas Suryavanshi	Design a plant to manufacture Spray/Freeze- dried re-dispersible powder from 1 TPD sugarcane juice	
16CHE171	Surabh Santhosh K t	Design a plant to manufacture 10 TPD sodium chlorite, an important water treatment chemical	
16CHE130	Eashaan Girish Godbole	Design a plant to produce alachlor at a capacity suitable for Indian context	Prof. P.R.

16CHE139	Malhar Satish Mankar	Design a plant to produce Isoborneol at a capacity suitable for Indian context	Gogate
16CHE143	Namita Nitin Jadhav	Design a plant to produce methyl tert-butyl phenol at a capacity suitable for Indian context	-
16CHE148	Prathamesh Milind Bolaj	Design a plant to produce 1-3 Cyclohexanedione at a capacity suitable for Indian context	
16CHE162	Shivani Krishna kumar Bisen	Design a plant to produce p-toluene sulfonic acid at a capacity suitable for Indian context	
16CHE101	16CHE101Aadesh Satish BhakkadDesign a plant to manufacture lauryl glycine at a suitable scale		
16CHE121	Avinash Suresh Nayak	Design a plant to manufacture coco fatty acid chloride at a suitable scale.	
16CHE152	Rounak Vinod Naryani	Design a plant to manufacture hydroxylamine solution at a suitable scale.	Prof. S. S. Bhagwat
16CHE167	Shubham Pradip Adarkar	Design a plant to manufacture benzyl chloride at a suitable scale.	
16CHE181	Vishal kumar Binay	Design a plant to manufacture 2,6-dichloro phenol at a suitable scale.	
16CHE122	Bharthi Ponrathnam	Design a plant to manufacturing of methyl bromide	
16CHE123	Bosco Johny	Design a plant to manufacturing of xanthan gum	Dr. S. V.
16CHE177 Vartul Jain		Design a plant to Manufacture of Chloropicrin	Jadhav
16CHE182	Yash Manoj Budhe	Design a plant to Manufacture of para nitrophenol	
16CHE114	Aniket Sonba Pote	Design a plant to manufacture 50 TPD of dihydrofuran	_
16CHE136	Keith Anthony Dsouza	Design of a Plant to manufacture 50 TPD of 7- ethyl tryptophol	
16CHE144	Nayantara Rajendra Pradhan	Design of a plant to manufacture 2,3-butanediol by biotechnological route	Prof. V. G. Gaikar
16CHE155	Sahil Vasantrao Ghormare	Design a plant to manufacture 100 TPD of furan dicarbolylic acid from sugar (5% solution)	
16CHE170	Sreejith Thampan Nair	Design a plant to manufacture 1 TPD of cyclophosphamide	
16CHE102	Aagamkumar Kirtikumar Khandor	Design a plant to manufacture 10 TPD of polycarboxy ether for use as concrete viscosity modifier	
16CHE129	Dnyanesh Deepak Sarawate	Design a plant to manufacture 10 TPDof Isoindoline pigment	Dr. V.H.
16CHE132	Gautami Rajendra Kelkar	Design a plant to manufacture 25 TPD of 2 phenylethanol	Dalvi
16CHE156	Sahil Surendra Khatavkar	Design a plant to dry 50 TPD of grapes to make raisins using solar concentrator	

16CHE175	Suyog Girish Shaha	Design a plant to generate compressed biogas suitable for transportation purposes from 100 tons per day of agricultural waste	
16CHE109	Amitej Nageswara Neti	Design a plant to manufacture 10 TPD Camphorsulfonic acid	
16CHE112	Amrut Deepak Bagdi	Design a plant to manufacture 10 TPD of Metformin HCL	Prof. V. K.
16CHE169	Snehal Sanjay Patil	Design a plant to produce 1 CMD of Jamun seed extract concentrate	Rathod
16CHE176	Vaishnavi Girish Honavar	Design a plant to manufacture 1 TPD of Boreneol	

Table 2.9b: List of B. Chem. Engg. Home paper 2020-2021

Roll No	Student Name	Topics	Guide
17CHE105	Abhishek Bhardwaj	Design a Plant to manufacture 10 to50TPD of Choline Chloride	
17CHE113	Anosh Mehernosh Dumasia	Design a plant for 5 TPD of SodiumMeta – bisulphite.	
17CHE123	Chirag Mandar Mule	Design a plant to manufacture 50 TPDof Lithium Hydroxide.	Prof. A. B. Pandit
17CHE124	Chirag Sanjay Jain	Design a plant to manufacture 2 TPD ofLithium Silicate.	
17CHE148	Pranav VinayakMhatre	Design a plant to manufacture 10 TPDof Ammonium Citrate.	
17CHE125	Dev Pramod Malu	Design a plant to manufacture of L-alpha-glyceryl phosphoryl choline.	
17CHE139	Mayur Surendra Pimpalkar	Design a plant to manufacture Juglone.	
17CHE180	Riddhesh NitinDesign a plant to manufacture Carbomer 940Kumtakar(polyacrylic acid).		Prof. A. V. Patwardhan
17CHE169	Sukhada Sanjeev Gharat	Design a plant to manufacture Lawsone.	
16CHE174	Sushmita Shekhar Khole	Design a plant to manufacture Propofol.	
17CHE118	Atharva Vijay Suryavanshi	Design a plant to manufacture 1 TPDTODGA	
17CHE136	Madhur Ramesh Khadke	Design a plant to manufacture 10000TPA beta picoline	
17CHE163	Shruti Unnikannan	Design a plant to manufacture 5 TPDTOPO	Prof. A. W.
17CHE166	Siddhant Sanjay Mehta	Design a plant to generate 10 Nm ³ /hrHydrogen Siddhant Sanjay Mehta from LOHC: di benzyl toluene	
17CHE172	Tushar Pyarelal Chaudhari	lal Design a plant to recover 1 TPDbromine form sea water	
17CHE134	Kunal Pralhad MagareDesign a plant to manufacture 500 TPAof n-nonyl phenol ethoxylate		
17CHE157	Salil Sandeep Narvekar	Design a plant to manufacture 5000 TPAof benzene using toluene	
17CHE160	Saurabh Sukhadeo	Design a plant manufacture 200 TPA ofDiclofenac	

	Bagal	Sodium		
17CHE164	Shubham Gangaram Wanje	Design a plant to manufacture 5000 TPAof 4- anisaldehyde		
17CHE178	Siddharth Gautam Vaishnav	Design a plant to manufacture 1000 TPAof bromobenzene		
17CHE112	Ankit Balkrishna Kolpe	Design a plant to manufacture 5 TPD of Stearyl amine using a greener and safer process		
17CHE131	Jay Dinesh Sankhe	Design a plant to manufacture 15 TPD of diphenyl amine using a catalytic process		
16CHE137	Kovi Rishya Shrung	Design a plant to manufacture 25 TPD of 4-tert- butylcatechol	Prof. G. D.	
17CHE154	Rajarshi - Samajdar	Rajarshi - Samajdar Design a plant to manufacture 10 TPD of styrene carbonate using a green process		
17CHE168	Sriram Pramod Tendulkar	Design a plant to manufacture 5 TPD of caffeine		
17CHE106	Aditya Hemant Jain	Design a plant to manufacture liquid oxygen.		
17CHE110	Amitkumar Harigovind Chauhan	Design a plant to manufacture di iso Nonylpthalate (DINP)	Prof K V	
17CHE130	Hritik Rakesh Jain	Design a plant to manufacture calcium stearate.	Marathe	
17CHE170	Sumant Yogesh Salphale	Design a plant to manufacture methyl tert butyl ether (MTBE)		
17CHE173	Uma Gopinath Kulkarni	Ilkarni Design a plant to manufacture epoxy resin		
17CHE104	Abhishek Kundu	Design a Plant to Manufacture 2- Chloropyridine		
17CHE116	Ashlesha Girish Tiple	Design a plant to Manufacture Favipiravir		
17CHE153	R Ramya Ragunathan	Design a plant to Manufacture Remdesivir	Mannepalli	
17CHE179	Samiksha Jugalkishore Asawa	Design a Plant to manufacture tributyl amine		
17CHE126	Gautam Manoj Borkar	Design a plant to manufacture 1 TPD of Coumarin.		
17CHE101	Junaid Gul Naikoo	Design a plant to manufacture 5 TPD of Benzyl salicylate.		
17CHE133	Kshitija Dipak Waikar	Design a plant to manufacture 2 TPD of Metanilic acid.	Dr. M.D. Yadav	
17CHE138	Makarand RavindraDesign a plant to manufacture 2 TPD of CycJagtapaldehyde.			
17CHE174	Vedant Kiran Wankhede	Design a plant to manufacture 3 TPD of Styrallyl acetate.		
17CHE129	Hrishikesh Girish Mane Design a plant for the production of methane from carbon dioxide			
17CHE132	Joel Biju Design a plant to manufacture taurine			
17CHE142	Neha RajendraDesign a plant to manufacture light olefins from crop residue		Prof. P.D. Vaidya	
17CHE144	Nirmit Shantilal Solanki Design a plant to manufacture Camphorane			
17CHE171	Tanmay Nagesh Salvi Design a plant to manufacture L- Arabitol			

17CHE140	Merul Ritesh ShahDesign of brine preparation unit for 2000 TPDsoda ash manufacture using seawater as water source.			
17CHE182	Sarvesh Subhash Pandey	Design of dilute molasses preparation unit for 1000 TPD ethanol production using spent wash as water source.		
17CHE161	Shantanu Sanjay Shembade	Design of 1 MLD heavy brine preparation unit (for offshore oil drilling) using seawater as water source.	Prof. P. K. Ghosh	
17CHE167	Siddhi Santosh Kotnis	Design of 15 m3 reject water (generated from brackish water RO plants) Dewatering unit with co-production of dissolved fertilizer for fertigation.		
17CHE165	Srushti Sanjeev Kumar Sindagi	Design of 1 MW solar PV unit integrated with pre- heating assembly for solar thermal energy storage		
17CHE119	Burhanuddin Husain	Design a plant to manufacture camphor at a capacity suitable for Indian context		
17CHE128	Himanshu Prashant Sail	Design a plant to manufacture cyclohexanol at a capacity suitable for Indian context		
17CHE145	Nitin Ramchandra Karande	Design a plant to manufacture Nitrofurantoin at a capacity suitable for Indian context	Prof. P.R. Gogate	
17CHE150	Prateek Shriram Badgujar	Design a plant to manufacture ethylenediamine at a capacity suitable for Indian context	5	
17CHE151	Priyanka Subhash Humane	Design a plant to manufacture Ondansetron hydrochloride dihydrate at a capacity suitable for Indian context	tron Jitable for	
17CHE107	Aishwarya Suhas Khandekar	Design a plant to manufacture anthraquinone at a suitable scale.		
17CHE114	Apurva Ajay Pawar	Design a plant to manufacture 2- hydroxy-3- naphthoic acid and its anilide from 2-naphthol at a suitable scale.		
17CHE122	Chinmayee Pradeep Sarode	Design a plant to manufacture 2-methyl resorcinol solution at a suitable scale.	Prof. S. S. Bhagwat	
17CHE135	Lakshay - Vashist	Design a plant to manufacture propranalol from 1-naphthol at a suitable scale.		
17CHE156	Rushikesh Gorakhnath Rathod	Design a plant to manufacture naphthalene-2,6- dicarboxylic acid at a suitable scale		
17CHE108	Akshaykumar Dundappa Bhangari	Design a plant to manufacture polystyrene at a suitable capacity		
17CHE115	Arya Kirti Pavani	Design a plant to manufacture resistant starch at a suitable capacity		
17CHE121	Chinmay Prasad Deshpande	Design a plant to manufacture titanium dioxide at a suitable capacity	Dr. S. V. Iadhay	
17CHE181	Meenal Shyam Rathi	Design a plant to manufacture ammonium polyphosphate at a suitable capacity		
17CHE155	Rasik GurunathDesign a plant to manufacture cellulose acetateWathareat a suitable capacity			
17CHE120	Burhanuddin Esmail Samiwala	Design a plant to manufacture 5 TPD of Ciprofloaxcin	Prof. V. G.	

17CHE137	Mahesh Subhash Patil	ubhash Patil Design a plant to manufacture 5 TPD of Norfloxacin	
17CHE143	Niraj Devdas Bhavar	aj Devdas Bhavar Design a plant to manufacture 1 TPD of butyl- glucoside	
17CHE149	Prasanna Prasad Khare	Design a plant to manufacture 5 TPD of Levofloaxcin	
17CHE175	Vipul Moreshwar Karekar	Design a plant to manufacture 5 TPD of Tinidazole	
17CHE111	Aniket Rajay Surwade	Design a plant to produce 500 kw of electricity on 24 hour basis using (do not use any fossil fuels).	
17CHE117	Ashutosh Arvind Kulkarni	Design a plant to produce 10 TPD of diphenyl amine	
17CHE127	Harsh Prakash Solanki	Design a plant to treat 10,000 litres per hour of 30,000 ppm COD liquid waste using microalgal photobioreactors.	Dr. V.H. Dalvi
17CHE176	Yash Ghanashyam Barhate	Design a plant to process 10 TPD of Agricultural Residue using Catalytic Thermal Liquefaction	
17CHE177	Yashraj Sanjay Jagtap	Design a plant to produce 30 kl/day of absolute ethanol from sugarcane juice	
17CHE109	Alankrita Shreekant Patil	Design a plant to Manufacture 10 TPA acetyl acetone	
17CHE146	Omkar Narayan Korke	Design a plant to manufacture 10000 TPA sulphuric acid	
17CHE147	Palkit Vinod Shahdadpuri	Design a plant to Manufacture Isobornyl cyclohexanol	Prof. V. K. Rathod
17CHE152	Purva HarshadDesign a plant to manufacture γ- pipradrol		
17CHE158	Sanil Govind Yadav	Design a plant to Manufacture 10 TPA of ethyl butyrate via green route	

Table 2.9c: List of B. Chem. Engg. Home paper 2021-2022

Roll No	Student Name	udent Name Topic		
18CHE114	Tanay Ashish Jawdekar	Design a plant to manufacture of Benzyl sulphonyl chloride		
18CHE116	Neha Madhukar Sangle	Design a plant to manufacture 10 TPD of sophorolipids		
18CHE121	Prajwal Shilkumar Shambharkar	Design a plant to manufacture D-Fartanic acid	Prof. A. B. Pandit	
18CHE176	Aniruddha Rajesh Jain	Design a plant to manufacture of Para-chloro troiphenol		
R18CHE135	Diksha Sunil Raut	Design a plant to manufacture Tetra Hydro Furan		
18CHE122	Advay Naval Shirrwalkar	Design a plant to manufacture of selected alkyl lithiums		
18CHE145	Bharat Prasad	Design a plant to manufacture Methylene blue	Prof. A. V.	
18CHE152	Aryan Razdan	Design a plant to manufacture epichlorohydrin	Patwardhan	
18CHE166	Bhavya Jain Design a plant to manufacture Lopinavir			
18CHE181	Varun Inamdar	Design a plant to manufacture avocado oil		

18CHE102	Shikhar Dinesh Singh	Design a plant to manufacture 50 TPD ethyl vaniline	
18CHE123	Krishnakant Pandey	Design a plant to manufacture 30 TPD p-anisyl	
18CHE127	Yash Subhash Butale	Design a plant to manufacture 10 TPD 4- hydroxy phenyl acetic acid	Prof. A. W. Patwardhan
18CHE146	Vyankatesh Nagesh Puri	Design a plant to manufacture 10 IPD 4-nitro orthoxylene	
18CHE162	Yash Anil Bartakke	Design a plant to manufacture 5 TPD of gallic acid	
18CHE134	Durvesh Eknath Parab	Design a plant to manufacture of 25 ton/month of ethyl bromoacetate	
18CHE139	Neil Graig Dias	Design a plant to manufacture of 25 ton/month of ethyl bromoacetate	
18CHE153	Amey Amol Suryavanshi	Design a plant to manufacture of 100 ton/month of phenoxy ethanol	Dr. C. S. Mathpati
18CHE155	Harshali Valmik Shardul	Design a plant to manufacture of 100 ton/annum of methoxyamino chlorobenzene	
18CHE157	Ramakrishna S	Design a plant to manufacture of 500 ton/annum of methyl ethyl ketone	
18CHE112	Aditya Mahaveer Patil	Design a plant to manufacture 5 TPD of 4- (4-hydroxyphenyl)sulfonylphenol by a green process	
18CHE137	Abhishek Devendra Avhad	Design a plant to manufacture 10 TPD of difenoconazole technical using latest process	
18CHE147	Harikrishnan R Namboothiri	Design a plant to manufacture 1500 TPA of 4- methyl-3-nitroaniline using modern reactor and separation technologies	Prof. G. D. Yadav
18CHE150	Sonti Siddharth	Design a plant to manufacture 300 TPD of carbon dioxide from a fermenter into methanol using latest technologies	
18CHE180	Atharva Shailesh Sonavane	Design a plant to manufacture 5000 TPA of 1,2,4- triazinone with an environment friendly process	
18CHE103	Tanmay Nitin Kothawade	Design a plant to manufacture Copper Sulfate	
18CHE106	Vaishnavi Rajendra Bhalekar	Design a plant to manufacture Sodium hydroxide	Prof. K. V. Marathe
18CHE129	Tanvi Mahendra Apte	Design a plant to manufacture Zinc sulphate	
18CHE136	Shruti Sarjerao	Design a plant to manufacture aluminium chloride	

	Kadam		
18CHE149	Krishna Gopal Jakhotiya	Design a plant to manufacture nickel flouride	
18CHE105	Shekhar Ganapati Shinde	Design a plant to manufacture xylitol from xylose	
18CHE109	Aniruddha Dhondiram Pinjari	Design a plant to manufacture Sorbitol from Glucose	Prof. L. K.
18CHE133	Aakanksha Gubbala	Design a plant to manufacture 1,2-pentane diol	Mannepalli
18CHE164	Omkar Sambhaji Thube	Design a plant to manufacture Alanine from lactic acid	
17CHE159	Sanket Bhojraj Dadmal	Design a plant to manufacture Cephalexin	
18CHE124	Geet Arun Chheda	Design a plant to manufacture Cefixime Trihydate	
18CHE144	Dhaval Divakar Dhande	Design a plant to manufacture Sodium Nitrotetrazolate	Dr. M.D. Yadav
18CHE154	Abhinav Umesh Patil	Design a plant to manufacture Tipifarnib	
18CHE165	Anmol Ajay Rathi	Design a plant to manufacture Lofexidine Hydrochloride	
18CHE140	Aniket Rajendra Mali	Design a plant to manufacture dinitronapthalene	
18CHE159	Akshayu Pramod Ambatkar	Design a plant to manufacture solketal	
18CHE161	Akash Dilip Pawar	Design a plant to manufacture ethylene glycol diacetate	Prof. P.D. Vaidva
18CHE168	Aditya Namdeo Naik	Design a plant to manufacture 2-methyl-1,4- napthoquinone	,
18CHE171	Aditya Rajkumar Ratnapagol	Design a plant to manufacture p-methyl cyclohexylamine	
17CHE162	Shrushti Anand Chaudhari	Design a plant for production of Forward Osmosis membrane module from dialysis membrane module (coating of 100 m2 membrane area per day)	
18CHE117	Siddharth Mangesh Petare	Deigan a plant to manufacture 10,000 TPA of cyanoguanidine (intermediate of metformin) starting from limestone	Prof. P. K.
18CHE141	Shrinivas Anand Acharya	Design a 10 TPD plant for production of vacuum evaporated salt (sodium chloride) from solar- concentrated (24 oBe') sea or sub-soil brine, forward integrated to iodized salt production	
18CHE148	Shantanu Uttam Kadam	Design a plant to manufacture 50 TPD anhydrous HF plant integrated with fluoride separation from fertilizer grade phosphoric acid	

18CHE163	Atharv Hemendra Tiwari	Design a plant for production of 300 TPA plant of D2EHPA-TOPO solvent composition (required for uranium recovery from phosphoric acid) from basic chemicals	
18CHE119	Shubhalaxmi Dillip Swain	Design a plant to manufacture acetamiprid	
18CHE138	Rushad Mehernosh Dumasia	Design a plant to manufacture indoxacarb	
18CHE143	Kushagra Manoj Dwivedi	Design a plant to manufacture acephate	Prof. P.R. Gogate
18CHE160	Rajas Milind Mehendale	Design a plant to manufacture pendimethalin	
R16CHE178	Varun Satish Kumar Raina	Design a plant to manufacture para tert butyl phenol	
18CHE110	Akanksha Sanjay Chougule	Design a plant to manufacture ethyl acetate from acetic acid and ethylene	
18CHE111	Saloni Surendra Varunkar	Design a plant to manufacture 3-methoxy butanol via crotonaldehyde	
18CHE113	Anuj Pundalik Farakate	Design a plant to manufacture adiponitrile	Prof. S. S. Bhagwat
18CHE132	Durgeshnandini Rajendra Shinde	Design a plant to manufacture tetralin	
18CHE178	Amey Santosh Murudkar	Design a plant to manufacture acetaldehyde by ethylene oxidation	
16CHE138	Kshitij Narendra Thaware	Design a plant to manufacture methylene diphenyl diisocyanate	
18CHE125	Mihir Shrinivas Dakappagari	Design a plant to manufacture whey protein	
18CHE142	Naresh Khushalchand Dhanwani	Design a plant to manufacture cyanoacrylate	Dr. S. V.
18CHE158	Jayesh Chander Saraogi	Design a plant to manufacture phosphorus trichloride	Jadhav
18CHE167	Tejas Sriniwas Abhyankar	Design a plant to manufacture potassium permanganate	
18CHE175	Meenal Rawlani	Design a plant to manufacture acetylsalicylic acid	
16CHE172	Suraj Bhagwat Shinde	Design a plant to manufacture 5 TPD of ,2,4- Trimethyl-1,2-dihydroquinoline	
18CHE115	Monil Manish Shah	Design a plant to manufacture 5 TPD of 4.2 - Mercapto-benzimidazole	Prof. V. G. Gaikar
18CHE128	Anushka Manoj Khodake	Design a plant to manufacture 5 TPD of Diaryl- p- phenylenediamine	

18CHE170	Nagashravan Hemadri	Design a plant to manufacture 5 TPD of N- Isopropyl-N'-phenyl-p-phenylenediamine	
18CHE169	Shubham Maruti Mali	Design a plant to manufacture 5 TPD of 5.Octyl-diphenylamine	
18CHE101	Arun Sadotra	Design a plant to manufacture 1 GW worth of solar grade silicon ingots per year	
18CHE107	Aditya Rajesh Gedam	Design a plant to manufacture 100 tons per day of methanol from CO2 and water	
18CHE156	Mayank Mukesh Kumrawat	Design a plant to manufacture 10 m3 per day of compressed biogas suitable for transportation fuel from agricultural waste	Dr. V.H. Dalvi
18CHE172	Dharam Dilip Parwani	Design a plant to manufacture to reform enough ethanol to Hydrogen to drive a 50 kW hydrogen fuel cell	
18CHE173	Bhalekar Snehal Sakharam	Design a plant to manufacture 100 tons per day of ethanol from agricultural waste	
18CHE104	Vrushal Rajendra Varude	Design a plant to manufacture p-hydroxy acetophenone	
18CHE108	Tanvi Swapnil Varadkar	Design a plant to manufacture nicotinic acid	
18CHE120	Mayur Devendra Kulmethe	Design a plant to manufacture hydrochloric acid	Prof. V. K. Rathod
18CHE130	Sayalee Chandrasing Pawara	Design a plant to manufacture 1,3 Difluro benzene	
18CHE131	Saad Jamal	Design a plant to manufacture acetyl acetone	

2.2.4. Initiatives related to industry interaction, industry internship/summer training (10) (Institute Marks 10)

To know the challenges and present-day practices of the industry, the department invites the industry professionals to deliver, guide, and discuss/update the students with the current technological advancements. This gives a platform for the students to interact and learn from industry experts with respect to the industrial practices. It also mutually benefits the industry, as students get job-ready to be employed in the industry. The technology gap between the Institutes and Industry is thus narrowed down and employability of the students shoots up because of such exposure.

Table 2.10: Industry	y supported	laboratories
----------------------	-------------	--------------

Laboratory	Industry Sponsor	Year
Chemical Engineering Laboratory	1968 Bachelor of Chemical Engineering Batch	2018-19
Process Control Laboratory Section – Chemical Engineering Laboratory	1968 Bachelor of Chemical Engineering Batch	2018-19
Heat Lab Section – Chemical Engineering Laboratory	1968 Bachelor of Chemical Engineering Batch	2019-20

Analytical Laboratory	Instrumentation	Sanjay Engineeri	Gaikwad, ing Batch	1987	Bachelor	of	Chemical	2020
UGC – Networking (DST-FIST & UGC-(Resource Centre CAS Supported)	Surendra Engineeri Vijay Kell	i Gupta, ing Batch kar, Formei	1964 r Chairn	Bachelor nan, Finance	of e Co	Chemical mmission	2011

Table 2.11: Industry involvement in the program design and curriculum

The Syllabus Revision Committee plays a vital role in the designing of the program curriculum. This committee is constituted under the supervision of HoD, and there are 3-4 mandatory members from industries. Following is the list of industry experts who were involved in the program design and curriculum:

Sr No	Expert	Industry
1	Dr. Sanjay Tiwari	Biocon
2	Dr. Sandeep Gharat	Godrej Industries Limited
3	Mr. Ramesh Bakshi	Independent Consultant
4	Ravi Raghavan	Chemical Weekly
5	Dr. Sanjay Jain	GEIST Research Private Limited
6	D K Deshpande	HPCL
7	Dr. Shamel Merchant	Exxon Mobil

Table 2.12: Industry involvement in partial delivery of regular courses	Table	2.12:	Industry	involvement in	n partial	delivery	of	regular	courses
---	-------	-------	----------	----------------	-----------	----------	----	---------	---------

SN	Course Code	Title	Visiting Faculty	Affiliation
1	CET 1604	Basic course in Entrepreneurship	Mr. Vikrant S. Potnis	Founder at FundEnable, Director at Fortemagna Advisors, Founder at Indian Academy of Venture Capital (IAVC)
2	CET 1401	Chemical Engineering Operations	Mr. Aniruddha Shenvi	Freelance Technical Consultant
3	HUT 1102	Persp. of Society, Sci. & Tech.	Dr. Rama Iyer	Former Chairman & CEO of Aker Kvaerner
4	CET1509	Refinery Science & Engineering	Mr. Ravindra Kubade	Dy. General Manager (DGM) Process Technology BPCL-Mumbai Refinery (MR)
5	CET1509	Refinery Science & Engineering	Mr. Sunil Balwant	DGM OPERATIONS (ARU, ISOM, CCR, CCU, FCCU, GTU) BPCL-Mumbai Refinery (MR)
6	CET1509	Refinery Science & Engineering	Mr. Nilesh Kandalkar	DGM Technical Services (Energy & Environment) BPCL-Mumbai Refinery (MR)
7	CET1503	Environmental Engg. & Process Safety	K. Sahasranaman	Independent consultant in areas of Process Engineering and Design, Energy, Utilities and Safety for Chemical Process Industry.
8	CET1509	Refinery Science & Engineering	O.P. Goyal	Freelance Technical Consultant
9	HUT1103	Industrial Psychology and Human Resource	Dr. Rama Iyer	Former Chairman & CEO of Aker Kvaerner
10	HUP1101	Communication Skills	Yogesh Anvekar	Head, Department of English, G.N. Khalasa College, Mumbai.
11	CET1511	Plant Utilities	K. Sahasranaman	Independent consultant in areas of Process Engineering and Design, Energy, Utilities and Safety for Chemical Process Industry.

12	HUT1105	Industrial Management (II)	O.P. Goyal	Freelance Technical Consultant
13	HUT1104	Industrial Management	Dr. Rama Iyer	Former Chairman & CEO of Aker
		(1)		Kvaerner

Table 2.13: In-plant training

Due to COVID-19 pandemic and lockdown restrictions many students could not complete their industrial training during 2019-2020 and 2020-2021. As of now, due to relaxation in the restriction following are the details of the In-plant training cum internship:

Students	completin	a industrial	training in	2021-22:
Staatics	compicum	g maastna	ciuning in	ZVZI 22.

Sr. No.	Full name of the student	Roll Number	Company
1	Aayush Bhat	19CHE101	Lanxess
2	Shivani Manhas	19CHE102	RCF ltd
3	Sagar Vivek Mudaliar	19CHE103	Reliance Industries Ltd
4	Aquil Abdulhamid Attar	19CHE104	Reliance
5	Parth Thakkar	19CHE105	BASF
6	Pranay Shah	19CHE106	BASF
7	Parth Patel	19CHE108	AMI Lifesciences Ltd
8	Sahil Birwatkar	19CHE111	Aarti Industries
9	Tanish Agrawal	19CHE112	Jubilant Ingrevia
10	Anant Prasanna Sohale	19CHE113	Eternis
11	Prithvi Dake	19CHE114	Tridiagonal Solutions Ltd
12	Adwait Joshi	19CHE115	Tridiagonal Solutions Ltd
13	Jay Piyushbhai Thakkar	19CHE116	Kiri Industries Itd
14	Aditi Sachin Patil	19CHE117	RCF ltd
15	Dhruv Gohil	19CHE118	Fairmate
16	Sudarshan Shreenivas	19CHE119	Jayant Agro
17	Shaikh Mohd Shoeb Sher Ali	19CHE120	Reliance
18	Hrishabh Singh	19CHE121	Deccan Fine Chemicals Ltd.
19	Nimish Vaidya	19CHE122	Beetachem Industries
20	Harsh Upadhyay	19CHE123	Thyssenkrupp Industrial Solutions
21	Pankti Paresh Savla	19CHE124	Jayant Agro
22	Gargee Yadav	19CHE125	Akry Organics
23	Vivin Sibi	19CHE126	Piramal - Ennore
24	Abhishek Shashikant Kulkarni	19CHE127	Tridiagonal Solutions Ltd
25	Uma Rajesh Tulsiani	19CHE128	Rubamin Pvt Ltd
26	Shrivatsa Korde	19CHE129	Tridiagonal Solutions Ltd
27	Amoghraj Prabhu S S	19CHE130	Gmm Pfaudler
28	Aditya Agarwal	19CHE131	Sudarshan Chemicals
29	Darshil Jain	19CHE132	Aarti Inds
30	Saloni Vaidya	19CHE133	Atul Ltd
31	Siddharth Nitin Shah	19CHE134	Jayant Agro
32	Vyankatesh Shyam Tarkase	19CHE135	Gharda Chemicals
33	Akshat Jain	19CHE136	Lanxess
34	Animesh Chaturvedi	19CHE137	Gharda Chemicals (Absent)
35	Vikram Vinayak Shanbhag	19CHE138	Tridiagonal Solutions
36	Prathamesh Patil	19CHE139	Atul Itd
37	Sahil Unmesh Patil	19CHE140	Harman Finochem Itd

38	Makrand Tanaji Barge	19CHE141	Piramal Thane
39	Ria Gada	19CHE142	JB Pharmaceuticals Pvt Ltd
40	Vignesh Krishnan	19CHE143	Solara
41	Sanskar Shridhar Tanvidkar	19CHE144	Excel
42	Parikshit Subhash Kadu	19CHE145	Lanxess
43	Vinod Mamraj Rathod	19CHE146	Lanxess
44	Utkarsh Pravin Patil	19CHE147	Reliance
45	Abhijeet Agatrao Tarange	19CHE148	Laxmi Organics
46	Gouresh Vinay Gargate	19CHE149	Piramal Thane
47	Snehal Bhosale	19CHE150	Vanita Agrochem pvt Itd
48	Vaibhav Khapekar	19CHE151	Eternis
49	Umesh Jaiswal	19CHE152	Shell
50	Vashishth Purohit	19CHE153	Jubilant ingrevia
51	Akanksha Warade	19CHE154	Biocon
52	Aditya Sangave	19CHE155	Eternis
53	Sanmesh Pravin Kharade	19CHE156	Jubilant ingrevia
54	Priyanshu Singh	19CHE157	Deccan Fine Chemicals Ltd.
55	Prehas Madke	19CHE158	Eternis
56	Falguni Akulwar	19CHE159	Jubilant ingrevia
57	Shivraj Chandrakant Gove	19CHE160	Lanxess
58	Vaidehi Padamwar	19CHE161	Jubilant ingrevia
59	Bhushan Murjani	19CHE162	Piramal Thane
60	Suraj Kekane	19CHE163	Solara
61	Shyam Gandhi	19CHE164	Reliance
62	Dhaval Chaudhari	19CHE165	UPL
63	Nikita Mohta	19CHE166	Akry Organics
64	Soham Mamidwar	19CHE167	Aarti inds
65	Atharv Prasad Kulkarni	19CHE168	Tridiagonal Solutions Ltd
66	Rutuja Pingale	19CHE169	Gharda Chemicals, Lote
67	Akshayaa Jagtap	19CHE170	Exxon Mobil
68	Priya Katkar	19CHE171	Gharda Chemicals, Lote
69	Harsh Mohane	19CHE172	Aarti Inds
70	Ashish Bhave	19CHE174	Tridiagonal Solutions Ltd
71	Sahil Sabne	19CHE175	Deepak Nitrite - Baroda
72	Manasi Bansod	19CHE176	Biocon
73	Amogh Subhash Gaikwad	19CHE178	Gharda Chemicals Dombivli(
74	Janhavi Sunil Waghachoude	19CHE179	Aarti Industries, Vapi
75	Ruchita Baban Laswante	19CHE180	Aarti Industries, Vapi
76	Rakhi Narnaware	19CHE181	Gharda Chemicals, lote
77	Sushant Hemant Moule	19CHE182	Aarti inds
78	Onkar Rajendra Salavi	19CHE185	Excel
79	Vinay Sharma	19CHE186	Deepak Nitrite - Baroda
80	Amit Dinesh Yadav	19CHE187	UPL
81	Yashvir Koul	19CHE188	Aarti Industries
82	Sakshi Pandit Patil	19CHE189	Gharda Chemicals, Lote
83	Prasanna Gangawane	19CHE190	Harman Finochem Ltd
84	Abhigyan Ray	17CHE103	Piramal Thane

85	Siddhesh Borole	18CHE151	Laxmi Organics
86	Kalyan Hanumant Mali	18CHE179	UPL

GMN	Pfaudler Defining the standard
23 rd Augus	t 2021
	Subject: Internship Completion Certificate
We are ple successful	ased to inform you that Mr. Aryan Razdan from Institute of Chemical Technology (ICT) Mumbai, has ly completed his internship with GMM Pfaudler Limited from 24 th May 2021 to 23 rd August 2021.
We appre delivering throughou	ciate his dedicated efforts to deliver the internship project on time. We admire his ingenuity in an outstanding outcome. We were impressed with the way he kept himself motivated and focused it the internship period.
We thank	Aryan for giving this company his best. May he enjoy this type of success in all his endeavours.
For GMM Geetanjali General M	Pfaudler Limited Java Barretto Janager- HR & Admin
GMM Pfaudle	r Limited

Figure 2.13: In-Plant training Completion certificate (Sample 1)

Sol	Idiagonal Iutions ovate I develop				Regd. 100 NCL Innovation Dr. Homi Bhabha Pune – 411 008	n P a Ro
					Fune - 411 000	fur.
9th _	August 2021					
	TOW	VHOMSOEV	ER IT MAY C	ONCERN		
Thi	s is to certify that	t Tanav Jawdek	ar has successfu	illy completed his	industrial	
inte	ernship programme	with us from 3rd]	May 2021 upto 3	0th July 2021.		
	11 0					
Du	ring the period of l	his internship pro	gramme with us,	he was found har	d working,	
pur	nctual and inquisitiv	/e.				
We	wish him all the su	ccess in future.				
Tri	diagonal Solutions	Pvt. Ltd.				
	11	1 Secto				
ſ	Hodrey St	OFOE				
Ар	eksha Jadhav)=)				
HR	Manager 🛛 🌾	PITTI				
	6					
		XG				
					100	

Figure 2.14: In-Plant training Completion certificate (Sample 2)

Sr. No.	Date	Title	Name of Professional	Affiliation
1	2016-17	Polymer Recovery and reuse using Membrane Technology	Mr. Jack Noble	General Manager, Water & Waste Water Division, Koch Membrane, Darlington United Kingdom
2	2016-17	Refinery – Products and Economics	Antony Francis	Asst Vice President – Long term Projects and Initiatives, Reliance Industries Limited, Mumbai, India
3	2016-17	Developing & Commercializing New Technologies	Dr. Sameer Bharadwaj	Vice President & GM at Cabot Corporation, Boston, Massachusetts, USA.
4	2016-17	Integrating Stochastic Model Predictive Control and Experiment Design for Nonlinear Systems	Vinay Anil Bavdekar	
5	2016-17	Golden Jubilee Visiting Fellowship	Dr. S. Ganapathy, M.S., FIE	Director, Sales & Marketing, Chirag Ice Factory Pvt. Ltd.
6	2016-17	Shri. B. S. Rajpurohit Visiting Faculty and Oration Endowment	Dr. Deepanjan Bhattacharya	Director, Eastman Chemical Company, Global Technology
7	2016-17	Professor R.A. Rajadhyaksha Memorial Lecture Series	Dr. Mugdha Gadgil,	Senior Scientist, Chemical Engineering Division, CSIR- NCL, Pune
8	2016-17	K. J. Somaiya Visiting Professor of Chemical Engineering Endowment	Dr. Rajender S. Varma,	Sustainable Technology Division, Clean Processes Branch, National Risk Management Research Laboratory, U. S. Environmental Protection Agency
9	2016-17	Dr. KKG Menon Memorial Lecture Endowment	Dr. Mukund Keshao Gurjar	Director (R&D) & Chief Scientific Officer, Emcure Pharmaceuticals Limited.
10	2016-17	Professor V. M. Kulkarni Endowment Fund	Dr. B. Gopalan,Ph.D.	Chief Scientific Officer & Executive Director, Drug Discovery Research, Orchid Pharma Ltd.
11	2016-17	AAIPS- Dr. R. S. Baichwal Pharmaceutical Seminar	Dr. Kailas Thakker	Co-Founder and Chief Operating Officer, Tergus Pharma, USA
12	2016-17	Jayvee Organics & Polymers (P) Ltd., Visiting Fellow in Polymer Additives and Compounding.	Dr. Phool Kumar Patanjali,	Institute of Pesticide Formulation Technology, (Under Department of Chemicals & Petrochemicals, Ministry of Chemicals & Fertilizers, (Govt. of India)
13	2017-18	Sauradip Chemical Industries Pvt. Ltd. Visiting Fellowship	Dr. Swarnendu Bikas Kar,	Managing Director, Behr Process Paints India Pvt. Ltd
14	2017-18	Golden Jubilee Visiting Fellowships	Dr. Mohan Karmarkar,	Consultant, Group Manager- SHEQ, Jacobs Engineering UK Ltd

 Table 2.14: List of Invited Guest Lectures by Industry Professionals (2016-2022)

15	2017-18	Dr. KKG Menon Memorial Lecture Endowment	Dr. D. Srinivasa Reddy,	Senior Scientist, Organic Chemistry Division (OCD), CSIR-National Chemical Laboratory
16	2017-18	Professor S.K. Pradhan Endowment" in Pharmaceuticals Science & Technology	Dr. Krishnan Ravikumar,	Chief Scientist & Head, Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad
17	2017-18	Sauradip Chemical Industries Pvt. Ltd. Visiting Fellowship	Shri Tapan Kumar Dhar,	Vice President (R&D), Berger Paints India Ltd
18	2018-19	Golden Jubilee Visiting Fellowships	Dr. Ms. Carmen Guguta,	Product Manager, Technobis, Netherlands.
19	2018-19	Mechanism and Dynamics of Charge Separation in Water Splitting	Kazuo Takatsuka	Fukui Institute for Fundamental Chemistry,
20	2018-19	Golden Jubilee Visiting Fellowships	Dr. Michel Wong Chi Man	EcoleNationaleSupérieure de Chimie de Montpellier, France
21	2018-19	Professor W. B. Achwal Oration	Dr. Vijay G. Habbu	Senior Vice President (Chemicals), Reliance Industries Ltd.
22	2018-19	K. J. Somaiya Visiting Professor of Chemical Engineering Endowment	Dr. Deepak Jain	Director, Zotis Pharmaceutical Research Pvt. Ltd., D-3/CL, MIDC Industrial Area, Turbhe, Mumbai.
23	2018-19	Dr. KKG Menon Memorial Lecture Endowment	Dr. Arun Chandavarkar	The Chief Executive Officer (CEO) & Joint Managing Director of Biocon Ltd
24	2018-19	Professor (Mrs.) M.R. Baichwal Visiting Fellowship in Pharmaceutical Science and Technology	Dr. Santylal Daya	Faculty of Pharmacy, Rhodes University, Grahamstown, South Africa.
25	2018-19	Professor V. M. Kulkarni Endowment Fund	Dr. Mukund Shankar Chorghade (adjunct Prof.)	Associate of the Department of Chemistry and Chemical Biology FAS, FCOR, CCB-Oth, Harvard, FAS Chemistry &Chem Biology, Mallinckrodt Chemistry Lab
26	2018-19	Tipco - UICT Diamond Jubilee Visiting Fellowship in Thermosets	Dr. Prakash D. Trivedi	(Adjunct Prof.) SBU HEAD - POLYMERS, Gharda Chemicals, Raigad.
27	2018-19	Sauradip Chemical Industries Pvt. Ltd. Visiting Fellowship	Shri S. Mahesh Anand	President-Decorative Business, Nippon Paint (India) Private Limited, No 3, 3rd floor, club house Road, Chennai.
28	2018-19	Dr. M.V. Nimkar Foundation Endowment Lecture	Dr. Swaminathan Sivaram	Honorary Professor and INSA Senior Scientist, Former Director, CSIR- NCL, Pune
29	2018-19	Sauradip Chemical Industries Pvt. Ltd. Visiting Fellow in the areas of Dyestuff Technology and Textiles Processing Technology	Dr. Nilesh V. Mistry (GSS)	Chief Technology Officer, Lonsen-Kiri Chemicals Industries Ltd., Vadodara, Gujrat, India.

30	2019-20	Professor A. Sreenivasan Felicitation Lectureship	Dr. Nagendran Balasundram,	Regional Manager (South Asia), MPOB
31	2019-20	Cipla Distinguished Fellowship in Pharmaceutical Science	Dr. Narendra Chirmule	Co-founder, Symphonytech Biologics, Bangalore/Philadelphia.
32	2019-20	AAIPS- Dr. R. S. Baichwal Pharmaceutical Seminar	Dr. Kailas D. Thakker	Co-Founder and Chief Operating Officer, Tergus Pharma, USA
33	2019-20	AAIPS- Dr. R. S. Baichwal Pharmaceutical Seminar	Mrs. Maharukh Rustomjee	Managing Partner of Amaterasu Lifesciences LLP
34	2019-20	Sauradip Chemical Industries Pvt. Ltd. Visiting Fellowship	Shri Laxman Nikam (Polymer)	Vice President-Technical, Kansai Nerolac Paints Limited
35	2019-20	Dr. M.V. Nimkar Foundation Endowment Lecture	Dr. Dietmar Hueglin	Director Innovation Campus Mumbai at BASF Chemicals India Pvt Ltd, Vice President Advanced Materials & Systems Research, Mumbai
36	2019-20	Using Computational Fluid Dynamics to Solve Polymer Processing and Delivery Challenges	Laura Dietsche	Senior Research Scientist/Technology Leader, Dow Chemicals- Materials Science & Engineering
37	2020-21	The Dow Professor M.M. Sharma Distinguished Visiting Professorship in Chemical Engineering	Dr. Prasad Ramanathan(ICT Mumbai-IOC Odisha Campus)	Sr. Director – AI/ML Center of Excellence, Automation Development Center
38	2020-21	Research in Industry	Narayan Ramesh	Lead R & D Director, Engineering & Process Sciences (E&PS), Core R&D, The Dow Chemical Company, USA
39	2021-22	Practical Reactor Design	Dr. Mohan Karmarkar	Group Manager-SHEQ at Jacobs Engineering UK Ltd
40	2021-22	Advances and Applications of Microwaves and Ultrasound for Chemical Reactions	Prof. Erico M.M. Flores	Department of Chemistry, Federal University of Santa Maria, Brazil. Executive Editor of Ultrasonics Sonochemistry
41	2021-22	Superhydrophobic Sand for Enhanced Food Production in Hot and Dry Regions (Golden Jubilee Visiting Fellowship)	Prof. Himanshu Mishra	King Abdullah University of Science and Technology (KAUST), Thuwal 23955 - 6900 Saudi Arabia
42	2021-22	Scale-up and commercialization of several fermentation based (biotech) processes	Dr. Alex Patist	COO Geltor, Inc. Senior Director of BioProcess Technology at Genomatica and Director of Technology at Cargill

2.1.1. Initiatives towards the New Education Policy (5)

(Institute Marks 5)

National Education Policy 2020 was released on 29th July 2020 and in enforced from this date. The Institute and the Department of chemical engineering has taken a step forward towards implementing the National Educational Policy (NEP) in our program by revising the syllabus in 2021. The highlights of those plans are appended below.

Major suggestions in NEP:

- 1. The focus is shifting from teaching to learning. From perceptual learning to conceptual learning.
- 3. Teaching models to Learning models.
- 4. Time spent in the institute is not equivalent to education. Emphasis on learning outcome.
- 5. Multidisciplinary courses.
- 6. Creators of knowledge rather than users of knowledge.
- 7. From Job seekers to job providers.
- 8. Research in UG and honors degree in UG would directly admit students into Ph.D.

Major highlights that Institute and Department have implemented and working on a process to meet suggestions by NEP:

- Since last year, the faculties of the department have been shifted more towards blended learning. The intention is to provide the students with more flexibility and involvement in active learning. The students will be more involved in collaborative learning with an enriched experience. The tools used for this blended learning are Google classroom or MS Teams, Virtual labs, Virtual industry visits, Interactive video tutorials, Open Educational Resources (OERs) like NPTEL, and SWAYAM courses. These are in line with the National Educational Policy for higher education.
- 2. More focus on practical and hands on training-based courses are given in the recently revised syllabus. Choice-based credit systems with open electives and MOOCs have been introduced in the recently revised syllabus in 2021.
- 3. In 2021, Institute has implemented a new Career Advancement Scheme (CAS) which is in line with the NEP policy – 'Promoting Teacher Education'. Under the scheme, every incumbent faculty has to undergo a set of Faculty Development Programme (FDP) in the relevant area and advanced pedagogy. They also have to attend FDP through a MOOCS course with E-Certification by NPTEL/AICTE. Besides, Industrial Training or Professional Training has been mandated for any promotion.
- 4. The incumbent faculty needs to complete 8 modules of teachers training by the National Institute of Technical Teachers Training and Research (NITTTR) on different aspects of teaching such as Orientation Towards Technical Education and Curriculum Aspects, Professional Ethics & Sustainability, Communication Skills Modes & Knowledge Dissemination, Instructional Planning and Delivery, Technology Enabled Learning & Life-Long Self Learning, Student Assessment and Evaluation, Creative Problem-Solving Innovation and Meaningful R&D, Institutional Management & Administrative procedures.
- 5. All the students are given equal importance. Due attention is paid to both advanced and slow learners as the need arises. For instance, for advanced learners, there are research and review papers published in Scopus-indexed journals based on the seminar and project work at the UG level. For slow learners, one-to-one interaction as the case may be is done in the courses where it is required.
| CRITERION 3 | Students' Performance | 71.30/75 |
|--------------------|-----------------------|----------|
| | | |

Table 3.1: Student Intake

Item	CAY	CAYm1	CAYm2
	(2021-22)	(2020-21)	(2019-20)
Sanctioned intake of the program (N)	75	75	75
Total number of students admitted in first year			
minus number of students migrated to other	07	00	07
programs/institutions, plus no. of students	07	00	07
migrated to this program (N1)*			
Number of students admitted in 2nd year in the	0	0	0
same batch via lateral entry (N2)	0	0	0
Separate division students, if applicable (N3)	0	0	0
Total number of students admitted in the Program	87	88	87
(N1 + N2 + N3)	07	66	67

Table B.3a

***NOTE:** The sanctioned intake provided by AICTE is fixed for each academic year. In addition, supernumerary seats such as PMSSS/JKSSS are also allotted by AICTE. Therefore, the no of admitted students is more than the sanctioned intake.

CAY – Current Academic Year CAYm1- Current Academic Year minus1= Current Assessment Year CAYm2 - Current Academic Year minus2 = Current Assessment Year minus 1 LYG – Last Year Graduate LYGm1 – Last Year Graduate minus 1 LYGm2 – Last Year Graduate minus 2

	Table 3.2:	Students	successfully	graduated	without	backlogs
--	------------	----------	--------------	-----------	---------	----------

Year of entry	N1 + N2 + N3 (As defined above)	Number of graduate s (Without or failures	students who have successfully d without backlogs in any emester/year of study Backlog means no compartment in any semester/year of study)			
		I Year	II Year	III Year	IV Year	
CAY (2021-22)	87					
CAYm1 (2020-21)	88	80				
CAYm2 (2019-20)	87	82	80			
CAYm3 (2018-19)	80	65	75	74		
CAYm4 (LYG) (2017-18)	80	72	73	71	76	

CAYm5 (LYGm1) (2016-17)	80	64	69	59	73
CAYm6 (LYGm2) (2015-16)	80	73	72	72	78
	Table D	76			

Table	B.3b
-------	------

Table 3.3: Students successful	ly graduated without bac	klogs + with backlogs

Year of entry	<i>N</i> 1 + <i>N</i> 2 + N3 (As defined	Number of students who have successfully graduated in stipulated period of study) [Total of with Backlog + without Backlog]				
	above)	I Year	II Year	III Year	IV Year	
CAY (2021-22)	87					
CAYm1 (2020-21)	88	80+6				
CAYm2 (2019-20)	87	82	80+1			
CAYm3 (2018-19)	80	65+7	75	74+2		
CAYm4 (LYG) (2017-18)	80	72+0	73+4	72	76	
CAYm5 (LYGm1) (2016-17)	80	64+2	69+1	59+12	73	
CAYm6 (LYGm2) (2015-16)	80	73+1	72+0	72+6	78	
Table B.3c						

3.1. Enrolment Ratio (15)

(Institute Marks 15)

Enrolment Ratio = N1/N (If Enrolment Ratio >=90% students enrolled = 15 Marks)

Table 3.4: Enrolment Ratio

	N	N1	Enrolment Ratio
	(From table B.3a)	(From table B.3a)	(N1/N)*100
2021-22 (CAY)	87	75	116
2020-21 (CAYm1)	88	75	117
2019-20 (CAYm2)	87	75	116
	T - 1	1	

Table B.3.1

3.2. Success Rate in the stipulated period of the program (15)3.2.1. Success rate without backlogs in any semester/year of study (10)

(Institute Marks 14.15) (Institute Marks 9.43)

SI= (*Number of students who have graduated from the program without backlog*)/ (*Number of students admitted in the first year of that batch and actually admitted in 2nd year via lateral entry and separate division, if applicable*)

Average SI = Mean of Success Index (SI) for past three batches

Success rate without backlogs in any semester/year of study = 10 × Average SI

Table 3.5: Success rate without backlogs

Item	Last Year of Graduate, LYG (2017-18)	Last Year of Graduate minus 1, LYGm1 (2016-17)	Last Year of Graduate minus 2, LYGm2 (2015-16)	
Number of students admitted in the corresponding First Year + admitted in 2nd year via lateral entry and separate division, if applicable	81	80	79	
Number of students who have graduated without backlogs in the stipulated period	76	73	78	
Success Index (SI)	0.94	0.9	0.99	
Average SI [(SI1 + SI2 + SI3) / 3]	0.943			
Assessment [10 * Average SI]		9.43		

Table B.3.2.1

3.2.2. Success rate in stipulated period of study [Total of with backlog + without backlog] (5) (Institute Marks 4.72)

SI= (Number of students who graduated from the program in the stipulated period of course duration)/ (Number of students admitted in the first year of that batch and actually admitted in 2nd year via lateral entry and separate division, if applicable)

Average SI = mean of Success Index (SI) for past three batches

Success rate = 5 × Average SI

Table 3.6: Success rate without backlogs + with backlogs

Item	Last Year of Graduate, LYG (2017-18)	Last Year of Graduate minus 1, LYGm1 (2016-17)	Last Year of Graduate minus 2, LYGm2 (2015-16)
Number of students admitted in the corresponding First Year + admitted in 2nd year via lateral entry and separate division, if applicable	81	80	79
Number of students who have graduated in the stipulated period	76	73	78
Success Index (SI)	0.94	0.9	0.99
Average Success Index [(SI1 + SI2 + SI3) / 3]	0.943		
Assessment [5 * Average SI]	4.72		

Table B.3.2.2

3.3. Academic Performance in Second Year (5)

(Institute marks 4)

Academic Performance = 0.5 * Average API (Academic Performance Index), where

API = ((Mean of 2^{nd} Year Grade Point Average of all successful Students on a 10-point scale) or (Mean of the percentage of marks of all successful students in Second Year/10)) x (number of successful students/number of students appeared in the examination)

Successful students are those who are permitted to proceed to the Third year.

Academic Performance	CAY <i>m2</i> (2019-20)	CAY <i>m3</i> (2018-19)	LYG (2017-18)
Mean of CGPA or Mean Percentage of all successful students (X)	8.21	7.77	7.96
Total no. of successful students (Y)	81	75	77
Total no. of students appeared in the examination (Z)	81	75	77
API = X* (Y/Z)	AP1 (8.21)	AP2 (7.77)	AP3 (7.96)
Average API = (AP1 + AP2 + AP3)/3		7.98	
Academic Performance = 0.5 * Average API (Academic Performance Index)		3.99	

Table 3.7: Academic performance in second year

Table B.3.3

3.4. Academic Performance in Third Year (5)

(Institute marks 4)

Academic Performance = 0.5 * Average API (Academic Performance Index)

API = ((Mean of 3^{rd} Year Grade Point Average of all successful Students on a 10-point scale) or (Mean of the percentage of marks of all successful students in Third Year/10)) x (number of successful students/number of students appeared in the examination)

Successful students are those who are permitted to proceed to the final year.

<i>Table 3.8: Academic performance</i>	in	third	year
--	----	-------	------

Academic Performance	CAY <i>m3</i> (2018-19)	LYG (2017-18)	LYGm1 (2016-17)
Mean of CGPA or Mean Percentage of all successful students (X)	7.97	8.044	7.92
Total no. of successful students (Y)	76	72	71
Total no. of students appeared in the examination (Z)	76	72	71
$API = x^* (Y/Z)$	AP 1 (7.97)	AP 2 (8.044)	AP 3 (7.92)
Average API = (AP1 + AP2 + AP3)/3		7.97	
Academic Performance = 0.5 * Average API (Academic Performance Index)	I 3.98		

3.5. Placement, Higher Studies and Entrepreneurship (15)

Item	CAY (2020-21)	CAYm1 (2020-21)	CAY <i>m2</i> (2019-20)	CAY <i>m3</i> (2018-19)
Total No. of Final Year Students (N)	80	80	75	80
No. of students placed in companies or Government Sector (x)	36	44	50	37
No. of students admitted to higher studies with valid qualifying scores (GATE or equivalent State or National Level Tests, GRE, GMAT etc.) (y)	41	29	21	38
No. of students turned entrepreneur in engineering/technology (z)	0	0	1	0
x + y + z =	77	73	72	75
Placement Index: (x + y + z)/N	0.9625	0.9125	0.96	0.9375
Average placement: = (P1 + P2 + P3 + P4)/4	0.9431			
Assessment Points = 15 × average placement	14.15			

Table 3.9: Placement and higher studies

Table B.3.5

Table 5.10a. Placement and myner studies data 2021-202	э 2021-2022	data	studies	higher	and	Placement	3.10a:	Table
--	-------------	------	---------	--------	-----	-----------	--------	-------

Sr No	Roll number	Student's name	Company Name
1	16CHE172	Suraj Bhagwat Shinde	Alfa Laval
2	16CHE178	Varun Raina	Haber (Elixa Technologies private limited)
3	17CHE159	Sanket Bhojraj Dadmal	Higher Studies
4	18CHE101	Arun Sadotra	Aarti Industries
5	18CHE102	Shikhar Dinesh Singh	Higher Studies
6	18CHE103	Tanmay Nitin Kothawade	BASF
7	18CHE104	Vrushali Rajendra Varude	Higher Studies
8	18CHE105	Shekhar Ganapati Shinde	Higher Studies
9	18CHE106	Vaishnavi Rajendra Bhalekar	BASF
10	18CHE107	Aditya Rajesh Gedam	Aarti Industries
11	18CHE108	Tanvi Swapnil Varadkar	Higher Studies
12	18CHE109	Aniruddha Dhondiram Pinjari	Higher Studies
13	18CHE110	Akanksha Sanjay Chougule	Higher Studies
14	18CHE111	Saloni Surendra Varunkar	Jubilant Pharmova Limited
15	18CHE112	Aditya Mahaveer Patil	Higher Studies
16	18CHE113	Anuj Pundalik Farakate	UPL Ltd.
17	18CHE114	Tanay Ashish Jawdekar	Higher Studies
18	18CHE115	Monil Manish Shah	ZS Associates
19	18CHE116	Neha Madhukar Sangle	Aarti Industries
20	18CHE117	Siddharth Mangesh Petare	ZS Associates
21	18CHE119	Shubhalaxmi Dillip Swain	UPL Ltd.
22	18CHE120	Mayur Devendra Kulmethe	Aarti Industries
23	18CHE121	Prajwal Shilkumar Shambharkar	Jubilant Pharmova Limited
24	18CHE122	Advay Naval Shirwalkar	Higher Studies

25	18CHF123	Krishnakant Pandey	GAIL
26	18CHF124	Geet Arun Chheda	Higher Studies
27	18CHE125	Mibir Dakappagari	Higher Studies
28	190012125	Gavatri Chickormano	Evyopmobil
29	180112120	Vach Subbach Putalo	
30	10CHE120	Anushka Manoi Khodako	Deleitte
31	1000000	Tanui Mahandra Anto	Higher Studies
32	10CHE129		Fucementil
22	18CHE130	Sayalee Chandrasing Pawara	EXXONMODII Higher Studies
34	18CHE131	Saad Jamai	
35	18CHE132	Ackerkshe Cubhele	Akash institute
36	18CHE133		Higher Studies
30	18CHE134		Higher Studies
20	18CHE136	SHRUTI SARJERAU KADAM	
30	18CHE137	Abhishek Devendra Avnad	Deloitte
39	18CHE138	Rushad Dumasia	Higher Studies
40	18CHE139	Nell Graig Dias	Higher Studies
41	18CHE140	Aniket Rajendra Mali	Higher Studies
42	18CHE141	Shrinivas Anand Acharya	Higher Studies
43	18CHE142	Naresh Khushalchand Dhanwani	Higher Studies
44	18CHE143	Kushagra Manoj Dwivedi	Higher Studies
45	18CHE144	Dhaval Divakar Dhande	Higher Studies
46	18CHE145	Bharat Prasad	DFPCL
47	18CHE146	Vyankatesh Nagesh Puri	Aditya Birla
48	18CHE147	Harikrishnan Rajesh Namboothiri	Higher Studies
49	18CHE148	Shantanu Uttam Kadam	Gharda Chemicals
50	18CHE149	Krishna Jakhotiya	Higher Studies
51	18CHE150	Sonti Siddharth	Higher Studies
52	18CHE152	Aryan Razdan	Higher Studies
53	18CHE153	Amey Suryavanshi	Higher Studies
54	18CHE154	Abhinav Umesh Patil	Sterlite Technologies
55	18CHE155	Harshali Valmik Shardul	Higher Studies
56	18CHE156	Mayank Mukesh Kumrawat	Deccan Chemicals
57	18CHE157	Ramakrishna S	Higher Studies
58	18CHE158	Jayesh Saraogi	Higher Studies
59	18CHE159	Akshayu Ambatkar	Reliance Industries
60	18CHE160	Rajas Milind Mehendale	Higher Studies
61	18CHE161	Akash Dilip Pawar	Higher Studies
62	18CHE162	Yash Anil Bartakke	DFPCL
63	18CHE163	Atharv Hemendra Tiwari	BASF
64	18CHE164	Omkar Sambhaji Thube	Exxonmobil
65	18CHE165	Anmol Rathi	Exxonmobil
66	18CHE167	Tejas Abhyankar	Higher Studies
67	18CHE168	Aditya Namdeo Naik	Alfa Laval
68	18CHE169	Shubham Maruti Mali	Aarti Industries
69	18CHE170	Nagashravan Hemadri	Higher Studies
70	18CHE171	Aditya Rajkumar Ratnapagol	Higher Studies
71	18CHE172	Dharam Dilip Parwani	Aarti Industries
72	18CHE173	Snehal Sakharam Bhalekar	Higher Studies
73	18CHE175	Meenal Rawlani	Higher Studies
74	18CHE176	Aniruddha Jain	Axxela Advisory services
75	18CHE178	Amey Santosh Murudkar	Aarti Industries

76	18CHE180	Atharva Shailesh Sonavane	Higher Studies
77	18CHE181	Varun Inamdar	Higher Studies

Table 3.10b: Placement and higher studies data 2020-2021

Sr No	Roll number	Student's name	Company Name
1	17CHE112	Ankit Kolpe	Aarti Industries
2	17CHE161	Shantanu Sanjay Shembade	ExxonMobil Lubricants Private Limited
3	17CHE178	Siddharth Gautam Vaishnav	Biocon
4	17CHE107	Aishwarya Khandekar	ExxonMobil Lubricants Private Limited
5	16CHE137	Kovi Rishya Shrung	Higher Studies
6	16CHE174	Sushmita Shekhar Khole	Higher Studies
7	17CHE101	Junaid Gul Naikoo	BYJU's
8	17CHE104	Abhishek Kundu	Aarti Industries
9	17CHE108	Akshaykumar Dundappa Bhangari	GAIL
10	17CHE109	Alankrita Shreekant Patil	ExxonMobil Lubricants Private Limited
11	17CHE110	Amitkumar Harigovind Chauhan	BASF
12	17CHE111	Aniket Rajay Surwade	JSW One Platforms Limited
13	17CHE113	Anosh Mehernosh Dumasia	Indian Institute of Management, Kozikode
14	17CHE114	Apurva Ajay Pawar	Higher Studies
15	17CHE115	Arya Kirti Pavani	Technip
16	17CHE116	Ashlesha Girish Tiple	Carnegie Mellon University
17	17CHE117	Ashutosh Arvind Kulkarni	UPSC
18	17CHE118	Atharva Vijay Suryavanshi	UCLA (University of California Los Angeles)
19	17CHE119	Burhanuddin Husain	Lupin Ltd.
20	17CHE120	Burhanuddin Esmail Samiwala	Georgia Institute of Technology
21	17CHE121	Chinmay Prasad Deshpande	University of Massachusetts Amherst
22	17CHE122	Chinmayee Pradeep Sarode	ZS Associates
23	17CHE123	Chirag Mandar Mule	Colarado School of mines
24	17CHE124	Chirag Sanjay Jain	Biocon
25	17CHE125	Dev Pramod Malu	Indian Institute of Management, Indore
26	17CHE126	Gautam Manoj Borkar	SRF
27	17CHE127	Harsh Prakash Solanki	JSW One Platforms Limited
28	17CHE128	Himanshu Prashant Sail	Stanford University
29	17CHE129	Hrishikesh Girish Mane	North Carolina State University
30	17CHE130	Hritik Rakesh Jain	NMIMS, MUMDAI
31			Adrii Industries
22		Joel Diju Kehitija Dipak Waikar	Sudarchan Chamicala
24		Ksnilija Dipak Walkar	
25	17CHE125		KTH Doval Institute of Technology
35	17CHE136	Madhur Ramesh Khadke	Galaxy Surfactants Limited
37	17CHE137	Mahesh Subhash Patil	Colorado school of Mines
38	17CHE137	Makrand Ravindra Jagtan	GATI
39	17CHE130	Mayur Surendra Pimpalkar	Deenak Nitriate
40	17CHE135	Merul Ritesh Shah	BASE
41	17CHE110	Neha Rajendra Gadekar	Galaxy Surfactants
42	17CHE143	Nirai Devdas Bhavar	HMFI
43	17CHF144	Nirmit Shantilal Solanki	7S Associates
44	17CHE145	Nitin Ramchandra Karande	SRF
45	17CHE146	Omkar Naravan Korke	JSW One Platforms Limited
46	17CHE147	Palkita Vinod Shahdadpuri	NMIMS, Mumbai
47	17CHE148	Pranav Vinayak Mhatre	XLRI, Jamshedpur
48	17CHE149	Prasanna Prasad Khare	We Gyan Venture Ltd.
49	17CHE150	prateek shriram badgujar	Lupin Ltd.
50	17CHE151	Priyanka Subhash Humane	Dow
51	17CHE152	Purva Harshad Paranjape	Purdue University
52	17CHE153	R.Ramya Ragunathan	UCSB (University of California Santa Barbara)
53	17CHE154	Rajarshi Samajdar	University of Illinois at Urbana Champaign
54	17CHE155	Rasik Gurunath Wathare	Aditya Birla

55	17CHE156	Rushikesh Rathod	UPSC
56	17CHE157	Salil Sandeep Narvekar	Aarti Industries
57	17CHE160	Saurabh Sukhdeo Bagal	UPSC
58	17CHE163	Shruti Unnikannan	ZS Associates
59	17CHE164	Shubham Wanje	Chegg India
60	17CHE165	Srushti Sanjeevkumar Sindagi	JSW One Platforms Limited
61	17CHE166	Siddhant Sanjay Mehta	Higher Studies
62	17CHE167	Siddhi Santosh Kotnis	Texas A&M University
63	17CHE168	Sriram Pramod Tendulkar	University at Buffalo-SUNY
64	17CHE169	Sukhada Sanjeev Gharat	ZS Associates
65	17CHE170	Sumant Yogesh Salphale	KTH Royal Institute of Technology
66	17CHE171	Tanmay Nagesh Salvi	Ohio State University
67	17CHE172	Tushar Chaudhari	Moonshot Academy
68	17CHE173	Uma Gopinath Kulkarni	Higher Studies
69	17CHE174	Vedant Kiran Wankhede	ZS Associates
70	17CHE175	Vipul Moreshwar Karekar	Lupin Ltd.
71	17CHE176	Yash Ghanashyam Barhate	Purdue University
72	17CHE177	Yashraj Sanjay Jagtap	L & T Limited
73	17CHE179	Samiksha Jugalkishor Asawa	SP Jain School of Global Management
74	17CHE180	Riddhesh Nitin Kumtakar	Carnegie Mellon University
75	17CHE181	Meenal Shyam Rathi	University of Minnesota
76	17CHE182	Sarvesh Subhash Pandey	Tata AIG General Insurance Co. Ltd.

Table 3.10c: Placement and higher studies data 2019-2020

Sr no	Roll number	Student's name	Company Name
1	14CHE1062	Rohan Parlikar	Ninjacart
2	15CHE187	Rupanshi Anand	ACG World
3	16CHE101	Aadesh Bhakkad	Aditya Birla
4	16CHE102	Aagamkumar Khandor	Sailife
5	16CHE104	Abhinav Handu	LARSEN & TOUBRO LIMITED
6	16CHE105	Aditi Sawant	Thermax
7	16CHE106	Aditya Phad	Galaxy Surfactants Limited
8	16CHE108	Akshay Patil	Alfa Laval
9	16CHE109	Amitej Rao	DFPCL
10	16CHE112	Amrut Bagdi	Reliance Industries Ltd.
11	16CHE113	Aniket Murumkar	Savita Oil Technology
12	16CHE114	Aniket Pote	Fluor
13	16CHE116	Ankit Gaikwad	Alfa Laval
14	16CHE117	Anu Deshmukh	DFPCL
15	16CHE119	Ashish Tangade	BASF
16	16CHE121	Avinash Nayak	Jayant Agro
17	16CHE122	Bharthi Ponrathnam	Aarti Industries Ltd.
18	16CHE123	Bosco	HPCL
19	16CHE124	Kaustubh Rane	Honeywell
20	16CHE126	Darshana Malusare	Deccanchemicals
21	16CHE129	Dnyanesh Sarawate	GATE
22	16CHE131	Gaurav Mampally	Alfa Laval
23	16CHE133	Harshada Gabhale	Biocon
24	16CHE135	Kaushal Kaloo	Reliance Industries Ltd.
25	16CHE136	Keith Dsouza	GEP
26	16CHE139	Malhar Mankar	Technip India Limited
27	16CHE140	Mihir Kulkarni	Hikal
28	16CHE141	Monik Magiya	Aarti Industries Ltd.
29	16CHE142	Naman Joshi	Jubilant Life Sciences
30	16CHE144	Nayantara Pradhan	MBA
31	16CHE145	Ninad Khelukar	Fluor
32	16CHE146	Nishant Pardeshi	Sudarshan Chemicals
33	16CHE148	Prathamesh Bolaj	Biocon
34	16CHE149	Pujit Juneja	Mcdermott
35	16CHE150	Raunak Balkote	Aditya Birla

36	16CHE152	Rounak Naryani	ZS Associates
37	16CHE153	Saagar Gandhi	GEP
38	16CHE154	Saaksshi Tenpe	Sailife
39	16CHE156	Sahil Khatavkar	Tata consulting Engineers Ltd.
40	16CHE157	Sai Nazare	Galaxy Surfactants Limited
41	16CHE159	Shalaka Dhande	HPCL
42	16CHE160	Shital Suryavanshi	Aditya Birla
43	16CHE162	Shivani Bisen	LARSEN & TOUBRO LIMITED
44	16CHE164	Shriram Chavan	Jubilant Life Sciences
45	16CHE165	Shubham Shinde	DFPCL
46	16CHE166	Shubham Ravan	Jubilant Life Sciences
47	16CHE167	Shubham Adarkar	Biocon
48	16CHE168	Siddhesh Sarda	Family Business
49	16CHE176	Vaishnavi Honavar	Aker Solutions
50	16CHE177	Vartul Jain	ZS Associates
51	16CHE181	Vishal Kumar	GEP
52	16CHE107	Akash Nogaja	Purdue
53	16CHE110	Amogh Nagarkar	ETH Zurich
54	16CHE115	Anirudh Venkatesh	Purdue University
55	16CHE118	Ashin Sunny	OSU
56	16CHE120	Asmee Prabhu	NTU Singapore
57	16CHE125	Chinmay Mhatre	University of Pittsburgh
58	16CHE127	Dhiraj Jain	Rice University
59	16CHE128	Dishit Ghumra	University of Minnesota
60	16CHE130	Eashaan Godbole	GaTech
61	16CHE132	Gautami Kelkar	NC State University
62	16CHE134	Kalash Pai	Cornell Univercity
63	16CHE143	Namita Jadhav	Higher Studies
64	16CHE147	Ojaswi Rathi	UC Berkeley
65	16CHE151	Razeen Shaikh	Texas A&M University
66	16CHE161	Shivani Kulkarni	Rensselaer Polytechnic Institute
67	16CHE163	Shreekant Gokhale	University of Illinois at Urbana-Champaign
68	16CHE169	Snehal Patil	OSU
69	16CHE170	Sreejith Nair	University of Minnesota
70	16CHE171	Surabh KT	The City College of New York
71	16CHE175	Suyog Shaha	Harvard
72	16CHE179	Vidit Shah	University of Washington, Seattle
73	16CHE182	Yash Budhe	University Of Pennsylvania

Table 3.10d: Placement and higher studies data 2018-2019

Sr. No.	Roll No.	Student's Name	Company Name
1	15CHE1001	shah akshay snehal falguni	Higher studies
2	15CHE1002	gite prajwal pramod ujjwala	LARSEN & TOUBRO LIMITED
3	15CHE1003	kulmethe amol khushal savita	Higher studies
4	15CHE1004	aditya avinash pol	Higher studies
5	15CHE1005	shetty roshan raghuram vanita	Georgia Institute of Technology
6	15CHE1007	vikram sudarshan	Univ of Pennsylvania
7	15CHE1008	prabhala sai vivek balaramakrishna	OSU
8	15CHE1009	bodemwad shubham govindrao	Higher studies
9	15CHE1010	gosrani tej bhavin bhumika	Amazon
10	15CHE1011	wasnik sakshi bhupendra	Aker Solutions
11	15CHE1012	kamble yash laxman	UIUC
12	15CHE1013	mankad nisarg amit neha	Reliance
13	15CHE1014	sheikh nihan ashfaq	Aarti Industies
14	15CHE1016	parsharam shivtej kashinath	Reliance
15	15CHE1017	baser aditya swapneshu shubhangi	Columbia University
16	15CHE1018	varun sundarkumar priti	Purdue
17	15CHE1019	gokhale yash shailendra sonali	Carnegie Mellon University
18	15CHE1021	patel riddhesh ashokbhai sangitaben	Upitts
19	15CHE1022	godbole apurva rajeev	UIUC

20	15CHE1023	ashutosh trivedi sunil archana	Deccan chemicals
21	15CHE1024	sharma shubham sunil rekha	Reliance
22	15CHE1025	anikhindi chinmay umesh asawari	Reliance
23	15CHE1026	thakur charul hemant urmila	Reliance
24	15CHE1027	kapadia talha afzal sufia	Darthmouth College
25	15CHE1028	anantwar sakshi chandrakant suhasini	Aarti Industies
26	15CHE1030	deshmukh gauray sanjay jayashree	Purdue
27	15CHE1032	shah vaidik rashesh shital	Cornell University
28	15CHE1033	mhatre ninad vinavak manisha	UMinn
29	15CHE1034	jog sachin hemant amruta	ETH Zurich
30	15CHE1035	gathadi mayank mahendra nilima	University of California San Diago
31	15CHE1036	vora maitri viren alpa	Amazon
32	15CHF1037	natel bhargay bhayesh swati	FTH Zurich
33	15CHF1038	joshi rushikesh kishor seema	OSU
34	15CHF1040	pandare rabul vishwas shraddha	Aker Solutions
35	15CHF1041	chaudhari tanmay omyijay sonali	Higher studies
36	15CHF1042	rangari mrugal anup pradnya	Byju's
37	15CHF1044	prakash supriya surai jaya	Harvard SEAS
38	15CHF1045	pai kaivalva waman madhura	Bviu's
39	15CHE1046	dapurkar omkar vogesh vaishali	Aker Solutions
40	15CHE1049	lakhekar lalit namdey rekha	GATI
41	15CHF1050	maity samadarshi shambhu charan tripti	T.U. Delft
42	15CHE1051	khan abusaif abdul khalik nazma khatoon	Aarti Industies
43	15CHF1052	bansal prateek dinesh rekha	UIUC
44	15CHE1054	kumbhoikar ninad aniruddha kumud	Harvard SEAS
45	15CHF1055	ioshi aaditya upendra aditi	Purdue
46	15CHF1056	thakkar shreva akshav chetna	UMass
47	15CHE1057	pawar prathamesh shankar pooja	Reliance
48	15CHE1058	shah ariun apurva sangeeta	ETH Zurich
49	15CHE1059	ramteke anvita narendra shalini	ALFA Laval
50	15CHE1060	shah rushabh manishbhai paritaben	UMass
51	15CHE1061	balla shivani shrikrishna radha	Technimont
52	15CHE1062	lakhwani sagar vinod rajani	Technip
53	15CHE1063	gandhi darshak ketan keyuri	BASF
54	15CHE1064	badsewal devesh mukesh sneha	GAIL
55	15CHE1065	sontakke mrunal vijayanand archana	RPI
56	15CHE1066	yewale gaurav prafull swati	T.U. Delft
57	15CHE1067	deshpande tejaswini makarand namrata	Byju's
58	15CHE1068	trivedi varun mehul jagruti	UC Riverside
59	15CHE1069	sarda sarvesh gopal bharati	Glenmark
60	15CHE1070	valia raj anil hina	Jayant Agro
61	15CHE1071	swamy dhananjay revanasiddayya shobha	Honeywell
62	15CHE1073	tinghase vaibhav dnyaneshwar sadhana	DMCC
63	15CHE1074	chatterjee shreya sampa	Technip
64	15CHE1075	jalan aashna sanjay ruchi	Exxonmobil
65	15CHE1076	aroskar pratik laxman prerana	Shirdi Sai Nutraceuticals Pvt. Ltd
66	15CHE1077	padwal neha amol asmita	UCSB
67	15CHE1078	chikhalikar atharva shashank alka	UMinn
68	15CHE1079	rishikesh ramnarayan jaiswal	PI Industries
69	15CHE1080	lodaya badal girish shilpa	MSU
70	15CHE1081	pande devyani sanjay varsha	Deccan chemicals
71	15CHE1082	agrawal paresh anil arti	IIM/NITIE
72	15CHE1083	biyani aditya vinay namrata	Carnegie Mellon University
73	15CHE1084	pawar sunny jitendra anita	Aarti Industies
74	15CHE1085	kumavat yeshwant prakash viju	Thermax
75	15CHE1086	mansi sharma	CleanChem Laboratories

Table 3.10e: Placement and higher studies data 2017-2018

Sr. No.	Roll no.	Student's name	Company Name
1	14CHE1001	Ashwin Rajesh Turkar	BPCL
2	14CHE1002	Shantanu Sunil Malani	Higher studies

3	14CHE1003	Lahu Dnyaneshwar Chavan	Aarti Industries
4	14CHE1005	Akash Sandeep Tandale	Honeywell
5	14CHE1006	Saiprasad Suresh Iralwad	Alkyl Amines
6	14CHE1007	Akshata Sanjiv Gujar	Pfizer
7	14CHE1008	Subhash Hadke Ankita	BPCL
8	14CHE1010	Parth Sunil Vora	Exxonmobil
9	14CHE1011	Abhishek Pawankumar Dhand	University of Pennsylvania
10	14CHE1012	Aman Jayesh Jain	MSIE at Columbia University
11	14CHE1013	Mangesh Sudhakar Hase	BPCL
12	14CHE1014	Shivani Shivkumar Butte	Biocon
13	14CHE1015	Ameya Uddhav Harmalkar	Johns Hopkins University
14	14CHE1016	Harshit Shailesh Mehta	Piddilite
15	14CHE1018	Shubham Vijay Veer	Reliance
16	14CHE1019	Kajal Sunil Patil	Danone
17	14CHE1020	Akash Madhav Gondaliya	Michigen state university
18	14CHE1021	Shubham Sukumar Awate	University of Pittsburgh
19	14CHE1022	Chetan Nitin Pandere	Higher studies
20	14CHE1023	Raiesaah Murtuzza Kutiyanawala	Columbia University
21	14CHE1024	Meheryar Rohinton Kasad	Michigen state university
22	14CHE1025	Kanishk Sanjay Mair	Carnegie Mellon University
23	14CHE1026	Sanket Prakash Kalode	Technip
24	14CHE1027	O.Nilesh Varadan	University of Alberta
25	14CHE1028	GAIKWAD Sanika RAVINDRA	Reliance
26	14CHE1029	Dixeet Gaurang Purohit	SRF
27	14CHE1030	Parth Raiesh Shah	University of California
28	14CHE1031	Paras Vasant Bhanushali	SRF
29	14CHE1032	Abhijeet Surendra Subudhi	BPCL
30	14CHE1033	Rushant Satej Sabnis	Texas A & M University
31	14CHE1034	Anui Saniiv Joshi	The Ohio State University
32	14CHE1035	Ankit Udit Thakker	Toyo Engg.
33	14CHE1036	Akshaya Anil Kulkarni	Texas A & M University
34	14CHE1037	Niranjan Arvind Sitapure	Texas A & M University
35	14CHE1038	Chinmay Vishwas Gogate	Reliance
36	14CHE1039	Mansi Rajinder Vashodia	IIM Indore
37	14CHE1040	Gouree Vijaykumar Kumbhar	Michigen state university
38	14CHE1041	Nipun Jaikrishna Jagtap	Chembond
39	14CHE1042	ASHIMA CHOPRA	Thermax
40	14CHE1043	Vikrant Sanjay Kshirsagar	SRF
41	14CHE1044	Sachin Shyam Shirpurkar	Georgia Institute of Technology
42	14CHE1046	Durgesh Prasad Kavishvar	University of Toronto
43	14CHE1047	SOHAM Sunjay ASRANI	University of California, Berkeley
44	14CHE1048	Nikita Gerald Lewis	J.P. Morgan
45	14CHE1049	Labdhi Kiran Haria	Carnegie Mellon University
46	14CHE1050	Patange Anushree Ravindra	Reliance (PPO)
47	14CHE1051	Jay Naresh Walendra	Tata Consultancy Engineers Ltd
48	14CHE1052	Rajiv Ranjit Nair	Johns Hopkins University
49	14CHE1053	Brijesh Deepak Nayak	Higher studies
50	14CHE1054	VIDHISHA NAKHWA	Sciative Solutions
51	14CHE1055	Ankita Rajendra Morankar	Purdue University
52	14CHE1056	Himani Raju Verma	Century Cement
53	14CHE1057	Raj Shantaram Shirke	Higher studies
54	14CHE1058	Shraavya Rao	The Ohio State University
55	14CHE1059	Ameet Balaji Jaybhaye	Reliance
56	14CHE1060	Vyom Krishan Thakker	The Ohio State University
57	14CHE1064	Meghana Ravindra Dande	Technip
58	14CHE1066	M ISWARYA	Rensselaer Polytechnic Institute
59	14CHE1068	Sandesh Ram Honmane	Century Cement
60	14CHE1070	Dhanashree Rajendra Shinde	Marico
61	14CHE1071	Aman Sandeep Shah	Reliance (PPO)
62	14CHE1072	Kaustubh Jaywant Sawant	Purdue University
63	14CHE1073	Shubham Vilasrao Rampalliwar	Reliance (PPO)
64	14CHE1074	Srinidhi Suresh	Georgia Institute of Technology

65	14CHE1075	Ishita Chirag Talati	Technip
66	14CHE1076	Karan Vijay Waghela	Rubamin
67	14CHE1077	Pratik Jaiprakash Gupta	Deccan chemicals
68	14CHE1079	Ayushi Arun Mehta	Technip
69	14CHE1080	Dhruv Amit Jhaveri	BPCL
70	14CHE1081	Premkumar Ashwin Mohite	Aarti Industries
71	14CHE1082	Vidhi Sundeep Khetan	Exxonmobil
72	14CHE1083	Krishna Rajaram Iyer	University of Minnesota
73	14CHE1084	Gaurav Murali Iyer	University of Maryland
74	14CHE1085	SAUMIL Praphool CHHEDA	University of Minnesota
75	13CHE	Hurshvardhan Srivastava	University of California, Berkeley
76	13CHE	Neel Shah	University of Washington, Seattle

3.6. Professional Activities (20)

3.6.1. Professional societies/chapters and organizing engineering events (5)

(Institute marks 20)

(Institute marks 5)

Student Chapter IIChE: Nearly 50 students registered

Students Chapter IIChE Office Bearers: Chairperson: Arya Shah Secretary: Shlok Mishra Treasurer: Aryan Tibrewala Design Head/Secretary: Nakshatra Patil and Soham Narvekar

Professor N. R. Kamath Trophy Chemical Engineering Quiz Competition Offline

NR Kamath Quiz 2022

SChemcon 2018 Figure 3.1: Professional Chapters

OYCE 2020

Engineering event(s): Vortex

- 1] Industry defined problems
- 2] Master class- Lecture series
- 3] Papyrus Oral presentations
- 4] Manifesto Poster presentations
- 5] Chemifuge Quiz competition
- 6] ChemCodes Coding competition

- 7] Chemquotient MCQs, visual, written, Oral tests
- 8] YATN Awareness on environmental issues
- 9] Ignite Oral presentations (Non-technical)
- 10] Entrepreneurs blueprint: Idea presentation
- 11] Corporate tycoon Management aptitude

Figure 3.2a: Engineering events

Figure 3.2b: Engineering events

Extra-curricular activities:

- 1] Art club of ICT
- 2] Music club of ICT
- 3] Literary club of ICT
- 4] Manthan (Language club)
- 5] Manzar (Cultural fest)
- 6] Sport-saga (Sports fest)
- 7] Marathons
- 8] Hostel Day
- 9] Religious festivals
- 10] Clean up drive

Figure 3.3a: Extra-curricular activities

Figure 3.3b: Extra-curricular activities

Figure 3.3c: Extra-curricular activities

UDCT Alumni Association (UAA) Activities

Inauguration of The UDCT Alumni Association (UAA) East Coast Chapter based in Atlanta 17 Sep 2016

Figure 3.4a: UAA activities

Figure 3.4b: UAA Certificate distribution Ceremony April 2022

Figure 3.4c: UAA Pune Chapter, 2022

Figure 3.4d: UAA Marathwada Chapter, 2022

Sr No	Authors	Research paper title	Journal	Editors	Publisher	Details
1	R. Jawale , O. Dapurkar and P. Gogate	Treatment of atrazine containing wastewater using cavitation based hybrid treatment approaches	Chemical Engineering and Processing - Process Intensification	Marc-Olivier Coppens, PhD University college London, United Kingdom	Elsevier	Volume 130, Aug ust 2018, Pages 275-283
2	Bharat Honmane, Tejaswini Deshpande, Abhishek D, and Rhea Bhansali, Pushpito K.Ghosh	Channelizing the osmotic energy of proximate sea bittern for concentration of seawater by forward osmosis under realistic conditions to conserve land requirement for solar sea salt production	Journal of Membrane Science	Rong Wang, PhD. Singapore Jerry Y.S.Lin, PhD. USA	Elsevier	Volume 567, 1 Decembe r 2018, Pages 329-338
3	Pranav H Nakhate, Hrushikesh G Patil, Vidit Shah, Tanmay Salvi, Kumudini Marathe	Process validation of integrated bioelectrochemical and membrane reactor for synchronous bioenergy extraction and sustainable wastewater treatment at a semi- pilot scale	Biochemical Engineering Journal	Wilfred Chen, Masahiro Goto, Apostolis Koutinas	Elsevier	Volume 151, Novembe r 2019, 107309
4	Sabnis S.S., Singh S.D., Gogate P.R.	Improvements in azithromycin recrystallization using ultrasound for size reduction	Ultrasonics Sonochemistry	Muthupan dian Ashok kumar	Elsevier	Volume 83, February 2022, 105922
5	Sarode C., Jagtap Y., Gogate P.	Ultrasound for Improved Encapsulation and Crystallization with Focus on Pharmaceutical Applications	Springer Optimization and Its Applications	Antonios Fytopoulo s, Rohit Ramachan dran, Panos M. Pardalos	Springer	Book Chapter of Optimiza tion of pharmac eutical processe s, 193- 229
6	Tiple A. , Sinhmar P.S., Gogate P.R.	Improved direct synthesis of TiO2 catalyst using sonication and its application for the desulfurization of thiophene	Ultrasonics Sonochemistry	Muthupan dian Ashokkum ar	Elsevier	Volume 73, May 2021, 105547
7	Sinhmar P.S., Tiple A. , Gogate P.R.	Combined extractive and oxidative desulfurization approach based on ultrasound and ultraviolet irradiation with additives for obtaining clean fuel	Environmental Technology and Innovation	Ravi Naidu, Duc Long Nghiem, Kirk Semple	Elsevier	Volume 22, May 2021, 101487
8	Ghumra D.P ., Agarkoti C., Gogate P.R.	Improvements in effluent treatment technologies in Common Effluent	Process Safety and	Guohua Chen,	Elsevier	Volume 147, March

Table 3.11: Student Publications in International Journals

		Treatment Plants (CETPs): Review and recent advances	Environmental Protection	Faisal Khan		2021, 1018- 1051
9	Khaire R.A., Sunny A.A ., Gogate P.R.	Ultrasound assisted ultrafiltration of whey using dual frequency ultrasound for intensified recovery of lactose	Chemical Engineering and Processing - Process Intensification	Marc- Olivier Coppens	Elsevier	Volume 142, August 2019, 107581
10	Jawale R.H., Dapurkar O ., Gogate P.R.	Treatment of atrazine containing wastewater using cavitation based hybrid treatment approaches	Chemical Engineering and Processing - Process Intensification	Marc- Olivier Coppens	Elsevier	Volume 142, August 2019, 107581
11	Subhedar P.B., Ray P. , Gogate P.R.	Intensification of delignification and subsequent hydrolysis for the fermentable sugar production from lignocellulosic biomass using ultrasonic irradiation	Ultrasonics Sonochemistry	Muthupan dian Ashokkum ar	Elsevier	Volume 40, Part B, January 2018, 140-150
12	Ganju S ., Gogate P.R.	A review on approaches for efficient recovery of whey proteins from dairy industry effluents	Journal of Food Engineering	Ferruh Erdodgu, Paul Singh	Elsevier	Volume 215, Decembe r 2017, 84-96
13	Jawale R.H., Tandale A., Gogate P.R.	Novel approaches based on ultrasound for treatment of wastewater containing potassium ferrocyanide	Ultrasonics Sonochemistry	Muthupan dian Ashokkum ar	Elsevier	Volume 38, Septemb er 2017, 402-409
14	Mohod A.V., Subudhi A.S ., Gogate P.R.	Intensification of esterification of non edible oil as sustainable feedstock using cavitational reactors	Ultrasonics Sonochemistry	Muthupan dian Ashokkum ar	Elsevier	Volume 36, May 2017, 309-318
15	SunilS.Bhagwat, Ashwin Kane, Sparsh Ganju , Prafulla chandra P.Vora	Simple correlation for critical isotherm of pure compounds	Chemical Engineering Science	Anton Middleber g	Elsevier	Volume 192, Decembe r 2018, 1036- 1040
16	Purva Paranjape , Manishkumar D. Yadav	Recent advances in the approaches to recover rare earths and precious metals from E-waste: A mini-review	Canadian journal of chemical engineering	Joao Soares	Wiley	May 2022, Page and volume no. is yet to be assigned
17	B Honmane, R Bhansali, T Deshpande, A Dhand, S Mogha, J Mukherjee, D. Ghosh, G Sarode, S Srivastava, A Dive, D	Harnessing the osmotic energy of cane molasses by forward osmosis: process studies and implications for a sugar mill	International Journal of Environmental Studies	Dr M. R. Brett- Crowther	Taylor & Francis Online	August 2020, 247-270

	Deshmukh , P K Ghosh					
18	Pai, K. R., Sindhuja, V., Ramachandran, P. A., & Thorat, B. N.	Mass Transfer "Regime" Approach to Drying	Industrial & Engineering Chemistry Research	Phillip E. Savage	ACS Publication s	Volume 60, issue 26, 9613- 9623
19	Shah, S. H., Pai, K. R., Shinde, S. R., & Thorat, B. N.	Analysis of a vapor compression refrigeration system using a fog-cooled condenser.	Applied Thermal Engineering	Chirtos Markides	Elsevier	Volume 196, 117299
20	Bhatkar, N. S., Shirkole, S. S., Mujumdar, A. S., & Thorat, B. N.	Drying of tomatoes and tomato processing waste: a critical review of the quality aspects.	Drying Technology	Arun S. Mujumdar	Taylor & Francis Online	Volume 39, Issue 11, 1720- 1744
21	Ghadge S. , Shrivastava S., Kausley S.B., Satpute S., Badve M., Pandit A.A., Rai B., Pandit A.B.	ANN modelling of Hydrodynamic Cavitation for the degradation of Rhodamine B dye	Journal of Water Process Engineering	Nick Hankins Abdul Wahab Mohamma d Xiochang Wang	Elsevier	Volume 47, June 2022, 102759
22	Yadav S., Gaikwad G., Chaturvedi A. , Ananthasivan K., Pandit A.B., Jain R.	Fabrication of CeO2 microspheres by internal gelation process using T junction droplet generator	Brazilian Journal of Chemical Engineering	Reinaldo Giudici	Springer	January 2022
23	Mule C.M., Doltade S.B., Pandit A.B.	A review on pesticide degradation from irrigation water and techno-economic feasibility of treatment technologies	Water Environment Research	Jason He	Wiley online library	August 2021
24	Ladole M.R., Pokale P.B., Varude V.R. , Belokar P.G., Pandit A.B.	One pot clarification and debittering of grapefruit juice using co- immobilized enzymes@chitosanMNPs	International Journal of Biological Macromolecules	Aichun Dong John F. Kennedy	Elsevier	Volume 167, January 2021,, 1297- 1307
25	Sahu A., Rane N.V., Lodaya B.G. , Pandit A.B.	Green synthesis and kinetic study of eco- friendly chelating agent by hydrothermal process for remediation of heavy metals	Indian Chemical Engineer	Prof. Suddhasa twa Basu	Taylor & Francis Online	August 2021
26	Sahu A., Lodaya B.G., Handu A.V. , Pandit A.B.	Expeditious synthesis and kinetic study of biodegradable amide 2,2- ((3-(2- ((carboxymethyl)amino)- 2-oxoethyl)-3- hydroxypentanedioyl) bis (azanediyl) diacetic acid (COHBDA) under ultrasound irradiation	Indian Chemical Engineer	Prof. Suddhasa twa Basu	Taylor & Francis Online	February 2020, 252-266

27	Dastane G.G., Thakkar H., Shah R. , Perala S., Raut J., Pandit A.B.	Single and multiphase CFD simulations for designing cavitating venturi	Chemical Engineering Research and Design	Jerry Heng	Elsevier	Volume 149, Septemb er 2019, 1-12
28	Badnore A.U., Chaudhari A.P., Patel J.K., Pandit A.B.	Effect of solvents on properties of the ultrasound-assisted synthesized ceria nanoparticles and its performance as an adsorbent	Advanced Powder Technology	Masayoshi Fuji	Elsevier	Volume 30, Issue 5, May 2019, 1058- 1066
29	Tambat S.N., Sane P.K., Suresh S. , Varadan O. N., Pandit A.B., Sontakke S.M.	Hydrothermal synthesis of NH2-UiO-66 and its application for adsorptive removal of dye	Advanced Powder Technology	Masayoshi Fuji	Elsevier	Volume 29, Issue 11, Novembe r 2018, 2626- 2632
30	Iyer G, Dyawanapelly S, Jain R*, & Dandekar, P	An overview of oral insulin delivery strategies	International Journal of Biological Macromolecules	Aichun Dong John F. Kennedy	Elsevier	Volume 208, May 2022, 565-585
31	Patil S, Pandit A, Godbole A, Dandekar P, Jain R	Chitosan based co- processed excipient for improved tableting performance	Carbohydrate Polymer Technologies and Applications	John F. Kennedy	Elsevier	Volume 2, Decembe r 2021, 100071
32	Pandit A, Indurkar A, Deshpande C, Jain R [*] , Dandekar P [*]	A systematic review of physical techniques for chitosan degradation	Carbohydrate Polymer Technologies and Applications	John F. Kennedy	Elsevier	Volume 2, Decembe r 2021, 100033
33	RA Krishnan, O Mhatre, J Sheth, S Prabhu, Jain R*, P Dandekar	Synthesis of zinc oxide nanostructures using orange peel oil for fabricating chitosan-zinc oxide composite films and their antibacterial activity	Journal of Polymer Research	Show-An SA. Chen	Springer	volume 27, Article number: 206 (2020)
34	Krishnan RA, Pant T, Sankaranaraya n S, Stenberg J, Jain R*, Dandekar P*	Protective nature of low molecular weight chitosan in a chitosan– Amphotericin B nanocomplex – A physicochemical study	Materials Science & Engineering	Manuel Salmeron- Sanchez	Elsevier	Volume 93, Decembe r 2018, 472-482

The Bombay Technologists is an in-house peer-reviewed research journal of the Institute of Chemical Technology, published semi-annually. Over sixty volumes have been published. The latest issue is volume 68.

Figure 3.5: Bombay Technologist sample issues

Figure 3.6: Bombay Technologist events

Sr.	Authors	Research paper title	Details
No.			
1	Swarali Paranjape, Mihika Yeoleka	Liposome Technology for Cancer treatment	Bombay Technologist 2020, 67
2	Susmit Mhatre, Nitisha Gurav	Enhancing bioavailability of probiotics using microencapsulation	Bombay Technologist 2020, 67
3	Rahul Kamath	Formulation of vegan health beverage using coconut milk and fortifying it with flaxseed oil	Bombay Technologist 2020, 67
4	Hrithik R. Shetty	Substitution of synthetic colorants by Betalain pigment extracted from beetroot peels in baked foods: Muffins	Bombay Technologist 2020, 67

Table 3.12: Student Publications in Bombay Technologist

5	Yogesh D. Jagdale, Swapnil R. Chaudhari, Anand V. Patwardhan	Extraction of zinc in presence of cobalt through hollow fibre supported liquid membrane from simulated industrial wastewater	Bombay Technologist 2020, 67
6	Yogesh Pandit Palve, K Mohanapriya, Neetu Jha	Solar Reduced Graphene Oxide Based Enzyme Free Ascorbic Acid Sensor	Bombay Technologist 2020, 67
7	Srinivasan Savitha	Non-thermal microbial decontamination of onion and dehydrated onion products	Bombay Technologist 2021, 68
8	Harini Srikant	A Review of plant-and fungi-based meat and cellular meat: an Indian perspective	Bombay Technologist 2021, 68
9	Pooja Paresh Savla	The Selection and Screening of Conformers	Bombay Technologist 2021, 68
10	Karthik Sinha	Drug Release Medical Textiles: Fundamentals, Classification and Methods of Fabrication	Bombay Technologist 2021, 68
11	Ekta Jagtiani	COVID-19 outbreak: An Overview	Bombay Technologist 2021, 68
12	Ekta Jagtiania, Darsh Vithlani	COVID-19: Vaccines on Their Marks	Bombay Technologist 2021, 68
13	Tanvi S. Karve, Chirag M. Muleb, Rupesh S. Pawar, Meenal B. Rawlani	Applications of Electroactive polymers: Review	Bombay Technologist 2021, 68
14	Saumya Saxena, Gurpreet Bharj, Mohd. Arsalan Pasha	A Review Study on Advancements in the Recycling Methods of Polyethylene terephthalate	Bombay Technologist 2021, 68
15	M. Arsalan Pashaa, Shubham Utekara, Ritoban Ghosha	Recent advances in Microencapsulation Technology and their Applications	Bombay Technologist 2021, 68
16	Anooshka Arun Avasare	A Review on Immune-Boosting Activity of Functional Foods- Prebiotics and Probiotics	Bombay Technologist 2021, 68
17	Rimjhim Balia and Harshita Sheta	Transition metal-based nanoparticles catalyzed esterification reactions	Bombay Technologist 2021, 68
18	Swareena Jaina, Raman Sehgal, Radha V. Jayaram	Quantum Computation - A sign of quantum supremacy	Bombay Technologist 2021, 68

For many years, SPIRIT has been an official student-run newsletter of the Institute of Chemical Technology.

Figure 3.7: Spirit magazine

3.6.3. Participation in inter-institute events by students of the program of study (5) (Institute Marks 5)

Sr. No.	Name of the student	Award name	Year
1	Aditya Joshi	His solution to problem posed in Romanian Mathematical Magazine was published	2018
2	Ninad Kumbhojkar, Supriya Prakash, Bhargav Patel, Atharva Chikhalikar, Marwan Malik (Xaviers college)	Team Ict won bronze medal at iGEM award 2018 (340 teams participated), Project topic: "Smart Soil"	2018
3	Omkar Dapurkar	The Chemical Weekly Prize for Best Research Paper Published in a High Impact Factor	2018
4	Mr. Anirudh Venkatesh, Eeshan Godbole and Surabh K. T	won 2nd Prize in N. R. Kamath Memorial Quiz, Held in Datta Meghe College of Engineering, Organized by IIChE Mumbai Regional Centre, March 2019	2019
5	Mr. Nilesh Hendre, along with Mr. Nilesh Veer HWB	first prize at the Outstanding Young Chemical Engineer 2019, National Level competition organized by IIChE-MRC	2019
6	Kaustubh Rane, Snehal Patil, Asmee Prabhu, Sreejith Nair and Surabh KT	won first prize in Smart India Hackathon Hardware edition 2019, for the problem, Conversion of CO2 to CO.	2019
7	Abhishek Bharadwaj, Akshay Bhangari, Himanshu Sail, Hrishikesh Mane, Ramya Raghunatha	won the first prize in the Smart India Hackathon2019, for the problem, Electrodialysis and Reverse Osmosis based water purification, reduction of Reject in RO process.	2019
8	Amogh Nagarkar	won the "Pankaj P Patel Trust" Essay Competition, organized by IIChE for the year 2019.	2019
9	Tejaswini Deshpande	the IIChE's, Chemical Weekly prize for Best Research Paper published in High Impact Factor International Journal by an Undergraduate Chemical Engg Student, First Prize for the Year 2019.	2019
10	Anirudh Venkatesh, Akash Nogaja, and Atharva Suryavanshi	won 2nd Prize in N. R. Kamath Memorial Quiz, Held in D. J. Sanghvi College of Engineering, Organized by IIChE Mumbai Regional Centre, March 2020	2020
11	Bhushan Murjani, Manasi Bansod, Pankti Savla, Sudarshan Shrinivas, Saloni Vaidya, Parikshit Kundu	Won Second Prize in the undergraduate category at the New Generation Ideation Contest 2021 organized by Hindustan Petroleum Corporation Limited.	2021

Table 3.13: Student participation in inter-institute events

3.6.4. Participation in national/international competitive events by students of the program of study(5)(Institute marks 5)

The National/International competitions:

- 1] IIT Bombay's Chemical Engineering Symposium AZEOTROPY
- 2] NR Kamath Quiz
- 3] New Generation Ideation Contest
- 4] SChemCon
- 5] ChemCon
- 6] TEDx ICT Mumbai
- 7] Modern day industrialist-Manzar
- 8] Vortex
- 9] Bombay technologist
- 10] OYCE

VORTEX:

This prepares itself for pan-India involvement, with participation from across 70 colleges in 35 cities. In the previous academic year, the separate Technical festivals received total combined participation of around 6,000, and over 100 industrialists visit the institute during the festival. "VORTEX: The ChemFest" aims at surpassing the previous participation and pervading all the entities pertaining to the chemical diaspora.

Bombay Technologist:

The Bombay Technologist is the annual technical journal of the Institute of Chemical Technology Mumbai. Fondly known as The BT the journal invites scientific research and review articles from students of all disciplines i.e. Chemical Engineering Chemical Technology and Pharmacy studying in the Institute. The BT aims to create awareness and encouragement amongst the students regarding various aspects of technical writing.

Conceptualized and initiated by students and Faculty, the Bombay Technologist has an awe-inspiring collection of archives that has been helping the students keep abreast with the ongoing scientific developments. We aim to reach out to the students' academicians and the industry by web archiving all the many volumes of the BT.

Through seminars and workshops dedicated to a specific group of students, BT inculcates and encourages the culture of technical writing and presentation. Articles are reviewed strictly by use of modern plagiarism software and by a critical review of Professors and Researchers.

Figure 3.8: Participation in competitive events

Figure 3.9: Students winning award at New Generation Ideation Contest 2021 organized by HPCL

CRITERION 4	Faculty Information and Contributions	98.8/100

Tabl	e 4.1: Facult	y Information	and Contribut	ions
		/		

			Qualification	1							Acade	emic Re	search		
Sr. No.	Name	Degree (highest degree)	University <mark>,</mark>	Year of attaining higher qualification	Association with the Institution	Designation	Date on which Designated as Prof./Assoc. Prof.	Date of Joining the Institution	Department	Area of Specialization	Research Paper Publication	Ph.D. guidance	Faculty Receiving Ph.D. during the Assessment Years	Currently Associated (Y/N) Date of Leaving (In case Currently Associated is (" No")	Nature of Association
1	Professor A. B. Pandit	PhD	Institute of Chemical Technology	1984	Teaching/Research	Professor	01-01-1996	01-01-1991	Chemical Engineering	Sono chemical processes, reactor design and process intensification	422	50	15	Yes	Regular
2	Professor V. G. Gaikar	PhD	Institute of Chemical Technology	1986	Teaching/Research	Professor	01-07-2002	17-07-1984	Chemical Engineering	Intensification, Material Science	189	52	10	Yes	Regular
3	Professor A. W. Patwardhan	PhD	Institute of Chemical Technology	1999	Teaching/Research	Professor	01-01-2011	08-06-1998	Chemical Engineering	Process intensification	135	29	15	Yes	Regular
4	Professor S. S. Bhagwat	PhD	Institute of Chemical Technology	1989	Teaching/Research	Professor	18-11-2003	18-11-1991	Chemical Engineering	Interfacial science	94	41	10	Yes	Regular
5	Professor V. K. Rathod	PhD	Institute of Chemical Technology	2008	Teaching/Research	Professor	21-07-2011	21-07-2008	Chemical Engineering	Biotechnology, Environmental engineering	227	28	13	Yes	Regular
6	Professor P. R. Gogate	PhD	Institute of Chemical Technology	2002	Teaching/Research	Professor	05-07-2018	03-07-2007	Chemical Engineering	Process intensification	401	22	17	Yes	Regular
7	Dr. V. H. Dalvi	PhD	The University of Texas at Austin	2009	Teaching/Research	Assistant Professor		09-05-2011	Chemical Engineering	Energy engineering	31	2		Yes	Regular
8	Dr. P. R. Nemade	PhD	University of Colorado	2008	Teaching/Research	Assistant Professor		01-08-2013	Chemical Engineering	Process intensification, Environmental engineering	28	4	4	Yes	Regular

9	Professor P. D. Vaidya	PhD	Institute of Chemical Technology	2005	Teaching/Research	Professor	12-02-2018	01-08-2007	Chemical Engineering	Separation, Reaction Engineering	100	24	19	Yes	Regular
10	Dr. C. S. Mathpati	PhD	Institute of Chemical Technology	2010	Teaching/Research	Associate Professor	18-05-2018	16-09-2008	Chemical Engineering	Computational fluid dynamics, Reactor design, Mathematical modeling & simulation	53	10	10	Yes	Regular
11	Professor B. N. Thorat	PhD	Institute of Chemical Technology	2001	Teaching/Research	Professor	17-02-2006	17-02-2006	Chemical Engineering	Process intensification	91	27	3	Yes	Regular
12	Professor L.K. Mannepalli	PhD	Kurukshetra University	1982	Teaching/Research	Professor	02-12-2015	02-12-2015	Chemical Engineering	Catalysis, Materials, Process chemistry, Nanotechnology	367	40		Yes	Regular
13	Professor P. K. Ghosh	PhD	Princeton University	1981	Teaching/Research	Professor	15-04-2015	15-04-2015	Chemical Engineering	Applied chemistry, Sustainability	123	8		Yes	Regular
14	Dr. S. V. Jadhav	PhD	Institute of Chemical Technology	2018	Teaching/Research	Assistant Professor		22-05-2018	Chemical Engineering	Separation, Nanotechnology, Process intensification	14	0		Yes	Regular
15	Dr. K. V. Marathe	PhD	Institute of Chemical Technology	2020	Teaching/Research	Associate Professor	02-01-2012	01-02-1992	Chemical Engineering	Process intensification, Environmental engineering	43	S	2	Yes	Regular
16	Professor A. V. Patwardhan	PhD	Institute of Chemical Technology	1988	Teaching/Research	Professor	18-12-2007	18-12-2007	Chemical Engineering	Membrane separation, Heterogeneous reaction, Green technology	122	14	6	Yes	Regular
17	Dr. R. D. Jain	PhD	Institute of Chemical Technology	2005	Teaching/Research	Assistant Professor		01-01-2014	Chemical Engineering	Biotechnology	89	7	5	Yes	Regular
18	Dr. M. D. Yadav	PhD	Institute of Chemical Technology	2019	Teaching/Research	Assistant Professor		24-09-2019	Chemical Engineering	Nanotechnology	12	0		Yes	Regular
19	Professor A. M. Lali	PhD	Institute of Chemical Technology	1989	Teaching/Research	Professor	09-01-2002	09-01-2002	Chemical Engineering	Biotechnology	140	62	27	Yes	Regular
20	Professor J. B. Joshi	PhD	Institute of Chemical Technology	1977	Teaching/Research	Emeritus Professor	01-08-1986	03-10-1972	Chemical Engineering	Reactor Design and CFD	521	80		Yes	Contract
21	Professor D. D. Sarode	PhD	I.I.T. Bombay	2010	Teaching/Research	Professor	01-03-2014	12-06-1997	Chemical Engineering	Construction Chemicals, Risk Analysis	26	2	1	Yes	Regular

22	Professor V. R. Gaval	PhD	Institute of Chemical Technology	1991	Teaching/Research	Professor	06-01-1992	06-01-1992	Chemical Engineering	Polymer composites	17	2	2	Yes	Regular
23	Dr. P. Goswami	PhD	Institute of Chemical Technology	2018	Teaching/Research	Associate Professor	08-02-2017	06-06-1998	Chemical Engineering	Sustainable Energy	77	12		Yes	Regular
24	Shri. M. A. K. Kerawalla	M.E	VJTI, Mumbai	1984	Teaching/Research	Associate Professor	16-02-1987	16-02-1987	Chemical Engineering	Power Systems	18	0		Yes	Regular
25	Dr. R. S. N. Sahai	PhD	Institute of Chemical Technology	2013	Teaching/Research	Associate Professor	23-02-2013	17-10-1998	Chemical Engineering	Polymer composites	14	5		Yes	Regular
26	Professor S. P. Deshmukh	PhD	Institute of Chemical Technology	2009	Teaching/Research	Professor	02-01-2012	13-05-1997	Chemical Engineering	Renewable energy, Heat transfer, Sustainable plastic composites	57	7	6	Yes	Regular
27	Professor G.D. Yadav	PhD	Institute of Chemical Technology	1980	Teaching/Research	Professor	01-10-1996	01-07-1980	Chemical Engineering	Green chemistry, Material science	447	100		Yes	Regular
28	Dr. Annamma Anil Odaneth	PhD	Institute of Chemical Technology	2008	Teaching/Research	Associate Professor	27-01-2017	20-02-2009	Chemical Engineering	Biotechnology, Applied Chemistry	42	10	8	Yes	Contract
29	Dr. Ramajanaki Iyer	PhD	Symbiosis International	2017	Teaching	Assistant Professor		01-01-2021	Chemical Engineering	Management, Organizational behaviour	14			Yes	Contract
30	Dr. Deepankar Biswas	PhD	Institute of Chemical Technology	2020	Teaching/Research	Assistant Professor		09-01-2020	Chemical Engineering	Solar thermal systems, CFD	3			Yes	Contract
31	Dr. V. S. Korpale	PhD	Institute of Chemical Technology	2021	Teaching/Research	Assistant Professor		01-01-2020	Chemical Engineering	Heat Transfer, CFD	4			Yes	Contract
32	Dr. Sanghamitra Chatterjee	PhD	I.I.T. Roorkee	2010	Teaching/Research	Assistant Professor		25-08-2014	Chemical Engineering	Organic electrochemistry	31	2		Yes	Regular
33	Dr. S.M.S. Reshamwala	PhD	I.I.T. Bombay	2012	Teaching/Research	Assistant Professor		02-12-2019	Chemical Engineering	Biotechnology	12			Yes	Contract

Table	B.4
-------	------------

4.1 Student-Faculty Ratio (SFR) (15)

UG

No. of UG Programs in the Department 1

Table 4.2: Student intake for UG

	Bachelor of Chemical Engineering										
		CAY		CAYm1		CAYm2					
Year of		(2021-22)		(2020-21)		(2019-20)					
Study	Sanction Intake	Actual admitted through lateral entry students	Sanction Intake	Actual admitted through lateral entry students	Sanction Intake	Actual admitted through lateral entry students					
2nd Year	75	0	75	0	75	0					
3rd Year	75	0	75	0	75	0					
4th Year	75	0	75	0	75	0					
Sub-Total	225	0	225	0	225	0					
Total 225		225		225							

PG

No. of PG Programs in the Department 1

Table 4.3: Student intake for PG

Master of Chemical Engineering									
× 60.1	CAY (2021-22)	CAYm2 (2019-20)							
Year of Study	Sanction Intake	Sanction Intake	Sanction Intake						
1st Year	30	30	30						
2nd Year	30	30	30						
Total	60	60	60						

SFR

No. of UG Programs in the Department 1

No. of PG Programs in the Department 1

-

Table 4.4: Student-Faculty Ratio (SFR)									
Description	CAY (2021	L-22)	CAYm1 (2	020-21)	CAYm2 (2019-20)				
Total No. of Students in	285	Sum total of all	285	Sum total of all	285	Sum total of all			
the Department(S)	(UG+PG) s	students	(UG+PG) s	students	(UG+PG) students				
No. of Faculty in the Department(F)	32	F1	32	F2	30	F3			
Student Faculty Ratio (SFR)	8.9	SFR1=S1/F1	8.9	SFR2=S2/F2	9.5	SFR3=S3/F3			
Average SFR	9.11	SFR=(SFR1+SFR2+SFR3)/3							

Table B.4.1

4.1.1 Provide the information about the regular and contractual faculty as per the format mentioned below:

Table 4.5: Regular and contractua	l faculties

	Total number of regular faculty in the department	Total number of contractual faculty in the department				
CAY(2021-22)	27	5				
CAYm1(2020-21)	27	5				
CAYm2(2019-20)	27	3				

Table B.4.1.1

4.2 Faculty Cadre Proportion (10)

Institute Marks (10)

Year	Profe	essors	Associate Pi	rofessors	Assistant Professors		
	Required F1	Available	Required F2	Available	Required F3	Available	
CAY (2021-22)	1.58	16.00	3.16	6.00	9.50	10.00	
CAYm1 (2020-21)	1.58	16.00	3.16	6.00	9.50	10.00	
CAYm2 (2019-20)	1.58	16.00	3.16	6.00	9.50	8.00	
Average Numbers	1.58	16.00	3.16	6.00	9.50	9.33	

Table 4.6. Faculty Cadre Proportion

Table B.4.2

Cadre Ratio Marks [(AF1 / RF1) + [(AF2 / RF2) * 0.6] + [(AF3 / RF3) * 0.4]] * 5 = [(16 / 1.58) + [(6 / 3.16) * 0.6] + [(9.33 / 9.5) * 0.4]] * 5 = **58.30**

4.3 Faculty Qualification (10)

FQ = (10X + 4Y)/F) where x is No. of available faculty with Ph.D., Y is No. available faculty with M. Tech., F is No. available faculty required to comply with 20:1 Faculty-Student ratio (no. of faculty and no. of students required are to be calculated as per 4.1)

Table 4.7 Faculty Qualification

	x	Y	F	$FQ = 2 \times [(10X + 4Y) / F)]$
2021-22(CAY)	31	1	14.25	44.00
2020-21(CAYm1)	31	1	14.25	44.00
2019-20(CAYm2)	29	1	14.25	42.00

Table B.4.3

Average Assessment: 43.10

4.4 Faculty Retention (5)

Institute Marks (5)

Description	2019-20 (CAYm2)	2020-21 (CAYm1)	2021-22 (CAY)
No of Faculty Retained	30	32	32
Total No of Faculty	30	32	32
% of Faculty Retained	100	100	100

Table 4.8 Faculty Retention

Table B.4.4

Average: 100.00

Institute Marks (10)

4.5 Faculty competencies in correlation to curriculum (5)

Institute Marks (5)

Table 4.9: Faculty Competency

Name of Faculty	Relevant Area of Specialization		
	2021-22		
Professor A.B.Pandit	Physical and Chemical Processing applications of Cavitation phenomena, Sonochemistry, Ballast Water Treatment, Mixing in Mechanically agitated contactors: Experimental and CFD Investigations, Modeling of Stoves, Use of non- conventional energy sources, Synthesis of Nano-materials Biotechnology: Protein modification, Cell disruption and Microbial fuel cell.		
Professor V.G.Gaikar	Renewable Energy Resources, Reactive Separation Processes, Molecular Simulation for Reactive Sorption and Metal Ion Complexation, Interfacial Science and Engineering and Hydrotropy, Complex Fluid Behaviour, Synthesis of nanoparticles and development of applications, Process Intensification, Biofuels by pyrolysis, CO ₂ conversion to liquid fuel		
Professor A.W.Patwardhan	Computational Fluid Dynamics, Transport Phenomena, Membrane Separation Processes, Liquid-Liquid Extraction		
Professor S.S.Bhagwat	Interfacial Science and Engineering, Microemulsions, Energy and Exergy Engineering, Absorption Cycles, Utilization of low grade energy, applications of artificial neural network, Computer process simulation		
Professor V. K. Rathod	Separation Processes, Process Intensification, WasteWater Treatment, Enzyme Modification and Treatment, Bio- separation, Nuclear reprocessing, Extraction of natural ingredients, Nanoparticles preparation, Biodiesel Manufacturing, Enzymatic Catalyzed Reactions		
Professor P.R.Gogate	Sonochemistry, Hydrodynamic Cavitation, Process Intensification, Water and Wastewater Treatment, Enzymatic Reactions, Polymer Chemistry, Advanced Oxidation Processes		
Dr. V. H. Dalvi	Molecular Simulations, Process Simulations, Solar Thermal Systems, Statistical Thermodynamics, Anaerobic Digestion, Energy Engineering.		
Dr. P. R. Nemade	Membrane separation, Development of polymeric and graphene based materials for membranes, catalysts, and sensors applications, sustainable sanitation		
Professor P.D.Vaidya	Carbon dioxide capture, reforming reaction, hydrotreatment, wet air oxidation, hydrogenation		
Dr. C. S.Mathpati	Computational Fluid Dynamics, Multiphase Flow, Reactor Design, Interface Heat and Mass Transfer, High temperature corrosion analysis		
Professor B.N. Thorat	Drying Technology and Particle Handling, Process Development, Multiphase Reactors, Industrial Crystallization and Filtration, Food Processing		
Professor L.K.Mannepalli	Catalysis, Materials and Process Chemistry, Nanotechnology.		
Professor P.K. Ghosh	Salt and Marine Chemicals; Membrane-based processes; Green Chemistry, Renewable Energy, Chemical Technology; Analytical Studies		
Dr. S. V.Jadhav	Water and Wastewater Treatment, Membrane-based Separation, Nanomaterials Synthesis and their Applications, Adsorption-based Separation, Waste Valorization, Petrochemicals, Chemical and Enzymatic Kinetics, Process Modeling and Simulation, Drying Technology, Life Cycle Assessment		

Dr. K. V.Marathe	Bio - Electrochemical Membrane Reactor, Sustainability Studies, Algae Water Separation, Membrane Fabrication and modification Studies, Hydrometallurgical Extraction, Wastewater treatment, Membrane separation, Corrosion, Metal composites, Development of new materials		
Professor A.V.Patwardhan	Membrane separation, Green Technology, Bioprocess Technology, Heterogeneous reactions		
Dr. R. D. Jain	Biosimilar/Biologics Characterization, Biopharmaceutical/ Pharmaceutical, Continuous process for polymeric/metal nanoparticles synthesis, Product Development using Traditional, Microfluidics and 3D Printing Technology, Nanomedicine, Cell Culture engineering		
Dr. M. D. Yadav	Chemical Reaction Engineering, Nanotechnology, Crystallization		
Professor A. M. Lali	Bioenergy, Biofuels and biomass to other chemicals, Purification of Proteins, nucleic acids and other Biomolecules, natural and synthetic APIs high value organic/inorganic chemicals,Continuous chromatography, Modeling and Adsorptive separations, Biocatalysis and Biotransformations, Bioreactor design, Mixing and dynamics of solid liquid fluidized bed, Dynamics of gas-solid circulating fluidized bed, Process integration and intensification, Process development, characterization and scale up.		
Prof. D.D. Sarode	Construction Chemicals, Formwork for R.C.C, Advance Concrete Technology, Anticorrosive coatings and inhibitors, Glass and Carbon fiber composites and Geotechnical Engineering, Risk Management		
Prof. V.R. Gaval	Polymer Composites, Injection mould design, Conversion of metal parts into plastic parts		
Dr. P.Goswami	Sustainable Energy, Power systems, MATLAB simulations		
M. A.K. Kerawalla	Power Electronics applications in Power systems analysis		
Dr. R. S. N.Sahai	Polymer Composites, Nanocomposites and its application in Mechanical Engineering, Mould Design		
Dr. R. S. N.Sahai Professor S. P. Deshmukh	Polymer Composites, Nanocomposites and its application in Mechanical Engineering, Mould Design Renewable Energy, Heat transfer, Plastic composites		
Dr. R. S. N.Sahai Professor S. P. Deshmukh Dr. Annamma Anil Odaneth	Polymer Composites, Nanocomposites and its application in Mechanical Engineering, Mould Design Renewable Energy, Heat transfer, Plastic composites Extractive Biotransformation, Design & Engineering of enzymes, Selective Isolation & Capture of Natural Bioactive Molecules, Secondary Agriculture & its products, Process integration & intensification, Process development, characterization & scale up		
Dr. R. S. N.Sahai Professor S. P. Deshmukh Dr. Annamma Anil Odaneth Dr. Ramajanaki Iyer	Polymer Composites, Nanocomposites and its application in Mechanical Engineering, Mould Design Renewable Energy, Heat transfer, Plastic composites Extractive Biotransformation, Design & Engineering of enzymes, Selective Isolation & Capture of Natural Bioactive Molecules, Secondary Agriculture & its products, Process integration & intensification, Process development, characterization & scale up Management, organizational behaviour		
Dr. R. S. N.Sahai Professor S. P. Deshmukh Dr. Annamma Anil Odaneth Dr. Ramajanaki Iyer Dr. Deepankar Biswas	Polymer Composites, Nanocomposites and its application in Mechanical Engineering, Mould Design Renewable Energy, Heat transfer, Plastic composites Extractive Biotransformation, Design & Engineering of enzymes, Selective Isolation & Capture of Natural Bioactive Molecules, Secondary Agriculture & its products, Process integration & intensification, Process development, characterization & scale up Management, organizational behaviour Design of Solar thermal systems, Computational Fluid Dynamics		
Dr. R. S. N.Sahai Professor S. P. Deshmukh Dr. Annamma Anil Odaneth Dr. Ramajanaki Iyer Dr. Deepankar Biswas V. S. Korpale	Polymer Composites, Nanocomposites and its application in Mechanical Engineering, Mould Design Renewable Energy, Heat transfer, Plastic composites Extractive Biotransformation, Design & Engineering of enzymes, Selective Isolation & Capture of Natural Bioactive Molecules, Secondary Agriculture & its products, Process integration & intensification, Process development, characterization & scale up Management, organizational behaviour Design of Solar thermal systems, Computational Fluid Dynamics Heat Transfer, Computational Fluid Dynamics, Plastic Product Design and Analysis		
Dr. R. S. N.Sahai Professor S. P. Deshmukh Dr. Annamma Anil Odaneth Dr. Ramajanaki Iyer Dr. Deepankar Biswas V. S. Korpale Dr. Sanghamitra Chatterjee	Polymer Composites, Nanocomposites and its application in Mechanical Engineering, Mould Design Renewable Energy, Heat transfer, Plastic composites Extractive Biotransformation, Design & Engineering of enzymes, Selective Isolation & Capture of Natural Bioactive Molecules, Secondary Agriculture & its products, Process integration & intensification, Process development, characterization & scale up Management, organizational behaviour Design of Solar thermal systems, Computational Fluid Dynamics Heat Transfer, Computational Fluid Dynamics, Plastic Product Design and Analysis Organic Electrochemistry, Biomedical applications of nanomaterial modified sensors, Materials science and Nanotechnology, Electrochemical sensing techniques for clinical diagnostics and environmental monitoring, Development of sensors for biomolecules, drugs and doping agents, Electrochemical catalysis, Biosensors and arrays.		
Dr. R. S. N.Sahai Professor S. P. Deshmukh Dr. Annamma Anil Odaneth Dr. Ramajanaki Iyer Dr. Deepankar Biswas V. S. Korpale Dr. Sanghamitra Chatterjee	 Polymer Composites, Nanocomposites and its application in Mechanical Engineering, Mould Design Renewable Energy, Heat transfer, Plastic composites Extractive Biotransformation, Design & Engineering of enzymes, Selective Isolation & Capture of Natural Bioactive Molecules, Secondary Agriculture & its products, Process integration & intensification, Process development, characterization & scale up Management, organizational behaviour Design of Solar thermal systems, Computational Fluid Dynamics Heat Transfer, Computational Fluid Dynamics, Plastic Product Design and Analysis Organic Electrochemistry, Biomedical applications of nanomaterial modified sensors, Materials science and Nanotechnology, Electrochemical sensing techniques for clinical diagnostics and environmental monitoring, Development of sensors for biomolecules, drugs and doping agents, Electrochemical catalysis, Biosensors and arrays. Molecular and synthetic biology, recombinant protein expression in prokaryotic and eukaryotic host cells, enzyme engineering for improved catalysis and robustness, metabolic and pathway engineering to design novel biosynthetic routes for high-value chemicals, bioprospecting to explore metabolic diversity, science communication and pedagogy, IP policy 		

Faculty name	Achievement	Year
Prof. S. S.	Distinguished Alumnus Award, ICT	2016
Drof S	INCA Past Taashar Award' by Indian National Science Academy	2016
Bhagwat.		2010
Prof. P.R.Gogate	Maharashtra State National Award for Outstanding Research Work in Engineering & Technology of the Indian Society of Technical Education	2016
Prof. V.G. Gaikar	'UAA Distinguished Alumnus Award in (Academics)' by the UDCT Alumnus Association (UAA).	2016
Prof. D. V. Pinjari	INAE Young Engineer Award by the Indian National Academy of Engineering (INAE).	2016
Prof. P. D.	Bioenergy - Awards for Cutting Edge Research (B- ACER) Fellowship Program 2017 supported by the Department of Biotechnology,	2017
Vaidya	Govt. of India, and the Indo-U.S. Science and Technology Forum (IUSSTF)	
Prof. A. W. Patwardhan	Professor M.M. Sharma Science and Technology Award	2017
Prof. A.M. Lali	Eminent Scientist Award by KG Foundation, Coimbatore	2017
Prof. G. D. Yadav	Loknete Sadashivrao Mandlik Smriti Puraskar by Sadashivrao Mandlik Sugar Factory, Kolhapur	2017
Prof. P. R. Gogate	Prof. M M Sharma award for Science and Technology given by Marathi Vidnyan Parishad	2017
Prof. L.K.Mannepally	Dr. Mary Curie Memorial Award by APSC-2017.	2017
Prof. B. N. Thorat	Gunther Oertel Startup Innovation Award for Microbutor Innovation, Covestro	2017
Prof. P. K. Gosh	Lifetime Achievement Award, Indian Chemical Council	2017
Prof. P. K. Gosh	Lifetime Achievement Award, Indian Desalination Association	2017
Prof. P.R.Gogate	Most Outstanding Faculty Research Award in the Chemical Engineering Discipline, Careers 360	2018
Prof. A. B. Pandit	DST-Lockheed Martin-Tata Trusts, India Innovation Growth Programme (IIGP) 2.0 Awards	2018
Prof. V. G.	Dr. G. M. Nabar Memorial Award	2018
Gaikar		
Prof. P.R.Gogate	Outstanding Professor Award given by Indian Specialty Chemicals Manufacturing Association	2018
Prof. P.R.Gogate	A.V. Rama Rao award by Indian Institute of Chemical Engineers	2018
Prof. P.R.Gogate	Rajib Goyal Prize	2018
Prof. A. B. Pandit	G. M. Marve Prize for Most Research-Oriented Group from Chemical Engineering	2018

Prof. A. B. Pandit	'Best Oral Presentation Award' at 'International Conference on Desalination organized by Indian Desalination Association & NIT Trichi	2018
Prof. A. B. Pandit	C-Zero Challenge (Insulating Ceramics), IIT Madras	2018
Prof. A. B. Pandit	Best Oral Presentation Award' at 3rd National Seminar on Advanced Oxidation Processes organized by SECAS	2018
Prof. A. B. Pandit	Best Papyrus Oral Presentation Award	2018
Dr.C.S.Mathpati	2017 Class of Influential Researchers of Ind. Eng. Chem. Res	2018
Prof. P.R.Gogate	Citations of Prof. Parag Gogate crossed 15000	2018
Prof. L.K.Mannepally	Fellow of TWAS in 2017, swearing in ceremony happened in Nov 2018	2018
Prof. V.K.Rathod	IIChE's Hindustan Lever Biennial award for the most outstanding Chemical Engineer under the age of 45	2018
Prof. P.R.Gogate	ISCMA Award for an outstanding professor at ICT	2018
Prof. P.R.Gogate	Rajib Goyal Prize in Applied Science for 2016-2017 from Kurukshetra University	2019
Prof. A. B. Pandit	Arohan Social Innovation Award- Gold Category, INFOSYS	2019
Prof. A. B. Pandit	CHEMTECH Leadership and Excellence Award Outstanding Achievement- R&D Excellence	2019
Prof. A. B. Pandit	Book "Drinking Water Treatment for Developing Countries", Published by RSC	2019
Prof. L.K.Mannepally	Goyal Award, Applied Sciences, Kurukshetra University	2019
Prof. V. G. Gaikar	'Eminent Engineering Personality the year' by the Assam State Centre of the Institution of Engineers (INE) in their 35th National Convention of Chemical Engineers	2019
Dr.C.S.Mathpati	Dr. M. Visvesvaraya Award of Marathi Vidnyan Parishad for Excellence in Research Relevant and Beneficial to Society.	2019
Prof. L.K.Mannepally	Most coveted ICC D. M. Trivedi Lifetime Achievement Award for the year 2018	2019
Prof. P.R.Gogate	Fellow of Indian National Academy of Engineering	2019
Prof. V.K.Rathod	Prof. Man Mohan Sharma Award for Science and Technology of Marathi Vidnyan Parishad	2019
Prof. S. S. Bhagwat	UAA-Distinguished Alumnus award in the Academics category for the year 2019	2019
Prof. P.D.Vaidya	Fellow of Maharashtra Academy of Sciences	2019

Prof.	ISCMA Award for an outstanding Professor of ICT 202		
V.K.Rathod			
Prof. P.R.Gogate	FY2020 JSPS Invitational Fellowships for Research in Japan 20.		
Prof. P.R.Gogate	Mid career award of UGC. 20		
Dr.R.A.	Top 2% of the world research scientists - The Standford University through @ PLOS Biology Journal, announced faculty of ICT	2020	
Mashelkar	(superannuated as well as ongoing).		
Prof. J.B. Joshi	Top 2% of the world research scientists - The Standford University through @ PLOS Biology Journal, announced faculty of ICT	2020	
	(superannuated as well as ongoing).		
Prof. G.D. Yadav	Top 2% of the world research scientists - The Standford University through @ PLOS Biology Journal, announced faculty of ICT	2020	
	(superannuated as well as ongoing).		
Prof. A.B. Pandit	Top 2% of the world research scientists - The Standford University through @ PLOS Biology Journal, announced faculty of ICT	2020	
	(superannuated as well as ongoing).		
Prof. V.G.	Top 2% of the world research scientists - The Standford University through @ PLOS Biology Journal, announced faculty of ICT	2020	
Pangarkar	(superannuated as well as ongoing).		
Prof.	Top 2% of the world research scientists - The Standford University through @ PLOS Biology Journal, announced faculty of ICT	2020	
L.K.Mannepally	(superannuated as well as ongoing).		
Prof.	Top 2% of the world research scientists - The Standford University through @ PLOS Biology Journal, announced faculty of ICT	2020	
A.W.Patwardhan	(superannuated as well as ongoing).		
Prof.	Top 2% of the world research scientists - The Standford University through @ PLOS Biology Journal, announced faculty of ICT	2020	
P.R.Gogate	(superannuated as well as ongoing).		
Prof. A.B. Pandit	Vice President of the Indian National Academy of Engineering.	2020	
Prof. P.R.Gogate	Dr. Naresh J. Suchak Innovation Award 20		
Dr. R. D. Jain	BIRAC Innovator Award 202		
Prof. P.R.Gogate	Dr K Anji Reddy Innovator of the Year Award of IIChE 20		
Prof. G.D. Yadav	INAE, Professor Jai Krishna Memorial Award 20		
Dr. V.H. Dalvi	AICTE- Visvesvaraya Best Teacher Award	2021	
Prof. A.B. Pandit	The survey carried out by Research.com ranked Professor A.B. Pandit as the number ONE scientist in India in area of Engineering	2022	
	and Technology		
Prof. P.R.Gogate	The survey carried out by Research.com ranked Professor P.R.Gogate as the number TWO scientist in India in area of Engineering	2022	
	and Technology		
Prof. J.B. Joshi	The survey carried out by Research.com ranked Professor J.B. Joshi as the number FOUR scientist in India in area of Engineering and	2022	
	Technology		
Prof. A.B. Pandit	Eminent Engineer Award 2021 of Engineering Council of India	2022	
Prof. G.D. Yadav	v Professor G.D. Yadav, former Vice Chancellor has been elected to the US National Academy of Engineering: For research, innovation, 20		
	and education in green chemistry, catalysis, nanotechnology, and chemical engineering leading to clean and green technologies		
Prof. G.D. Yadav	Prof. G.D. Yadav has been selected as the National Science Chair (Mode 1) by the Science and Engineering Research Board (SERB)	2022	
	of the DST, Govt of India		

Faculty Name	Recognitions & Membership			
Prof. S. S.	 Indian Institute of Chemical Engineers - Life Member and Past Chairman of Mumbai Regional Center. 			
Bhagwat	Oil Technologists Association of India - Life Member.			
	Society for Industrial Chemistry - Life Member.			
	 Indian Society for Surface Science and Technology - Life Member, Hon Secy, Western India. 			
	Maharashtra Academy of Sciences - Fellow (2008)			
	 Industrial and Engineering Chemistry, American Chemical Society - Former Member, Editorial Advisory Board. 			
	 Journal of Surface Science and Technology - Member, Editorial Board. 			
	Expert Member –NBA committee.			
	Member – RRC, University of Mumbai.			
	Member - Journal of Surface Science and technology.			
Dr. V. H. Dalvi	Membership in Editorial Boards with many scientific journals and agencies.			
Prof. V. G. Gaikar	Fellow, Indian National Academy of Engineering.			
	 Bharat Petroleum Distinguished Professor of Chemical Engineering (from 2nd March 2019). 			
	Fellow, Maharashtra Academy of Sciences.			
	Life Member, Indian Institute of Chemical Engineers.			
	 Life Member, Indian Society for Surface Science and Technology. 			
	Fellow Member, Oil Technologists Association of India.			
	Life Member, Asian and Mid-East Institute of Chemists.			
	Chairman, Wester Region, AICTE(2017).			
	 Member, Western Region Board of Apprenticeship and Training(2017). 			
	 Chairman, Expert Committee, Research, Innovation and Technology Transfer, RUSA-SPD, Maharashtra(2016). 			
	 Member, RUSA Council, Maharashtra State (2017-19). 			
	 Member, Sectional Committee (Chem Engg), Indian National Academy of Engineering (INAE) (2015-2018), New Delhi. 			
	 Member, TASK Force, Bioenergy Sciences, Department of Biotechnology, Ministry of Science and Technology, GoI.(2014-2018). 			
	 Member, Working group-Innovation Council, Maharashtra State(2015-2018). 			
	 Member, National Program on Carbon Capture, Department of Science and Technology, GoI(2016-2019). 			
	 Member, Advisory Committee, UGC-CAS program in Chemical Engineering, IISc(2019). 			
Dr. P. K. Ghosh	Fellow, Indian Academy of Sciences.			
	 Chairman, Water Technology Initiative, Department of Science & Technology, GoI. 			
	 Chairman, Project Evaluation Committee, Bilateral Programmes in Clean Tech Sector, DST-GITA. 			
	 Co-Chairman, CSIR Mission Mode Project on Sustainable Development through Catalysis. 			
	Member, Asian Paints Technology Council.			
	 Member, Board of Directors, Barefoot College, Tilonia, Rajasthan. 			

Table 4.11:	Facultv	Recoanitions &	& Memberships
	• Member, Expert Committee for Appraisal of programmes and projects undertaken by the Department of Biotechnology, GoI		
------------------	--		
	during the 12th Plan.		
	Member, NRDC National Prize Award Committee		
	• Member, Advisory and Screening Committee of the Common Research & Technology Development Hubs Programme of DSIR.		
	Vice President, Materials Research Society of India (MRSI).		
Dr. P. R. Gogate	Member, Indian Institute of Chemical Engineers, 2003.		
2	Young Associate of Maharashtra Academy of Sciences, 2007.		
	Member, National Academy of Sciences, Allahabad, 2009.		
	Young Associate, Indian Academy of Sciences, Bangalore, 2009-2012.		
	Member, Indian Society for Technical Education, 2011.		
	Young Associate, Indian National Academy of Engineering, 2012.		
	Member, Editorial Board, Ultrasonics Sonochemistry, 2013-onwards.		
	Chartered Member, Institution of Chemical Engineers, UK, 2013.		
	Fellow, Maharashtra Academy of Sciences, 2014.		
	• Member, Board of Governors & Honorary Secretary, UDCT Alumni Association, 2013-2015, 2015-2017, 2017-2019.		
	 Member, Editorial Board, Desalination and Water Treatment (Taylor & Francis), 2016- 2018. 		
	 Associate Editor, Chemical Engineering Processing, Process Intensification (Elsevier), 2016-2019. 		
	Member, Board of Governors & Honorary Secretary, UDCT Alumni Association.		
	 Member, Editorial Board, Desalination and Water Treatment (Taylor & Francis), 2016- 2018. 		
	 Associate Editor, Chemical Engineering Processing, Process Intensification (Elsevier), 2016-2019. 		
	 Member, Editorial board, Ultrasonics Sonochemistry (Elsevier), 2015-2018. 		
Prof. J.B. Joshi	Fellow, The World Academy of Sciences (TWAS).		
	Fellow, Indian National Science Academy (INSA).		
	Fellow of Indian Academy of Science (IASc).		
	Hon. Fellow, Indian Institute of Chemical Engineers.		
	Fellow, Maharashtra Academy of Sciences.		
	Patron Fellow, Marathi Vidnyan Parishad.		
	Coal Cleaning Initiative, DST, Government of India.		
	Chairman Science Advisory Committee, CSIR-IICT Hyderabad.		
	Fellow, Indian National Academy of Engineers(INAE).		
Dr. R.D. Jain	Member, European Respiratory Society, Switzerland.		
	Member, Young Scientist Committee, Controlled Release Society, USA.		
	Mentor, Mentor-Protégé Program, Member, Controlled Release Society, USA.		
	Member, Controlled Release Society- USA and Indian Chapter.		
	Member, Association of Biotechnology Led Enterprises (ABLE), India.		
	Member, American College of Clinical Pharmacology, USA .		
	Member, Proteomics Society, India.		

Prof. A.M. Lali	• Member, Task Force on Production of Methanol using Biomass/Municipal Solid Waste/source other than coal, NITI Aayog, New					
	Delhi, 2017-2018.					
	 Member, Scientific Advisory Committee (SAC), Centre of Innovative and Applied Bioprocessing (CIAB), Mohali, 2016 – 2019. 					
	 Research Council as a Scientific Expert/Member for Bharat Petroleum Corporation Ltd. (BPCL), 2016-2018. 					
	Consultant to a number of Companies in India and abroad for chemical/biochemical and biopharmaceutical/pharmaceutical					
	manufacturing					
	Member, Task Force Committees on Biofuels; Algal Biotechnology; and Nutrition and Food Security, Department of Biotechnology,					
	Ministry of Science & Technology, Government of India, 2011 onwards.					
	 Member, core group of scientists in the area of bioenergy with Ministry of New and Renewable Energy, Government of India. 					
	• Member, Department of Biotechnology, Ministry of S&T of India Task Force in Biofuels, Algal Biotechnology and Bioproducts and					
	Bioprocesses					
	ember, Maharashtra Academy of Sciences.					
	 Member, Apex Committees, Food and Nutritional Safety, DBT, India. 					
	 Member, Task Force Committees on Biofuels, Bioprocesses and Bio-products, DBT, India. 					
	 Member of the Scientific Advisory Committee (SAC) on Industrial Biotechnology. 					
	Member, Research Council Committee, IMTECH, Chandigarh.					
	Member, Scientific Advisory Committee, IIT, Indore					
	Adjunct Professor, School of Mechanical and Chemical Engineering, The University of Western Australia, Australia.					
	 Member Editorial Journal of Preparative Biochemistry and Biotechnology. 					
Prof. L. K.	Dr. B. P. Godrej Distinguished Professor.					
Mannepalli	Independent Board of Directors- Indo Amines Ltd.					
	Independent Board of Directors-VOL.					
	Independent Board of Directors- GBL.					
	Member, CSIR-HRDG- Inorganic & Physical Chemistry Research Committee.					
	Member, Research Advisory Council, GAIL, (2018-2021).					
	 Member, Department of Science and Technology-FIST (Chemical Sciences)(2015-till date). 					
	 Member, Research Council, HEMRL(High Energy Materials Research Laboratory), Pune (DRDO)(2015-tilldate). 					
	Member, DST, SSR committee.					
	 Member, Department of Science and Technology-SAIF (Chemical Sciences)(2019-till date). 					
	 Member, Third Part Evaluation Committee, R& D projects, Department of Science and Technology. 					
	Member, Board of Governors, IIT-Hyderabad.					
	Member, Standing Committee for Promoting Women in Science.					
	Member, RAC- DRDO.					
	Chairperson , DST-PAC , I&PC, DST, India.					
	Member, Selection Committee, Raja Ramanna Fellowship Scheme, DAE, India.					
	Fellow of The World Academy of Sciences (TWAS).					
	Fellow of the Maharashtra Academy Sciences.					

	Fellow of the Indian National Science Academy.
	Fellow of The Royal Society of Chemistry, UK.
	Fellow of National Academy of Sciences, India.
	Fellow of Andhra Pradesh Academy of Sciences, Hyderabad.
Dr. K. V. Marathe	M.Ind.Soc.Comp.Mat.
	M.I.I.Metal.
	• M.I.W.S.A.
	Member scientific advisory committee SWDEWES-2013.
Dr. C. S.	Life Member, IIChE.
Mathpati	
Dr. P. R. Nemade	Member, Indian Membrane Society.
	Member, Oil Technologists Association of India.
	Member, Indian Institution of Chemical Engineers.
	Membership of important Committees.
	 Membership of Editorial Boards many scientific journals and agencies.
Prof. A. B. Pandit	Fellow, The World Academy of Sciences, 2015.
	 Fellow, National Academy of Sciences in India, Allahabad, 2009.
	 Fellow, Indian National Science Academy, 2008.
	 Fellow, Indian Academy of Sciences, 2008.
	 Fellow, Indian National Academy of Engineering, 2006.
	 Fellow, Maharashtra Academy of Sciences, 1996.
	Member of DST-FIST.
	Member of UGC-SAP.
	Member of DST ChemEngg PAC.
	Member of DST MOFPI PAC.
	Adjunct Professor at BIT's Goa Campus.
	Member, Board of Governor of IIT Bombay.
	 Chairman, HyCa Technology Pvt. Ltd., Mumbai.
	President, Land Research Institute (LRI).
Prof. A. W.	 Fellow of Indian National Academy of Engineering.
Patwardhan	
Prof. A. V.	Life member of Indian Institute of Chemical Engineers.
Patwardhan	 Member – Experts' panel formed by the DSIR (New Delhi) for accreditation of Research and Development units of various
	industries.
	 Member – reviewers' panel of Global Initiative of Academic Networks (GIAN), IIT Kharagpur.
	 PhD / Master's Open Defence Examinations of IIT Kharagpur; IIT Bombay; NIT Rourkela.
	 Faculty selection committees: IIT Kharagpur; Mumbai University; NMU Jalgaon.

	BOG Member: UDCT Alumni Association; Thadomal Shahni Engineering College, Mumbai.
	• Member – Research and Recognition Committee in Chemical Engineering, Chemical Technology and Biotechnology (Engineering)
	under the faculty of Science and Technology.
	Membership of Editorial Boards with many scientific journals and agencies.
Prof. V. K.	Fellow of Maharashtra Academy of Sciences
Rathod	Member of IIChE.
	Member of UDCT alumina Association.
	Member of OTA.
	Member, Academic Counsel, Dr. BATU, Lonere, Maharashtra.
	Treasurer, Chemcon 2013.
	Member Technical Committee Chemcon 2013.
	• Member, organizing committee for "Chemcareers 2012" organized by ICT-Royal Society of Chemistry (RSC)" October 2012.
	• Member, 2nd International Indo German Symposium on Green Chemistry and Catalysis for Sustainable Development, 2012.
	 Member, Technical Committee, Asia Pacific Congress on Catalysis (APCAT 7).
	Membership of Editorial Boards with name of journal and agency :
	 Editorial board of Catalysis Green Chemistry and Engineering (Begell House Publication, USA).
	Guest editor for two special issues i.e. Journal of Chemical Sciences (Springer) and Chemical Records (Wiley).
Prof. B. N.	 President, World Forum for Crystallization, Filtration and Drying (WFCFD).
Thorat	Member, State Environment Appraisal Committee, MoEF, Maharashtra Govt.
	 Organizer 13th International Workshop on Crystallization, Filtration and Drying.
	Member, CAC Advisory committee, Maharashtra Pollution Control Board.
	Scientific member, Nordic Baltic Drying Conference, Saint Petersburg, Russia.
	USAID and IKP: Solar Conduction Dryer scale up in Bangladesh, 2017.
Dr. P. D. Vaidya	Life Member, Indian Institute of Chemical Engineers.
	Alumnus, Alexander von Humboldt Foundation, Germany.
	Membership in Editorial Boards with many scientific journals and agencies.
Prof. G.D. Yadav	Life Fellow, Maharashtra Academy of Sciences
	Life Fellow, Indian Institute of Chemical Engineers
	Life Fellow, Indian Chemical Society
	Member, American Chemical Society
	Life Member, Catalysis Society of India
	Life Member, Indian Society for Surface Science and Technology
	Life Member, Membrane Society of India
	Life Member, UDCT Alumni Association
	Life Member, National Society of the Friends of Trees
	Life Patron, Marathi Vidnyan Parishad
	 Member, Organizing Committee: 3^{ra} International Workshop on Crystallization, Filtration and Drying, February 2008

Current Catalysis, Bentham Science Publishers, 2011-on
Member, International Advisory Board
• Member or chaired several national and international committees of MHRD, DST, DBT, UGC, AICTE, CSIR, the PSA's on Green
Chemistry, the Planning Commission's Pan India S&T Committee, and the Government of Maharashtra's Rajiv Gandhi S&T
Commission Peers Group. He is Chairman, Research Council, CSIR-CSMCRI.
Member of RC of IICT Hyderabad and NIIST Trivandrum.
Member of Selection Committees of directors of many CSIR labs.
Member of Maharashtra Innovation Council.
 Member of many committees of UGC, AICTE, NAAC, DST, DBT, CSIR, CII, FICCI, ICC, IIChE, ACS.
 Jagdish Chandra Bose National Fellow, Dept of Science & Technology, GoI
Chief Coordinator, Centre for Nanosciences& Nanotechnology, U of Mumbai
Chief Coordinator, Centre for Green Technology, U of Mumbai
Coordinator, UGC Centre for Advanced Studies in Chemical Engineering, ICT
Coordinator, UGC Networking Resource Centre in Chemical Engineering, ICT.
Co-P.I., DBT-ICT Centre for Energy Biosciences , ICT
Co-P.I., ICT-DAE Centre for Chemical Engineering Education and Research, ICT
 Johansen Crosby Visiting Chair Professor of Chemical Engineering, Michigan State U, East Lansing, MI, USA.
 Senior Visiting Fellow (Reader's grade), Loughborough U, UK
Reader (Associate Professor) in Chemical Engineering, UDCT, U of Mumbai
 Herdillia Chemicals-UDCT Diamond Jubilee Distinguished Fellow (Professor's grade), UDCT, U of Mumbai
Consultant, Bombay Oil Industries Ltd, Mumbai
 NSERC Post Doctoral Fellow, U of Waterloo, Canada
Research Officer, Bombay Oil Industries Ltd, Mumbai
Leverhulme Overseas Visiting Fellow, Loughborough U, UK

4.6 Innovations by the Faculty in Teaching and Learning (5)

Institute Marks (5)

In order to make the teaching-learning process interesting and interactive a lot of measures are taken by the faculties. There mainly rely on the use of ICTs common practices undertaken are listed below:

- 1. Use of Email to communicate with the students Notices, Assignments, Deadlines, etc. are communicated to the students via email thereby making communication very prompt. Teachers other than using the available material also try to develop their own videos or animations to explain a concept more clearly.
- 2. The college website has been made very student-friendly wherein academic years are made available to the students via their individual log-ins.
- 3. The best way to judge the student's grasp of a subject is by the means of class tests and quizzes. To make this job more interesting, tests are

generated in the forms of crosswords, mazes, puzzles, etc. so that the students find them engaging.

4. As a part of our continuous efforts to groom our students, Final Year B Chem students are required to take up a major project which consists of Literature Survey, Process & site selection block diagram, Kinetics & thermodynamic feasibility, Material & Energy Balance, Sizing of all the equipment, Detailed mechanical design, one equipment fabrication, P & ID diagram, controls, safety costing, references, waste management system, Report Submission, and Examination.

Biometric Attendance System:

Recording Facilities Available in classrooms

Figure 4.1: Innovations in teaching

During the Covid -19 pandemic, the departmental faculties had to reinvent their teaching methods and develop innovative ways to engage students. The following teaching methods were employed by the faculties:

- 1. Online teaching platforms such as MS Teams, Google Classrooms, Zoom meetings, and Webex Meetings.
- 2. The students were offered flipped classrooms.
- 3. The faculties conducted live lectures whenever possible.
- 4. The faculties used to send the pre-recorded video lectures to the students
- 5. The faculties also conducted online doubt-solving sessions, group activities, viva sessions, etc.

Figure 4.2: Online mode of teaching and innovations by faculties in teaching and learning

Management Information System (MIS)

Dr. Sachin Jadhav (Dr. Sachin Jadhav (Dr. Sachin Jadhav) Assistant P				/ (Department Level) ant Professor : Faculty	
Exam ~ Personal ~	Academics ~ Requisit	ions ~ Network ~			
Dr. Sachin	Academic Functions > Academic Content >	🖹 Documents 💊 Link 🖂] Email		JOB TRAY UPDATE
Assistant Professor	Course Outline Research Topic	and ?			Exam 40 Faculty Guide 20
Institute Of Chemical Technology	Guide/Synopsis/Thesis → Approval	Guide Approval > HOD Approval >	Admission Approval UG/PG Project Guide	4	Allocation Faculty,No Of 7
🚯 DASHBOARD		Dean Approval → Travel Reimbursement For Open Defence Approval	Guide Student Topic Approval	Post	Seat,Referee Allocation
	ALL	Student Open Defence Approval	Guide Student Colloquium		Final Thesis Approval 5
QUICK LINKS		Unfreeze Student Project Guide Choice	Guide Thesis Approval		Master Project 121 Evaluation
Notices	2	Master Project Internal Referee Approval	Guide Final Thesis Approval		Project Evaluation 36 Student Open Defence 6
Blogs Forums					Approval Student Topic Approval
					Synopsis Approval 23
					Thesis Approval 26

Figure 4.3: Faculty MIS portal login window

4.7 Faculty as participants in Faculty development/training activities/STTPs (10)

Institute Marks (8.8)

	Max 5 Per Faculty			
Name of the faculty	2020-21 (CAYm1)	2019-20 (CAYm2)	2018-19 (CAYm3)	
Prof. V. K. Rathod	0.00	5.00	5.00	
Prof. P. R. Gogate	3.00	0.00	5.00	
Dr. S. V. Jadhav	5.00	5.00	5.00	
Dr. P. D. Vaidya	3.00	0.00	0.00	
Dr. V. H. Dalvi	5.00	5.00	0.00	
Prof. S. S. Bhagwat	0.00	3.00	0.00	
Prof. A. W. Patwardhan	0.00	3.00	0.00	
Prof. A. V. Patwardhan	3.00	0.00	0.00	
Prof. D. D. Sarode	3.00	0.00	0.00	
Dr. M. D. Yadav	5.00	5.00	0.00	
Sum	27.00	26.00	15.00	
RF = Number of Faculty required to comply with 20:1 Student Faculty Ratioas per 5.1	14.00	14.00	14.00	
Assessment [3*(Sum / 0.5RF)]	10	10	6.43	
Average		8.81		

Table 4.12: Faculty as participants in Faculty development/training activities/STTPs with calculations

Table B.4.7

Table 4.13: Fa	culty as	narticinants	in Faculty	v developn	ment/training	activities	/STTP
	curry us	participants	minacuity	y ucvciopii	neng training	activities	/ 51 11 3

Faculty name	Title	Symposia/Seminar	Place	Duration	Year
Prof. V. K.	Training Programme on "Digital Transformation	Training at ICT	ICT, Mumbai	5 Days	2018
Rathod	through E-Governance and Information &	5		,	
	Communication Technology (ICT)".				

Prof. P. R. Gogate	Training Programme on "Digital Transformation through E-Governance and Information & Communication Technology (ICT)".	Training at ICT	ICT, Mumbai	5 Days	2018
Prof. V. K. Rathod	Attended the faculty development programme on " Machine Learning with Business Applications" with Primer on Big Data Al & Deep Learning	Training at ICT	ICT, Mumbai	5 days	2019
Dr. S. V. Jadhav	Enhancing accountability and responsiveness in Scientific organization	Faculty Development Programme	Osmania university, Hydrabad	1 week	2019
Dr. P. D. Vaidya	Participation & oral Presentation titled "Butanol reforming for hydrogen production in 7th International Hydrogen & fuel cell conference	Faculty Development Programme	Jodhpur	2 days	2019
Prof. V. K. Rathod	Participate in the meeting of "Design and Development of a customised ERP system for a group of technical institutes, whose functions are similar in nature under TEQIP-III".	Meeting	NPIU office, New Delhi	1 day	2019
Dr. V. H. Dalvi	The faculty development programme on" Machine Learning with Business Applications" with Primer on Big Data Al & Deep Learning	Faculty Development Programme	ICT, Mumbai	5 Days	2019
Prof. S. S. Bhagwat	Management Development Programme for Teaching Staff	Faculty Development Programme	ICT, Mumbai	4 days	2019
Prof. A. W. Patwardhan	Management Development Programme for Teaching Staff	Faculty Development Programme	ICT, Mumbai	4 days	2019
Prof. A. V. Patwardhan	Professional development training programme	Management Development Programme	IIT Trichy	4 days	2019
Prof. V. R. Gaval	Proficiency Improvement Programme on Advances in Plastic Moulding The Automotive Research Association of India	Faculty Development Programme	ARAI, Pune	1 day	2019

Prof. V. R. Gaval	Swayam Course on "Fundamentals of surface engineering mechanisms, processes and characterizations"	Faculty Development Programme	ICT, Mumbai	1 day	2019
Dr. M. D. Yadav	Faculty Development Programme on "Teaching and Learning of Advanced Control Systems"	Faculty Development Programme	ICT, Mumbai	1 week	2020
Dr. M. D. Yadav	webinar on "Technical Manuscript writing and publishing in reputed journal"	Faculty Development Programme	ICT, Mumbai	One day	2020
Dr. S. V. Jadhav	Programming for Everybody	Online Training	University of Michigan	8 weeks	2020
Dr. S. V. Jadhav	AI for everyone	Online Training	deeplearning.ai (Stanford University)	4 weeks	2020
Prof. P. R. Gogate	Online The Art of Living Productivity Enhancement Program (PEP)	Training at ICT	ICT, Mumbai	3 days	2020
Prof. D. D. Sarode	Training on scolarship Fellowship offered by Ministry of Tribal Affers Department	Faculty Development Programme	ICT, Mumbai	3 days	2021
Dr. S. V. Jadhav	Renewable Energy Engineering_ Solar, Wind and Biomass Energy Systems	Faculty Development Programme	SWAYAM	8 weeks	2021
Dr. S. V. Jadhav	Innovation to Entrepreneurship A Roadmap	Faculty Development Programme	ICT, Mumbai	1 week	2021
Dr. S. V. Jadhav	Application of Artificial Intelligence in Research and development	Faculty Development Programme	ATAL Academy	1 week	2021
Dr. S. V. Jadhav	Mentoring Pedagogy and Online Teaching in Higher Education	Faculty Development Programme	IIT, Guwahati	1 week	2021
Dr. M. D. Yadav	Recent trends in chemical and allied Industries	Faculty Development Programme	Government Polytechnic Daman	5 days	2021
Dr. M. D. Yadav	Environment, Energy , Health and Safety: Trends & Industrial Aspects	Faculty Development Programme	KK Wagh, Nashik	5 days	2021

Dr. M. D. Yadav	Recent Development in Sustainable processes	Faculty Development Programme	IICT Bhadohi	5 days	2021
Dr. M. D. Yadav	Refresher course in Material Science and Nanotechnology	Faculty Development Programme	North Eastern Hill University	14 days	2021
Dr. M. D. Yadav	Pedagogical Innovations and Research Methodology (Interdisciplinary)	Faculty Development Programme	SWAYAM	4 months	2021

Table 4.14: Faculty Conducted/Participated in Symposia/Seminar/Conference/Workshop

Name of	Title	Conducted /Participated in	Place			
Faculty		Symposia/Seminar/Conference /Workshop				
	2021-2	2				
Dr P.R. Nemade	Ultrasound-assisted water-based GO/BiOI photocatalyst for visible light photodegradation	Sustainable Technologies in Water Treatment and Desalination (STWTD 2022	NIT Calicut			
Dr. S.V. Jadhav	Life Cycle Assessment of FDCA Production From Cellulose.	Advances in Chemical and Material Sciences conference (ACMS) 2022, Conference organized by IIChE, Kolkata.	Kolkata			
Dr. R. D. Jain	Shimadzu 8 th Global Pharma Summit.	Shimadzu Corporation.	Mumbai			
Prof. A. V. Patwardhan	Studies in Nano-Filtration of Dyes in Industrial Effluent.	Advances in Chemical and Material Sciences conference (ACMS) 2022, Conference organized by IIChE, Kolkata.	Kolkata			
Dr P.R. Nemade	Ultrafast removal of hexavalent chromium ions from water using amide covalent triazine framework	Sustainable Technologies in Water Treatment and Desalination (STWTD 2022)	NIT Calicut			
	2020-2	1				
Dr. S. V. Jadhav	Life Cycle Assessment of Heat Pump and Microwave Vacuum Dryers.	International Chemical Engineering Conference (ICHEEC) 2021, Conference organized by NIT, Jalandhar.	Jalandhar			
Prof. A. V. Patwardhan	Evaluation of thermodynamic models for the prediction of solubility of antibiotics in various solvents, CHEMCON 2021.	Conference by CSIR-Institute of Minerals and Materials Technology, Bhubaneshwar	Bhubaneshwar			
Dr. S. V. Jadhav	Life cycle assessment of methanol production by natural gas route.	International Chemical Engineering Conference (ICHEEC) 2021, Conference organized by NIT, Jalandhar.	Jalandhar			
Dr. M.D. Yadav	Evaluation of thermodynamic models for the prediction of solubility of antibiotics in various solvents, CHEMCON 2021.	Conference by CSIR-Institute of Minerals and Materials Technology, Bhubaneshwar	Bhubaneshwar			
Dr P.R. Nemade	Mono Disperse BiOl/GO by ultrasonic synthesis for effects in visible light photocatalytic degradation of reactive dyes.	U.K Catalysis Conference (UKCC 2021), University of Belfast, UK.	Belfast, U.K.			
	2019-20	0				
Dr. V. H.	Fundamentals of Molecular Simulations.	Seminar at Centre for Continuing Education, IIT	Kanpur			
Dalvi		Kanpur				
Dr. V. H. Dalvi	Machine Learning with Business Applications	Workshop at DCAL, IIM Bangalore	Bangalore			
Prof. A. V. Patwardhan	Python and Machine Learning	Workshop by TEQIP	ICT, Mumbai			

Prof. P. R.	Improved wastewater treatment using hydrodynamic cavitation	Training	Lviv Polytechnic,
Gogate			Lviv, Ukraine
Dr P.R.	Graphene Oxide incorporated BiOl Photocatalyst for solar degradation of	International Conference on Emerging Trends in	Vellore.
Nemade	reactive violet.	Catalysts, VIT, T.N.	
Prof P.R.Gogate	Convenor, OYCE-2020.	Department of Chemical Engineering, ICT Mumbai.	Mumbai.
Prof	FDP-Perspectives on the past, present & future of advanced materials.	Seminar at Gadag, Karnataka.	Karnataka.
A.V.Patwardhan			
Prof B.N.Thorat	14 th International Workshop on Industrial Crystallization, Theme: Industrial Crystallization.	Workshop at K.V Auditorium, Matunga, Mumbai-400019.	Mumbai.
Dr C.S.Mathpati	Faculty Development Programme on Innovation to Entrepreneurship- A Roadmap.	Institutions Innovation Council.	Mumbai.
Dr C.S.Mathpati	Recent Advancement in Chemical Biology & Drug Discovery.	TEQIP-III	Mumbai.
Dr S.V.Jadhav	Certificate Programme on Intellectual Property Rights & Patenting.	Starcore Technologies.	Online.
Dr S.V.Jadhav	Certificate Webinar on Technical Paper Writing and Publishing in Reputed Journals.	Starcore Technologies.	Online.
Dr S.V.Jadhav	Mentoring Pedagogy & Online Teaching In Higher Education.	E&ICT Academy, IIT Guwahati.	IIT Guwahati.
	2018-19		
Prof. S.S.	National Institute of Educational Planning & Administration	NIEPA	University of Oxford
Bhagwat			
Prof. S.S.	International Conference on Energy and Environment	Keynote speaker at International Conference on	VIT, Pune
Bhagwat		Energy and Environment	
Prof. S.S.	Interfacial Science & Engineering: Basics and Applications	Invited as speaker for Research seminar on	Ahmedabad
Bhagwat		Interfacial Science & Engineering: Basics and	University, Gujrat.
		Applications	
Prof. S.S.	Environment and Green Technology for Sustainable	Keynote speaker for National seminar on	Pune
Bhagwat	Development	Environment and Green Technology for	
		Sustainable Development	
Prof. S.S.	Energy and Exergy Engineering	Delivered a lecture on "Energy and Exergy	KLES Science &
Bhagwat		Engineering	Commerce College
Prof. S.S.	Importance of Sciences in Engineering	Invited to talk on Importance of Sciences in	Don Bosco Institute
Bhagwat		Engineering	of Technology
Prof. P.K.	Eye on Green Technology, International Conference on Green	Invited as Guest Speaker	Jain University,
Ghosh	Methods for Separation, Purification and Nanomaterial Synthesis (GMSP&NS-2018)		Bengaluru
Prof. P.K.	Illustrations of Opportunities to Convert Waste into Value	ICC Seminar on Wealth from Waste	Ankleshwar, Gujarat
Ghosh			
Prof. P.K.	Discovery of Cozaar, Losartan Potassium Salt at DuPont	Conference on an Interdisciplinary Approach from	St. Xavier's College,
Ghosh		Fundamental Sciences to Translational Medicine	Mumbai,
Prof. P.K.	How SMEs can partner and benefit from the expertise	Seminar on Technology options for sustainable	UAA Ahmedabad
Ghosh		growth of Indian chemical industry	
Prof. P.K.	Practical applications of Forward Osmosis with eye on energy	National Conference on Novel Chemical	Anand, Gujarat
Ghosh	conservation	Systems for Therapeutic and Energy	

		Applications (NCSTEA-2019)	
Prof. P.K. Ghosh	Technology pull and technology push are both important	ChemProtech India / Chemspec India 2019	CSIR-CSMCRI, Bhavnagar
Prof. P.R. Gogate	Chemical Reaction Engineering	Training program for Field officers of Maharashtra Pollution Control Board	Maharashtra
Prof. P.R. Gogate	Process Calculations, Distillation & Extraction, Crystallization & Filtration	Invited Faculty in Refresher course on Chemical Engineering organized by Indian Chemical Council	Ranipet, Tamilnadu
Prof. P.R. Gogate	Hydrodynamic cavitation for wastewater treatment	Invited Lecture in School on Advanced Oxidation Processes	BITS, Goa,
Prof. P.R. Gogate	Cavitation Technologies for Wastewater treatment", Invited lecture organized by MITCOE	Invited lecture organized by MITCOE	Alandi, Pune
Prof. P.R. Gogate	Chemical Reaction Engineering	Invited Faculty in Refresher course on Chemical Engineering organized by Indian Chemical Council	Mumbai
Prof. P.R. Gogate	Process Intensification using Cavitational reactors	Invited lecturer	Kurukshetra University
Prof. P.R. Gogate	Process Calculations, Chemical Reaction Engineering, Distillation & Extraction, Crystallization & Filtration	Invited Faculty in Refresher course on Chemical Engineering organized by Indian Chemical Council	Southern Regional Center, Cuddalore, TN
Prof. P.R. Gogate	Sono-crystallization	Industrial training program on crystallization	Cipla, Mumbai
Dr. R.D. Jain	Continuous synthesis of trimethyl chitosan/palladiumnano particles as potential anti-cancer therapy	Presentation at 17th International Symposium of Controlled Release Society	The Lalit, Mumbai
Dr. R.D. Jain	Chitosan based coprocessed excipients for improved tableting	Seminar at Wadhwani Research Center for Bioengineering	IIT, Mumbai
Dr. R.D. Jain	Split and Recombine Micromixer based continuous Synthesis of Chitosan Nanoparticles	Oral Presentation at Microfluidics and Lab on a Chip conference, SELECTBIO	Mumbai
Dr.S.V. Jadhav	Enhancing Accountability and Responsiveness in Scientific Organisations	TEQUIP III	Osmania University, Hyderabad
Prof.A.M. Lali	2nd EU-India Conference on Advance Biofuels	Conference on Advance Biofuels" organized by Ministry of Petroleum & Natural Gas, Govt. of India & European Commission	New Delhi
Prof.A.M. Lali	Clean Energy "Development of Enzymes & Microbial Technologies for Clean Energy	ICGEB	New Delhi
Prof.A.M. Lali	Guest Lecturer	Toray India Forum Series	The Claridges, New Delhi
Prof.A.M. Lali	AIDA's National Technical Seminar	AIDA's National Technical Seminar	New Delhi
Prof.A.M. Lali	An Energy Science & Technology Agenda for India organized by Shell Technology	Workshop on Chemical Conversion of bio- feedstocks in the context of the energy transition	Bangalore
Prof.A.M. Lali	Refining & Petrochemicals Technology	Centre for High Technology Ministry of Petroleum & Natural Gas, Govt. of India	Mumbai

Prof.A.M. Lali	Recent innovations in algal biofuels and bio-energy technologies	Delivered a lecture & attended a workshop	Dehradun
Prof.A.M. Lali	DBT National Workshop	Keynote Speaker	Department of Biotechnology, Govt. of India, New Delhi
Prof.A.M. Lali	ACHEMA 2018	ACHEMA 2018	Frankfurt am Main, Germany
Prof.A.M. Lali	Ethanol Summit	Panelist for the Ethanol Summit of the Asia- Pacific	Minneapolis, Minnesota, USA
Prof.A.M. Lali	Challenge and opportunities in lignocellulosic Biorefining	3rd LBNet Conference	Cheshire, UK
Prof.A.M. Lali	National Technical Seminar	by AIDA	New Delhi
Prof.A.M. Lali	Guest speaker at A K Dorle Memorial lecture series III	Guest speaker at A K Dorle Memorial lecture series III	University Department of Pharmaceutical Sc. Nagpur University
Prof.A.M. Lali	Advanced Biofuels	EU-India Conference	University Department of Pharmaceutical Sc. Nagpur University
Prof. A.M. Lali	Mining marine by-products for functional molecules	Lecture by Ms. Aishwarya Mohan, Research Manager, Cape Breton University	Canada
Prof. A.M. Lali	Cyber Colloids: a small Irish company with a big interest in seaweed	Lecture by Dr. Sarah Hotchkiss, Project Manager Cybercolloids Ltd.	Ireland
Prof. A.M. Lali	Staged bioprocessing- Maximizing economic value and biomass utilization	Lecture by Dr. John Sewuster, Waypoint Business Solutions Inc	Canada
Prof. A.M. Lali	Overview of hand harvesting Ascophyllum nodosum from Ireland's pristine Atlantic waters to being a world leader in the marketplace	Lecture by Dr. Noreen Breathnach	Ireland
Prof. A.M. Lali	Exploring Solar Radiation Relations of Seaweeds Floating at Sea: A Tool to Counteract Ocean Warming?	Lecture by Prof. Ricardo Radulovich, Dept. of Biosystems Engineering, University of Costa Rica	Costa Rica
Prof. A.M. Lali	The Role of UKRI-GCRF Global Seaweed STAR in meeting the challenges of the Philippine Seaweed Industry	Lecture by Dr. Anicia Hurtado, Scientist- Consultant in Seaweed Tissue Culture and Aquaculture	Philippines
Prof. A.M. Lali	Computational Modelling in Synthetic Biology	Lecture by Prof. K.V. Venkatesh, Department of Chemical Engineering, IIT Bombay	IIT Mumbai
Prof. A.M. Lali	International and National Perspectives of Sustainability and CSR	Lecture by Mr. Bibhuti Pradhan, General Manager (CSR), Indian Oil Corporation Limited (IOC)	New Delhi
Prof. A.M. Lali	Engineering mammalian cell factories for production of recombinant proteins, vesicles and gene therapies	Lecture by Prof. Mark Smales, University of Kent	ŪK
Prof. L. K. Mannepalli	IZC-2019	Keynote lecture at IZC-2019	Perth, Australia
Dr. C.S.	Computational Fluid Dynamics Of Heat transfer in Packed And Fluidized	National Conference on Fluid Mechanics and Fluid	MNNIT Allahabad

Mathpati	Bed Systems	Power	
Dr. C.S.	Application of Computational Fluid Dynamics	Workshop on Computational Fluid Dynamics and its	VJTI, Mumbai
Mathpati		application	
Dr. C.S.	CFD modeling of a dual Fluidized Bed Gasifier	8 th Global Conference on Global Warming	Doha, Qatar
Mathpati		, , , , , , , , , , , , , , , , , , ,	
Prof. A.B.	Sustainable Waste Management: Municipal Solid Waste and e- Waste	IGCS Winter School	IIT Madras
Pandit			
Prof. A.B.	Groundnut shell Biochar-Production, characterization, and study	2 nd International Conference on Bioresources,	Gangwon Province,
Pandit	of its interactive mechanism with crop fertilizer	Energy, Environment & Materials Technology	South Korea
Prof. A.B.	A two stage treatment of alkyd resin wastewater: Hydrodynamic	DAE BRNS 8 th Biennial Symposium on emerging	BITS-Pilani-Goa
Pandit	cavitation followed by Peroxane process in gas inducing reactor	trends in Separation Sciences and Technology	
Prof. A.B.	INAE DST initiative on Laboratory safety and hazardous waste	Lecture at Indian Institutes of Science Education and	Pune
Pandit	management	Research (IISER)	
Prof. A.B.	Process Intensification Strategies for Chemical Industry	ICT-UAA Silver Jubilee Seminar	Ahmadabad
Pandit			
Prof. A.B.	Intensification of intracellular enzyme recovery	Key note Speaker at 'ACES-2019'	IISER Bhopal
Pandit			
Prof. A.B.	National Opportunities for Chemical Engineers	Key note Lecture, CHEMIX 2019	VNIT Nagpur
Pandit			
Prof. A.B.	Laboratory Safe Practices and Waste Disposal in Academic and R & D	Invited Talk at 'INAE-DST'	Savitribai Phule Pune
Pandit	Institutes		University, Pune
Prof. A.W.	CFD Modeling for Reactor Design	Symposium on Chemical Reaction Engineering	NCL, Pune
Patwardhan			
Prof. A.W.	Synthesis of boron doped carbon nanotubes using floating	Second International Conference on Nano Science and	JNTU-Hyderabad
Patwardhan	catalyst chemical vapor deposition	Engineering Applications ICONSEA	
Prof. A.W.	Synthesis of high aspect ratio graphene oxide sheets using one pot	Conference on Nano Science and Engineering	JNTU-Hyderabad
Patwardhan	electrochemical exfoliation	Applications ICONSEA-2018	
Prof. A.W.	Numerical Simulations of the Gas-Liquid two phase flow using	16th Multiphase flow conference	Dresden, Germany
Patwardhan	population balance modelling in Vertical Pipe		
Prof. A.W.	Sensitivity Analysis for CFD Simulations of Randomly Arranged	12th International Conference on Complex	IIT-Roorkee
Patwardhan	Packed Beds of Spheres	Fluids and Soft Matter	
Prof. A.W.	Experimental and Computational Studies for Two Phase Flow Pressure	7th International and 45th National Conference on	IIT-Bombay, Mumbai
Patwardhan	Drop in Vertical Tube Boiling	Fluid Mechanics and Fluid Power (FMFP)	
Prof. A.W.	Direct Numerical Simulation for comparison of Flow Structures in Three-	7th International and 45th National Conference on	IIT-Bombay, Mumbai
Patwardhan	Dimensional Wake Flow	Fluid Mechanics and Fluid Power (FMFP)	
Prof. A.W.	New methodology for modeling pressure drop and thermal	National Conference on Critical Heat Flux and	IIT-BHU, Varanasi
Patwardhan	hydraulic characteristics in long vertical boiler tubes at high	Multiphase Flow	
	pressure		
Prof. A.W.	Thermal Hydraulics Study of High-Pressure Flow Boiling in Vertical	71th Annual Session of Indian Institute of	NIT-Jalandhar
Patwardhan	Tube	Chemical Engineers, (CHEMCON-2018)	
Prof. A.W.	Residence Time Distribution Studies in Multi-stage Extraction Column	71th Annual Session of Indian Institute of	NIT-Jalandhar

Patwardhan		Chemical Engineers, (CHEMCON-2018)	
Prof. A.W.	Comparison of the Turbulence Models for Flow Fields	71th Annual Session of Indian Institute of	NIT-Jalandhar
Patwardhan	Prediction of the Jet Flow Decay	Chemical Engineers, (CHEMCON-2018)	
Prof. A.W.	Mathematical Modeling of Tea Bag Infusion Kinetics.	71th Annual Session of Indian Institute of	NIT-Jalandhar
Patwardhan		Chemical Engineers, (CHEMCON-2018)	
Prof. A.W.	Numerical Simulations of the Slug Flow for the Air-Water Two Phase	71th Annual Session of Indian Institute of	NIT-Jalandhar
Patwardhan	Flow System in Vertical Pipe	Chemical Engineers, (CHEMCON-2018)	
Prof. A.W.	Single step Electrochemical Exfoliation of Graphite: Synthesis,	71th Annual Session of Indian Institute of	NIT-Jalandhar
Patwardhan	Optimization and Characterization.	Chemical Engineers, (CHEMCON-2018).	
Prof. A.W.	Synthesis of boron doped carbon nanotubes and study of	71th Annual Session of Indian Institute of	NIT-Jalandhar
Patwardhan	variation in boron concentration	Chemical Engineers, (CHEMCON-2018	
Prof. A.W.	Hydrodynamics of asymmetric rotating agitated extractor:	71th Annual Session of Indian Institute of	NIT-Jalandhar
Patwardhan	Investigation of drop size , holdup and mass transfer	Chemical Engineers, (CHEMCON-2018	
Prof. A.W.	Direct Numerical Simulation for External and Internal Flows in Open	71th Annual Session of Indian Institute of	NIT-Jalandhar
Patwardhan	FOAM	Chemical Engineers, (CHEMCON-2018)	
Prof. A.W.	Mathematical Modeling of Tea Bag Infusion Kinetics.	2nd International Conference on Engineering	Bologna, Italy
Patwardhan		Future Food, (EFF2019).	
Prof. A.W.	CFD PBM simulations of asymmetric rotating impeller column,	14th International Conference on Gas-Liquid and Gas-	Guilin, China
Patwardhan		Liquid-Solid Reactor Engineering (GLS-14)	
Prof. A.W.	Direct Numerical Simulation (DNS) to Investigate the Effect of Schmidt	14th International Conference on Gas-Liquid and Gas-	Guilin, China
Patwardhan	Number on Mass Transfer through Packed Beds	Liquid-Solid Reactor Engineering (GLS-14)	
Prof. A.V.	Cleaning of polyamide nanofiltration membranes: Comparison between	1 st International Conference Materials &	Kolhapur,
Patwardhan	conventional and ultrasound-assisted technology	Environmental Science (ICMES)	Maharashtra
Prof. A.V.	COD reduction of industrial effluent by polyamide	Paper presented at 1 st International Conference	Kolhapur,
Patwardhan	nanofiltration membranes	Materials & Environmental Science (ICMES)	Maharashtra
Prof. A.V.	Safety Week	Safety Week Workshop	ICT Mumbai
Patwardhan			
Dr. P.D.	Distillation & Absorption	11 th International Conference on Distillation &	Florence
Vaidya		Absorption	
Dr. P.D.	Hydrogen & Fuel Cell	7 th International Hydrogen & Fuel Cell	Jodhpur
Vaidya		Conference (IHFC – 2018),	
Dr. P.D.	Orientation to Chemical Safety and Risk Management	Sandia National Laboratory's Workshop	ICT, Mumbai.
Vaidya			
Prof. B.N.	Mathematical Analysis of Solar Conduction Dryer using Reaction	Nordic Baltic Drying Conference	Saint Petersburg,
Thorat	Engineering Approach		Russia
Prof. B.N.	New theories discerning drying kinetics	Nordic Baltic Drying Conference	Saint Petersburg,
Thorat			Russia
Prof. B.N.	Lecture on Filtration and Drying	13 th International Workshop on Crystallization	ICT, Mumbai.
Thorat			
Prof. V.K.	Application of Enzyme for conversion of Biomass in to value added	Keynote Lecture	Rowan University,
Rathod	product		USA

Prof. V.K. Bathod	Heat Transfer and its application in heat exchanger design	BPCL Training programme	Mumbai
Prof. V.K. Rathod	'Utilization of solid waste from Food Industry for value added products' and 'Utilization of liquid waste from Food Industry for value added products'	Keynote Lecture	North Maharashtra University Jalgaon
	2017-1	.8	
Prof. B.N. Thorat	CFD modelling and experimental study of Solar Conduction Dryer	Oral Presentation at Asia-Pacific Drying Conference	Wuxi, China
Prof. B.N. Thorat	Augmenting natural convection and conduction based solar dryer	21 st International Drying Symposium 2018	Valencia, Spain
Prof. B.N. Thorat	12th International Workshopon Crystallization, Filtration and Drying. Theme: Drying and Granulation	International Workshop	ICT, Mumbai
Prof. A.M. Lali	ACHEMA 2018, World Forum	ACHEMA 2018, World Forum	Germany
Prof. A.M. Lali	Ethanol Summit of the Asian –Pacific organized by The U.S Grains Council and Sponsors Growth Energy and the Renewable Fuels	Guest panalist	Minneapolis, Minnesota, USA
Prof. A.M. Lali	Challenge and opportunities in Lignocellulosi Biorefinery	LBNet Conference	Shrigley Hall, Cheshire, UK
Prof. A.M. Lali	Cascade processes for integrated bio-refining of agricultural waste in India & Vietnam	Meeting of our International partners as a part of BBSRC	Aston University
Prof. A.M. Lali	AIDA'S	Technical Seminar & Exhibition	Technical Seminar & Exhibition
Prof. A.M. Lali	Dr. A.K. Dorle Memorial Lecture III	Guest speaker	Nagpur
Prof. A.M. Lali	Advance Biofuels	EU-India Conference	New Delhi
Prof. A.M. Lali	Bioenergy for the Future	Mission Innovation/International Energy Agency Event	Ottawa, Canada
Prof. A.M. Lali	Burning Fields, Biofuels and Bettering Farm Life	Conference on Biomass Innovation organized by Maastricht University	New Delhi
Prof. A.M. Lali	Lignocellulosic Ethanol	International Conference	Brussels, Belgium.
Prof. A.M. Lali	Biofuture Summit 17	Biofuture Summit 17	Paulo, Brazil
Prof. A.M. Lali	Bioenergy- Urja Utsav	Bioenergy- Urja Utsav Workshop	Pune
Prof. A.V. Patwardhan	Synthesis and characterization of ultrafiltration ceramic membranes using solid spent material doped in a-alumina from chemical industries	Recent Trends on Membranes and Separation Technology (RTMST-17) Workshop	CSMCRI, Bhavnagar
Prof. A.V. Patwardhan	Synthesis and characterization of ultra-filtration ceramic membranes using solid spent material doped in alpha alumina from chemical industries	DAE – BRNS Biennial "Symposium on Emerging Trends inSeparation Science and Technology (SESTEC –2018	BITS Pilani, K.K. Birla Goa
Prof. A.V. Patwardhan	Development of grafted resins and membranes (extractants) for precious metals	CHEMIX-18	VNIT, Nagpur
Prof. A.V. Patwardhan	Synthesis and characterization of ultra-filtration ceramic membranes using solid spent material doped in alpha alumina from chemical industries	DAE –BRNS Biennial Symposium on Emerging Trends	BITS Pilani, K.K. Birla Goa
Prof. A.V. Patwardhan	Application of ceramic membranes in treating laundry wastewater	Outstanding Young Chemical Engineers (OYCE)	Mumbai

Prof A W	Controlling the carbon nanotubes type with processing parameters	International Conference on Nanotechnology	IIT Roorkee
Patwardhan	from floating catalyst chemical vapor deposition synthesis	International conference on Nanotechnology	III Roonkee
Prof A W	Synthesis of modified carbon nanotubes	International Conference on Nanotechnology	IIT Boorkee
Patwardhan			
Prof. A.W.	Flow Patterns, Flow Pattern Map And Void Fraction Measurement Of	NationalConference on Fluid Mechanics and Fluid	Amrita University,
Patwardhan	Air/Water Two Phase Flow In Vertical Pipe	Power	Kerala
Prof. A.W.	Design and Scale-up of Asymmetric Rotary Agitated Liquid – Liquid	SESTEC - 2018	BITS Goa
Patwardhan	Extraction Columns, Eighth Biennial Symposium On EmergingTrends		
	In Separation Science And Technology		
Prof. A.W.	Hydrodynamic Characteristics between Pulsed Disc and Doughnut	Eighth Biennial Symposium On Emerging Trends In	BITS Goa
Patwardhan	Column and Asymmetric Rotating Impeller Column	Separation Science And Technology, SESTEC – 2018	
Prof. A.W.	CFD-PBM Simulations of Asymmetric Rotating Impeller Column	Eighth Biennial Symposium On Emerging Trends In	BITS Goa
Patwardhan		Separation Science AndTechnology, SESTEC – 2018	
Prof. A.W.	Synergistic Behavior of Tri-butyl Phosphate and Di-(2-	Eighth Biennial Symposium On Emerging Trends In	BITS Goa
Patwardhan	ethylhexyl) Phosphoric Acid	Separation Science And Technology, SESTEC – 2018	
Prof. A.W.	Recovery of Lithium from Sea Water Bitterns byLiquid – Liquid	Eighth Biennial Symposium On Emerging Trends In	BITS Goa
Patwardhan	Extraction	Separation Science And Technology, SESTEC – 2018	
Prof. P. R.	Hydrodynamic cavitation for Wastewater treatment	Invited for presentation	Saudi Arabia
Gogate			
Prof. P. R.	Intensified Hybrid oxidation processes based on hydrodynamic	Invited Lecture at AOSS-3	SRM University
Gogate	cavitation for treatment of emerging contaminants		
Prof. P. R.	Cavitational Reactors	Annual Convention of Marathi Vidnyan Parishad	Kudal, Maharashtra
Gogate			
Prof. P. R.	Intensification of Chemical processing applications using	Invited Lecturer	PREC, Loni
Gogate	Cavitational Reactors		
Prof. P. R.	Intensified Production of Biofuels from Sustainable Raw	Invited Lecture at the Indo- Japan Bilateral	IIT-Guwahati
Gogate	Materials using Ultrasonic Reactors	Symposium	
Prof. P. R.	Crystallization using ultrasonic irradiation	Invited lecture at WFCFD	ICT Mumbai
Gogate			
Prof. P. R.	Process Intensification of Chemical Processing applications using	Tantr Avishkar 2K18,	TSEC, Mumbai
Gogate	cavitational reactors		
Prof. K.V.	Mechanical Behavior of Materials	TEQIP	ICT, Mumbai
Marathe			
Prof. P.D.	6th International Conference on Hydrogen and Fuel Cells	6th International Conference on Hydrogen and Fuel	Pune`
Vaidya		Cells	
Prof. P.D.	Orientation to Chemical Security Risk Management	3-Day Seminar	SANDIA National
Vaidya			Laboratories (USA)
Prof. C.S.	National Conference on Fluid Mechanics and Fluid Power	National Conference on Fluid Mechanics and	MNNIT Allahabad
Mathapati		FluidPower	
Dr. R.D.	Skinon- a-chip: An alternativeto- animal, 3D in-vitro skin model	Microfluidics and Lab, SELECTBIO	Mumbai
Jain	for preclinical and biomedical applications		

Prof. L. K.	RACI National Centenary Conference 2017	RACI National Centenary Conference	Melbourne, Australia
Mannepalli		CHEMECA-2017	
Prof. L. K.	NENCS	Guest speaker	Tokyo, Japan
Mannepalli			
Prof. L. K.	ACS Asia-Pacific International Chapters Conference	Invited speaker	Jeju, South Korea
Mannepalli			
Prof . J.B. Joshi	12th International conference on Gas, liquid and solid (GLS- 12),	Invited speaker	Brussels, Belgium

4.8 Research and Development (30)

4.8.1 Academic Research (10)

Institute Marks (30)

Institute Marks (10)

		Academic Research											
Sr. No.	Name of Faculty	Number of quality publications in refereed/SCI Journals, citations, Books/Book Chapters etc.						Ph.D. awarded during the assessment period while working in the institute					
		2021-22	2020-21	2019-20	2018-19	2017-18	2016-17	2021-22	2020-21	2019-20	2018-19	2017-18	2016-17
1	Professor A. B. Pandit	7	14	13	20	11	21	0	3	6	2	3	1
2	Professor V. G. Gaikar	1	1	1	8	8	5	2	3	0	3	0	2
3	Professor A. W. Patwardhan	4	2	7	13	7	14	3	4	2	2	2	2
4	Professor S. S. Bhagwat	3	5	6	1	5	7	2	0	2	3	2	1
5	Professor V. K. Rathod	10	23	29	23	25	25	1	1	0	6	3	2
6	Professor P. R. Gogate	20	38	26	32	27	24	1	4	4	3	3	2
7	Dr. V. H. Dalvi	3	7	1	2	3	5	0	0	0	0	0	0
8	Dr. P. R. Nemade	2	3	2	4	3	2	0	1	0	0	3	0

Table 4.15: Faculty academic research

9	Professor P. D. Vaidya	4	5	9	9	11	8	0	0	2	4	8	5
10	Dr. C. S. Mathpati	3	5	8	4	8	8	0	4	3	2	0	1
11	Professor B. N. Thorat	6	12	7	2	0	2	0	1	1	1	0	0
12	Professor G. D. Yadav	5	22	18	28	26	18	3	2	2	6	6	3
13	Professor L.K. Mannepalli	2	2	1	3	2	0	0	0	0	0	0	0
14	Professor P. K. Ghosh	0	2	1	5	2	3	0	0	0	0	0	0
15	Dr. S. V. Jadhav	2	2	2	0	0	0	0	0	0	0	0	0
16	Dr. K. V. Marathe	0	0	1	1	5	3	0	0	1	1	0	0
17	Professor A. V. Patwardhan	0	2	2	4	3	2	1	0	2	2	1	0
18	Dr. R. D. Jain	7	22	18	20	8	8	2	0	1	1	1	0
19	Dr. M. D. Yadav	1	3	3	0	0	0		0	0	0	0	0
20	Professor A. M. Lali	6	13	15	10	10	18	2	1	8	8	2	6
21	Professor D. D. Sarode	1	2	1	2	1	0	0	0	1	0	0	0
22	Professor V. R. Gaval	0	5	6	0	0	0	0	2	0	0	0	0
23	Dr. P. Goswami	0	0	0	1	2	2	0	0	0	0	0	0
24	Shri. M. A. K. Kerawalla	0	0	0	0	1	2	0	0	0	0	0	0
25	Dr. R. S. N. Sahai	0	2	1	0	0	0	0		0	0	0	0
26	Professor S. P. Deshmukh	1	3	6	3	2	4	0	3	0	3	0	0
27	Dr. Annamma Anil	2	2	1	2	0	1	1	2	1	2	0	2

4.8.2 Sponsored Research (10)

Institute Marks (10)

Table 4.16: Sponsored Research								
Project Title	Duration	Funding Agency	Amount (in Rs)					
Year 2021-2022								
Extraction of fluorine, uranium and rare earth elements from rock phosphate, phosphoric acid and phosphate fertilizers	4 years	Rubamin Industries	3300000					
Synthesis of Nicotinic acid	1 year	Jubilant Ingravia Ltd.	1540000					
Development of process for the synthesis of sulfentrazone	1 year	Rallis India Ltd.	2266000					
Water and wastewater treatment using hybrid advanced oxidation processes	3 years	Department of Science and Technology, Water Treatment initiative	7448000					
Explore Downstream Processed Gycol products for Value addition	1 year	Akry Organics Pvt Limited	800000					
Development of process for the synthesis of sulfentrazone	1 year	Rallis India Ltd.	2266000					
Synthesis of Nicotinic acid	1 year	Jubilant Ingravia Ltd.	1540000					
Improved hydrogen production from biogas using sorption-enhanced reforming	3 year	DST	4062000					
Study on new green CO2- capturing solvents	3 year	DST	5791000					
Catalytic aqueous-phase reforming of model compounds of microalgae and activated sludge	3 year	DBT	5080000					
Development of superior absorbents for CO2 separation from biogas	3 year	Centre for High Technology	8556000					
Dehydrogenation of Liquid Organic Hydrogen Carriers	1 year	Reliance Industries Ltd.	2000000					
Extraction of Fluorine, Uranium and rare earth elements from Rock Phosphate, phosphoric acid and phosphate fertilizers	1 year	Rubamin Ltd.	3290000					
Design Aspects of Mixer Settlers Employed by Heavy Water Board	1 year	BRNS	3375000					
Recovery of acids from waste streams of PDDP complex	2 years	Bharat Petroleum Corporation Ltd	3542880					
Surface studies on lean amine solvents from gas treating units	1.5 years	Amines and Plasticizers	266000					
Stability of Hydrogen Peroxide		Hindustan Unilever	1805400					
Epoxidation, ring-opening, and allied chemical modification of high C18 methyl esters	2 vears	SUMWIN Solutions,	1635000					
(C1875ME and C1898) and palm methyl ester (C1618ME) to produce plasticizers and lubricants	2 years	Malaysia	1055000					
Treatment of aqueous effluents from refineries and allied industries	4 vears	VA Tech Wabag Limited,	4214000					
	- years	Chennai	7214000					
Recycling of water from the textile processing and auxiliary industry effluents	3 vears	Rajiv Gandhi Science &	5266000					
		Technology Commission,	5200000					

		Maharashtra State		
Year 2020-2021				
AMCOS	1 year	DST	654689	
SERB	1 year	DST	341210	
FIST	1 year	DST	862012	
WasteWater Treatment	1 year	DST/WTI	1188298	
SERB	1 year	DST	1900000	
SERB	1 year	DST	1906395	
TDT	1 year	DST	8073	
TDT	1 year	DST	12328880	
BioGas	1 year	Centre for High Tech.	3503937	
Waste management Tech	1 year	DST	151709	
Waste water management	1 year	DST	2532802	
COLD TRAP	1 year	IGCAR	258000	
MHRD - STARS	1 year MHRD - STARS		1729000	
HINDUSTAN UNILEVER	1 year	Hindustan Unilever	110133	
Bharat Petroleum Ltd	1 year	Bharat Petroleum Ltd	836120	
Bharat Petroleum Ltd	1 year	Bharat Petroleum Ltd	27124731	
Harvard Global Research Support Centre	1 year Harvard Global Research Support Centre		735643	
Catalysist & Process Devt	1 year	RIL-I	462500	
CIPLA LTD	1 year	CIPLA LTD	2201551	
Hydrogen Carriers	1 year	RIL-III	462500	
Covestro India Pvt Ltd	1 year	Covestro India Pvt Ltd	795600	
Daicel Chiral Technology	1 year	Daicel Chiral Technology	158844	
SERB	1 year	DST	205598	
Godavari Biorefineries Ltd	1 year	Godavari Biorefineries Ltd	426684	
Godavari Biorefineries Ltd	1 year	Godavari Biorefineries Ltd	871292	
Godavari Biorefineries Ltd	1 year	Godavari Biorefineries Ltd	765000	
Methyl Methacrylate	1 year	RIL-II	462500	
Rallis India Ltd.	1 year	Rallis India Ltd.	1790100	
University of Leeds	1 year	University of Leeds	4826139	
Vinati Organics Ltd 2	1 year	Vinati Organics Ltd-2	721680	
Vinati Organics Ltd 3	1 year	Vinati Organics Ltd 3	584545	
Vinati Organics Ltd 4	1 year	Vinati Organics Ltd 4	1320000	

Balance Industrial Res Project	1 year Balance Industrial Res Project		161925
Salicylates & Chemicals Pvt Ltd/	1 year	Salicylates & Chemicals Pvt Ltd/	1105000
S.A. Pharmachem P. Ltd.	1 year	S.A. Pharmachem P. Ltd.	670040.5
Biosimilar 2017	1 year	Biosimilar workshop 2017	7085247
CO ₂ Conversion	1 year	ICT-OEC	827728
CO ₂ Conversion	1 year	ICT-OECT	4517646
CO ₂ Conversion Phase II	1 year	Ongc	900751
Year 2019-2020			·
STARS	1 year	STARS	1729000
BRNS	1 year	DAE	483905
D.A.E	1 year	Centre For C.E.	26911478
DBT	1 year	BCIL	437969
Catalytic Aqueousphase	1 year	DBT	1571585
CO ₂ -Capturing Solvents	1 year	DST	1514765
DST/FIST	1 year	DST/FIST/CE	33339752
hydrogen From Biogas	1 year	DST	2432408
Indo-Japanese Lecture	1 year	DST	230000
Nanofibrous Bandage	1 year	DST	6236280
SERB-Brownian Movement	1 year	DST	220000
DST-SERB	1 year DST-SERB		400000
SERB-Sea-Water	1 year	DST	424245
CFD Study	1 year	IGCAR	542800
BIRAC	1 year	BIRAC	942000
Agricultural Waste	1 year	RGSTC	7310933
Recycling of Water	1 year	RGSTC	3270608
RELIANCE IND. LTD	1 year	RELIANCE IND. LTD	351000
RELIANCE IND. LTD	1 year	RELIANCE IND. LTD	1326000
COLD TRAP	1 year	IGCAR	896800
Start-Up Grant	1 year	UGC-FRP	1226736
Aditya Birla Science and Tech Co	1 year Aditya Birla Science and Tech Co		330748
Bajaj Consumer Care Ltd	1 year	BAJAJ CONSUMER CARE LTD	209250
Amines & Plasticizer Ltd.	1 year	Amines & Plasticizer Ltd.	243458

Bharat Petroleum Ltd	1 year	Bharat Petroleum Ltd	910379
Biocon SDN	1 year	Biocon SDN	2156216
Devt of Additive	1 year	BPCL	1175200
Lonic Liquid	1 year	BPCL	1279200
BPCL	1 year	BPCL	104773
Cadila Healthcare Ltd.	1 year	Cadila Healthcare Ltd.	405000
BioGas	1 year	Centre for High Tech	723668
CIPLA LTD.	1 year	CIPLA LTD.	824851
Coca Cola Ltd	1 year	Coca Cola Ltd	17146
Covestro India Pvt Ltd	1 year	Covestro India Pvt Ltd	1591200
Harvard Global Research Support Centre	1 year Harvard Global Research Support Centre		300000
Equinox Environments	1 year	Equinox Environments	94500
Godavari Biorefineries Ltd	1 year	Godavari Biorefineries Ltd	913360
Haridevka Inc	1 year	HARIDEVKA INC	128125
2 nd Project	1 year	HUL	283500
ICPE	1 year	ICPE	625050
CO ₂ Conversion	1 year	ICT-OEC-	1884708
Phase III	1 year	ICT/ OECT	7702239
Kesar Petroproducts Ltd	1 year	Kesar Petroproducts Ltd	410400
Ephidrine	1 year	Malladi Drugs	408240
Mangalam Organic Ltd-1	1 year	Mangalam Organic Ltd	270000
Mangalam Organics Ltd2	1 year	Mangalam Organics Ltd	1017048
Mangalam Organics Ltd.	1 year	Mangalam Organics Ltd	383400
Marvel Drugs Pvt Ltd	1 year	Marvel Drugs Pvt Ltd	227700
Ms.IRELTDC	1 year	Ms.IRELTDC	1610000
Prasol Chemicals Pvt Ltd	1 year	Prasol Chemicals Pvt Ltd	594000
Raj Petro Specialities Ltd.	1 year	Raj Petro Specialities Ltd.	157424
RELIANCE IND. LTD	1 year	Reliance Ind. Ltd	387810
RELIANCE IND. LTD	1 year	Reliance Ind. Ltd	108000
SPARC	1 year	SPARC	1000000
Stelis Bio Pharma Pvt.Ltd.	1 year Stelis Bio Pharma Pvt.Ltd. 50291		502910
S S Techno Ltd	1 year S S Techno Ltd 129600		129600
University of Leeds	1 year	University of Leeds	5202391
UPL Limited/	1 year	UPL Limited/	2493190
Vinati Organics Ltd-2	1 year Vinati Organics Ltd-2 14077		1407720

Vinati Organics Ltd 3/	1 year Vinati Organics Ltd 3/		787320
Wipro Limited	1 year	Wipro Limited	147876
Unilever Ltd.	1 year	Unilever Ltd.	623700
Year 2018-2019			
Cold storage facility for storage of fruits and vegetables using heat based refrigeration system	5 years	Rajiv Gandhi Science and technology Commission	12300000
Design of in situ photocatalytic systems for CO_2 conversion into useful organic materials using CdS Nanoparticles on the new polymeric CO_2 specific adsorbents and graphene supports	4 years	Department of Science and Technology, Science and Engineering Research Board	5481000
Selection and Regeneration of potential ionic liquid for hydro processing feed stocks	3 years	Bharat Petroleum Corporation Limited	2000000
Development of additive for use in Delayed Coker Unit (DCU) to improve liquid yield	3 years	Bharat Petroleum Corporation Limited	2000000
Mitigation of water problems in Ausa town, Latur: wastewater management, Gaothan Lake rejuvenation, Potable water production through desalination of lake water and training of residents in matter of sanitation and water conservation	2 years	Department of Science & Technology, New Delhi	17300000
Use of composite foam to tackle the problems of oil spill and undesirable oil-in-water emulsion	2 years	ONGC	1800000
Treatment of Wastewater containing pesticides and emerging contaminants using novel approach of combined hydrodynamic cavitation and oxidation processes	3 years	Department of Science & Technology (WTI Scheme), New Delhi	5440000
Intensified recovery of valuable products from whey using ultrasound	3 years	Department of Science & Technology (MOFPI Scheme), New Delhi	4140000
Improved process for CaSO ₄ crystallisation in concentrated brine using Ultrasound	3 years	Department of Atomic Energy-ICT	3500000
Water and wastewater treatment using hybrid advanced oxidation processes	3 years Department of Science & Technology		7448000
Hydrodynamic cavitation based intensified and low cost technology for industrial wastewater treatment containing toxic organic compounds and solid particles	2 years Department of Science and Technology, India-Ukraine collaboration		1302000
Conjugation and Radio labelling of various nano platforms for image guided theranostic applications	3 years	ICT-DAE	6532000
Green Process for the production and purification of low molecular weight Chitosan Oligomer using solid acid catalyst	3 years	DBT	5164000
Microfuidic Platform for Developing bioartificial Retina	2 years	DBT	6152000

Designing & Commercialization of affordable chemically defined serum free media & feed for high value Biosimilars Manufacture	2 years	BIRAC-BIPP	6544000
Preclinical Evaluation of Full Thickness Wound Healing Using Starch Based Artificial Skin Substitute in Rat Model	2 years	Rajiv Gandhi Science and Technology Commission	1400000
Bio-printing of 3D skin in a microfluidic device for a pre-clinical investigation	1 year	BIRAC-PACE	4940000
Development of Hydrodnamic flow focusing droplet generator for preparation of monodisperse Actinide Oxide microsperes	3 years	ICT-DAE	7021000
DBT-ICT Centre for Energy Biosciences: New and Extension Proposals	5 years	DBT, India	18000000
Energy Biosciences Overseas Fellowship & Chairs	11 years	DBT, India	147221000
Setting up Demonstration Plant to 1 ton/day MSW Into Energy	2 years	DBT, India	67039000
Performance and durability improvements in the solar thermal desalination system at Narippaiyur and utilization of reject sea water for algae cultivation to produce biogas	5 years	DST-KGDS	6135000
Customized, Demand Driven Convergent Water solutions to address prevalent and emerging water challenges in Mission Mode in Narrippaiyur Village, Ramanathapuram District, Tamil Nadu	3 years	DST-KGDS	1448000
Setting up Demonstration Plant to convert 1 MLD Barapullah Nallah Sewage into Clean Water and Energy	2 years	DBT, India	146771000
Biomass to Chemicals	5 years	DST	9171000
Thermal hydraulic studies related to coolants for new generation reactors	5years	DAE	7240000
Design aspects of Two opposed jet microextractor: Experimental and Computational Fluid Dynamics	1 year	Centre of Excellence in Process Intensification (TEQIP-II)	1600000
Computational fluid dynamics and experimental study of fluidization of lithium titanate particles in fluidized and packed fluidized bed	3 years	DAE- BRNS	2500000
Design and scale-up of impinging jet crystallizer using experimental and computational fluid dynamics	3 years	Science & Engineering Research Board (SERB)	1557000
Graphene oxide based membranes for desalination	3 years	DAE-ICT Center	7324000
Microbial enzyme based natural fiber (Ramie) finishing: an ecofriendly approach	4 years	DBT under Twinning Program	3500000
Sustainable processes for the development of keratin hydrolysate for the use as fertilizer, animal feed, and pet food	4 years	DST WMT	7500000
Characterization of the regeneration process for liquid sodium cold trap in a secondary system of fast	3 years	3 years Indira Gandhi Center for Atomic Research (IGCAR)	
Bioenergy, Fertilizer and Clean Water from Invasive Aquatic Macrophytes (UK 131,584 Sterling Pounds)	3 years BBSRC, UK		11080000
J.C. Bose Fellowship	5 years	DST- Science and Engineering Research	8250000

		Board	
A compact and cost-effective technology for on-site treatment & reuse of wastewater containing bio-refractory compounds	t and cost-effective technology for on-site treatment & reuse of wastewater g bio-refractory compounds I year IIGP 2.0 2018		1000000
CFD Modeling of Asymmetric Rotating Disc Contactors	3 years	DAE	5800000
Synthesis and modification of carbon nanotubes: modeling, experimentation and application	3 years	DAE	5430000
Thermal Hydraulic Studies on Boiling in Long Vertical Tubes	3 years	IGCAR	4375000
Development of grafted resins and membranes (extractants) for precious metals	3 years	DAE-ICT Centre	6900000
Development of grafted resins and membranes (extractants) for precious metals	3 years	RGSTC	6600000
Economic Non-food sugar from variable mixed solid waste for high value chemical products	3 years	Department of Biotechnology (Govt. of India)	32296000
Development of superior absorbents for CO ₂ separation from biogas	3 years	Center for High Technology	8556000
Hydrogen production from macroalgal biomass via catalytic aqueous-phase reforming	2 years	TEQIP Phase 3	710000
Improved hydrogen production from biogas using sorption-enhanced reforming	3 years	Department of Science and Technology (HFC-2018)	4062000
Study on new green CO ₂ -capturing solvents	3 years	DST-DBT (Mission Innovation India - IC#3)	5791000
Catalytic aqueous-phase reforming of model compounds of microalgae and activated sludge	3 years	DST-DBT (Mission Innovation India - IC#4)	5080000
Rice bran Oil refining	3 years	Marico	2700000
Surface studies on lean amine solvents from gas treating units	2 years	Amines and Plasticizers	253000
Oil water interfacial tension of polymerised oil in presence of surfactants	1 year	Hindustan Unilever Ltd	1391000
Study of Interfacial properties of oil and surfactant solutions	6 month	DOW Chemical International Pvt.Ltd	337000
BEFWAM – Bioenergy Fertilizer and Freshwater for Invasive Aquatic Macrophytes	3 years	University of Leeds	GBP 130,000/-
Development of PCM Poultry Warmer for Open Shed Poultries	17 months	Covestro India Pvt Ltd	500000
Thermodynamics of Solubility of Tea components in water	4 years Hindustan Unilever Ltd, Mumbai		4500000
Study of Forward Osmosis related to Sugar Industry	3 years		2400000
Dehydrogenaton reactions for industrial utility	4 years		3000000
Improved processing of camphor, terpenes and resins	2 years	Mangalam Organics Ltd.	1500000
Evaluation of advanced technologies for waste water treatment of Fiber plants of ABG	3 years Aditya Birla Science and Technology Center 1		1167000
Dehydrogenaton reactions for industrial utility	4 years		300000
Technoforce	5 years	Technoforce	260000

Technoforce	5 years	Technoforce	2600000
United Phosphorous Limited	4 years United Phosphorous Limited		2600000
New Formulations from Cannabis sp	2 years	Akseera Pharma, Canada	2285000
Chemo-Enzymatic Synthesis of Anti-infectives	3 years	Bajaj Healthcare Mumbai and AUA General,UAE	12876000
Activity Reduction of Peptidase Enzymes by various Metal Ion-Reducing agent combination	16 months	Anya Biopharma, Taiwan	5606000
Structural Characterization of Recombinant Protein	5 months	Stelis Biopharma	1095000
Evaluation New Probiotic Compositions	9 months	SA Pharmachem, Mumbai	3109000
To study the effect of increasing the enzyme concentration upon the reaction rate	17 months	Himedia Lab, Mumbai	443000
HMWP Characterization of Insulin Products	2 years	Biocon, Malaysia	4102000
Development of laboratory scale SMB chiral separation method for either Brivaracetum (S,R) from its disterioisomer (S,S) from OR for BRT-III (S,R) from its disterioisomer	1 year	Lupin Ltd	2800000
On-Shore Cultivation of Macroalgae at Bhavnagar District's Gujarat	1 year	Pidilite Industries Ltd.	4200000
Lab scale synthesis of fine and bulk chemicals	1 year	VOL, Mumbai	1180000
Development of economical processes for Important organic Intermediates	1 year	Marvel Drugs, Mumbai	800000+ Tax
Synthesis of terpene derivatives	1 year	Mangalam Organics, Mumbai	1500000+Tax
Hydroxylation of phenol	1 year	GACL, Baroda	3000000 + Tax
Surface-Charge Driven Algal-Water Separations: Fundamentals, Measurement, and Process Control Strategy	4 years	Reliance Industries Ltd	1794000
Recycle and reuse of membranes in waste water treatment	3 years	Konark Industries Ltd	1794000
Hygienic water free toilet	3 years	BIRAC- Bill and Melinda Gates Foundation	2122000
CFD simulation of the piping network inside the human body	4 years	United Phosphorous Limited	2600000
Liquid-Liquid Dispersion Studies in Static Mixers	6 months	Reliance Industries Ltd.	2360000
Development of Natural esters for Dielectric Applications	1.5 years	Raj Petro Specialties Pvt. Ltd	1750000
LDH Formation and Converging Diverging Cavitating Nozzles	3 year	Hindustan Unilever Ltd., Bangalore	7500000
Pyrolysis of biomass, coconut shell and peanut shell for value added products	4 years	Shri. K. V. Mariwala - Mariwala Trust	2600000
Integration of Sustainability Concepts in Chemical Engineering Education	2 years	WIPRO Foundation	456000
Modelling of Kinetics of Tea Infusion	4 years	Unilever	3020000
- Extraction of curcumin from turmeric	1 year	Konark Industries, Gujarat	8000000

- Synthesis and characterization of catalysts, Standardization of separation methods using		Alkali Ltd., Marvel Drugs,	
synthetic mixture		Kesar Petro products,	
- Synthesis of intermediates for pharmaceutical application		Godavari Biorefineries Ltd,	
- Synthesis of chemical by ammoxidation and optimization study		Indo Amines Ltd.	
- Development of economical process for FDCA			
- Conversion of alcohols to amines			
PU as Flame retardant	3 years	Covestro (India) Pvt. Ltd	4320000
Year 2017-2018			
Jaggery Granulation	18 months	Rajiv Gandhi Commission for S&T, Government of Maharashtra	1000000
Cold storage facility for storage of fruits and vegetables using heat based refrigeration system	5 years	Rajiv Gandhi Science and technology Commission	12300000
 Selection and Regeneration of potential ionic liquid for hydroprocessing feed stocks Development of additive for use in Delayed Coker Unit (DCU) to improve liquid yield 	2 years Bharat Petroleum Corporation Limited		5000000
Design of in situ photocatalytic systems for CO 2 conversion into useful organic materials using CdS Nanoparticles on the new polymeric CO 2 specific adsorbents and graphene supports	4 years	Department of Science and Technology, Science and Engineering Research Board	5480000
Biphasic Fermentation for Triacyl Glycerol (TAG) production from pretreated lignocellulosic biomass hydrolysates using Mixed Microbial Cultures	3 years	DBT, India	3984000
Setting up Demonstration Plant to 1 ton/day MSW Into Energy	2 years	DBT, India	67039000
International Genetically Engineered Machines Contest (iGEM)	2 years	DBT, India	2000000
Pilot scale translational facility for value added chemicals from biomass	1 year	DBT-CEB-BIPP	500000
Performance and durability improvements in the solar thermal desalination system at Narippaiyur and utilization of reject sea water for algae cultivation to produce biogas	3 years	DST-KGDS	6135000
Integrated biorefinery for production of sorghum Grain protein Phase II	2 years	DBT-AISRF, India	11374000
Design of selective nanoporous membrane bioreactor for efficient production of bio-butanol from lignocellulosic sugar (SeNaMeB)	3 years	IGSTC, DST, India	11540000
Green enzymatic fat-splitting technology for production of fatty acids and Acyl Glycerols	3 years	DST, India	84753000
Transnational approaches to resolving biological bottlenecks in macroalgal biofuel production	3 years	DBT- BBSRC/ SuBBSea	20167200
Integrated technologies for economically sustainable bio-based	2 years	DBT, India	11374000
DBT-ICT Centre for Energy Biosciences: New and extension proposals	5 years	DBT, India	18000000
Improved production of biogas and bio-CNG from lignocellulosic biomass	4 years	MNRE	26716000
Energy Biosciences Overseas Fellowship & Chairs	11 years	DBT, India	147221000

Microbial enzyme based natural fiber (Ramie) finishing: an ecofriendly approach	3 years	3 years DBT under Twinning Program	
Indira Gandhi Center for Atomic Research (IGCAR)	3 years Indira Gandhi Center for Atomic Research (IGCAR)		3800000
Development of grafted resins and membranes (extractants) for precious metals	3 years	DAE-ICT Centre	6900000
Synthesis of novel membranes and their applications in waste minimisation and recovery of valuable chemicals from dilute aqueous streams	3 years	3 years Department of Science and Technology (SERB – Green Technology)	
CFD Modeling of Assymetric Rotating Disc Contactors	3 years	DAE	5800000
Synthesis and modification of carbon nanotubes: modeling, experimentation and application	3 years	DAE	5430000
Thermal Hydraulic Studies on Boiling in Long Vertical Tubes	3 years	IGCAR	4375000
Utilization of Reetha fruit for value added products Utilization of curcumin industry waste to produce value added products	3 years	RGSTC	6600000
Treatment of Wastewater containing pesticides and emerging contaminants using novel approach of combined hydrodynamic cavitation and oxidation processes	3 years	Department of Science & Technology (WTI Scheme), New Delhi	5440000
Intensified recovery of valuable products from whey using ultrasound	3 years	Department of Science & Technology (MOFPI Scheme), New Delhi	4140000
Improved process for CaSO $_4$ crystallisation in concentrated brine using Ultrasound	3 years	Department of Atomic Energy-ICT	3500000
Polymeric Nanocarrier for siRNA Delivery	5 years	DBT	3250000
Development and evaluation of siRNA loaded nanomedicine in computational and cellular Models	3 years	DST	28200000
Conjugation and Radiolabelling of various nanoplatforms for image guided theranostic applications	3 years	ICT-DAE	6532000
Green Process for the production and purification of low molecular weight Chitosan Oligomer using solid acid catalyst	3 years DBT		5164000
Microfuidic Platform for Developing bioartificial Retina	2 years	DBT	6151600
Development of Hydrodnamic flow focusing droplet generator for preparation of monodisperse Actinide Oxide microsperes	3 years	ICT-DAE	7020000
Skin on a chip for preclinical and biomedical applications	1 year	RUSA	3500000
Designing & Commercialization of affordable chemically defined serum free media & feed for high value Biosimilars Manufacture	2 years	BIRAC-BIPP	6544000
Thermal hydraulic studies related to coolants for new generation reactors	5 years	DAE	7240000
Design aspects of Two opposed jet microextractor: Experimental and Computational Fluid Dyanmics	1 year	Centre of Excellence in Process Intensification	1600000

		(TEQIP-II)	
Computational fluid dynamics and experimental study of fluidization of lithium titanate particles in fluidized and packed fluidized bed	3 years	DAE-BRNS	2500000
Development of graphene oxide based membranes for desalination	3 years	DAE	
Development of ionic liquid membranes for gas separation	3 years	SERB	
Mitigation of water problems in Ausa town, Latur: wastewater management, Gaothan Lake rejuvenation, Potable water production through desalination of lake water and training of residents in matter of sanitation and water conservation	2 years	Department of Science & Technology, New Delhi	17300000
Studies on the drying and fluidization of algal slurry	1 year	Reliance Industries Limited	2100000
Rice bran Oil refining	3 years	Marico	2700000
Thermodynamics of Solubility of Tea components in water	4 years	Hindustan Unilever Ltd, Mumbai	4500000
Developed of improved animal feed ingredient from seed meals	3 years	Godrej Agrovet Ltd	1000000
Research & Development of Chloroplast Derived Enzyme Mixtures	2 years	Gencrest LLP	24600000
Research & Development & Generation, protection & Deployment of Innovation & Technologies in the field of Cellulosic Ethanol Technology & its scale up	2017 & ongoing	L&T Hydrocarbon Engineering Ltd	5000000
Kinetics of Synthesis of p-Hydroxy Benzaldehyde	1 year	ATUL LTD	2000000
Recovery of Water of Esterification	1 year	Asian Paints	300000
LDH Formation and Converging Diverging Cavitating Nozzles	5 years	Hindustan Unilever Ltd., Banglore	7500000
Conversion of 2,6-Dichloroacetophenone to 2,6-Dichlorobenzamide	1 year	Val Organics Pvt. Ltd Mumbai	500000
Purification of aqueous effluents from refineries and allied industries	6 months	VA Tech Wabag	1618800
Modelling of Kinetics of Tea Infusion	3 years	Unilever	3020000
 Extraction of curcumin from turmeric Synthesis and characterization of catalysts, Standardization of separation methods using synthetic mixture Synthesis of intermediates for pharmaceutical application Synthesis of chemical by ammoxidation and optimization study Development of economical process for FDCA Conversion of alcohols to amines 		Konark Industries, Gujarat Chlor Alkali Ltd., Marvel Drugs, Kesar Petro products, Godavari Biorefineries Ltd, Indo Amines Ltd.	
Improved processing of camphor, terpenes and resins	3 years	Mangalam Organics Ltd.	1500000
Recycle and Reuse of membrane in waste water treatment	3 years	Konark industries	
p-Hydroxy benzaldehyde production from p-cresol -A study on reaction kinetics	1 year	Atul Ltd.	1150000
Preclinical Evaluation of Full Thickness Wound Healing Using Starch Based Artificial Skin Substitute in Rat Model	2 years	Rajiv Gandhi Science and Technology Commission	1400000
New Formulations from Cannabis sp	2 years	Akseera Pharma, Canada	2285000

Chemo-Enzymatic Synthesis of Anti-infectives	3 years	Bajaj Healthcare Mumbai and AUA General,UAE	12800000
Quantification of Coating Material on Excipients	1 year	FMC, Bengaluru	197000
Characterization of Pharmaceutical Excipients	3 years	FamyCare, Mumbai	363000
Activity Reduction of Peptidase Enzymes by various Metal Ion-Reducing agent combination	16 months	16 months Anya Biopharma, Taiwan	
Interaction of API and Excipient	16 months	Wockhardt, Aurangabad	91000
Structural Characterization of Recombinant Protein	4 months Stelis Biopharma,Bengaluru		1095000
Evaluation New Probiotic Compositions	9 months	SA Pharmachem, Mumbai	3109000
To study the effect of increasing the enzyme concentration upon the reaction rate	17 months	Himedia Lab, Mumbai	442000
Characterization of aggregates MW related variants generated in mAb by SV-AUC	7 months	Hetero Biopharma, Hyderabad	302000
HMWP Characterization of Insulin Products	2 years	Biocon, Malaysia	4102000
Hygienic water free toilet	3 years	BIRAC- Bill and Melinda Gates Foundation	2122000
United Phosphorous Limited	4 years United Phosphorous Limited		2600000
Technoforce	4 years	Technoforce	2600000
PM-Fellow (Company Sponsor- United Phosphorous Limited)	4 years	PM Fellow	2600000
Hydroxylation of phenol.	1 year	GACL, Baroda	3000000 + Tax
Lab scale synthesis of fine and bulk chemicals	1 year	VOL, Mumbai	600000 + Tax
Development of economical processes for Important organic Intermediates	1 Year	Marvel Drugs, Mumbai	800000 + Tax
Phthalonitrile	1 year Kesar Petro products, Mumbai 1		1360000 + Tax
Synthesis of terpene derivatives	1 year Mangalam Organics, Mumbai		1500000 + Tax
Syntheis of FDCA	1 year GBL, Mumbai 1570000		1570000 + Tax

4.8.3 Development activities (5)

Institute Marks (5)

Our institute always emphasizes the continued development of the students and the faculty members. The faculty members are continuously engaged in research activities supported by various funding agencies. The department's research and development activities are well supported by the stateof-the-art analytical instrumentation facility. Every year new instruments are purchased and the laboratories are continuously upgraded to support academic research. Instruments available in all the laboratories are provided with Standard Operating Procedures. The students are provided with printed journals which are used by them as easy instruction materials. Informative charts prepared by the students under the guidance of teaching staff members are displayed in the laboratories to assist them in understanding and remembering the concepts. Students of our college actively participate in various social awareness programs. They are involved in the preparation of pamphlets that are distributed in the society for health awareness.

Sr. No.	Description	Model	Procurement Year
1	Water purification system	Sartorius: arium mini	2017
2	Ion chromatography	Dionex 5000+	2017
3	HPLC-VWD	Themo: Ultimate 3000	2017
4	HPLC-DAD	Themo: Ultimate 3000	2017
5	HPLC-RI	Themo: Ultimate 3000	2017
6	Microspin centrifuge	Eltek TC 4815D	2018
7	UV-Visible spectrophotometer	Labman: LMSP UV-1900	2018
8	HPLC-VWD	Themo: Ultimate 3000	2018
9	Orbital shaker incubator	Athena: Galaxy 1NCS	2018
10	Densitometer	Anton paar: DMA 501	2018
11	Ultrasonic bath	Dakshin 6.5L 200DF	2018
12	KF titrator	Athena AT-630	2018
13	Plate heat exchanger	Alfa laval M3-FG	2019
14	Stirred tank reactor	Fabex Engineer	2019
15	Hot water generator	Thermax, AMW-02	2019
16	Laser partical size analyser	Bettersizer 2600	2019
17	DI water sysytem	PALL CASCADA II 10L/H	2019
18	UV-Visible spectrophotometer	Shimadzu UV-1900	2019
19	High resolution mass spectroscopy	Thermo Fischer	2019
20	X-ray Photoelectron spectrometer	Kratos Axis Supra	2019
21	Inductively coupled plasma-MS	Thermo iCAP RQ	2020
22	Biochemistry Analyzer	Labmete 2950D3, YSI	2021
23	High temp tubular split furnace	Nano Tec	2021
24	Hydrodynamic cavitation setup	Zero-D Industries	2021
25	Invenio FTIR Spectrometer	Bio Zed Engineering	2021
26	Microscope Labomed LX400	Scientific apparatus Mfg.	2021
27	UHPLC	Spincotech	2021

Table 4.17: List of equipment facilities created for strengthening the curriculum and/or meeting the POs

28	Ultrasonic crystallization system	Dakshin	2021
29	Ultrasonic bath 6.5L, 1.5, Horn	Dakshin	2021

Following tasks have been completed/undergoing:

- 1. Civil work including flooring, the colouring of walls, false ceiling, tiling the walls, drainage, etc.
- 2. Electrical work including all the wiring, and installation of new fresh air conditioners (Hitachi HVAC system)' and exhaust systems.
- 3. Disposal of rusted and unused equipment and storage boxes.
- 4. Installation of new water purifiers and heaters.
- 5. Civil work for new Chemical Engineering Department Pilot Plant near Advance Lab.
- 6. New space is being created for new labs near Gate 13.

Sr. No	Name of the Facility	Specialized Equipment Name	Equipment details
1	Central Computational Facility	Computational cluster (160 nodes)	Computational analysis, molecular dynamics, reactor designs
2	Analytical Instrumentation Laboratory	Gas Chromatography; Extractive Gas Chromatography; High Pressure Liquid Chromatography x 4	Thermo Scientific Trace 1310; Thermo Scientific Trace 1310; Thermo Scientific Ultimate 3000
3	X-Ray Photoelectric Spectroscopy Lab	Sorptometer; Protein Characterization System; X-Ray Photoelectric Spectroscope	BET 201-A Beckman Coulter XL-I Kratos Analytical Axis Supra
4	Gas Chromatography Lab	Pharmaceutical Analysis System; Gas Chromatography; High Pressure Liquid Chromatography x 2	Chemito GC8610. Beckman Coulter PA 800 Plus; Thermo Scientific Trace 1310; Thermo Scientific Ultimate 3000
5	UGC Networking Lab	Fourier-transform infrared spectroscopy; Particle Size Analyzer; Mass Spectrometer; Laser Particle Analyzer; Centrifuge; Fourier-transform infrared spectroscopy; XID; Transmission electron microscopy	Vertex 80V; Coulter LS230; Thermo Scientific Trace 1300; Bettersizer 2600 Beckman Coulter Optima MAX-XP Perkin Elmer Bruker D8 Advance JEOL JEM 2100
6	Advanced Laboratory	Vapour Phase Reactor; Autoclave x 4; Rota Vaporizer; Bench Top Fixed Bed Flow Reactor; Tubular Furnace	Amar Equipment's PVT Ltd. custom build setup; Amar B(F); Heidolph Hei-Vap Value Digital; BEEM (Custom); Ants Pro-Sys

Table 4.18: Facilities in various laboratories

4.8.4 Consultancy (from Industry) (5)

Table 4.10: Concultancy (from Industry)

Institute Marks (5)

Project	Duration	Funding Agency	Amount (in Rs.)			
Year 2021-2022						
Dr. V. H. Dalvi						
Consultancy Project	1 year	Devson Catalyst	460200			
Prof A.W. Patwardhan						
Consultancy Project	1 year	M/s. Rallis India Pvt Ltd	2100000			
Consultancy Project	1 year	M/s. NOCIL	1200000			
Dr. S.V. Jadhav						
Consultancy Project	1 year	Devson Catalyst	460200			
		Dr. P. D. Vaidya				
Consultancy Project	1 year	Center for High Technology	300000			
	Prof. P. R. Gogate					
Consultancy Project	1 year	Rallis India Limited	1050000			
Consultancy Project	6 months	Gharda Chemicals	750000			
Consultancy Project	6 months	Gharda Chemicals	750000			
Consultancy Project	1 year	Khepra Inc USA	1300000			
Year 2020-2021						
Dr. V. H. Dalvi						
Consultancy Project	1 year	Sudorghan Chemicals Ltd	1500000			
Consultancy Project	1 year	Matic Products Pvt Ltd	450000			
Consultancy Project	1 year	Embio Limited	30000			
Consultancy Project	1 year	Panorama Consulting	90000			
Consultancy Project	1 year	Hindustan Organic Chemical Limited	600000			
Prof. A. V. Patwardhan						
Consultancy Project	1 year	Aegis Logistics Limited, Mumbai	300000			
Consultancy Project	1 year	Sadhana Nitro Chem Limited	300000			
Consultancy Project	1 year	Kwality Chemical Industries Pvt Ltd	300000			
---------------------	--------	---	---------			
Consultancy Project	1 year	VVF India Limited	300000			
		Dr. C. S. Mathpati				
Consultancy Project	1 year	Zoetis Pharmaceutical Research India Pvt Ltd	300000			
Consultancy Project	1 year	UPL Ltd	415000			
Consultancy Project	1 year	Jayant Agro	575000			
Consultancy Project	1 year	Embio Limited	30000			
Consultancy Project	1 year	Ultramarine & Plgments Itd	600000			
Consultancy Project	1 year	Desha engineer	60000			
		Dr. R. D. Jain				
Consultancy Project	1 year	Cipla	300000			
Consultancy Project	1 year	Biocon, Malaysia	489400			
		Dr. P. D. Vaidya				
Consultancy Project	1 year	Center for High Technology	300000			
Prof. P. R. Gogate						
Consultancy Project	1 year	Rallis India	1050000			
Consultancy Project	1 year	Anshul Speciality Molecules	90000			
Consultancy Project	1 year	Gujarat Gas Limited	120000			
Consultancy Project	1 year	Natural Remedies Pvt Ltd.	750000			
	1 year	Kosharch LLP	75000			
Consultancy Project	1 year	Khepra (USA)	215601			
Consultancy Project	1 year	UPL Limited	45000			
		Prof. S.S Bhagwat				
Consultancy Project	1 year	Unilever industries Pvt. Ltd.	600000			
Consultancy Project	1 year	Galaxy Surfactants Limited	1045440			
Consultancy Project	1 year	K.V. Fire	150000			
Consultancy Project	1 year	Aditya Birla Science & Technology Company Pvt. Ltd.	600000			
Consultancy Project	1 year	Kiri Industries Ltd	600000			
Consultancy Project	1 year	Hindiusta unileve Ltd	360000			

Consultancy Project	1 year	UPL Limited	150000	
Consultancy Project	1 year	National Paroxide Limited	150000	
		Prof. Lakshmi Kantam		
Consultancy Project	1 year	Prasol Chemical Pvt Ltd.	100000	
Consultancy Project	1 year	Raill India Pvt Ltd	250000	
		Prof A.W.Patwardhan		
Consultancy Project	1 year	NOCIL	600000	
Consultancy Project	1 year	Rallis India Pvt Ltd	1037750	
		Prof. V.K. Rathod		
Consultancy Project	1 year	Gujarat Gas Limited	240000	
Consultancy Project	1 year	Natural Remedies Pvt Ltd	750000	
Consultancy Project	1 year	Prasol Chemicals Pvt Ltd	100000	
Consultancy Project	1 year	Raills India Limited	250000	
	Prof. G.D. Yadav			
Consultancy Project	1 year	OEC Project Manager	200000	
Consultancy Project	1 year	Rallis I Pvt Ltd	250000	
		Prof. B.N. Thorat		
Consultancy Project	1 year	Covestro India Pvt Ltd.	450000	
Consultancy Project	3 years	Akry Organics Pvt Limited	200000	
Consultancy Project	6 months	Maharashtra Pollution Control Board	2225000	
Consultancy Project	6 Months	Westins Resins & Polymers Pvt Limited	200000	
Consultancy Project	1 year	Shiva Performnce Materials Pvt Limited	500000	
		Dr. M.D. Yadav		
Consultancy Project	1 year	Kiri Industries Limited	300000	
		Dr. Annamma Odaneth		
Consultancy Project	1 year	Lupin Limited	500000	
Consultancy Project	1 year	UPL Limited	900000	
		Prof. A.B. Pandit		
Consultancy Project	17 years	M/s. Encore Natyral Polymers	1800000	

Consultancy Project	18 years	M/s. Technova Imaging System Pvt Ltd	900000
		Year 2019-2020	· ·
		Prof. S. S Bhagwat	
Consultancy Project	1 year	Unilever industries Pvt. Ltd.	240000
Consultancy Project	1 year	Galaxy Surfactants Limited	348480
Consultancy Project	1 year	K.V. Fire	300000
Consultancy Project	1 year	Aditya Birla Science & Technology Company Pvt. Ltd.	900000
Consultancy Project	1 year	Asian Paints Limited	175000
Consultancy Project	1 year	Marico Limited	42000
Consultancy Project	1 year	AZB and Partners	75000
Consultancy Project	1 year	K.V. Fire	150000
Consultancy Project	1 year	Aditya Birla Science & Technology Company Pvt. Ltd.	900000
Consultancy Project	1 year	Marico Limited	140000
Consultancy Project	1 year	Unilever industries Pvt. Ltd.	60000
		Dr.V. H. Dalvi	
Consultancy Project	1 year	Whirlwind project	150000
Consultancy Project	1 year	Sudarshan Chemical	150000
Consultancy Project	1 year	Super Fresh	210000
Consultancy Project	1 year	Zoetis Pharmaceutical Research pvt ltd	300000
		Prof.P. R. Gogate	
Consultancy Project	1 year	Green galaxy global environment services installment	89984
Consultancy Project	1 year	S. techno limited	60000
Consultancy Project	1 year	kesar petroproducts limited	135000
Consultancy Project	1 year	Cipla house	120000
Consultancy Project	1 year	Hisun adhesives	120000
Consultancy Project	1 year	Indoco remedies limited	180000
Consultancy Project	1 year	supreme petrochem Itd	90000
Consultancy Project	1 year	shyam chemical pvt ltd	150000
Consultancy Project	1 year	Hikal limited	270000

Consultancy Project	1 year	Loknete parshuram envirment protection co op soc ltd	300000		
Consultancy Project	1 year	S. techno limited	150000		
Consultancy Project	1 year	Vardhaman dyestuff industries pvt Itd	150000		
Consultancy Project	1 year	Rallis India Pvt Ltd	550000		
		Prof. P.K.Ghosh			
Consultancy Project	1 year	Rubamin Limited	100000		
		Prof. V.G. Gaikar			
Consultancy Project	1 year	Fossil Liquid And Minerals Exim Pvt Ltd	1200000		
		Dr. Ratnesh Jain			
Consultancy Project	1 year	Mangalam Drugs & Organics Limited	600000		
Consultancy Project	1 year	Sakar Healthcare Pvt Ltd	700000		
Consultancy Project	1 year	Biocon Limited	708400		
	Prof. L.K. Mannepalli				
Consultancy Project	1 year	Mangalam Organics Ltd	50000		
Consultancy Project	1 year	Marvel Drugs Pvt Ltd	100000		
Consultancy Project	1 year	Prasol Chemical Pvt Ltd	100000		
Consultancy Project	1 year	Vinati Organics Ltd	100000		
		Dr. C.S. Mathpati			
Consultancy Project	1 year	Fabex Engineering	150000		
Consultancy Project	1 year	Jayant Agro- organices Ltd	280000		
Consultancy Project	1 year	Fabex Engineering	150000		
Consultancy Project	1 year	Zoetis Pharmaceutical Research Pvt Ltd	300000		
Consultancy Project	1 year	Jayant Agro- organices Ltd	143750		
Consultancy Project	1 year	Fabex Engineering	150000		
		Dr. Parag R. Nemade			
Consultancy Project	1 year	Galaxy Surfactants Ltd	150000		
		Prof A.W.Patwardhan			
Consultancy Project	1 year	NOCIL Limited	1200000		

Consultancy Project	1 year	Rallis India Pvt Ltd	1050000		
, ,	Prof.A.V.Patwardhan				
Consultancy Project	1 year	Aegis Logistics Limited	950000		
		Prof. V.K.Rathod			
Consultancy Project	1 year	Asian paints limited	200000		
Consultancy Project	1 year	Amarjyot chemical coration	100000		
Consultancy Project	1 year	Marvel drugs pvt ltd	100000		
Consultancy Project	1 year	Gujarat Alkalies & chemical limited	250000		
Consultancy Project	1 year	kesar petroproducts limited	200000		
Consultancy Project	1 year	Godavari bio-irefiners ltd	200000		
Consultancy Project	1 year	Mangalam organics Itd	50000		
Consultancy Project	1 year	Indo amines limted	200000		
Consultancy Project	1 year	Vivid global ind ltd	150000		
Consultancy Project	1 year	IPCA labortories ltd	325000		
Consultancy Project	1 year	Heubach Colour pvt Itd	100000		
Consultancy Project	1 year	mangalam organics ltd	300000		
Consultancy Project	1 year	Prasol chemical pvt ltd	100000		
Consultancy Project	1 year	Egulnox Enviroments I pvt ltd	150000		
Consultancy Project	1 year	Vinat Organics Itd	100000		
Consultancy Project	1 year	Aaradhana Energy Pvt Ltd	100000		
		Prof. P.D.Vaidya			
Consultancy Project	1 year	Centre For High Techology	300000		
		Prof. G.D. Yadav			
Consultancy Project	1 year	OEC Project Manager	160000		
	Dr. S. V. Jadhav				
Consultancy Project	1 year	Amarjyot Chemical Corporation	50000		
Year 2018-2019					
		Prof. S.S Bhagwat			
Consultancy Project	1 year	Sumwin Solution Malaysia	500000		

Consultancy Project	1 year	Toyo Engineering India Pvt.ltd.	75000
Consultancy Project	1 year	Lorel India Pvt.Ltd	60000
Consultancy Project	1 year	Aditya Birla Science & Tech. Co. Ltd.	90000
Consultancy Project	1 year	Marico Ltd.	350000
Consultancy Project	1 year	K.V.Fire	400000
Consultancy Project	1 year	Aditya Birla Science & Tech. Co. Ltd.	300000
Consultancy Project	1 year	Dow Chemicals International Pvt. Ltd.(R & P)	150000
Consultancy Project	1 year	Balmer Lawrie	300000
Consultancy Project	1 year	Reliance Utilities Power Pvt.Ltd.	300000
Consultancy Project	1 year	Galaxy Surfactants Ltd	348480
Consultancy Project	1 year	Hindustan Unilever Itd	375000
		Dr. V. H. Dalvi	
Consultancy Project	1 year	Zoetis Pharmaceutical Research Pvt.Ltd/st Inst	600000
Consultancy Project	1 year	Panorama Consulting	90000
Consultancy Project	1 year	Eternis Fine Chemicals Ltd.	1500000
		Prof.P.R. Gogate	
Consultancy Project	1 year	A.B.S.&T.C.L.	150000
Consultancy Project	1 year	Green Galaxy Global Enviromental Services	65800
Consultancy Project	1 year	Supreme Petrochem Ltd.	150000
Consultancy Project	1 year	Excel Industries	175000
Consultancy Project	1 year	Whirlpool of India Ltd	180000
Consultancy Project	1 year	Excel Industries Ltd.	45000
Consultancy Project	1 year	Mangalam Organics	270000
Consultancy Project	1 year	Green Galaxy Global Enviromental Services	100000
Consultancy Project	1 year	S.S.Techno Limited	600000
Consultancy Project	1 year	Mangalam Organics	270000
Consultancy Project	1 year	Shree Pushkar Chemicals & Fertilisers Ltd.	165000
Consultancy Project	1 year	Deepak Nitrite Ltd.	180000
Consultancy Project	1 year	Hikal Ltd.	150000

Consultancy Project	1 year	SI Group	180000
Consultancy Project	1 year	A.B.S.&T.C.L.	37000
Consultancy Project	1 year	Mangalam Organics	291600
		Prof. P. K. Ghosh	
Consultancy Project	1 year	Asian Paints	300000
Consultancy Project	1 year	Rubamin Limited	100000
		Dr. R. D. Jain	
Consultancy Project	1 year	Advy Chemicals Pvt Ltd	1100000
Consultancy Project	1 year	Gangwal Chemicals Pvt.Ltd.	500000
Consultancy Project	1 year	Mangalam Drugs & Organics Ltd.	2400000
Consultancy Project	1 year	S.A. Pharmachem Pvt Ltd.	675000
		Prof. L.K. Mannepalli	
Consultancy Project	1 year	Kesar Petroproducts Ltd.	200000
Consultancy Project	1 year	Godavari Biorefineries	200000
Consultancy Project	1 year	Chrom Specialities Ltd	500000
		Prof A.M. Lali	
Consultancy Project	1 year	Gencrest LLP	675000
Consultancy Project	1 year	Lupin Ltd	600000
Consultancy Project	1 year	Kanoria Chemicals & Industries Ltd.	150000
Consultancy Project	1 year	Lupin Ltd	150000
		Dr. C.S. Mathpati	
Consultancy Project	1 year	Jayant Agro-Organics Ltd.	500000
Consultancy Project	1 year	UPL	500000
Consultancy Project	1 year	Zoetis Pharmaceutical Research Pvt.Ltd/	300000
Consultancy Project	1 year	Jayant Agro-Organics Ltd.	135000
Consultancy Project	1 year	Fabex Engineering	600000
Consultancy Project	1 year	Jayant Agro-Organics Ltd.	575000
		Dr. K. V. Marathe	
Consultancy Project	1 year	PACE (India)	125000

Consultancy Project	1 year	Indian Center For Plastics in the Environment	1500000		
	Prof. A.B. Pandit				
Consultancy Project	1 year	A.B.S.&T.C.L	150000		
Consultancy Project	1 year	Gothi Impex	600000		
Consultancy Project	1 year	Encore Natural Polymer Pvt. Ltd	1800000		
Consultancy Project	1 year	Gothi Impex	600000		
Consultancy Project	1 year	Jayant-Agro Organics Ltd	60000		
		Prof A. W. Patwardhan			
Consultancy Project	1 year	Nocil Ltd	1200000		
		Prof. V. K. Rathod			
Consultancy Project	1 year	IG Petrochemicals Ltd	150000		
Consultancy Project	1 year	Kesar Petroproducts Ltd.(Research & Projects)	200000		
Consultancy Project	1 year	Godavari Biorefineries Ltd	200000		
Consultancy Project	1 year	Amarjyot Chemical Corporation	100000		
Consultancy Project	1 year	Johnson Matthey Chemical India Ltd	150000		
Consultancy Project	1 year	Aditya Envirnmental services pvt ltd	450000		
		Prof. B. N. Thorat			
Consultancy Project	1 year	Sharon Bio-Medicine Ltd.	200000		
Consultancy Project	1 year	Pidlite Industries Ltd.	150000		
Consultancy Project	1 year	Maldeep Catalysts India	200000		
Consultancy Project	1 year	Relicane Industries Ltd.	150000		
Consultancy Project	1 year	Piramal Enterprises Ltd	250000		
		Prof. G. D. Yadav			
Consultancy Project	1 year	ONGC Centre Alternative to Plat.	400000		
Consultancy Project	1 year	McKinsey & Company	1800000		
		Year 2017-18			
		Prof. S.S. Bhagwat			
Consultancy Project	1 year	Jayant Agro Organics	900000		
Consultancy Project	1 year	Jayant Agro Organics,	450000		

Consultancy Project	1 year	Galaxy Surfactants Ltd.	950400		
Consultancy Project	1 year	Galaxy Surfactants Ltd.	150000		
Consultancy Project	1 year	Marico Ltd.	350000		
Consultancy Project	1 year	K.V.Fire	300000		
Consultancy Project	1 year	Balmer Lawrie	300000		
Consultancy Project	1 year	Aditya Birla Science & Tech. Co. Ltd.	450000		
Consultancy Project	1 year	Marico Ltd.	180000		
Consultancy Project	1 year	Sumwin Solution, Malayasia	300000		
Consultancy Project	1 year	Reliance Utilities Power Pvt.Ltd	300000		
Consultancy Project	1 year	Aditya Birla Science & Tech. Co. Ltd.	300000		
		Dr. V. H. Dalvi			
Consultancy Project	1 year	Sheney Enterprises Pvt.Ltd.	15000		
Consultancy Project	1 year	Zoetis Pharmaceutical Research Pvt.Ltd	300000		
	Prof. P. R. Gogate				
Consultancy Project	1 year	Privi Organics Ltdfrom 2016-17	300000		
Consultancy Project	1 year	Y. Cube Tech. Pvt. Ltd	24000		
Consultancy Project	1 year	Mangalam Organics Ltd.	675000		
Consultancy Project	1 year	Navin Flurine International Ltd	120000		
Consultancy Project	1 year	Autus International	100000		
Consultancy Project	1 year	Privi Organics Ltd.	150000		
Consultancy Project	1 year	Godavari Drugs Ltd.	90000		
Consultancy Project	1 year	Zirconium Chemical Pvt. Ltd.	75000		
Consultancy Project	1 year	Asetic Life Sciecne Ltd.	180000		
Consultancy Project	1 year	Innovassynth Technologies (India)Ltd.	90000		
Consultancy Project	1 year	Chemco Innovative Chemie Pvt.Ltd.	90000		
Consultancy Project	1 year	Chemference	45000		
Consultancy Project	1 year	Green Galaxy Global Enviromental	658600		
Consultancy Project	1 year	Lasons India Pvt. Ltd.	180000		
Consultancy Project	1 year	Excel Industries Ltd.	45000		

Consultancy Project	1 year	Hikal Ltd.	150000		
Consultancy Project	1 year	Mangalam Organics	270000		
		Prof. P. K. Gosh			
Consultancy Project	1 year	Rubamin Ltd	300000		
		Dr. R.D. Jain			
Consultancy Project	1 year	Wackhord Ltd	30000		
Consultancy Project	1 year	Galaxo Smitkline	63600		
Consultancy Project	1 year	Anya Biopharma	731800		
Consultancy Project	1 year	Famy Care Ltd.	60000		
Consultancy Project	1 year	Advy Chemicals Pvt. Ltd.	600000		
Consultancy Project	1 year	Anya Biopharma, Taiwan	731800		
Consultancy Project	1 year	Hetro Biopharma	100000		
		Prof. L.K. Mannepalli			
Consultancy Project	1 year	Muncipal Corporation	249900		
Consultancy Project	1 year	Relience Industrial Ltd.	450000		
	Prof A.M. Lali				
Consultancy Project	1 year	Godrej Agrovet Ltd	1000000		
Consultancy Project	1 year	Gencrest LLP	750000		
		Dr. C.S. Mathpati			
Consultancy Project	1 year	Jayant Agro -Organics Ltd.	500000		
Consultancy Project	1 year	UPL Ltd.	333333		
Consultancy Project	1 year	Sun Pharma Technical Trading Academy	150000		
Consultancy Project	1 year	Zoetis Pharmaceutical Research Pvt.Ltd	300000		
		Dr. P.R. Nemade			
Consultancy Project	1 year	MRIB Chemicals	150000		
		Prof. A.B. Pandit			
Consultancy Project	1 year	Khaitan And Co	90000		
Consultancy Project	1 year	GMM Pfaudler	900000		
Consultancy Project	1 year	B.P.C.L.	500000		

Consultancy Project1Consultancy Project1	1 year 1 year 1 year	Narendra Karnavat SRF Ltd.	150000 10000
Consultancy Project 1	1 year 1 year	SRF Ltd.	10000
	1 vear		
Consultancy Project 1	i year	Encore Natural Polymer Pvt. Ltd	590000
		Prof A.W.Patwardhan	
Consultancy Project 1	1 year	Siemens Ltd	84000
Consultancy Project 1	1 year	Nocil Ltd	1200000
Consultancy Project 1	1 year	GMM Pfaudler Ltd	900000
Consultancy Project 1	1 year	SRF Ltd.	100000
		Prof. A.V.Patwardhan	
Consultancy Project 1	1 year	National Peroxide Ltd.	300000
Consultancy Project 1	1 year	Siemens Ltd	84000
Consultancy Project 1	1 year	Bajaj Allianz General Insurance Company Ltd.	150000
		Prof. V.K.Rathod	
Consultancy Project 1	1 year	Nautraplus India Ltd.	150000
Consultancy Project 1	1 year	Harman FinochemLtd.	225000
Consultancy Project 1	1 year	Navin Fluorine Internatinal Ltd.	120000
Consultancy Project 1	1 year	Marvel Drugs Pvt.Ltd.	200000
Consultancy Project 1	1 year	Crystal Surfactants & Chemical	90000
Consultancy Project 1	1 year	Godrej Agrovate Ltd	100000
Consultancy Project 1	1 year	Godavari Biorefineries Ltd	200000
Consultancy Project 1	1 year	Hikal Ltd.	500000
Consultancy Project 1	1 year	Gitanjali Chemicals Pvt. Ltd.	100000
Consultancy Project 1	1 year	Aditya Enviromental Services Pvt. Ltd.	450000
Consultancy Project 1	1 year	Indo Amines Ltd	200000
		Prof. B.N.Thorat	
Consultancy Project 1	1 year	Marvel Drugs Pvt Ltd	150000
Consultancy Project 1	1 year	Kansai Nerolac	450000
Consultancy Project 1	1 year	Aquapharma Chemicals Pvt. Ltd.	250000
Consultancy Project 1	1 year	Sharon Bio-Medicine Ltd.	200000

Prof. P.D.Vaidya				
Consultancy Project	1 year	Aquapharma Chemicals Pvt. Ltd.	250000	
Consultancy Project	1 year	Indian Oil Corparation Ltd	900000	
		Prof. G.D. Yadav		
Consultancy Project	1 year	ONGC Energy Centre (Altermative to Platimum)	280000.00	
Consultancy Project	1 year	Malladi Drugs & Pharmaceutical Ltd.	1500000	
Consultancy Project	1 year	ONGC (ICT-OEC/Phase III)	3000000	
		Year 2016-17		
		Prof. S.S. Bhagwat		
Consultancy Project	1 year	Unicorn Laboratories Ltd.	450000	
Consultancy Project	1 year	Marico,Ltd.	350000	
Consultancy Project	1 year	Balmer Lawries&Co,Ltd.	225000	
Consultancy Project	1 year	K.V.Fire Chemicals	300000	
Consultancy Project	1 year	Galaxy Surfactants Ltd.	950400	
Consultancy Project	1 year	Lubrizol India Pvt.Ltd.	75000	
Consultancy Project	1 year	Hindustan Unilever Ltd.,	360000	
Consultancy Project	1 year	Aarti Industries Ltd.	50000	
Consultancy Project	1 year	Aditya Birla Science & Technology,	900000	
Consultancy Project	1 year	Atul India Ltd.	250000	
Consultancy Project	1 year	Miuro Trading & Finvest Pvt. Ltd.	150000	
Consultancy Project	1 year	Hindustan Unilever Ltd.	375000	
Consultancy Project	1 year	Unilever Industries Ltd.	360000	
Consultancy Project	1 year	Glaxo Smith.K.Ltd	120000	
Consultancy Project	1 year	Jayant Agro-Organics	450000	
		Prof. V. H. Dalvi		
Consultancy Project	1 year	Bhavi Plast Pvt. Ltd	75000	
Consultancy Project	1 year	Adya Entersies	150000	
		Prof. P. R. Gogate		
Consultancy Project	1 year	Excel Industries Ltd.	175000	

Consultancy Project	1 year	Innovassynth Technologies India Ltd.	90000
Consultancy Project	onsultancy Project 1 year Anshul Specialty Molecules Ltd.		75000
Consultancy Project	1 year Gharda Chemical Ltd.		90000
Consultancy Project	1 year	Deepak Nitrite Ltd.	90000
Consultancy Project	1 year	Hikal Ltd.	120000
Consultancy Project	1 year	Deepak Nitrite Ltd.	240000
Consultancy Project	1 year	Anek Prayog Pvt Ltd.	90000
Consultancy Project	1 year	Y Cube Technologies Pvt. Ltd.	183000
Consultancy Project	1 year	RPG Life Sciences Ltd.	120000
Consultancy Project	1 year	Hospira Healthcare India Pvt Ltd.	120000
Consultancy Project	1 year	Dombivli Common Effluent Treatment Plant	150000
Consultancy Project	Consultancy Project 1 year Deepak Nitrite Ltd.		30000
Consultancy Project	1 year	Deepak Nitrite Ltd.	120000
Consultancy Project	1 year	Eskay Dyestuff Organic Chemical Pvt. Ltd.	210000
Consultancy Project	1 year	Mangalam Organics Ltd.	225000
		Prof. P. K. Gosh	
Consultancy Project	1 year	Atul Limited.	100000
Consultancy Project	1 year	Rubamin Limited.	100000
		Prof. V. G. Gaikar	
Consultancy Project	1 year	Unilever Industries Ltd	270000
		Dr. Ratnesh Jain	
Consultancy Project	1 year	FMC India Pvt. Ltd.	72000
Consultancy Project	1 year	Glaxo Smithkline Pharmaceutical Ltd.	75000
Consultancy Project	1 year	Glaxo Smithkline Pharmaceutical Ltd.	122400
		Prof. L. K. Manipalli	
Consultancy Project	1 year	Eternis Fine Chemical Ltd.	600000
Consultancy Project	1 year	Aarti Drugs Ltd.	600000
		Prof. A. M. Lali	
Consultancy Project	1 year	Godrej Agrovet Ltd.	1000000

	Dr. C. S. Mathpati						
Consultancy Project	1 year	Bhavi Plast Pvt. Ltd.	75000				
Consultancy Project	1 year	U.P.L. Ltd.	500000				
Dr. P. R. Nemade							
Consultancy Project	1 year	Galaxy Surfactants Ltd.	150000				
Prof. A. B. Pandit							
Consultancy Project	1 year	SRF Ltd.	900000				
Consultancy Project	1 year	Encore Natural Polymers Pvt.Ltd.	1800000				
Consultancy Project	1 year	Ideal Chemi Plast Pvt. Ltd.	102000				
Consultancy Project	1 year	Dr. Aykan Textiles Pvt. Ltd.	75000				
Consultancy Project	1 year	L & T Tech	600000				
	Prof. A. W. Patwardhan						
Consultancy Project	1 year	Praj Industries Ltd.	300000				
Consultancy Project	1 year	Nocil Ltd.	1200000				
Consultancy Project	1 year	Lubrizol India Pvt. Ltd.	225000				
Consultancy Project	1 year	Siemens Ltd.	84000				
		Prof. A. V. Patwardhan					
Consultancy Project	1 year	Lubrizol India Pvt. Ltd.	150000				
Consultancy Project	1 year	National Peroxide Ltd.	300000				
Consultancy Project	1 year	Sudarshan Chemical Industries Ltd.	45000				
Consultancy Project	1 year	Hindusthan Chemicals Company, Surat	30000				
Consultancy Project	1 year	Atul Ltd.	250000				
Consultancy Project	1 year	Seimens Ltd.	84000				
Prof. V. K. Rathod							
Consultancy Project	1 year	Innovative Eco-Care Pvt. Ltd.	252000				
Consultancy Project	1 year	Three M Paper Manufacturing Co Pvt Ltd.	250000				
Consultancy Project	1 year	Nichem Solutions	51000				
Consultancy Project	1 year	Konark Herbals And Health Care	600000				
Consultancy Project	1 year	Aditya Environmental Services Pvt. Ltd.	225000				

Consultancy Project	1 year	Arch Pharmalabs Ltd.	150000	
Consultancy Project	1 year	Prasol Chemicals Ltd.	173913	
Consultancy Project	1 year	Natroplus India Ltd.	150000	
Consultancy Project	1 year	Vetpharma Ltd.	150000	
Consultancy Project	1 year	Natroplus India Ltd.	150000	
		Prof. B. N. Thorat		
Consultancy Project	1 year	J. S. Industries Ltd.	150000	
Consultancy Project	1 year	RPG Life Sciences Ltd.	100000	
Consultancy Project	1 year	Pidilite Industries Ltd.	200000	
Consultancy Project	1 year	Excel Industries Ltd.	225000	
Consultancy Project	1 year	Gulbrandsen Chemicals Pvt. Ltd.	500000	
Consultancy Project	1 year	Aquapharma Chemicals Pvt. Ltd.	250000	
Consultancy Project	1 year	Pulera Chemicals India Pvt. Ltd.	50000	
Consultancy Project	1 year	Spectrochem Pvt. Ltd.	50000	
Consultancy Project	1 year	Khanna & Khanna Ltd.	50000	
Consultancy Project	1 year	Marvel Drugs Pvt. Ltd.	150000	
		Prof. P. D. Vaidya		
Consultancy Project	1 year	Atul Ltd.	150000	
Consultancy Project	1 year	Indian Oil Corporation Ltd.	300000	
Consultancy Project	1 year	Excel Industries Ltd.	225000	
Consultancy Project	1 year	Aquapharma Chemicals Pvt. Ltd.	250000	
		Prof. G. D. Yadav		
Consultancy Project	1 year	Delta Finochem Pvt. Ltd.	900000	
Consultancy Project	1 year	Resonance Specialities Ltd.	600000	
Consultancy Project	1 year	Heubach Colour Pvt. Ltd.		
Consultancy Project	1 year	ONGC Energy Centre	100000	
Consultancy Project	1 year	ONGC Energy Centre	120000	
Consultancy Project	1 year	ONGC Energy Centre	160000	

4.9 Faculty Performance Appraisal and Development System (FPADS) (5)

Institute Marks (5)

The faculty performance is assessed annually by the Self-Appraisal method, Peer Evaluation, and a robust Student Feedback System. The analysis is done based on the following parameters: student feedback, number of seminars, conferences and QIPs attended, contribution to the college and community, books, papers and patents published, consultancy work, grants received and special awards. Student feedback is, however, given top priority and a teacher who secures 100% results in his/her subject is motivated by being presented with a Certificate of Appreciation.

The "Best Teacher" award has also been instituted wherein a teacher receives a certificate and memento during the annual function at the hands of the Chief Guest. The college also encourages Faculty Self- Development through upgrading education by offering full support in terms of facilities provided. Faculty participation in continuing education programs, various national and international conferences, sponsored registration, and workshops is encouraged. This appraisal system has given way for further enhancement and up-gradation of their skills and knowledge.

The faculty who qualify for the promotions after the prescribed years of service as per the government norms, are required to follow the selfappraisal system to apply for the promotion. The applications are screened and faculty interviews are taken before the committee to grant the promotions. The self-appraisal form has five sections:

- Teaching process
- Student feedback
- Departmental activities
- Institutional activites
- Annual confidential report

List of Best Teacher Awards:

- Dr. V.H. Dalvi was felicitated with AICTE-Visvesvaraya Best Teacher Award in September 2021
- Professor S. S. Bhagwat, has been selected for 'INSA Best Teacher Award' by the Indian National Science Academy during 2017

	INSTITUTE OF CHEMICAL TECHNOLOGY (University under Section 3 of UGC Act- 1956) [Flite Status and Centre of Excellence - Government of Maharashtra]	Institut	e Notific:	ution No. C/ CAl	ANN AS Policy/7 th pay co LCULATION OF 3	EXURE - B mmission/95/2 160 ⁰ FEEDBA	021, dated 1 st S CK SCORE	septembe	r, 2021
Calendary of		Na	me	-					
v u	Matunga, Mumbai - 400 019	Pro	sent Pos	ition			1-1-14 CO.		Chi Sul 17
		Per	iod of A	ssessment					
	ANNUAL SELF - ASSESSMENT OF FACULTY	a	Feaching	Process (m	naximum points 25)			La Li	
	[Performance Based Appraisal System (PBAS)- AICTE]	SN	S	emester	Course Code/ Name	No. of scheduled classes	No. of actually held classes	Points earned (x/25)	Enclosure
		1		200			intra criticato	(10 20)	111111
	July 01. to June 30.	2						-	
	·····, ···, ··· · ··· ···,				Total	and the second			
	(To be completed and submitted at the end of each academic year) FORMAT FOR CONFIDENTIAL REPORT	b. 1 SN	Students	feedback (r ester	naximum points 25 Course Code/ Nam) e Averag	e student feedl the scale of 25	back on	Enclosure No.
		1							
		2							
	PARIA				Total aver	age			
		c. De Sr. No.	partmen Semes	tal activitie ter	s (maximum points Activity	20) Credits	Criteria	E	nclosure No.
		1		_					
		2 *Dof							
1. Full Na	ame (in Block Letters)	Kere	Annex	are-5					
2 Depart	mant (d. In	stitution	al activity (maximum points 20	0			
3 Curren	Interior Interior	Sr. No.	Semest	er ,	Activity	Credits	Criteria	E	nclosure No.
(With r	nav scale & grade nav)	1.		-					
	flast Dramatian	2. *Dofo	r Annew	ire - 4			1		
4. Date of (Regul	ar/_CAS_& Stage of Promotion)	e. An	nual Co	nic - 4	eport (maximum p	oints 10)			
5. Addres	ss for Correspondence	Sr.	N.		and a second sec	C	C.1. 1	-	
(With F	Pin code, Tel./ Mobile No. & E-mail)	No.	Year	A	etivity	Credits	Criteria	E	iclosure No.
6. Perma	nent Address	2.							
(With F	Pin code, Telephone No.)	*Refe	r Annexi	ire -5					
7. Wheth	er acquired any degree or fresh							P	age 11 of 23
acader	nic qualification during the year								RRC
									M

Fig 4.4: Faculty Self-Appraisal Form

4.10 Visiting/Adjunct/Emeritus Faculty etc. (5)

Institute Marks (5)

The institute encourages association with Industry Leaders for their contribution to teaching-learning and research-related activities. These experts are appointed as Visiting/Adjunct/Emeritus faculty, wherein many of them actively participate in conducting UG/PG/PhD courses as well as several activities related to research such as Thesis Evaluation, External Examiners for Project/Seminar viva, Distinguished Lectures, Faculty Development Programs, Seminars, Conferences and many others. Further details of these Industry Faculties association with the Department and the Institute (UG Programs) can be found below:

Table 4.20: List of Adjunct Faculties				
Name of Adjunct Professors	Description			
	Dean of Applied Sciences,			
Prof. Suresh K. Bhargava	College of Science, Engineering			
	and Technology, RMIT University			
	Group President (Research and Technology)			
Dr. Ajit Sapre	Reliance Technology Group			
	Reliance Corporate Park, Navi Mumbai			
	Formerly Professor, School of Chemistry,			
Du Ashusini Nausia	University of Hyderabad,			
Dr. Ashwini Nangia	Director, CSIR-National Chemical			
	Laboratory, Pune			
	1120 Lyndhurst Way			
Dr. Ram Sabnis	Roswell, GfA 30075			
	USA			
	Director General			
Du Canie au C. Katti	ONGC Energy Centre			
Dr. Sanjeev S. Katti	8th Floor, Core - 4			
	SCOPE Minar, Laxmi Nagar, Delhi			
	520, Arbolada Drive			
Dr. Rajendra Sardesai	Arcadia, California 91006-2112			
	U.S.A.			
Distinguished Adjunct Professor (2019-23)				
	Director, M3TC, Faculty of			
Prof. Arun S. Mujumdar	Engineering and Department of Mechanical Engineering			
	National University of Singapore			
	Winthrop E. Stone			
Prof. Rakesh Agrawal	Distinguished Professor of Chemical Engineering,			
	Purdue University			
Duck County Million and a	Hiller Professor of Bioengineering			
Prof. Samir Mitragotr	and Hansjorg Wyss Professor of			

Table 4.20: List of Adiunct Faculties

	Biologically Inspired Engineering;
	Area Chair for Bioengineering
	H.C. Peffer Distinguished Professor
Drof, Dovojevomi Domkrichno	Forney Hall of Chemical
Prof. Doraiswami kamkrishna	Engineering, 480 Stadium Mall Drive,
	Purdue University
Dr. A.V. Bama Bao	Chairman and Managing Director
	Avra Laboratories Pvt. Ltd.
	DAE-Homi Bhabha Chair Professor, BARC;
Dr. Srikumar Banorico	Chancellor, Central University of Kashmir
Di. Silkullar Ballerjee	Chancellor, Homi Bhabha National Institute,
	Central Complex, BARC
	Emeritus Professor
Prof Pajamani Krishna	University of Amsterdam
	Van 't Hoff Institute for Molecular Sciences.
	Amsterdam, The Netherlands
	INSA Senior Scientist and
Dr. S. Siyaram	Honorary Professor,
	Indian Institute of Science Education and Research,
	Dr. Homi Bhabha Road, Pune
	President and CEO
Shri Vijav B. Samant	VICAL, 93/73, Powne Centre Drive
Sinn Vijay D. Samant	Suite 100, Sandiago
	California, CL 92121-3088, USA
	Formerly Director IIT, Kharagpur,
	Formerly Vice Chancellor, Biju Patnaik University of Technology,
Prof. Damodar Acharya	Bhubaneswar,
	Chairman Advisory Board, SOA University, Khandagiri Square,
	Bhubaneswar
	Distinguished Professor and Director,
	CUNY Energy Institute
Prof. Sanjoy Banerjee	Steinman Hall, 326,
	Mechanical Engineering,
	The City College of New York
	Distinguished Adjunct Professor of Physics and Chemical Engineering
Prof. Chennupati Jagadish	ANU College of Science,
	Australian National University
	Director-General of CRDS,
	Japan Science and Technology Agency (JST)
Prof. Ryoji Noyori, Nobel Laureate	Director of Science Museum,
	Japan Science Foundation
	KIKEN FEIIOW, KIKEN UNIVERSITY
	Protessor, Nagoya University, JAPAN

SN	CourseCode	Title	Visiting Faculty	Affiliation
1	CET1604	Basic course in Entrepreneurship	Mr. Vikrant S. Potnis	Founder at FundEnable, Director at Fortemagna Advisors, Founder at Indian Academy of Venture Capital (IAVC)
2	CET1401	Chemical Engineering Operations	Mr. Aniruddha Shenvi	Freelance Technical Consultant
3	HUT1102	Persp. of Society, Sci. & Tech.	Dr. Rama Iyer	Former Chairman & CEO of Aker Kvaerner
4	CET1509	Refinery Science & Engineering	Mr. Ravindra Kubade	Dy. General Manager (DGM) Process Technology BPCL-Mumbai Refinery (MR)
5	CET1509	Refinery Science & Engineering	Mr. Sunil Balwant	DGM OPERATIONS (ARU, ISOM, CCR, CCU, FCCU, GTU) BPCL-Mumbai Refinery (MR)
6	CET1509	Refinery Science & Engineering	Mr. Nilesh Kandalkar	DGM Technical Services (Energy & amp; Environment) BPCL-Mumbai Refinery (MR)
7	CET1503	Environmental Engg. & Process Safety	K. Sahasranaman	Independent consultant in areas of Process Engineering and Design, Energy, Utilities, and Safety for the Chemical Process Industry.
8	CET1509	Refinery Science & Engineering	O.P. Goyal	Freelance Technical Consultant
9	HUT1103	Industrial Psychology and Human Resource	Dr. Rama Iyer	Former Chairman & CEO of Aker Kvaerner
10	HUP1101	Communication Skills	Yogesh. Anvekar	Head, Department of English, G.N. Khalsa College, Mumbai.
11	CET1511	Plant Utilities	K. Sahasranaman	Independent consultant in areas of Process Engineering and Design, Energy, Utilities, and Safety for the Chemical Process Industry.
12	HUT1105	Industrial Management (II)	O.P. Goyal	Freelance Technical Consultant
13	HUT1104	Industrial Management (I)	Dr. Rama Iyer	Former Chairman & CEO of Aker Kvaerner

Table 4.21: List of Visiting Faculties

CRITERION 5	Resources	75/75

5.1 Adequate and well-equipped laboratories, and technical manpower (25) Institute Marks (25)

90 by or		Table 5.1: Laboratories and technical manpower							
ý b g g g g s v g g g g g g g g g g g g g g g g g g		e >	r er	4 9	_	Technic	al Manpower s	upport	
1Chemical Engineering Lab2 (20)Bubble Column, Stired Tank, packed column, backed column, liq-liq exclambra diffusivity of acetone in air, torsoic disolution iliq-liq equilibriumMr. Rahul Mohite Mr. Samea Kurade solid-liq Mr. Analut Prabhu Mr. Anil Salvi Mr. Anil Salvi Mr. Anil Salvi Hamal cum Mr. Shivam Sawant tab AssistantS.S.C. B.S.C. Chemic Lab Astendant 9 th pass S.S.C.2Heat Transfer Lab2 (10)Double Pipe heat exchanger, disci dissolution iliq-liq equilibriumStudy of nass solid-liq mass excrationMr. Vishal Bhambid Mr. Anil Salvi Mr. Shivram Sawant Mr. Shivram Sawant tab AttendantB.Sc In Chemical B.S.C.2Heat Transfer Lab2 (10)Double Pipe heat exchanger, distillation column, Plate Heat transfer, Shell and Tube Heat transfer, Shell and Tube Heat transfer, Shell and Tube Heat transfer, ScierMr. Lalit Sawant Mr. Anil SalviLab Assistant Lab Assistant B.Sc In Chemical B.Sc In Chemical B.Sc In Chemical Mr. Anil SalviB.Sc In Chemical B.Sc In Physical B.Sc In Physical B.Sc In Physical B.Sc In Physical B.Sc In Physical B.Sc I	Sr. No.	Name of th Laborator	Students p setup (pe Batch Size Specialize Equipmen Name Utilization		Utilization	Name of the Technical staff	Designation	Qualification	
Engineering LabStirred Tank, packed column, Steam, packed, spinning bad, distillation, diffusivity of acetone in air, transfer, benzoic acid, Cu- iliq-liq equilibriumMr. Rahul Mohite Mrs. Seema Kurade Mrs. Seema Kurade Lab AtstendantB.Sc Chemit M.S.Cohemis Mrs. Seema Kurade Lab AttendantB.Sc Chemit M.S.Cohemis Mrs. Chandrakult Pass2Heat Transfer Lab2 (10)Double Pipe heat exchanger, Steam Generator, unsteady-state heat transferStudy of 	1	Chemical	2 (20)	Bubble Column,	Study of	Mr. P.P. Bhole	Lab Assistant	S.S.C.	
LabLabpacked column, Steam, packed, liq-liq band distillation, suspension, diffusivity of acetone in air, benzoi caid, Cu- benzoi caid, Cu- ilq-liq equilibriumMrs. Seema Kurade Mrs. Amita Pawshe Kasle Kasle Mr. Adudhut Prabhu Lab AttendantM.S. Chemis 9th pass S.S.C. Hamal cum Mr. Adudhut Prabhu Lab AttendantM.S. Chemist 9th pass S.S.C. Hamal cum Mr. Adudhut Prabhu Lab AttendantM.S. Chemist 9th pass S.S.C.2Heat2 (10)Double Pipe heat exchanger, column, Plate Heat Exchanger, Column, Plate Heat transfer, Steam Generator, unsteady-state heat transfer,Mr. Vishal Bhambid Mr. Shivram Sawat Heat Study of Mr. Shivram Sawat Hamal cum Mr. Anil SalviB.S.C in Chemist Hamal cum 9th Pass B.S.C in Chemist Mr. Shivram Sawat Heat Study of Mr. Shivram Sawat Heat Exchanger, Steam Generator, unsteady-state heat transfer, Shell and Tube Heat Exchanger, Shell and Tube Densitometer, Solication bath Simulator, Densitometer, Ontrol LabZ (10)ProcessStudy of ProcessMr. Lalit Sawatt Mr. Amil Salvi Hamal cum Hamal cum Heat Exchanger, Shell and Tube Densitometer, Optimization Simulator, Densitometer, Simulator, Optimization of processLab Assistant Lab Assistant Hr. Alit Salvi Mr. Amil Salvi Hamal cum Hamal cum AttendantB.S.C. in Phy S.S.C.4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, WaterShi' Mass Analytical on of Optimization Optimization Optimization Optimization Optimization Optimization Optimization Opt		Engineering		Stirred Tank,	gas-liq	Mr. Rahul Mohite	Lab Assistant	B.Sc Chemistry	
Amage: spinning band distillation, plate, spinning band distillation, diffusivity of mass acetone in air, transfer, benzoic acid, Cu-disc dissolution, liq-liq equilibriumMrs. Amita PawsheLab Attendant9 th pass (Lab Attendant)9 th pass (Lab At		Lab		packed column,	dispersion,	Mrs. Seema Kurade	Lab Assistant	M.Sc Chemistry	
Amage: spinning solid-liq band distillation, diffusivity of acetone in air, transfer, disc dissolution, liq-liq equilibriumSolid-liq mass suspension, transfer, Mr. Chandrakant KasleLab Attendant Lab AttendantS.S.C. Pin Pass2Heat Transfer Lab2 (10)Double Pipe heat exchanger, distillation tig-liq equilibriumStudy of transfer, heatMr. Vishal Bhambid Mr. S. Jyoti Sarkaniya attendantLab Assistant attendantB.Sc in Chei Pin Pass2Heat Transfer Lab2 (10)Double Pipe heat exchanger, distillation column, Plate Heat Exchanger, Sheil and Tube Heat Exchanger, Sheil and Tube Heat Exchanger, Sheil and Tube Heat Exchanger, Sheil and Tube PicessMr. Lalit Sawant Mr. Lalit Sawant Mr. Amol Kargutkar Mr. Aniol Kargutkar Mr. Amol Kargutkar Mr. Jyoti Sarkaniya attendantB.Sc. in Phy S.S.C.3Process Control Lab2 (10)Process Simulator, GC, HPLC, Densitometer, Optimization of processMr. Lalit Sawant Mr. Amol Kargutkar Mr. Jyoti Sarkaniya AttendantLab Assistant B.S.C. in Phy S.S.C.4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Water GC, HPLC, Water on of purification, AS.Shri Mahesh Harkar AssistantSr. Technical AssistantM.Sc.				Steam, packed,	liq-liq &	Mrs. Amita Pawshe	Lab Attendant	9 th pass	
A malytical instrument Lab Artendantband distillation, diffusivity of acetone in air, benzoic acid, Cu- disc dissolution, ilq-liq equilibriumMr. Chandrakant KasleLab Attendant Hamal Mr. Anil SalviJam and Mamal Hamal Hamal Mr. Anil SalviHamal Hamal Hamal Mr. S. Jyoti Sarkaniya attendantJ th Pass B th Pass2Heat Transfer Lab2 (10)Double Pipe heat exchanger, distillation column, Plate Heat transfer with Mr. Shivram Sawant Heat Steam Generator, unsteady-state heat Heat transfer, Shell and Tube Heat Column, PlateMr. Lalit Sawant Mr. Lalit Sawant Mr. Amol Kargutkar Mr. Amol Kargutkar Mr. Amol Kargutkar Mr. Amol Kargutkar Mr. Amol Kargutkar Mr. Amol Kargutkar Hamal attendantB.Sc. in Phy B.Sc. in Phy Mr. S. Jyoti Sarkaniya attendant3Process Control Lab2 (10)Process GC, HPLC, Analysis System; GC, HPLC, Wate Sonication bath GC, HPLC, Wate Sonication bathStudy of processMr. Lalit Sawant Mr. Amol Kargutkar Mr. Amol Kargutkar Mr. Amol Kargutkar Amalysis System; GC, HPLC, Wate Analysis System; GC, HPLC, Wate CompoundsM.Sc. Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Wate Analysis System; GC, HPLC, Wate Analysis System; GC, HPLC, Wate CompoundsShi' Mahesh Harkar Sr. Technical AssistantM. Sc.4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Wate CompoundsShi' Mahesh Harkar AssistantSr. Technical AssistantM. Sc.<				plate, spinning	solid-liq	Mr. Avadhut Prabhu	Lab Attendant	S.S.C.	
A malytical berson2 (10)Process berson2 (10)Process bersonStudy control LabMr. Anil Salvi mrs. Jyoti Sarkaniya extractionHamal cum mass mrs. Jyoti Sarkaniya mrs. Jyoti Sarkaniya mrs. Jyoti Sarkaniya mrs. Jyoti Sarkaniya attendantB.Sc in Chei mass mrs. Jyoti Sarkaniya attendant2Heat Transfer Lab2 (10)Double Pipe heat exchanger, distillation column, Plate Heat Exchanger, Steam Generator, unsteady-state heat transfer, Shell and Tube Heat ExchangerMr. Vishal Bhambid Mr. Anil SalviLab Assistant Lab Attendant Hamal cum attendantB.Sc in Chei gen Pass gen Pass gen Pass gen Pass3Process Control Lab2 (10)Process Simulator, Control LabStudy of ProcessMr. Lalit Sawant Mr. Amol Kargutkar Mr. Amol Kargutkar Mr. Amol Kargutkar Mrs. Jyoti Sarkaniya attendantB.Sc. in Phy Lab Attendant S.S.C.4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; Or HPLC, Water or on of or gorcesShri Mahesh Harkar AssistantSr. Technical AssistantM. Sc.				band distillation,	suspension,	Mr. Chandrakant	Lab Attendant	9 th Pass	
Amale come in air, benzoic acid, Cu- disc dissolution, liq-liq equilibriumacetone in air, benzoic acid, Cu- separation, extractionMr. Anil SalviHamal cum attendant9th Pass AttendantHeat2 (10)Double Pipe heat exchanger, distillation column, Plate Heat Exchanger, distillation steam Generator, unsteady-state heatStudy of heat transfer unsteady-state heat transfer, Shell and Tube Heat ExchangerMr. Vishal Bhambid Mr. Anil SalviLab Assistant Lab AttendantB.Sc in Cher 9th Pass3Process Control Lab2 (10)Process simulator, Sonication bathStudy of ransfer, Simulator, Sonication bathMr. Lalit Sawant mr. Analytical infication simulator, simulator, sonication bathMr. Lalit Sawant mr. Analytical mr. Amol Kargutkar mr. Amol Kargutkar mr. Analytical attendantB.Sc. in Phy Pass4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; or purification, Asis CompoundsMr. Analytical mondSr. Technical AssistantM. Sc. Assistant4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; or purification, AsisShri Mahesh Harkar Analytical on on of or compoundsShri Mahesh Harkar AssistantSr. Technical AssistantM. Sc.				diffusivity of	mass	Kasle			
Amalytical instrument2 (10)benzoic acid, Cu- disc dissolution, liq-liq equilibriumseparation, extractionMrs. Jyoti Sarkaniya attendantattendant8th Pass2Heat2 (10)Double Pipe heat exchanger, distillation column, Plate Heat Exchanger, distillation column, Plate Heat Exchanger, steam Generator, unsteady-state heat transfer, Shell and Tube Heat ExchangerMr. Vishal Bhambid Mr. Anil SalviLab Assistant Hamal cum attendantB.Sc in Chel 9th Pass3Process Control Lab2 (10)Process GC, HPLC, Densitometer, Sonication bath (C, HPLC, Water (Sonication bath LaboratoryStudy of heat transfer transferMr. Lalit Sawant Mr. Amol Kargutkar Mr. Amol KargutkarLab Assistant Hamal cum B.Sc. in Phy Mr. Amol KargutkarB.Sc. in Phy Mr. Amol Kargutkar Mr. Amol KargutkarB.Sc. in Phy Mr. Amol Kargutkar4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; OC, HPLC, Water or on of compoundsShri Mahesh Harkar Sr. Technical Analysis AssistantMr. Sc.				acetone in air,	transfer,	Mr. Anil Salvi	Hamal cum	9 th Pass	
disc dissolution, liq-liq equilibriumextractionextractionRescAddition2Heat2 (10)Double Pipe heat exchanger, distillation column, Plate Heat Exchanger, distillation column, Plate Heat Exchanger, steam Generator, unsteady-state heat transfer, Shell and Tube Heat ExchangerMr. Vishal Bhambid Mr. Anil SalviLab Assistant Hamal cum attendantB.Sc in Cher 9 th Pass3Process Control Lab2 (10)Process GC, HPLC, Sonication bath isfurdanceStudy of equipmentMr. Lalit Sawant Mr. Analytical mr. Amol KargutkarLab Assistant Hamal cum attendantB.Sc. in Phy Pass4Analytical laboratory1 (5) Pharmaceutical Analysis System; of, CHPLC, Water purfication, AS.Analytical on of processShri Mahesh Harkar AssistantSr. Technical AssistantM. Sc.4Analytical laboratory1 (5) procestPharmaceutical Analysis System; or, on of or purfication, AS.Shri Mahesh Harkar on of or compoundsSr. Technical AssistantM. Sc.				benzoic acid, Cu-	separation,	Mrs. Jyoti Sarkaniya	attendant	8 th Pass	
Iq-liq equilibriumMr. Vishal BhambidLab AssistantB.Sc in CherTransfer Lab2 (10)Double Pipe heat exchanger, distillationStudy of heatMr. Vishal BhambidLab Assistant Lab AttendantB.Sc in CherTransfer LabA Stillation column, Plate Heat Exchanger, Steam Generator, unsteady-state heat transfer, Shell and Tube Heat ExchangerMr. Anil SalviHamal cum attendant9th PassProcess2 (10)Process simulator, Sonication bath Sonication bath (Sonication bath (SC, HPLC, Water)Study of processMr. Lalit Sawant Mr. Amol Kargutkar Mr. Amol Kargutkar Mr. Amol Kargutkar AttendantB.Sc. in Phy S.S.C.AAnalytical instrument Laboratory1 (5) Pharmaceutical Analysis System; GC, HPLC, WaterAnalytical on of optimization of processShri Mahesh Harkar AssistantSr. Technical AssistantM. Sc.AAnalytical instrument Laboratory1 (5) Pharmaceutical Analysis System; optimization of c, HPLC, WaterShri Mahesh Harkar on of optimization on ofShri Mahesh Harkar AssistantSr. Technical AssistantM. Sc.				disc dissolution,	extraction				
2Heat2 (10)Double Pipe heatStudy of exchanger, distillationMr. Vishal BhambidLab AssistantB.Sc in Cher 9 th PassTransfer LabFransfer Labexchanger, distillationheatMr. Shivram SawantLab Attendant9 th Passdistillationtransfer with column, Plate different Heat Exchanger, Steam Generator, unsteady-state heatdifferent equipmentMr. Anil SalviHamal cum attendant9 th Pass3Process2 (10)ProcessStudy of simulator, Sonication bath of processMr. Lalit SawantLab AssistantB.Sc. in Phy B.Sc. in Phy S.S.C.4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; purification, AAS.Analytical ompoundsShri Mahesh Harkar AssistantSr. Technical AssistantM.Sc.				liq-liq equilibrium					
Transfer Labexchanger, distillationheatMr. Shivram Sawant AdistillationLab Attendant9th Passdistillationtransfer with column, Platedifferent equipmentMr. Anil SalviHamal9th PassSteam Generator, unsteady-state heat transfer, Shell and Tube Heat ExchangerequipmentHamalether attendant9th PassProcess Control Lab2 (10)Process GC, HPLC, Sonication bath instrument LaboratoryStudy of processMr. Lalit Sawant Mr. Amol KargutkarLab Assistant Lab AttendantB.Sc. in Phy S.S.C.4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; purification, AAS compoundsAnalytical determinati on of compoundsShri Mahesh Harkar AssistantSr. Technical AssistantM. Sc.	2	Heat	2 (10)	Double Pipe heat	Study of	Mr. Vishal Bhambid	Lab Assistant	B.Sc in Chemistry	
A nalytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Water Densitometer, Sonication parkMr. Anil Salvi Hanil SalviHamal cum attendant9th Pass attendant4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Water GC,		Transfer Lab		exchanger,	heat	Mr. Shivram Sawant	Lab Attendant	9 th Pass	
 A nalytical instrument Laboratory Analytical instrument Laboratory A nalytical instrument I (A provestical instrument Laboratory) A nalytical instrument I (A provestical instrument I				distillation	transfer with	Mr. Anil Salvi	Hamal cum	9 th Pass	
 Heat Exchanger, Steam Generator, unsteady-state heat transfer, Shell and Tube Heat Exchanger Steam Generator, unsteady-state heat transfer, Shell and Tube Heat Exchanger Process 2 (10) Process Study of Mr. Lalit Sawant Lab Assistant B.Sc. in Phy Simulator, process GC, HPLC, analysis, Densitometer, optimization Sonication bath Simulation, of process Analytical instrument Lab Analytical Analysis System; GC, HPLC, Water Analytical instrument Lab Orten AS. Compounds 				column, Plate	different		attendant		
Steam Generator, unsteady-state heat transfer, Shell and Tube Heat ExchangerSteam Generator, unsteady-state heat transfer, Shell and Tube Heat ExchangerImage: Control LabLab Assistant Simulator, GC, HPLC, Densitometer, Sonication bathStudy of processMr. Lalit Sawant Mr. Amol KargutkarLab Assistant Lab AttendantB.Sc. in Phy4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Water optimication, AS. compoundsMri Mahesh Harkar Sr. Technical AssistantSr. Technical AssistantM. Sc.				Heat Exchanger,	equipment				
Generator, unsteady-state heat transfer, Shell and Tube Heat ExchangerGenerator, unsteady-state heat transfer, Shell and Tube Heat ExchangerAnalysis, optimization of processMr. Lalit Sawant Mr. Amol Kargutkar Mrs. Jyoti Sarkaniya AttendantLab Assistant S.S.C.B.Sc. in Phy B.S.C.3Process Control Lab2 (10) Simulator, GC, HPLC, Densitometer, Sonication bath instrument LaboratoryStudy of process (GC, HPLC, analysis, Optimization of processMr. Lalit Sawant Mr. Amol Kargutkar Mrs. Jyoti Sarkaniya Attendant (GC, HPLC, analysis, Optimization of processB.Sc. in Phy B.S.C.4Analytical instrument Laboratory1 (5) processPharmaceutical Analysis System; GC, HPLC, Water on of purification, AAS. compoundsShri Mahesh Harkar AssistantSr. Technical AssistantM. Sc.				Steam					
 Image: Second sec				Generator,					
heattransfer, Shell and Tube Heat Exchangerheattransfer, Shell and Tube Heat Exchangerheattransfer, Shell and Tube Heat Exchanger3Process2 (10)ProcessStudy of simulator, GC, HPLC, analysis, Densitometer, Sonication bathMr. Lalit Sawant Mr. Amol Kargutkar Mrs. Jyoti Sarkaniya Hamal cum attendantLab Assistant S.S.C.B.Sc. in Phy S.S.C.4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Water purification, AAS.Analytical of processShri Mahesh Harkar AssistantSr. Technical AssistantM. Sc.				unsteady-state					
Shell and Tube Heat ExchangerShell and Tube Heat ExchangerMean ExchangerMean Exchanger3Process Control Lab2 (10)Process simulator, GC, HPLC, Densitometer, Sonication bathStudy of processMr. Lalit Sawant Mr. Amol KargutkarLab Assistant Lab AttendantB.Sc. in Phy S.S.C.4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Water purification, AAS.Analytical on of compoundsShri Mahesh Harkar AssistantSr. Technical AssistantM. Sc.				heat transfer,					
Image: Section of the section of th				Shell and Tube					
 Process 2 (10) Process Control Lab Control Lab Control Lab Control Lab Control Lab GC, HPLC, analysis, optimization Densitometer, Sonication bath Simulator, Griena Sonication bath Simulation Shri Mahesh Harkar Sr. Technical Analysis System; GC, HPLC, Water Son of Compounds 				Heat Exchanger					
Control Labsimulator, GC, Densitometer, Sonication bathprocess analysis, optimization of processMr. Amol Kargutkar Mrs. Jyoti SarkaniyaLab Attendant Hamal attendantS.S.C.4Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Water purification, AAS,Analytical on of compoundsShri Mahesh Harkar Analysis Mahesh HarkarSr. Technical AssistantM. Sc.	3	Process	2 (10)	Process	Study of	Mr. Lalit Sawant	Lab Assistant	B.Sc. in Physics	
GC,HPLC,analysis,Mrs. Jyoti SarkaniyaHamalcum8th PassDensitometer,Densitometer,optimizationattendantattendantSonication bath; Simulationof processattendantattendantAnalytical1 (5)PharmaceuticalAnalyticalShri Mahesh HarkarSr. TechnicalLaboratory1 (5)PharmaceuticalAnalyticalShri Mahesh HarkarSr. Technicalunification, AAS,compoundsonofcompounds		Control Lab		simulator,	process	Mr. Amol Kargutkar	Lab Attendant	S.S.C.	
Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Water purification, AAS.Analytical of processShri Mahesh Harkar Analysis Mahesh Harkar AssistantSr. Technical AssistantM. Sc.				GC, HPLC,	analysis,	Mrs. Jyoti Sarkaniya	Hamal cum	8 th Pass	
Analytical instrument Laboratory1 (5)Pharmaceutical Analysis System; GC, HPLC, Water purification, AAS.Shri Mahesh Harkar on of compoundsSr. Technical AssistantM. Sc.				Densitometer,	optimization		attendant		
4 Analytical instrument Laboratory 1 (5) Pharmaceutical Analytical determinati on of purification, AAS. Shri Mahesh Harkar on of compounds Sr. Technical Assistant M. Sc.				Sonication bath	; Simulation				
4 Analytical 1 (5) Pharmaceutical Analytical Shri Mahesh Harkar Sr. Technical M. Sc. instrument Analysis System; determinati Assistant Assistant Laboratory GC, HPLC, Water on of onpounds					of process				
Laboratory GC, HPLC, Water on of purification, AAS, compounds	4	Analytical	1 (5)	Pharmaceutical	Analytical determinati	Shri Mahesh Harkar	Sr. Technical	M. Sc.	
purification, AAS, compounds		Laboratory		GC, HPLC, Water	on of		A331310111		
ICP		,		purification, AAS,	compounds				

Sr. No	Name of the Facility	Specialized Equipment	Equipment details
		Name	
1	Central Computational Facility	Computational cluster (160	Computational analysis,
		nodes)	molecular dynamics, reactor
			designs
2	Analytical Instrumentation	Gas Chromatography;	Thermo Scientific Trace
	Laboratory		1310;
		Extractive Gas	Thermo Scientific Trace
		Chromatography;	1310;
			Thermo Scientific Ultimate
		High Pressure Liquid	3000
		Chromatography x 4	
3	X-Ray Photoelectric	Sorptometer;	BET 201-A
	Spectroscopy Laboratory	Protein Characterization	Beckman Coulter XL-I
		System;	
			Kratos Analytical Axis Supra
		X-Ray Photoelectric	
		Spectroscope	
4	Gas Chromatography	Pharmaceutical Analysis	Chemito GC8610.
	Laboratory	System;	Beckman Coulter PA 800
			Plus;
		Gas Chromatography;	Thermo Scientific Trace
		High Pressure Liquid	1310;
		Chromatography x 2	Thermo Scientific Ultimate
			3000
5	UGC Networking Laboratory	Fourier-transform infrared	Vertex 80V;
		spectroscopy;	
		Particle Size Analyzer;	Coulter LS230;
		Mass Spectrometer;	Thermo Scientific Trace
		Lacar Particla Apalyzary	1300; Bottorcizor 2600
		Contrifugo:	Beckman Coultor Ontima
		Fourier-transform	
		spectroscopy:	Perkin Elmer
			Bruker D8 Advance
		Transmission electron	1FOL 1FM 2100
		microscopy	
		· · · · · · · · · · · · · · · · · · ·	
6	Advanced Laboratory	Vapour Phase Reactor;	Amar Equipment's PVT Ltd.
			custom build setup;
		Autoclave x 4;	Amar B(F);

Table 5.2: Laboratory facilities/Centre of excellence

Rota Va	porize	er;			Heidolph	Hei-Vap	Value
					Digital;		
Bench	Тор	Fixed	Bed	Flow	BEEM (Cus	stom);	
Reactor	;				Ants Pro-S	ys	
Tubular	Furna	ace					
	Rota Va Bench Reactor Tubular	Rota Vaporiz Bench Top Reactor; Tubular Furn	Rota Vaporizer; Bench Top Fixed Reactor; Tubular Furnace	Rota Vaporizer; Bench Top Fixed Bed Reactor; Tubular Furnace	Rota Vaporizer; Bench Top Fixed Bed Flow Reactor; Tubular Furnace	Rota Vaporizer;HeidolphDigital;Digital;Bench Top Fixed Bed FlowBEEM (CusReactor;Ants Pro-STubular FurnaceTubular Furnace	Rota Vaporizer;HeidolphHei-VapDigital;Bench Top Fixed Bed FlowBEEM (Custom);Reactor;Tubular Furnace

5.2. Laboratories maintenance and overall ambiance (5) Laboratories maintenance:

Institute Marks (5)

The laboratories are well maintained. There is a dedicated cleaning team for maintaining the daily cleanliness of all the laboratories and their premises in the department.

1. Well trained and qualified lab technicians are available for maintenance of equipment on regular basis in all the laboratories

2. Service, cleaning, and maintenance of equipment are carried out regularly.

3. Periodic lubrication of machines is a must to avoid the breakdown of machines.

4. Calibration of laboratory equipment is done by the lab technicians regularly.

5. Minor repairs are carried out by the technical staff of the department based on available resources and expertise.

6. Major repairs are outsourced by following the procedure of the Institute.

7. Dead stock register is maintained in laboratories.

8. All laboratories are adequately ventilated.

9. Whiteboards are provided in all laboratories to demonstrate the experimental methodologies to the students.

10. The machines are arranged so that the students can be accommodated comfortably.

11. The area of each laboratory is sufficiently high as per the requirement of machine size.

12. All the chemicals have been kept in the packed cupboard, so no hazards from chemicals and their fumes too.

13. Empty bottles of chemicals are thrown out every month.

14. Safety measurements are provided in every laboratory.

Overall Ambiance

1. All laboratories are well furnished. Necessary furniture for students is provided in each laboratory. Based on the requirement, the students utilize them in the laboratories.

2. All laboratories are equipped with sufficient equipment to meet the requirements of the curriculum.

3. All laboratories are open for students and faculties for research.

4. All laboratories are well ventilated. The lighting system is very effective, along with the natural light in every laboratory.

5. All the laboratories are equipped with white/chalkboard, computer, Internet, and other such teaching-learning aids.

6. The Department has a couple of funded research laboratories. Students and faculty members are always encouraged to carry out research in these exclusive research laboratories. However, the research work is not constrained only to these laboratories.

7. Department has a sufficient number of laboratories that are used throughout the year on a periodic timeline basis to meet the curriculum requirements and based on the requirements of the students.

8. Every laboratory has a dedicated technical staff resource. It is ensured that the deputed technical staff has sufficient skills for handling the equipment and software pertaining to that particular laboratory

5.3 Safety measures in laboratories (5)

Institute Marks (5)

Sr. No.	Name of the Laboratory	Safety measures
1.	Chemical Engineering	• Students are compulsory to wear a lab coat/apron, cap, masks,
	Laboratory	safety goggles, gloves, and shoes in order to protect them.
		• The acids are stored separately in a fuming cupboard with exhaust
		fans.
		• In addition to diluting the chemicals, teachers and supporting staff
		should warn about the possible dangers of mishandling or careless
		handling of those chemicals.
		• Fire Extinguishers (SolidCO ₂ , Sand, Blanket), showers, eye
		washers, and First Aid Box are provided in the laboratory.
		• Exhaust fans are arranged outside in order to limit exposure to
		hazardous or toxic fumes, vapours, or dust.
		Fume hoods are provided wherever necessary.
		 Lab safety training is provided to the staff.
		 Lab safety posters and fire-exit signs/maps are installed at
		relevant places.
		• Laboratories are provided with a good drainage system to remove
		the odorous chemicals and flush out the used chemicals in the sink.
2.	Process Control	• Students are compulsory to wear a lab coat/apron, cap, masks,
	Laboratory – Chemical	safety goggles, gloves, and shoes in order to protect them
	Engineering	• Fire Extinguishers (SolidCO ₂ , Sand, Blanket), showers, eye
	Laboratory	washers, and First Aid Box are provided in the laboratory.
		 Lab safety posters and fire-exit signs/maps are installed at
		relevant places.
		 Lab safety training is provided to the staff.
		The lab is provided with an air conditioner for analytical
		instruments and sealed well in order to limit exposure to hazardous
		or toxic fumes, vapours, or dust.
		Laboratories are provided with a good drainage system to remove
		the odorous chemicals and flush out the used chemicals in the sink.
3.	Heat Transfer Laboratory –	• Students are compulsory to wear a lab coat/apron, cap, masks,
	Chemical Engineering	safety goggles, gloves, and shoes in order to protect them
	Laboratory	

Table 5.3a: Safety measures in laboratories

		• Fire Extinguishers (SolidCO ₂ , Sand, Blanket), showers, eye
		washers, and First Aid Box are provided in the laboratory.
		• Exhaust fans are arranged outside in order to limit exposure to
		hazardous or toxic fumes, vapours, or dust.
		Lab safety training is provided to the staff.
		• Lab safety posters and fire-exit signs/maps are installed at
		relevant places.
		• All the laboratories are provided with a good drainage system to
		remove the odorous chemicals and flush out the used chemicals in
		the sink.
4.	Analytical Instrumentation	 Students are compulsory to wear a lab coat/apron, cap, masks,
	Laboratory	safety goggles, gloves, and shoes in order to protect them
		• Fire Extinguishers (SolidCO ₂ , Sand, Blanket), showers, eye
		washers, and First Aid Box are provided in the laboratory.
		 Lab safety training is provided to the staff.
		• Lab safety posters and fire-exit signs/maps are installed at
		relevant places.
		• The lab is provided with air conditioners for analytical instruments
		and sealed well in order to limit exposure to hazardous or toxic
		fumes, vapors, or dust.
		• Laboratories are provided with a good drainage system to remove
		the odorous chemicals and flush out the used chemicals in the sink.
5.	Advanced Laboratory	• Students are compulsory to wear a lab coat/apron, cap, masks,
		safety goggles, gloves, and shoes in order to protect them
		• The acids are stored separately in a fuming cupboard with exhaust
		fans.
		• In addition to diluting the chemicals, teachers and supporting staff
		should warn about the possible dangers of mishandling or careless
		handling of those chemicals.
		• Fire Extinguishers (SolidCO ₂ , Sand, Blanket), showers, eye
		washers, and First Aid Box are provided in the laboratory.
		• Exhaust fans are arranged outside in order to limit exposure to
		hazardous or toxic fumes, vapours, or dust.
		Fume hoods are provided wherever necessary.
		• Lab safety posters and fire-exit signs/maps are installed at
		relevant places.
		• All the laboratories are provided with a good drainage system to
		remove the odorous chemicals and flush out the used chemicals in
		the sink.
6.	UGC Networking Laboratory	• Students are compulsory to wear a lab coat/apron, cap, masks,
		safety goggles, gloves, and shoes in order to protect them

-, -
at
nts
oxic
ove
nk.
i ,

Table B.5.3

Table 5.3b: Safety training and equipment training

Lab/Facility	Training/	Details of	Training/Service	Year
	instrument	instrument	given by	
Chemical	Safety training	PPE products,	Mr. V.R. Marathe, Dr.	2019
Engineering		fire	Swayajith Sahadevan,	
Department		extinguisher	Dr. P. T. Gadekar, Mr.	
			Nilesh Vani	
Chemical	Safety training	PPE products,	Dow Chemicals	2020
Engineering		fire		
Department		extinguisher		
Process Control	High-Pressure	Ultimate 300	Thermo scientific	2019
lab - Chemical	Liquid	with variable		
Engineering	Chromatography	wavelength		
Laboratory		distribution		
Process Control	UV	LMSP – UV	Labman	2019
lab - Chemical	Spectrophotometer	1900		
Engineering				
Laboratory				
Process Control	Yokogawa Process	Pilot plant	Renew Instruments	2019
lab – Chemical	Simulator			
Engineering				
Laboratory				
Process Control	Karl Fischer Titrator	80-630	Athena	2019
lab - Chemical				
Engineering				
Laboratory				
Process Control	Densitometer	DMA 501	Anton Paar	2019
lab - Chemical				
Engineering				
Laboratory				

Heat	lab	-	Hot	Water	AMW 02/678	Thermax	2020
Chemical			Generator				
Engineeri	ng						
Laborator	ſY						

5.4. Project laboratory (15)

Table 5.4: Project laboratories and their utilization

Institute Marks (15)

Sr No.	Name of Lab	Name of Equipment	Utilization	
1.	GDY Lab	ASAP; TDP-TPR;	Preparation of membrane	
	(A110, A114)	Gas chromatography;	Vapor phase reaction	
		HPLC; Micro reactor;	High-pressure reaction	
		High pressure reactor;	Synthesis of Nanomaterials	
		Vapor phase reactor;	Extraction of enzymes	
		DCS-TGA: Thermal	Synthesis of different Acid/ Base Catalyst	
		Analysis		
2.	SSB Lab	Kruss Tensiometer;	Synthesis of Novel surfactants	
	(Basement	Goniometer;	Study of Mixed micellar systems	
	004)	UV spectrophotometer;	Thermodynamic model	
		Foaming apparatus;	study of surfactant mixtures	
		Maximum Bubble	Study of biosurfactants	
		pressure apparatus;	Exergy analysis	
		Turbidity Meter;	ANN Molecular modelling	
		Stop flow apparatus;	Thermodynamic and	
		Ross mill apparatus	mathematical Modelling	
			and simulations of power cycle	
3.	VGG Lab	HPLC; GC; UV Spectrophotometer;	Biodiesel and Thermochemical	
	(Basement	DSC; SFC-SFE; Spectrofluorometer;	conversions of Biomass	
	001, 002,	Servers,	Process Intensification by	
	003)	Ultrasonic probe sonicator, Muffle	microwave, Soft Condensed Matter, Reactive	
		furnace 1200C, High pressure	Adsorptive	
		Autoclave 500ml, High temp tubular	Separations and Molecular Design of	
		split furnace,	Functionalized Polymers, Interfacial Science	
			and	
			Engineering, Clean Technology and Organic	
			Synthesis in Aqueous Solutions, Synthesis of	
			nanoparticles, Photochemical reduction of	
			CO2	
4.	VHD Lab	SGI Cluster, HPC;	Molecular Simulations,	
	(LDA)	High Speed Camera;	Process Simulations,	
		PIV; UVP	Solar Thermal Systems,	
			Energy Engineering	
			Environmental Engineering	

5.	PRG Lab	Ultrasound bath; Ultrasound Horn;	Sonochemistry Hydrodynamic		
	(G-109)	Distillation unit;	Cavitation, waste water treatment,		
		Hexagonal ultrasonic	process intensification, enzymatic reactions,		
		flow cell; COD set-up;	depolymerization		
		Sieve Shaker; Spray dryer;			
		Microwave oven; Ultrafiltration unit			
6.	AML Lab	GC; HPLC;	Bioenergy, Biofuels and		
		Ultrafiltration; Chromatography;	biomass to other chemicals		
		CAD tools	Purification of Proteins,		
			nucleic acids & other biomolecules, natural &		
			synthetic APIs high value organic/inorganic		
			chemicals		
			Continuous chromatography,		
			Modeling & Adsorptive		
			Separations Biocatalysis & Bio		
			Transformations Bioreactor design, Mixing &		
			dynamics of solid- liquid fluidized bed		
			Dynamics of gas-solid circulating fluidized		
			bed Process integration & Intensification,		
			Process development, characterization &		
			scale up		
7.	KVM Lab	pH meter; Ozoniser;	Membrane separations,		
	(G-109)	Photochemical reactor;	Effluent treatment Membrane Bioreactor,		
		Membranes;	Electrochemical Membrane Bioreactor,		
		Dead end Filtration set-up;	Sustainability Assessment, Lifecycle		
		Bio electrochemical	Assessment		
		membrane reactor;	Hydrometallurgical Extraction, Corrosion		
		Membrane bioreactor	Development of new		
			materials, Metal composite		
8.	CSM Lab	SGI Cluster, HPC	Computational and experimental Fluid		
	(LDA)	High Speed Camera;	Dynamics, Transport		
		PIV; UVP;	Phenomena, Design of Multiphase Reactors,		
			Bioreactor Design Process modelling and		
			Simulation		
9.	PRN Lab	Furnace; Reactor;	Membrane separation		
	(Basement	Centrifuge; Oven;	processes, Advanced construction		
	007)	Autoclave; GC	materials, Sustainability		
			engineering, valuable products from		
			industrial wastes catalysis		
10.	ABP Lab	HPLC; Total organic content;	Physical and Chemical Processing		
		Ozonator; Autoclave; Ultrasound bath;	applications of Cavitation phenomena		

		Ultrasound Horn; Rota Evaporator;	Sonochemistry Ballast Water Treatment
		Incubator;	Mixing in Mechanically agitated contactors:
		Oven; Centrifuge;	Experimental and CFD Investigations
		Hydrodynamic set-up;	Modeling of Stoves, Use of non-conventional
		Gas Chromatography	energy sources, Biotechnology: Protein
			modification Cell disruption, Synthesis of
			Nanomaterials Microbial Fuel Cell
11.	AVP Lab	Furnace (1800 C); Hydraulic Press;	Membrane separation (separation and
		Ultrasound bath; Rota evaporator;	recovery of organic chemicals and metals
		Incubator;	from organic and aqueous streams;
		Oven; Membrane filtration	pollution control development of ceramic
		set-up, Multipoint magnetic stirrer +	membranes) Green Technology (ionic liquids
		heat	for solvent extraction and reactions;
			value-added chemicals from non-edible oils;
			greener organic chemical process
			development)
			Bioprocess Technology (synthesis of
			chemicals and microbial colorants/pigments)
12.	AWP Lab	High performance	Membrane Separations
	(C-106)	Computing 160 core;	Computational Fluid Dynamics
		256 GB RAM, 32 TB	Transport Phenomena
		storage; ARIC	Multiphase Reactors Mixing
13.	VKR Lab	HPLC; UV	Extraction & purification of natural
	(G-109,	Spectrophotometer;	ingredients Biocatalysis/Enzyme Catalysis
	Basement	Supercritical extractor;	Nanotechnology Biodiesel
	005)	Microwave extractor	Waste water Catalysis
		Cold Centrifuge; Ultrasound Bath;	(Heterogeneous)
		Ultrasound Horn, Pelleting Machine	
		Chipper shredder Washer Dryer	
14.	PDV Lab	Stirred Reactor; Autoclave Reactor;	Gas chromatography CO2 capture &
	(HP Lab,	Sea Water Pond;	Utilization
	Basement	High & low pressure	Wet air oxidation Hydrogenation
	006)	VLE; Trickel Bed Reactor;	Steam reforming Hydrotreatment
		PH meter; BOD incubator;	Bio oil/ Bio fuel
		COD apparatus; CO2 Titrator;	
15.	BNT Lab	Freeze Dryer; Hot Air Dryer;	Indian Cottage cheese
	(ADL)	Microwave Dryer;	Dehydration, Modelling Simulation & Exergy
		Heat Pump Dryer; Vacuum Dryer;	study of Dryer, Alternative Binder for
		Spray Dryer; Moisture Analyser; HPLC;	

		Laminar Air flow; Fluidized Bed Dryer;	coke briquetter, Filtration of waste activated
		Autocave; Powder Flow Tester Texture	sludge, Validation of solar
		Analyser	conduction dryer, Fish dehydration from
			viewpoint of product, Quality Making Jaggery
			in powder form & upscale process to
			establish a Green Method for clarification
			& isolation of stevia glycoside
16.	RDJ Lab	Rota Evaporator;	Modification & Characterization of
	(BCL)	Autoclave; Dissolution Apparatus I & II	Biodegradable Polymers
		USP;	Molecular imaging Synthesis of polymeric &
		Mini Water Bath; High Pressure	metallic nanoparticles, Pharmaceutical
		Homogenizer;	Formulation Development
		SDS-PAGE Electrophoresis;	
		Freezer 4° C; Deep Freezer -20° C and	
		-40° C; Cooling Centrifuge; Zetasizer;	
		Imaging Flow Cytometer; Class II	
		Biosafety Cabinet; Inverted	
		Microscope; Cell Culture, Incubator;	
		HPLC System; Automated Cell	
		Counter; Ultra turrax; 10 Point	
		Magnetic Stirrer; Desiccator, UHPLC	
		Fully Automated, Ultrasonic	
		crystallization system Ultrasonic flow	
		cell, Invenio FTIR Spectrometer	
		Biochemistry Analyzer 2950D3, YSI	
17.	Polymer	Twin Screw Extruder;	Extruding, moulding, and
	Processing	Injection Moulding	compressing various
	Lab	Machine;	polymer components to
		Compression Testing	study their plastic and
		Machine;	material properties to
		Blow Moulding	make failure and
		Machine;	deformation predictions
		Rotational Moulding	
		Machine;	
		Plastic Granules	
		Mixing Machine;	
		Hot Air oven	
18.	Testing Lab	Metflow Index Tesing	Testing Equipment;
		Equipment;	Universal Testing Machine
		Impact Test	
		Equipment Comp	

	Izod Impact Tester;	Testing and indexing various components of
	HDT/VST Apparatus;	various materials to identify plastic
	Hardness	properties
		such as hardness, elasticity and creep etc.
CAD/CAM	Altair Hyperworks	Modelling and simulating
Lab	CAE;	various theoretical and practical machining
	Minitab 18;	components and to check
	NX Unigraphics;	feasibility/compatibility
	Moldex 3D	of various components
		with one another
Electronics	Transformer X-2; Induction	To study various drives used in the industry
and Electrical	Motor/Generator coupled with DC	and calculate various
Lab	shunt X-2;	efficiency parameters of electrical
	Cathode Ray Oscilloscope;	equipment's such as power factor,
	Synchronous Machine	mechanical efficiency. Study of different
	and DC Machine	kinds of waveforms and signals in electronics
		circuits.
	CAD/CAM Lab Electronics and Electrical Lab	Izod Impact Tester; HDT/VST Apparatus; HardnessCAD/CAMAltair HyperworksLabCAE; Minitab 18; NX Unigraphics; Moldex 3DElectronicsTransformer X-2; Inductionand ElectricalMotor/Generator coupled with DCLabshunt X-2; Cathode Ray Oscilloscope; Synchronous Machine and DC Machine

5.5 Feedback analysis and reward /corrective measures taken, if any for resources (5) Institute Marks (5)

Feedback collected for all courses: Yes

Feedback collection process:

Electronic: On our ICT intranet, each student has a separate account and fills up feedback for each course at the semester's end.

Average percentage of students participating: 80% - 100 %

Feedback analysis process:

Feedback is taken electronically and the activity is coordinated by the Institute and the Department. A feedback form, which contains several questions, is circulated to the students. The general assessment points of the feedback are based on the syllabus covered, adequacy of the syllabus, assessment of answer books, Satisfaction about teaching methodology, teachers' approachability towards students, Teachers ability to teach the subject and control the class, organization of lectures, use of modern tools of Pedagogy, etc. on a grade of 5 scales with number 5 meaning excellent and zero meaning poor performance. The feedback is collected, compiled, and specific comments are sent to the faculties electronically. If a teacher gets a low overall grade, they take corrective actions to improve teaching-learning on their own. In some cases, the teacher is called by the institute authorities such as the Head of the Department, Dean academic, Registrar, and Vice-chancellor and is informed about his/her performance in the particular course. The teachers are accordingly instructed by the authorities to improve their performances.

Corrective measures:

- 1. Changes are made in teaching and continuous assessment practices based on students' input.
- 2. Many faculty members attended special programs for teaching skills and mentoring skills.
- 3. Corrective steps include special sessions for students as and when required.

Feedback on facilities and resources:

The feedback on taken facilities such as chemical engineering laboratory, computational facility, internet, library, etc., is a continuous process. This feedback is provided by the students, staff, and

the faculties. For example, if a student, staff, or faculty spots faulty equipment during the running lab, they report such incidences to the lab in-charge or the HoD. The corrective actions are taken immediately on such incidences. Similarly, feedback on safety gear and equipment is taken, and corrective actions are taken, such as restocking fire extinguishers, first-aid boxes, etc., as and when required. The IPC department resolves the faulty computer peripherals or internet issues centrally at the institute level.

The institute and the department collect feedback electronically from the student every semester on laboratory courses and facilities. The students give feedback based on planned experiments, observations during the investigation, timely conduct, and efficacy of the experimental equipment. The instructors accordingly take corrective actions to improve the teaching and laboratory equipment. Based on the feedback received from the students and recent alumni, the department has upgraded the chemical engineering laboratory, heat transfer laboratory, and the process control laboratory extensively (Figures 5.1 and 5.2). Moreover, many modern equipment and analytical instruments, including GC, HPLC, UV-Spectrometer, plate-heat exchanger, stirred tank reactor, Karl Fischer apparatus, orbital shaker, ultrasonicator, centrifuge, densitometer, Process simulator, etc., are made available to the undergraduate students for their experimentation.

		In Instit	stitute of Ch ute Of Ch	emical Tech emical Te	mology chnolog	ay		
			Feedb	ack Report				
Feedback Jan- May 2021 Total No Of Student Who given feedback: 82 Total No Of Student For This Course: 94								
Comments Student Feedback Jan-	Comments							
Course Name : CEP 17	/01- Chemical	l Engine	ering Labor Feedback F	ratory-I Given / To eedback (%	tal Stude 6) : 90.11	nt : 82 / 91 %		
Course Evaluation Parameters	Poor Inad (%)	lequate (%)	Average (%)	Good (%)	Very Good (%)	Excellent (%)		
1. Nature of experiments planned for the course- Were the experiments based on theory covered in the current/previous semester?	0	0	7.32	18.29	29.27	45.12		
2. Did the experimental observations/results help in enhancing the understanding of subject?	0	0	9.76	20.73	28.05	41.46		
3. Were the experiments sufficient in number and time for the time slot given for the practicals?	0	1.22	8.54	20.73	29.27	40.24		
4. Was the correction of journals and conducting Viva/Tests carried out in all fairness?	0	1.22	10.98	19.51	28.05	40.24		
5. The break-up of marks was transparent to the student?	0	2.44	15.85	19.51	20.73	41.46		

Figure 5.1: Sample laboratory feedback report

5.6. Program Specific Budget Allocation, Utilization (10)

Institute Marks (10)

Total Budget at program level: For CFY, CFYm1, CFYm2 & CFYm3

CFY: Current Financial Year – CFY*m1* (Current Financial Year minus 1) CFY*m2* (Current Financial Year minus 2) CFY*m3* (Current Financial Year minus 3)

•	(, , , , , , , , , , , , , , , , , , ,			
Total Budget in CFY: 1829.64		Actual expenditure in CFY:		
	*Actual expendit	students in		
		available after academic audit		
Recurring	Non-Recurring	Recurring	Expenditure	
			per student	
1513.9	-	-	-	
	Recurring 1513.9	1829.64 Actual expenditure is *Actual expendit available after acade Recurring Non-Recurring 1513.9 -	Image: 1829.64 Actual expenditure in CFY: *Actual expenditure will be available after academic audit Recurring Non-Recurring 1513.9 -	

Table 5.5a: Budget and expenditure for CFY (2021-2022)

Table B.5.6a

Table 5.5b: Budget and expenditure for CFYm1 (2020-2021)

Total Budget in <i>CFYm1</i> : 2759.82		Actual expenditure	e in <i>CFYm1</i> :	Total No. of students in <i>CFYm1</i> : 360
Non-recurring	Recurring	Non-Recurring	Recurring	Expenditure per student
1118.46	1641.35	300.72	1441.8	4.84

Table B.5.6a

Table 5.5c: Budget and expenditure for CFYm2 (2019-2020)

Total Budget in <i>CFYm2</i> : 2899.22		Actual expenditure 2453.04	Total No. of students in <i>CFYm2</i> : 360	
Non-recurring	Recurring	Non-Recurring	Recurring	Expenditure per student
1296.46	1602.76	994.14	1458.9	6.814

Table B.5.6a

Table 5.5d: Budget and expenditure for CFYm3 (2018-2019)

Total Budget in <i>CFYm3</i> : 2650.59		Actual expenditure in <i>CFYm3</i> : 2524.07		Total No. of students in <i>CFYm3</i> : 360
Non-recurring	Recurring	Non-Recurring	Recurring	Expenditure per student
1164.48	1486.1	1105.2	1418.87	7.011

Items	Course	Budgeted in CFY	Actual expenses in CFY	Budgeted in CFYm1	Actual Expenses in CFY <i>m</i> 1	Budgeted in CFYm2	Actual Expenses in CFYm2	Budgeted in CFYm3	Actual Expenses in CFY <i>m</i> 3
		2021-2022	2021-2022	2020-2021	2020-2021	2019-2020	2019-2020	2018-2019	2018-2019
Infrastructure	UG	142.12		550.59	135.35	335.64	378.75	304.3	288.66
Built-up	PG	28.42		110.12	27.07	184.79	208.52	173.34	164.43
	Total	170.54		660.71	162.42	520.43	587.27	477.64	453.09
Library	UG	12.98		64.64	12.36	36.32	44.46	34.29	31.23
	PG	2.6		12.93	2.47	19.99	24.48	19.53	17.79
	Total	15.58		77.56	14.84	56.31	68.94	53.82	49.02
Laboratory	UG	121.01		381.46	115.25	483.07	262.4	437.58	415.46
equipment	PG	24.2		76.29	23.05	265.96	144.47	249.26	236.65
	Total	145.21		457.75	138.3	749.03	406.86	686.84	652.11
Laboratory	UG	45.35		95.28	43.19	54.39	65.54	47.52	46.78
consumable	PG	9.07		19.06	8.64	29.95	36.08	27.07	26.65
	Total	54.43		114.33	51.83	84.34	101.62	74.58	73.42
Teaching &	UG	773.87		719.39	737.02	437.46	494.86	402.85	376.23
Non-teaching	PG	154.77		143.88	147.4	240.85	272.45	229.47	214.31
staff salary	Total	928.64		863.27	884.42	678.31	767.31	632.33	590.54
Maintenance	UG	26.02		25.3	24.78	20.11	17.41	18.86	17.29
and spares	PG	5.2		5.06	4.96	11.07	9.58	10.74	9.85
	Total	31.23		30.36	29.74	31.18	26.99	29.6	27.15
R & D	UG	38.13		19.63	36.31	86.66	13.5	74.81	74.53
	PG	7.63		3.93	7.26	47.71	7.44	42.61	42.45
	Total	45.75		23.56	43.58	134.37	20.94	117.42	116.99
Training and	UG	26.42		41.09	25.16	62.97	28.27	54.77	54.16
Travel	PG	5.28		8.22	5.03	34.67	15.56	31.2	30.85
	Total	31.7		49.31	30.19	97.65	43.83	85.96	85.01
Miscellaneous	UG	25.31		36.26	24.1	12.95	24.94	12.21	11.14
expenses *	PG	5.06		7.25	4.82	7.13	13.73	6.96	6.35
	Total	30.37		43.51	28.92	20.08	38.68	19.17	17.48
Other	UG	313.49		366.2	298.57	340.21	251.91	301.49	292.59
(Consultancy.	PG	62.7		73.24	59.71	187.31	138.69	171.73	166.67
Building,	Total	276 10		420.44	250.20	E07 E0	200.6	472.22	450.20
Recurring etc.)	Total	370.19		439.44	358.28	527.52	390.6	473.23	459.26
Total	UG	1524.7		2299.84	1452.09	1869.78	1582.04	1688.68	1608.07
	PG	304.94		459.98	290.41	1021.68	871	961.91	916
	Total	1829.64		2759.82	1742.52	2899.22	2453.04	2650.59	2524.07

Table 5.6: Budget and expenditure for CFY 2021-2022, 2020-2021, 2019-2020, 2018-2019.

Table B.5.6b

5.6.1. Adequacy of budget allocation (5)

Institute Marks (5)

The institute makes a budget based on the expenditure for the last three years for various activities. The amount is allocated for various activities for the requirements of the individual department. Any further requirement of funds is met through project funding. We are making constant efforts to increase the quantum of this account. As per the requirement, laboratories are upgraded regularly with new equipment and accessories (More information in Continuous Improvement Section 6).

- New facilities are introduced for R & D works.
- Existing labs are upgraded and improved for ambiance and facilities.
- Purchase of new software and renewal of software already exists.
- Purchase of E-Resources, E-Books, and E-Journals.
- Faculty members are encouraged to attend faculty development programs.
- Training programs for non-faculty staff are arranged for up-gradation of skills.

Sr. No.	Description	Model	Procurement	
			Year	
1	Water purification system	Sartorius: arium mini	2017	
2	Ion chromatography	Dionex 5000+	2017	
3	HPLC-VWD	Themo: Ultimate 3000	2017	
4	HPLC-DAD	Themo: Ultimate 3000	2017	
5	HPLC-RI	Themo: Ultimate 3000	2017	
6	Microspin centrifuge	Eltek TC 4815D	2018	
7	UV-Visible spectrophotometer	Labman: LMSP UV-1900	2018	
8	HPLC-VWD	Themo: Ultimate 3000	2018	
9	Orbital shaker incubator	Athena: Galaxy 1NCS	2018	
10	Densitometer	Anton paar: DMA 501	2018	
11	Ultrasonic bath	Dakshin 6.5L 200DF	2018	
12	KF titrator	Athena AT-630	2018	
13	Plate heat exchanger	Alfa laval M3-FG	2019	
14	Stirred tank reactor	Fabex Engineer	2019	
15	Hot water generator	Thermax, AMW-02	2019	
16	Laser partical size analyser	Bettersizer 2600	2019	
17	DI water sysytem	PALL CASCADA II 10L/H	2019	
18	UV-Visible spectrophotometer	Shimadzu UV-1900	2019	
19	High resolution mass spectroscopy	Thermo Fischer	2019	
20	X-ray Photoelectron spectrometer	Kratos Axis Supra	2019	
21	Inductively coupled plasma-MS	Thermo iCAP RQ	2020	
22	Biochemistry Analyzer	Labmete 2950D3, YSI	2021	
23	High temp tubular split furnace	Nano Tec	2021	
24	Hydrodynamic cavitation setup	Zero-D Industries	2021	
25	Invenio FTIR Spectrometer	Bio Zed Engineering	2021	
26	Microscope Labomed LX400	Scientific apparatus Mfg.	2021	
27	UHPLC	Spincotech	2021	
28	Ultrasonic crystallization system	Dakshin	2021	
29	Ultrasonic bath 6.5L, 1.5, Horn	Dakshin	2021	

Table 5.7: List of new equipment purchased

Figure 5.1: Upgradation of Chemical Engineering Laboratory

Figure 5.2: New facilities created

5.6.2. Utilization of allocated funds (5)

Institute Marks (5)

The utilization of allocated funds is satisfactory as can be seen from Table 5.9. Provisions are made for the utilization of funds for research activities in terms of the budget allocated and used for Laboratory equipment, R & D activities, consumables, etc.
Sr.	Items	Actual expense	Actual expense	Actual expense
No.		2020-21	2019-20	2018-19
1	Infrastructure Built-up	162.42	587.27	453.09
2	Library	14.84	68.94	49.02
3	Laboratory Equipment	138.30	406.87	652.11
4	Laboratory Consumables	51.83	101.62	73.42
5	Teaching & Non-teaching staff salary	884.42	767.31	590.54
6	Maintenance & spares	29.74	26.99	27.15
7	R & D	43.58	20.94	116.99
8	Training and Travel	30.19	43.83	85.01
9	Miscellaneous expenses	28.92	38.68	17.48
10	Other specify (Consultancy. Building,	358.28	390.60	459.26
	Recurring etc.)			
11	TOTAL	1742.52	2453.04	2524.07

Table 5.8: Actual expenditure for CFY 2020-2021, 2019-2020, 2018-2019

Table 5.9: Percent utilization of allocated funds for CFY 2020-2021, 2019-2020, 2018-2019

Sr. No.	Financial Year	Funds Allocated	Funds Utilized	% Utilization
1	2020-21	2759.82	1742.52	63.14
2	2019-20	2899.22	2453.04	84.61
3	2018-19	2650.59	2524.07	95.23

5.7. Library and Internet (10)

5.7.1. Quality of learning resources (hard/soft) (6)

Relevance of available learning resources including e-resources (Digital Resources):

All the printed and electronic resources available under library collection are acquired by proper recommendation process and by studying user needs. Renowned publishers in the field of Science and Technology are covered. It has a specialized collection in Chemical Engineering, Chemical Sciences, Chemical Technology, and Pharmacy and its allied fields. Textbooks recommended according to the syllabus are also available in multiple copies. E-Resources include e-Journals, e-books and citation databases, Patent databases, etc. The collection also includes Research tools like Plagiarism check software, language help software, etc.

Digital library information: Digitized Theses (1000 completed), BIOS, CIOS, FIAT reports **Other E-Resources:** eDatabases: Scopus, Reaxys, Web of Science, Sci-Finder, Derwent Innovation, Jove Video Journals

eResearch Tools: iThenticate, Urkund (eSS), Grammarly, Remote XS

Accessibility to students:

Printed Resources: The library is open for students to access the printed resources for 361 days in the year from 8.30 AM to 8.30 PM on working days and 10.30 AM to 6.00 PM on holidays. E-

Institute Marks (10)

Institute Marks (6)

Resources: The e-resources subscribed by the library are available for access 24X7 to all students in-campus (IP based access) and off-campus (Remote access, RemoteXS)

Support to students for self-learning activities:

Training programs and workshops for e-resources, Literature Review, Author workshops, and publication workshops are conducted regularly for UG, PG, and PhD Scholars. Availability of workstations to access e-resources, engage in swayam courses, coursera, etc.

Students can also view the recorded lectures of ICT faculty in the e-library if required.

Also available are some digital databases like language learning lab (For all students).

Library learning resources Information:

- 1. No. of volumes: 77881
- 2. National Journals (Hard copy): 22
- 3. International (Hard copy): 25
- 4. National e-Journals: 0
- 5. International e-Journals: 4401
- 6. Magazines: 14
- 7. Books (soft & hard copy): Volumes 32434 Print + 790 Soft, Titles 22735 Print + 790 soft
- 8. Digital library information: Digitized Theses (1000 completed), BIOS, CIOS, FIAT reports
- 9. Other E-Resources: eDatabases: Scopus, Reaxys, Web of Science, Sci-Finder, Derwent Innovation, Jove Video Journals,
- 10. eResearch Tools: iThenticate, Urkund (eSS), Grammarly, Remote XS

Library Staff:

Professional staff: 3 (All 3 with Library Science Degree) Semi-professional staff: 2 (1 with Library Science Degree) Attendants (two shifts): 12 Trainee: 1 Total Staff with Library Science Degree: 4

Library Layout:

The Library is a ground plus two-storied building. Carpet Area of the library (in m²): 1391 Reading space (in m²): 1391 Total seats in reading space: 200

5.7.2. Internet (4)

Institute Marks (4)

Table 5.10: Information on internet availability and access

Name of the	NKN, Bharti, Reliance
Internet provider	
Available	1 GB (NKN), Bharti (75 mbps), 100 mbps (TATA)
bandwidth	
Wi Fi availability	Whole campus

Internet access:	Available in all Labs
	Available in all Computing Labs
	• Availability in departments and other units, Lecture theatres, Class and
	Tutorial Rooms, Labs, Departments, Library, Administrative Office,
	Hostels
	Availability in faculty rooms
Security	Eset antivirus, Hardware Firewall installed, Mac address authentication of
arrangements	the systems for local network/internet access & user id for internet access

Internet	Bandwidth:	75
		10

75Mbps Bharti 100Mbps Tata 1Gbps NKN – NIC

These Leased Lines are distributed throughout the ICT Campus (Faculty, Support Staff and all Students).

LAN users in the all-buildings 1000+ and 2 LAN points in each room of Hostel-5 Wireless Network at Hostel No. 1 to 4 (availability 24×7) and at some part of the main building area.

Informative Website Intranet Computers	:	ictmumbai.edu.in intranet.ict IPC Dept: UG Lab - 100 Computers, (All-in-One, i7, 16Gb RAM, 1TB HDD), 35 Computers (All-in-One, i3, 2Gb RAM, 500 GB HDD) in the internet access room for all students All are connected to a Network having an Internet facility.				
Servers	:	Lenovo Servers 3No's (virtualization of servers with Hyper-V. Libsys, TallyERP, Ridgeline, ESSL, Solidworks) and DHCP, DNS connected to EMC SAN Box, NFS server.				
		HP blade – Class Room Lecture Recording, connected to HP SAN Box Lenovo Server – Estores Software				
Firewalls	:	Sophos xg 310 (2 No's)				
ССТV	:	Campus – 400+ camera's				
Studio	:	Video-Conferencing, connectivity to off-campuses at a time.				
License Software	:	 Microsoft Campus Licensing Agreement (Windows and Server o/s, Office365, SQL Processor Based license) Matlab 2009b -(50 users) Aspen -(1 user Research license) MOE -single user license SolidWorks -(60 users) Ansys CFD -(35 users) Ansys Mechenical - (5 users) Gabbi - Academic - 50 users, professional - 1 				

MIS (Management Information System) Modules in working

1. Admission:

- a. Admissions of UG, PG, and PhD students.
- 2. **Exam**:
 - a. Result process of UG and PG students through MIS software.
 - b. Filling Feedback forms by students and Generating Teacher Evaluation reports.

3. Account:

a. Generating Student Fees Receipt.

6.1. Actions taken based on the results of evaluation of each of the COs, POs & PSOs (30) Institute Marks (30)

Being one of the most sought-after programs for chemical engineering in India, the students are expected to do extremely well throughout their curriculum and professional life after their studies. Therefore, we keep the target value for the CO and PO attainment levels reasonably high, which is 85-90%. However, thanks to our students, alumni, employers, and our own continuous efforts, we meet the target values comfortably (Figure 6.1). Nevertheless, we still feel that there is always a scope for improvement and we are actively committed to upgrades and improvements. A more through data analysis of CO, PO and PSO attainment is presented with charts in Criteria 1 (Section 1.6 – Figures 1.5, 1.6, 1.7, 1.8, 1.9, 1.10 & 1.11).

Table 6.1: PO and PSO Attainment and Actions for improvement – 2018-2019, 2019-2020, 2020-2021

POs	Target Level	Attainmer	nt Level			Observations				
PO1: E	PO1: Engineering knowledge:									
Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems										
the solu		lex engineer	ing problem	5						
DO1	90 950/	2010 10	2010 20	2020.21	2021.22	DO1 attainment is sussessful				
P01	80-85%	2018-19	2019-20	2020-21	2021-22	POI attainment is successiui.				
Action 1: More emphasis put on hands-on training as well as experiential learning.										
Action	1. More emp	ation of mor		of cimulatio		agod				
ACTION	Z: Demonstr					ageu.				
D02- 0										
POZ: P	robiem ana	iysis:	1 111 1							
substar	, formulate, i stiated conclu	sions using f	the first prin	e, and analy ciples of ma	ze complex	engineering problems reaching natural sciences, and engineering sciences				
Substal		Sions doing (
PO2	80-85%	2018-19	2019-20	2020-21	2021-22	PO2 attainment is successful.				
		83.71	83.54	88.58	83.95					
Action	1: More prac	tice of probl	em-solving a	and thought	-provoking p	roblems rather than straightforward ones				
Action	2: More emp	hasis is put	on understa	ndina the pr	oblem at ha	nd rather than directly jumping on solving				
the pro	blem.			- 51		· · · · · · · · · · · · · · · · · · ·				
PO3: D	esign/deve	lopment of	solutions:							
Design specifie enviror	solutions for ed needs with mental consid	complex en <u>c</u> appropriate derations.	jineering pro consideratio	blems and o on for the pu	lesign syste blic health a	m components or processes that meet the ind safety, and the cultural, societal, and				
PO3	80-85%	2018-19	2019-20	2020-21	2021-22	PO3 attainment is successful.				
		83.96	83.37	88.67	84.02					
Action	1: More emp	hasis on des	ign thinking	and simulat	ions.					
Action	2: Motivating	g the student	ts for lateral	thinking.						
PO4: 0	Conduct inve	stigations of	of complex	problems:						
Use res	earch-based	knowledge a a, and synth	nd research esis of the ir	methods in formation to	cluding desig o provide va	gn of experiments, analysis and lid conclusions				
		,,,,,								
P04	80-85%	2018-19	2019-20	2020-21	2021-22	PO4 attainment is successful.				
		82.9	83.22	88.62	83.94					

Action 1: More emphasis put on understanding the problem statement and exploratory data analysis							
P05. N	Andern tool	usade.					
Create	, select, and a	apply approp	riate technic	ues, resourd	ces, and mo	dern engineering and IT tools including	
predict	ion and mode	ling to comp	lex engineer	ing activities	s with an un	derstanding of the limitations.	
DOF	00.050/	2010 10	2010 20	2020.21	2021 22		
P05	80-85%	2018-19	2019-20	2020-21	2021-22	POS attainment is successful.	
Action	1: Creating a	awareness or	n the moder	n tools and t	echniques th	hrough webinars, videos, and hands-on	
training	g sessions						
Action sharing	2: Use of e-t	eaching plat: es. Group ex	forms (MS T rercises for t	eams, Goog he simple pr	le Classroon oblems to e	n, Zoom, WebEx), flipped classrooms, and xplore the utility of tools and techniques.	
PO6: 1	he engineer	⁻ and societ	y:				
Apply r	easoning info	rmed by the	contextual	knowledge to	o assess soc	ietal, health, safety, legal and cultural	
Issues	and the conse	equent respo	nsidilities re	levant to the	e professiona	al engineering practice.	
PO6	80-85%	2018-19	2019-20	2020-21	2021-22	PO6 attainment is successful.	
		82.78	82.62	88.04	83.51		
Action	1: Creating s	social awarer	ness on the i	use of techn	ology for pro	ptecting the environment.	
Action	2: Design pr	ocesses and	products wit	th societal a	nd environm	iental impact in mind.	
	-						
PO7: E	invironment	and sustai	nability:				
Unders	tand the impa strate the kno	act of the pro pwledge of, a	ofessional er ind need for	igineering so sustainable	developmer	ocietal and environmental contexts, and	
demon							
P07	80-85%	2018-19	2019-20	2020-21	2021-22	PO7 attainment is successful.	
		83.4	83.54	88.62	83.94		
Action	1: Emphasis	is given on	greener and	more sustai	nable techno	ologies in teaching and practice.	
	46:						
	thical princip	loc and com	nit to profor	cional othics	and rospon	scibilities and norms of the ongineering	
practic	e.				anu respon		
					1		
P08	80-85%	2018-19	2019-20	2020-21	2021-22	PO8 attainment is successful.	
Action	1. Emphania	82.58	83.72	88.69	84.04	v in professional activities	
Action	2: Lise of cas		imhihe the i			havior in science and technology	
Action	2. 030 01 043		indibe the			navior in science and technology.	
PO9: I	ndividual an	nd team wo	rk:				
Functio	on effectively	as an individ	ual, and as a	a member or	r leader in di	iverse teams, and in multidisciplinary	
setting	s.						
DOO	00.050/	2010 10	2010 20	2020.21	2021.22		
P09	80-85%	2018-19	2019-20	2020-21	2021-22	PO9 attainment is successful.	
Action	1: Desianina	the group a	ctivities and	assignment	s to nurture	team spirit.	
Action	2: Counsellir	ng of student	s so that the	ey can excel	in tasks at l	hand.	
PO10:	Communica	tion:					
Commu	unicate effecti	ively on com	plex enginee	ering activitie	es with the e	engineering community and with society at	
effectiv	<u>ve presenta</u> tio	ns, and give	and receive	<u>clear inst</u> ru	ctions.	and design documentation, make	

PO10	80-85%	2018-19	2019-20	2020-21	2021-22	PO10 attainment is successful.			
		83.1	83.19	88.27	83.65				
Action	1: Motivating an be improve	g students to ed further.	take part ir	extra- and	co-curricula	r activities so that their communication			
Action	2: Individual	assignment	s are given o	during class	and allow st	udents to present.			
P011:	Project mar	nagement a	nd finance:						
Demonstrate knowledge and understanding of the engineering and management principles and apply these to									
one's o	wn work, as a	a member ar	nd leader in	a team, to m	nanage proje	ects and in multidisciplinary environments.			
			-	-	1				
P011	80-85%	2018-19	2019-20	2020-21	2021-22	PO11 attainment is successful.			
		82.94	83.01	88.24	83.57				
Action	1: Imbibing	the importar	ice of system	natic plannin	ng of project	activities and time management with			
time-bo	ound activities	s including a	ssignments	during class	and practica	IIS.			
PO12-	Life-long le	arnina							
Recogn	ize the need	for and have	o the nronar	ation and ah	vility to enga	ge in independent and lifelong learning in			
the bro	adest context	t of technolo	gical change		nity to cliga				
P012	80-85%	2018-19	2019-20	2020-21	2021-22	PO12 attainment is successful.			
		83.96	83.26	88.8	84.22				
Action	1: Motivating	g students to	take up cou	urses on SW	AYAM, NPTE	L, Coursera, Udemy, and other portals to			
learn a	nd hone their	skills.	Taaabawaaa	ulain ha ahuu	lauta au thai				
current	verteading b	on the SWA	YAM portal of	piain to stud or Coursera.	ients on the	ir learning curves and courses they are			
	.,								
PSO1:	Higher Stud	lies:							
To ensu	ure that stude	ents are acqu	ainted with	the fundame	ental chemic	al engineering principles and most recent			
advanc	es in the cher	mical and all	ied fields, th	ereby enabli	ing them to	undertake higher studies or research and			
develo	oment activity	/.							
DCO1	00.05%	2010 10	2010 20	2020.21	2021.22				
PS01	80-85%	2018-19	2019-20	2020-21	2021-22	PSOI attainment is successful.			
Action	1. We have	83.13	83.12	88.41	83.71	r studios (from 2020 opwards) as			
eviden	ced by Section	n 6.3. Trying	to maintain	the level ar	ng tor nighe nd taraetina	for higher.			
	···· , ·····				<u> </u>				
PSO2:	Employmen	t:							
To imp	art the chemi	cal engineeri	ing knowled	ge and indus	stry-ready sk	kills, thereby enabling them for a			
success	sful career in	the chemical	and allied i	ndustries as	entrepreneu	urs and professionals.			
PSO2	80-85%	2018-19	2019-20	2020-21	2021-22	PSO2 attainment is successful.			
-		83.29	83.2	87.45	82.81				
Action	1: As a great	iter number	of students	opt for highe	er studies, a	smaller number of students choose			
serve t	he industry.	ina jobs in g	eneral (Sect	ion 0.3). we	are encoura	aying our students to take up jobs and			
	Table B.6.1								

Table 6.2: CO Attainment and Actions for improvement – 2018-2019, 2019-2020, 2020-2021

CourseCode	СО	CO Attainment		Target	Comments	
		2018- 2019	2019- 2020	2020- 2021		
BST1102	CO1	91.64	91.93	94.15	80-85	CO Attainment is satisfactory.

	CO2	87.4	87.11	96.63	80-85	
	CO3	88.06	89.17	95.13	80-85	
	C04	83.24	81.43	98.23	80-85	
	CO5	89.74	87.2	98.23	80-85	
	CO6	87.55	84.51	96.23	80-85	
	CO1	95.55	73.7	99.29	80-85	CO Attainment is not satisfactory in 2019-2020.
	CO2	95.63	77.23	98.84	80-85	in the year 2019-2020 was impacted by the
CEP1701	CO3	95.55	82.16	99.34	80-85	COVID-19 pandemic. The laboratory courses
	CO4	95.39	77.23	99.12	80-85	is again back to better than expected in 2020- 2021.
	CO1	96.58	96.23	88.6	90-95	
CEP1702	CO2	97.12	96.46	90.38	90-95	CO Attainment is satisfactory.
	CO3	97.12	96.46	90.38	90-95	
			50110	50.00	2020	
	CO1	99.27	98.61	91.49	80-85	
CEP1704	CO2	99.55	98.6	89.69	80-85	CO Attainment is satisfactory.
	CO3	99.55	98.6	89.69	80-85	
	005	55.55	50.0	05.05	00 05	
	CO1	82.64	63.73	97.27	80-85	CO Attainment is not satisfactory in 2019-2020. This is a laboratory course. The CO attainment
CEP1705	CO2	81.32	60.73	97.47	80-85	COVID-19 pandemic. The laboratory courses
	CO3	77.01	50.92	98.03	80-85	were taken online in 2019-2020. The attainment is again back to better than expected in 2020-2021.
	CO1	94.47	62.75	95.91	80-85	This is a laboratory course. The CO attainment
CEP1706	CO2	95.71	70.17	96.63	80-85	in the year 2019-2020 was impacted by the COVID-19 pandemic. The laboratory courses
	CO3	96.03	72.45	96.81	80-85	were taken online in 2019-2020. The attainment is again back to better than expected in 2020- 2021.
CED1715	CO1	00.00	06.25	00.22	00 0E	
CEP1/15	<u> </u>	00.99	00.25	09.33	00-05	
	<u>CO2</u>	93.1	86.25	93.17	80-85	CO Attainment is estisfactory
	<u>CO3</u>	87.20	00.27	89.33	80-85	CO Attainment is satisfactory.
	C04	88.36	86.25	88.78	80-85	
	05	89.68	86.83	89.33	80-85	
CED1717	CO1	01 54	00.25	00.22	00.05	
		91.54	99.35	99.23	90-95	CO Attainment is satisfactory.
	02	50.06	30.13	55.00	20-23	
	CO1	73 60	64 20	65.22	60-65	
	CO1	60.10	64.62	67.06	60-65	4
	CO2	09.19	65.42	62.00	60 65	CO Attainment is satisfactory. Based on the
CET1101	<u>CO3</u>	70.00	65.42	64.80	60-65	rigorous evaluation and expected outcomes from
	C04	78.21	64.8	64.89	60-65	the students this CO attainment is set low.
	<u> </u>	73.01	63.00	63.98	60-65	
	006	/0./4	03.04	03.06	00-00	
	CO1		70.00	76.07	70 75	
	01	77.4	70.82	/0.0/	70-75	CO Attainment is not satisfactory. More
	602	74.13	67.02	07.57	70-75	numericals were included to understand the
CET1102	03	74.23	67.03	67.79	70-75	concepts and troubleshooting of various heat
	<u>C04</u>	/2.63	64.83	63.69	/0-/5	transfer equipment. Extra lectures were also
	C05	/4.13	66.54	67.57	/0-75	organized for modern design software such as
	C06	/1.47	62.11	60.92	/0-/5	ПІКІ.
		0.0.0=	0.5.5	0.5 -	00.05	
CET1201	CO1	80.95	93.61	83.53	80-85	CO Attainment is not satisfactory in 2018-2019.
	CO2	72.41	92.07	90.09	80-85	More emphasis was given to understanding the

	CO3	72 /1	02.07	00.00	<u>80-85</u>	problem statement, problem-solving and
	CO3	72.41	92.07	90.09	00-05	the webt provide a number of solving and
	C04	57.33	92.07	87.4	80-85	thought-provoking problems resulted in better
	CO5	80.95	81.06	80.9	80-85	CO attainment in subsequent years.
	CO1	87.05	86.81	88.21	80-85	
CET1202	CO2	87.01	84.25	86.0	80-85	CO Attainment is satisfactory
CETIZUZ	CO2	07.91	04.23	00.9	00-05	CO Attainment is satisfactory.
	03	93.43	80.34	86.76	80-85	
	CO1	74.32	76.55	79.3	75-80	CO Attainment is not satisfactory in 2018-2019.
	CO2	73.82	76.56	76.2	75-80	Industry problems were added to understand
CFT1203	CO3	74 15	76.07	78.04	75-80	the design concents. Lectures by eminent
CLIIZOS	05	74.15	70.07	70.94	75-80	professors contributed to better CO attainment
	CO4	73.93	76.56	76.82	75-80	professors contributed to better CO attainment
						in subsequent years.
	CO1	78.13	69.56	78.13	75-80	
	CO2	78.13	69.56	78.13	75-80	CO Attainment is not satisfactory in 2019-2020.
	CO3	78 97	69 39	78 97	75-80	More emphasis put on understanding the
CET1301	CO4	76 71	60.13	76.71	75-80	problem at hand rather than directly jumping on
	C04		09.13	70.71	75-00	solving the problem resulted in better CO
	05	/5.85	68.99	/5.85	/5-80	attainment in the subsequent year.
	CO6	74.04	67.6	74.04	75-80	1 7
	CO1	74.91	76.54	67.92	75-80	
	CO2	74 14	78 17	69 41	75-80	CO Attainment is not satisfactory in 2020-2021.
CET1202	CO3	73.27	70.35	70.68	75-80	Encouraged students for lateral thinking and
CETISUZ	CO3	73.27	79.33	70.08	75-00	group exercises for the various problems should
	04	/3.3	77.30	69.51	75-80	result in better CO attainment in the next year.
	CO5	70.3	76.9	70.71	75-80	,
	CO1	83.04	79.57	96.85	75-80	
	CO2	83.76	81.65	97.16	75-80]
CFT1401	CO3	85 11	80.52	96.85	75-80	CO Attainment is satisfactory
0211101	CO4	885	87	04.61	75-80	
	C04	00.5	07	94.01	75-00	-
	C05	86.79	86.62	93.07	/5-80	
	C01	84.23	97.76	89.59	80-85	
	CO1 CO2	84.23 84.23	97.76 97.76	89.59 89.59	80-85 80-85	-
	CO1 CO2 CO3	84.23 84.23 84.32	97.76 97.76 97.9	89.59 89.59 89.73	80-85 80-85 80-85	
CET1402	CO1 CO2 CO3	84.23 84.23 84.32 84.32	97.76 97.76 97.9 97.9	89.59 89.59 89.73 89.73	80-85 80-85 80-85 80-85	CO Attainment is satisfactory.
CET1402	CO1 CO2 CO3 CO4	84.23 84.23 84.32 84.32	97.76 97.76 97.9 97.9	89.59 89.59 89.73 89.73	80-85 80-85 80-85 80-85	CO Attainment is satisfactory.
CET1402	CO1 CO2 CO3 CO4 CO5	84.23 84.23 84.32 84.32 84.32 84.63	97.76 97.76 97.9 97.9 98.35	89.59 89.59 89.73 89.73 90.19	80-85 80-85 80-85 80-85 80-85	CO Attainment is satisfactory.
CET1402	CO1 CO2 CO3 CO4 CO5 CO6	84.23 84.23 84.32 84.32 84.63 84.63	97.76 97.76 97.9 97.9 98.35 98.35	89.59 89.59 89.73 89.73 90.19 90.19	80-85 80-85 80-85 80-85 80-85 80-85 80-85	CO Attainment is satisfactory.
CET1402	CO1 CO2 CO3 CO4 CO5 CO6	84.23 84.23 84.32 84.32 84.63 84.63	97.76 97.76 97.9 97.9 98.35 98.35	89.59 89.59 89.73 89.73 90.19 90.19	80-85 80-85 80-85 80-85 80-85 80-85 80-85	CO Attainment is satisfactory.
CET1402	C01 C02 C03 C04 C05 C06 C06	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6	97.76 97.9 97.9 98.35 98.35 98.35 76.38	89.59 89.59 89.73 89.73 90.19 90.19 64.49	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65	CO Attainment is satisfactory.
CET1402	C01 C02 C03 C04 C05 C06 C06 C01 C02	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65	CO Attainment is satisfactory.
CET1402	C01 C02 C03 C04 C05 C06 C06 C01 C02 C03	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the
CET1402 CET1501	C01 C02 C03 C04 C05 C06 C06 C01 C02 C03 C04	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.83	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low
CET1402 CET1501	C01 C02 C03 C04 C05 C06 C06 C01 C02 C03 C04 C05	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.83 67.98	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low.
CET1402 CET1501	C01 C02 C03 C04 C05 C06 C06 C01 C02 C03 C04 C04 C05	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low.
CET1402 CET1501	CO1 CO2 CO3 CO4 CO5 CO6 CO6 CO1 CO2 CO3 CO4 CO4 CO5	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low.
CET1402 CET1501	C01 C02 C03 C04 C05 C06 C01 C02 C03 C04 C03 C04 C05 C01	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019
CET1402 CET1501	C01 C02 C03 C04 C05 C06 C06 C01 C02 C03 C04 C03 C04 C05 C04 C05 C01 C02	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case
CET1402 CET1501	C01 C02 C03 C04 C05 C06 C06 C01 C02 C03 C04 C03 C04 C05 C04 C05 C01 C02 C03	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70 72.27	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 75-80 75-80 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the
CET1402 CET1501 CET1502	C01 C02 C03 C04 C05 C06 C06 C01 C02 C03 C04 C05 C04 C05 C01 C02 C03 C04	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70 72.27 70.76	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 75-80 75-80 75-80 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing
CET1402 CET1501 CET1502	C01 C02 C03 C04 C05 C06 C01 C02 C03 C04 C05 C04 C05 C03 C04 C05	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70 72.27 70.76 73.62	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 60-65 75-80 75-80 75-80 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020-
CET1402 CET1501 CET1502	C01 C02 C03 C04 C05 C06 C01 C02 C03 C04 C05 C04 C02 C03 C04 C02 C03 C04 C05 C04 C05	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70 72.27 70.76 73.62	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 75-80 75-80 75-80 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021
CET1402 CET1501 CET1502	C01 C02 C03 C04 C05 C06 C01 C02 C03 C04 C05 C04 C05 C04 C05 C04 C05 C04 C05	84.23 84.32 84.32 84.63 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70 72.27 70.76 73.62 71.94	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 75-80 75-80 75-80 75-80 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021.
CET1402 CET1501 CET1502	C01 C02 C03 C04 C05 C06 C01 C02 C03 C04 C05 C04 C05 C04 C05 C04 C05 C04 C05 C04 C05 C04	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70 72.27 70.76 73.62 71.94	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 75-80 75-80 75-80 75-80 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021.
CET1402 CET1501 CET1502	C01 C02 C03 C04 C05 C06 C01 C02 C03 C04 C05 C03 C04 C02 C03 C04 C05 C04 C05 C04 C05 C04 C05 C06	84.23 84.32 84.32 84.63 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.83 67.98 67.58 74.68 70 72.27 70.76 73.62 71.94 83.97	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52 71.07 68.52	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47 98.36	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 75-80 75-80 75-80 75-80 75-80 75-80 75-80 75-80 75-80 75-80 75-80 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021.
CET1402 CET1501 CET1502	C01 C02 C03 C04 C05 C06 C06 C01 C02 C03 C04 C01 C02 C03 C04 C01 C02 C03 C04 C05 C04 C05 C06 C06 C05	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70 72.27 70.76 73.62 71.94 83.97 80.58	97.76 97.9 97.9 98.35 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52 71.07 68.52 79.74 78.64	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47 98.36 97.59	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021.
CET1402 CET1501 CET1502	C01 C03 C04 C05 C06 C06 C01 C02 C03 C04 C05 C04 C01 C02 C03 C04 C05 C03 C04 C05 C04 C05 C06 C06 C05 C06	84.23 84.23 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70 72.27 70.76 73.62 71.94 83.97 80.58 81.38	97.76 97.9 97.9 98.35 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52 71.07 68.52 79.74 79.74 78.64 77.84	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47 98.36 97.59 97.83	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021.
CET1402 CET1501 CET1502 CET1503	C01 C03 C04 C05 C06 C06 C01 C02 C03 C04 C05 C04 C01 C02 C03 C04 C05 C04 C05 C06 C05 C06 C06 C01 C02 C03 C04 C05 C04 C05 C04 C05 C04 C05 C04 C05 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C06 C05 C06 C05 C06 C06 C05 C06 C06 C05 C06 C06 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C05 C06 C06 C05 C06 C05 C06 C05 C06 C05 C06 C06 C05 C06 C05 C06 C05 C06 C06 C06 C07 C06 C07 C06 C07 C07 C06 C07 C06 C07 C06 C07 C06 C07 C06 C07 C06 C07 C06 C07 C07 C07 C07 C06 C07 C06 C07 C06 C07 C06 C07 C07 C06 C07 C06 C07 C07 C06 C07 C06 C07 C06 C07 C06 C07 C07 C07 C07 C07 C07 C07 C07 C07 C07	84.23 84.23 84.32 84.63 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70 72.27 70.76 73.62 71.94 83.97 80.58 81.38 79 44	97.76 97.9 97.9 98.35 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52 71.07 68.52 79.74 79.74 78.64 77.84 77.84	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47 98.36 97.59 97.83 97.3	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021. CO Attainment is satisfactory.
CET1402 CET1501 CET1502 CET1503	CO1 CO2 CO3 CO4 CO5 CO6 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO2 CO3 CO4 CO5 CO3 CO4 CO5 CO3 CO4 CO5 CO6 CO3 CO4 CO5 CO6 CO3 CO4 CO5 CO6 CO1 CO2 CO3 CO4 CO3 CO4 CO3 CO4 CO3 CO4	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 74.68 70 72.27 70.76 73.62 71.94 83.97 80.58 81.38 79.44 80.58	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52 71.07 68.52 71.07 68.52	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47 98.36 97.59 97.3 97.3	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021. CO Attainment is satisfactory.
CET1402 CET1501 CET1502 CET1503	C01 C02 C03 C04 C05 C06 C07 C08 C01 C02 C03 C04 C05 C01 C02 C03 C04 C05 C03 C04 C05 C03 C04 C05 C06 C01 C02 C03 C04 C03 C04 C05 C04 C05 C05	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 67.58 74.68 70 72.27 70.76 73.62 71.94 83.97 80.58 81.38 79.44 80.58	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52 71.07 68.52 71.07 68.52	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47 98.36 97.59 97.3 97.59	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021. CO Attainment is satisfactory.
CET1402 CET1501 CET1502 CET1503	C01 C02 C03 C04 C05 C06 C07 C08 C01 C02 C03 C04 C05 C01 C02 C03 C04 C05 C03 C04 C05 C03 C04 C05 C06 C01 C02 C03 C04 C05 C04 C05 C04 C05 C04 C05 C04 C05 C04 C05	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.58 67.58 67.58 74.68 70 72.27 70.76 73.62 71.94 83.97 80.58 81.38 79.44 80.58 81.38	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52 71.07 68.52 71.07 68.52 79.74 78.64 77.84 77.61 78.64 79.94	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47 98.36 97.59 97.3 97.59 95.43	80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 60-65 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021. CO Attainment is satisfactory.
CET1402 CET1501 CET1502 CET1503	CO1 CO2 CO3 CO4 CO5 CO6 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO2 CO3 CO4 CO5 CO3 CO4 CO5 CO3 CO4 CO5 CO6 CO1 CO2 CO3 CO4 CO5 CO6 CO3 CO4 CO5 CO4 CO5 CO4 CO5 CO4 CO5 CO4 CO5 CO4 CO5 CO6 CO6 CO6	84.23 84.23 84.32 84.32 84.63 84.63 84.63 66.6 66.9 67.83 67.98 67.83 67.98 67.58 74.68 70 72.27 70.76 73.62 71.94 83.97 80.58 81.38 79.44 80.58 81.38 75.73	97.76 97.9 97.9 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52 71.07 68.52 71.07 68.52 79.74 78.64 77.84 77.61 78.64 79.94	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47 98.36 97.59 97.83 97.59 95.43	80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 75-80	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021. CO Attainment is satisfactory.
CET1501 CET1502 CET1503	CO1 CO2 CO3 CO4 CO5 CO6 CO1 CO2 CO3 CO4 CO5 CO1 CO2 CO3 CO4 CO2 CO3 CO4 CO5 CO3 CO4 CO5 CO3 CO4 CO5 CO6 CO3 CO4 CO5 CO6 CO3 CO4 CO2 CO3 CO4 CO5 CO6 CO3 CO4 CO5 CO6 CO5 CO6 CO5 CO6 CO5 CO6 CO6 CO1	84.23 84.23 84.32 84.32 84.63 84.63 66.6 66.9 67.83 67.98 67.78 74.68 70 72.27 70.76 73.62 71.94 83.97 80.58 81.38 79.44 80.58 75.73 85.54	97.76 97.9 97.9 98.35 98.35 98.35 98.35 76.38 71.42 68.73 73.8 75.2 74.31 73.17 72.11 68.52 71.07 68.52 71.07 68.52 71.07 68.52 71.07 68.52 79.74 78.64 77.84 77.61 78.64 79.94 87.27	89.59 89.59 89.73 89.73 90.19 90.19 64.49 63.58 63.04 63.14 65.38 80.05 78.59 81.13 87.32 84.21 87.47 98.36 97.59 97.59 97.3 97.59 95.43 90.46	80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 80-85 60-65 60-65 60-65 60-65 75-80 80-85	CO Attainment is satisfactory. CO Attainment is satisfactory. Based on the rigorous evaluation and expected outcomes from the students this CO attainment is set low. CO Attainment is not satisfactory in 2018-2019 and 2019-2020. The students were given case studies to analyze the problems and find the appropriate solutions in the manufacturing sector resulting in better CO attainment in 2020- 2021. CO Attainment is satisfactory.

	CO3	99.88	100	100	80-85		
GEP1112	CO2	99.77	100	100	80-85	CO Attainment is satisfactory.	
	CO1	99.91	99.97	100	80-85		
	CO4	91.29	97.5	92.03	80-85		
GEP1108	CO3	91.29	97.5	84.33	80-85		
	CO2	87.05	97.5	93.3	80-85	CO Attainment is satisfactory.	
	C01	94.38	97.5	94.32	80-85	4	
	CO1	04.20	07 5	04.22	00 OF		
	04	95.25	91.20	57.0	00-03		
	C04	95.52	91.55	97.2	80-85		
GEP1103	CO2	95.32	91.3	98.11	80-85	CO Attainment is satisfactory.	
	CO2	94.81	91 3	98.22	80-85		
	CO1	95.32	91.33	98.11	80-85		
	CO4	85.83	92.97	87.59	80-85	1	
GEP1101	CO3	85.83	92.97	81.07	80-85	CO Attainment is satisfactory.	
0504404	CO2	85.2	92.43	81.67	80-85		
	CO1	85.2	92.43	83.92	80-85		
	CO3	91.56	99.29	96.47	90-95		
CET1716	CO2	91.21	98.92	99.13	90-95	CO Attainment is satisfactory.	
	CO1	92.49	99	99.21	90-95		
	CO5	62	60.77	76.34	75-80	in better CO attainment in 2020-2021.	
	C04	64.47	61.03	75.87	75-80	design of multivariable control systems resulting	
CET1703	CO3	57.71	56.57	73.49	75-80	assignments were given to the students on the	
	CO2	60.22	60.01	76.1	75-80	and 2019-2020. More real-world problems and	
	CO1	/2.36	/0.95	82.86	/5-80	CO Attainment is not satisfactory in 2018-2019	
	601	70.00	70.05	02.00	75.00		
	C04	87.75	97.75	99.06	80-85		
	03	84.88	95.98	98.23	80-85	4	
CET1608	<u>CO2</u>	84.86	95.66	97.57	80-85	CO Attainment is satisfactory.	
		03.52	93.50	95.8	00-05 00 0F		
	CO1	83 50	03 56	05.9	80-85		
	000	-J.J+	//.00	//.10	70-75		
	C06	43.94	77.06	77 16	70-75	positively to CO attainment in subsequent years.	
	C05	43.94	77.06	77,16	70-75	the root cause analysis. This should contribute	
CE11601	CO4	62.11	81.31	63.5	70-75	of chemical process equipment to understand	
CETIGOI	CO3	59.74	80.21	64.69	70-75	material failure analysis and mechanical failure	
	CO2	56.68	80.19	67.87	70-75	and 2020-2021. Emphasis is given to the	
	CO1	62.13	82.19	64.59	70-75	CO Attainment is not satisfactory in 2018-2019	
	CO3	87.23	90.57	81.99	80-85		
CET1515	CO2	87.43	87.8	80.63	80-85	CO Attainment is satisfactory.	
00000	C01	87.86	88.52	81.69	80-85		
	CO1	07.00	00.52	01.00	00.05		
	04	84.88	90.96	ŏZ.4Z	80-85		
	C03	03.02 04.00	90.0	01 82 42	00-00 80-05		
CET1509	CO2	02.20 85.00	90.00	Q1.4	80-05 80-95	CO Attainment is satisfactory.	
		82.20	09.01	Q1 /	80-05 80-85		
	CO1	82 98	89.61	86.05	80-85		
	000	00.72	55.05	77.57	00 05	······	
	C06	88.92	56.05	97.34	80-85	the subsequent year.	
	C05	93.04	50.74	97.34	80-85	classrooms resulted in better CO attainment in	
CE11505	CO4	95.12	65.06	96.51	80-85	use of e-teaching platforms and flipped	
0574505	CO3	96.13	64.47	97.08	80-85	problem statement, practice problems, and the	
	CO2	93.4	60.11	97.32	80-85	More emphasis was given to understanding the	
	CO1	92.19	61.1	97.64	80-85	CO Attainment is not satisfactory in 2019-2020.	
	CO6	85.28	88.71	91.98	80-85		
	CO5	84.67	87.11	89.26	80-85		
	CO4	85.22	87.63	91.04	80-85		
	CO3	85.15	87.11	91.04	80-85		

	CO1	81.75	78.39	95.91	75-80	
	CO2	82.56	79.44	95.02	75-80	
CET1102	CO3	79.35	79.3	95	75-80	CO Attainment is satisfactory
GEIIIOZ	CO4	82.56	79.17	94.25	75-80	CO Attainment is satisfactory.
	CO5	77.78	78.18	94.25	75-80	
	CO6	75.7	80	93.13	75-80	
	CO1	82.43	87.64	93.55	80-85	
	CO2	83.13	86.76	92.72	80-85	
CET1107	CO3	79.83	88.3	96.11	80-85	CO Attainment is satisfactory
GEIIIO/	CO4	83.36	88.02	94.68	80-85	
	CO5	81.54	87.04	92.73	80-85	
	CO6	79.4	100	96.28	80-85	
	CO1	88.88	93.09	99.41	80-85	
	CO2	87.91	94.8	99.33	80-85	
HUT1102	CO3	88.88	95.13	99.68	80-85	CO Attainment is satisfactory
1011102	CO4	88.88	95.13	99.68	80-85	
	CO5	90.24	95.36	99.28	80-85	
	CO6	87.2	95.61	99.19	80-85	
	CO1	93.25	64.98	99.17	80-85	CO Attainment is not satisfactory in 2019-2020
MAT1106	CO2	93.25	64.98	99.17	80-85	More emphasis was given to understanding the
	CO3	85.93	90.16	98.53	80-85	design of the experiments, hands-on problem
	CO4	85.93	90.16	98.64	80-85	solving and assignments resulted in better CO
	CO5	85.82	95.56	98.1	80-85	

Figure 6.1: Yearwise PO and PSO attainment levels

6.2. Academic Audit and actions taken thereof during the period of Assessment (10)

Institute Marks (10)

Institute of Chemical Technology has been funded by MHRD under Technical Education Quality Improvement Program (TEQIP). Under TEQIP, regular academic audits are conducted and the suggestions are incorporated into curriculum development and delivery. The indirect academic audit is conducted with the help of industry experts who visit as an examiner for undergraduate projects, Masters' degree open defense, and Ph.D. degree open defense.

The Institute has an Internal Quality Assurance Cell which audits the Academic and Research activities of the Institute. The quality of teaching is judged through feedback from the graduating class and it is fully taken into account for changes, if any, in academic and other activities. The format for the Academic Audit, audit committee guidelines and the Minutes of Meeting and approval of the Audit Committee are as follows:

	Format for Internal / External Auditor	
	(1) Auditors to go through the information in self-assessment PBAS form,	
	(2) Verify the facts and collect evidence on different parameters in self-assessment f	orms
	[3] Based on collected information, make a judgement and evaluate each parameter t	below
	Evaluate Each Parameter on a scale of	
	0 (Poor or Very low) to 5 (Excellent or Very High)	
	Academic Aspects – Teaching and Learning	
1	Syllabus Related: last revision, new courses added, methodology of revision	
2	Adequacy of weightage to Basic Sciences, Core courses, Electives, Humanities, etc. in the syllabus	
3	Extent of Coverage of Prescribed Syllabus and Lectures taken	
4	The extent to which the teaching – learning process is oriented towards Course Outcomes	
5	Quality and Extent of Continuous Assessment, mid and End Semester Examination	
6	The extent to which the Evaluation Process is geared towards Assessing Attainment of Course Outcomes	
7	Degree to which Program Objectives are met	
8	Availability and adequacy of learning Resources, such as library, laboratory experiments, etc.	
9	Steps taken for improvement of weak students, and Student support system	
	Academic Aspects – Research	
1	Involvement of faculty members in Research and Development	
2	Outcome of Research in terms of papers, patents, technology Transfer, etc.	
3	Generation of Human Resource PGs and Ph. D.s	
4	Revenue generation through Research Projects	
5	Quality and adequacy of Research and Development facilities, such as Instruments and facilities	
	Academic Aspects – Consultancy and Extension	
1	Involvement of faculty members in Consultancy and Extension	
2	Outcome of Consultancy Projects in terms of Technology developed,	
3	Revenue generation through Research Projects	
4	Industry – Institute Interaction	
5	Society – Institute Interaction	
6	Participation in National and International bodies and committees	
7	Training Programs, workshops, conference conducted for Industry, other Institutes, etc.	
	Administrative Aspects	
1	Functioning of Committees in the Department	
2	Level of Administrative and Financial Support in the Department	
3	Involvement of stake-holders in the Departmental Decision Making	
4	Frequency of Departmental Faculty and Support staff meetings	
5	Mechanism of Addressing issues and grievances	
6	Cleanliness, Maintenance and upkeep of infrastructure within the Department	
	Other Comments, Observations and Remarks of Auditor / Teacher	
1		
1		
1		

Departmental IQAC/ Audit Committee	6 th March, 2019	
Following are the general guidelines of the departmental IQAC Cell	To, The Vice Chancellor,	
A. Composition	ICT, Matunga.	
1. Chairman: HOD	and an entry over some or and	NAMES OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO
2. Two senior faculty from the Department	Sub : Approval of the Committee for IC	AC/Audit Committee
3. Two senior faculty of other Department of the Institute		
4. Two alumni/ executives from Industry	Dear Sir,	
 Student representative of the Department. 	As par your shap instalations and	auidelines us have receiving a 104.0/4 dis 0
B. The departmental IOAC will meet at least once in every semester to decide and act on	As per your given instructions and	guidelines, we have appointing an IQAC/Addit Committee
1. Academic quality of the department students	for review the Academic performance of th	le Department. As per the guidelines for the composition of
2. Analysis of continuous assessment, mid semester and end semester examination.	the committee, I am suggesting the following	ng members:
3. Academic Audit of the Department and result analysis	1) Prof A W Patwardhan	. Head of the Department
4. Suggestions for improvement in	i) i loi. A.W. I atwardinait	. Tread of the Department
a) Students Academic Performance	2) Dean (IQA) / Nominee	: Dr. C.S. Mathpati
b) Curriculum Content Delivery System	3) Dr. P.V. Sane	: Two Senior Alumni one from industry and one from
c) Quality Benchmarking	Dr. Niteen Deshmukh	research/academia
d) Quality Assurance	() Dr. Sanjay Mahajani	: One senior faculty member from other Institute
e) Seminars/Project Evaluation and Guidance	IIT, Mumbal	(non-alumnus)
f) Research Promotion	5) Managah Masa BDOI	· One Alignetic like and shaled within last 5 years
g) Industry Interaction / Internship / Projects / Consultancy	b) Mangesh Hase, BPCL	: One Alumnus who graduated within last 5 years
 h) Scientific and Technical Publications by Students and Faculty 		
i) Participation in Extra and Co-Curriculum Activities	6) Mrs. K.V. Marathe	: One senior faculty from the Department
 j) Organisation of National level/ International Level Seminar/ Conferences 	7) Dr. Mohan Narayan	: One senior faculty from other Department
k) Curriculum design and development	P) Dref A B Bondit	Dean AB/Dean BCBM or/ Neminee
 Innovative practices in teaching learning / Infrastructure / Research 	o) Flor. A.B. Fallur	. Dean Aribean Korw on Noninee
5. The Departmental IQAC cell will make the minutes of the cell meetings and will make	9) Dr. V.H. Dalvi	: One Associate Professor or Asstt. Prof. from Dept.
action taken report on its decisions	10) CR of the respective class	: One Student nominee each from UG and PG/Ph.D
 Cell will analyze the overall academic and administrative performance of the department and 		
compare it with defined program outcomes of the various courses conducted by department.	Kindly approve the Committee	
7. Cell will go through the records of the lecture plans of the every course prepared by the	Kindly approve the Committee.	3
concern faculty and recept yearly record of the same	Thanking you	
 Analyze the mapping of CEO. FEO and FO and their attainment as per defined norms. Each fourtheast the attainment on pertainment of the total could and the total of the set of the set		the second s
 Each factury will south the analytication processing address to the source of the source for a fact the set fact to be a source for a fact the set fact to be a source for a s	Yours Sincerely	
record of the same for at least last six to sever years.	rours onnerely,	
The topy of the initiates of the meeting reporting decision of the commuter, addent taken remote and performance avaluation of the denormmental activities will be remoted without taken	Appendi	Andread
to Institute IOAC	Professor A.W. Patwardhan	1 Ospining .
11 This committee will also implement the quality related issues defined by the Institute IOAC	Head, Department of Chemical Engineerin	o egyy
time to time.		-V-I-
12. The department will take feedback from all stakeholders of the department and submit its		1) 3 19
reports and analysis to the Institute IOAC.		
· · · · · · · · · · · · · · · · · · ·	C.C. LA CC	RI art +
	-r. 124 23	Juaywa

Figure 6.3a: Departmental IQAC Guidelines

Figure 6.3b: Approval of Committee for IQAC

6.3. Improvement in Placement, Higher Studies and Entrepreneurship (15)

Institute Marks (15)

Our placement record is steady year over year, and the number of students getting placed or going for higher studies is almost the number of students completing their studies (Figure 6.4). Also, as can be seen in Figure 6.5, the average and minimum salaries received by the students through campus placement have also increased throughout the years. Even during the ongoing COVID-19 pandemic when companies really weren't looking to recruit new candidates our placement records are excellent and we still managed to place almost every student. Further, the average salaries are also consistently growing year-over-year. This is a testament to our outstanding Bachelor of Chemical Engineering program that the companies are always looking to hire our students even in this period of crisis.

Item	CAY (2021-22)	CAYm1 (2020-21)	CAY <i>m2</i> (2019-20)	CAY <i>m3</i> (2018-19)
Total No. of Final Year Students (N)	80	80	75	80
No. of students placed in companies or Government Sector (x)	36	44	50	37
No. of students admitted to higher studies with valid qualifying scores (GATE or equivalent State or National Level Tests, GRE, GMAT etc.) (y)	41	29	21	38

Table 6.3: Placement records

No. of students turned entrepreneur in engineering/technology (z)	0	0	1	0
x + y + z =	77	73	72	75
Placement Index: (x + y + z)/N	0.9625	0.9125	0.96	0.9375

Figure 6.4: Placement records

CTC in lakhs	2018-19	2019-20	2020-21	2021-22
Median	6.5	6.5	8	8
Average	7.03	7.09	8.22	9.2
Minimum	2.4	6.5	4.25	8
Maximum	17	10	16	11.5

Table 6.4: Improvement in placement packages being offered

Figure 6.5: Improvement in placement packages being offered

6.4. Improvement in the quality of students admitted to the program (10) Institute Marks (10)

As mentioned earlier in section 6.3, better quality students get attracted to our engineering programs. One of the reasons students choose our Bachelor of Chemical Engineering program is because of our exemplary placement record and higher study opportunities for the students. The students prefer ICT and our Bachelor of Chemical Engineering program because of the higher chance of getting the placement. An improvement in the physics, chemistry, and mathematics scores can be seen for our admitted students in Figure 6.6. Additionally, our faculty deliver lectures nationally and internationally in various institutions/conferences/seminars where they promote the institute and its offered courses that help attract better-quality students. The institute now has a media cell that regularly promotes ICT as a brand and its programs through social media options such as Facebook, Twitter, etc. All of this has propelled our Bachelor of Chemical Engineering program to the regions far and wide in the country.

Item		CAY (2021 -22)	CAYm1 (2020 – 21)	CAYm2 (2019 – 20)
National Level	No. of Students admitted	23	23	23
Examination	Opening Score/Rank	99.019/188	98.617/128	99.522/113
(JEE Mains I)	Closing Score/Rank	96.976/975	96.520/764	98.677/568
State/Institute/Level Entrance	No. of Students admitted	52	52	52
Examination/Others	Opening Score/Rank	99.889/122	100/16	99.977/49
	Closing Score/Rank	98.899/1497	99.233/1041	99.527/909

Table 6.5: Improvement in the quality of students admitted

Name of the Entrance Examination for Lateral Entry or	No. of Students admitted	0	0	0
	Opening Score/Rank	NA	NA	NA
lateral entry details	Closing Score/Rank	NA	NA	NA
Average CBSE/Any	Physics %	89.89	84.48	80.07
other Board Result of	Chemistry %	90.05	80.17	78.76
admitted students	Mathematics%	91.59	90.33	88.00
Table P 6 1				

Table B.6.4

Figure 6.6: Quality of students admitted

6.5. Remedial action taken on the observations made during last accreditation visit/New initiatives taken/New Facilities Introduced/Improvement made after last visit. (10)

Institute Marks (10)

Table 6.6: Remedial action taken on the observations made during the last accreditation visit

Comment Resolution					
	Lab safety training for the staff is provided regularly (Figure 6.7).				
	Lab safety posters installed. Installed fire-exit signs/maps at relevant places (Figure 6.8).				
Lab safety concerns	Created safety manual along with regular safety training. Signed MOU with Sion hospital for emergency (Figure 6.9).				
	Lab safety equipment like showers, eyewash, and first aid installed (Figure 6.8).				
	Operation training provided for fire extinguishers, and chemical fume hoods maintained for safety.				

	Entrepreneurship course introduced as an elective (CET1604) for the final year students. (Basic course in Entrepreneurship and Advanced course in Entrepreneurship).			
Lack of Start-un/	Introduced innovation & start-up policy for paving the way for Entrepreneurship (Figure 6.11).			
Entrepreneurship program	Introduced S. M. Mokashi Incubation Center ICT-NICE to invite ideas for Pre-incubation in the areas of Chemical Technology, Pharmaceutical Technology, Biotechnology, and Allied Technologies including Education Technology (Figure 6.11).			
	Introduced Tinkerers Lab to empower budding engineers to pursue their creative and innovative ideas (Figure 6.11).			
	Students go for a compulsory industrial internship after completing their third year of engineering. This industrial internship is a part of their syllabus offered for 6 credits (Table 6.7).			
Industrial Training	An option is provided for the students to go for industrial training after completing their second year of engineering (during the summer break).			
	Regular industrial visits are provided to the students (Figure 6.13).			
	Regular academic audits are conducted and the suggestions are incorporated into curriculum development and delivery (Figure 6.2).			
	Indirect audits are conducted with the help of industry experts who visit as an examiner for undergraduate projects.			
	The Institute has an Internal Quality Assurance Cell which audits the Academic and Research activities of the Institute (Figure 6.3a and 6.3b).			
	The quality of teaching is judged through feedback from the graduating class and it is fully taken into account for changes.			
Academic Audit, Faculty improvement	Young and mid-career faculties are regularly sent for faculty development programs as a part of their pedagogical improvement.			
	Faculties are encouraged to take MOOC courses on SWAYAM, NPTEL, ATAL, and various other platforms.			
	Young faculties are involved in curriculum design, accreditation, laboratory, purchase, scholarship, examination, and admission for their overall development.			
	Being an elite institute, ICT has excellent research and industrial outreach. Every faculty in the department is striving to establish new research areas. The publication record is constantly improving year over year which itself is a measure of faculty improvement.			
Process of PO and PSO evaluation is not clear	The POs and PSOs are mapped and evaluated correctly through direct and indirect assessment to eliminate the previous shortcomings. The process of PO and PSO evaluation is thoroughly explained in Criteria 1 (Section 1.6).			
Process of feedback from all the stakeholders and the data analysis is not presented.	The feedback is taken from the following stakeholders: alumni, students, and employers. The questions asked to these stakeholders are mapped to the POs and PSOs for evaluation through indirect assessment. Further, the data analysis is presented in Criteria 1 (Section 1.6 – Figures 1.5, 1.6, 1.7, 1.8, 1.9, 1.10 and 1.11).			
One to one relation exists but there must be composite relation between COs and POs	The COs are mapped with the POs and PSO for each subject and is presented in Criteria 1 to address this concern (Table 1.2 and 1.3).			
Assessment questions need reworking	The indirect assessment questions asked to alumni, students, and employers are based on the predefined POs and department-defined			

	PSOs. The questions are thoughtfully formulated as can be seen in Criteria 1 before asking the stakeholders (Figures 1.5, 1.6, and 1.7).
Complete Assessment process may further be improved	A complete overhaul of the assessment process has been carried out and performed through modern tools of assessment such as coding and programming. The assessment process can be referred to at the time of the NBA expert visit.
Information in the website is not adequate	The institute (and department) website is now updated regularly with adequate information.

Figure 6.7: Safety training and demonstrations

Figure 6.8: Improvement related to Safety

Figure 6.9: Safety manuals, medical emergency and safety programs

Figure 6.10: Improvement related to space

Figure 6.12a: Improvement in Lab facilities

Figure 6.12c: New facilities created

Figure 6.13: Industrial Visit at BPCL

Table 6.7: List of students completing In-plant training 2021-22								
Sr. No.	Name of the student	Roll Number	Company					
1	Aayush Bhat	19CHE101	Lanxess					
2	Shivani Manhas	19CHE102	RCF ltd					
3	Sagar Vivek Mudaliar	19CHE103	Reliance Industries Ltd					
4	Aquil Abdulhamid Attar	19CHE104	Reliance					
5	Parth Thakkar	19CHE105	BASF					
6	Pranay Shah	19CHE106	BASF					
7	Parth Patel	19CHE108	AMI Lifesciences Ltd					
8	Sahil Birwatkar	19CHE111	Aarti Industries					
9	Tanish Agrawal	19CHE112	Jubilant Ingrevia					
10	Anant Prasanna Sohale	19CHE113	Eternis					
11	Prithvi Dake	19CHE114	Tridiagonal Solutions Ltd					
12	Adwait Joshi	19CHE115	Tridiagonal Solutions Ltd					
13	Jay Piyushbhai Thakkar	19CHE116	Kiri Industries ltd					
14	Aditi Sachin Patil	19CHE117	RCF ltd					
15	Dhruv Gohil	19CHE118	Fairmate					
16	Sudarshan Shreenivas	19CHE119	Jayant Agro					
17	Shaikh Mohd Shoeb Sher Ali	19CHE120	Reliance					
18	Hrishabh Singh	19CHE121	Deccan Fine Chemicals Ltd.					
19	Nimish Vaidya	19CHE122	Beetachem Industries					
20	Harsh Upadhyay	19CHE123	Thyssenkrupp Industrial Solutions					
21	Pankti Paresh Savla	19CHE124	Jayant Agro					
22	Gargee Yadav	19CHE125	Akry Organics					
23	Vivin Sibi	19CHE126	Piramal - Ennore					

24	Abhishek Shashikant Kulkarni	19CHE127	Tridiagonal Solutions Ltd
25	Uma Rajesh Tulsiani	19CHE128	Rubamin Pvt Ltd
26	Shrivatsa Korde	19CHE129	Tridiagonal Solutions Ltd
27	Amoghraj Prabhu S S	19CHE130	Gmm Pfaudler
28	Aditya Agarwal	19CHE131	Sudarshan Chemicals
29	Darshil Jain	19CHE132	Aarti Inds
30	Saloni Vaidya	19CHE133	Atul Ltd
31	Siddharth Nitin Shah	19CHE134	Jayant Agro
32	Vyankatesh Shyam Tarkase	19CHE135	Gharda Chemicals
33	Akshat Jain	19CHE136	Lanxess
34	Animesh Chaturvedi	19CHE137	Gharda Chemicals (Absent)
35	Vikram Vinayak Shanbhag	19CHE138	Tridiagonal Solutions
36	Prathamesh Patil	19CHE139	Atul Itd
37	Sahil Unmesh Patil	19CHE140	Harman Finochem Itd
38	Makrand Tanaji Barge	19CHE141	Piramal Thane
39	Ria Gada	19CHE142	JB Pharmaceuticals Pvt Ltd
40	Vignesh Krishnan	19CHE143	Solara
41	Sanskar Shridhar Tanvidkar	19CHE144	Excel
42	Parikshit Subhash Kadu	19CHE145	Lanxess
43	Vinod Mamraj Rathod	19CHE146	Lanxess
44	Utkarsh Pravin Patil	19CHE147	Reliance
45	Abhijeet Agatrao Tarange	19CHE148	Laxmi Organics
46	Gouresh Vinay Gargate	19CHE149	Piramal Thane
47	Snehal Bhosale	19CHE150	Vanita Agrochem pvt Itd
48	Vaibhav Khapekar	19CHE151	Eternis
49	Umesh Jaiswal	19CHE152	Shell
50	Vashishth Purohit	19CHE153	Jubilant ingrevia
51	Akanksha Warade	19CHE154	Biocon
52	Aditya Sangave	19CHE155	Eternis
53	Sanmesh Pravin Kharade	19CHE156	Jubilant ingrevia
54	Priyanshu Singh	19CHE157	Deccan Fine Chemicals Ltd.
55	Prehas Madke	19CHE158	Eternis
56	Falguni Akulwar	19CHE159	Jubilant ingrevia
57	Shivraj Chandrakant Gove	19CHE160	Lanxess
58	Vaidehi Padamwar	19CHE161	Jubilant ingrevia
59	Bhushan Murjani	19CHE162	Piramal Thane
60	Suraj Kekane	19CHE163	Solara
61	Shyam Gandhi	19CHE164	Reliance
62	Dhaval Chaudhari	19CHE165	UPL
63	Nikita Mohta	19CHE166	Akry Organics
64	Soham Mamidwar	19CHE167	Aarti inds
65	Atharv Prasad Kulkarni	19CHE168	Tridiagonal Solutions Ltd
66	Rutuja Pingale	19CHE169	Gharda Chemicals, Lote
67	Akshayaa Jagtap	19CHE170	Exxon Mobil
68	Priya Katkar	19CHE171	Gharda Chemicals, Lote
69	Harsh Mohane	19CHE172	Aarti Inds
70	Ashish Bhave	19CHE174	Tridiagonal Solutions Ltd
71	Sahil Sabne	19CHE175	Deepak Nitrite - Baroda

72	Manasi Bansod	19CHE176	Biocon
73	Amogh Subhash Gaikwad	19CHE178	Gharda Chemicals, Dombivli
74	Janhavi Sunil Waghachoude	19CHE179	Aarti Industries, Vapi
75	Ruchita Baban Laswante	19CHE180	Aarti Industries, Vapi
76	Rakhi Narnaware	19CHE181	Gharda Chemicals, lote
77	Sushant Hemant Moule	19CHE182	Aarti inds
78	Onkar Rajendra Salavi	19CHE185	Excel
79	Vinay Sharma	19CHE186	Deepak Nitrite - Baroda
80	Amit Dinesh Yadav	19CHE187	UPL
81	Yashvir Koul	19CHE188	Aarti Industries
82	Sakshi Pandit Patil	19CHE189	Gharda Chemicals, Lote
83	Prasanna Gangawane	19CHE190	Harman Finochem Ltd
84	Abhigyan Ray	17CHE103	Piramal Thane
85	Siddhesh Borole	18CHE151	Laxmi Organics
86	Kalyan Hanumant Mali	18CHE179	UPL

INSTITUTE OF CHEMICAL TECHNOLOGY रसायन तंत्रज्ञान संस्था

Deemed to be University under Section-3 of UGC Act 1956 Elite Status & Centre of Excellence Government of Maharashtra

Catagory I Deemed to be University (MHRD/UGC)

National Rank 1 in Atal Innovation Ranking (ARIIA), by MHRD, Category : Govt Aided Universitites (2020)

Declaration

The head of the institution needs to make a declaration as per the format given below:

I undertake that, the institution is well aware about the provisions in the NBA's accreditation manual concerned for this application, rules, regulations, notifications and NBA expert visit guidelines in force as on date and the institute shall fully abide by them.

It is submitted that information provided in this Self-Assessment Report is factually correct. I understand and agree that an appropriate disciplinary action against the Institute will be initiated by the NBA in case any false statement/information is observed during pre-visit, visit, post visit and subsequent to grant of accreditation.

Date: 06/06/2022

Place: Mumbai

ofentic - milan 7/6/2

Signature

Head of the Institution with seal VICE CHANCELLOR Institute of Chemical Technology (University under Section-3 of UGC ACT OF 1956) N. P. Marg, Matunga, Mumbai - 400 019.

Julu 200 106 12022

ICT MUMBAI Nathalal Parekh Marg, Matunga, Mumbai - 400 019, India Tel: +91-22-3361-1111/2222(B) Fax :+91-22-3361-1020(B) Website : www.ictmumbai.edu.in email : vc@ictmumbai.edu.in GSTIN : 27AAATI4951J1ZG

ICT IOC, BHUBANESWAR

ICT-IOC Odisha Centre, Indian Institute of Technology, Kharagpur Extension Centre, Near Hotel Swosti Premium, Mouza-Samantpuri, Bhubaneswar-13 email : director@iocb.ictmumbai.edu.in GSTIN : 21AAATI4951J1ZS

ICT MARATHWADA, JALNA

M/s Beej Sheetal Innovations Centre Private Limited, BT-6/7, Biotechnology Park, Additional MIDC Area, Aurangabad Road, Jalna-431 203 email : director@marj.ictmumbai.edu.in GSTIN : 27AAATI4951J1ZG

ANNEXURE I (A) PROGRAM OUTCOMES

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

(B) PROGRAM SPECIFIC OUTCOMES (PSOs)

- 1. **Higher Studies**: To ensure that students are acquainted with the fundamental chemical engineering principles and most recent advances in the chemical and allied fields, thereby enabling them to undertake higher studies or research and development activity.
- 2. **Employment**: To impart the chemical engineering knowledge and industry-ready skills, thereby enabling them for a successful career in the chemical and allied industries as entrepreneurs and professionals.

INSTITUTE OF CHEMICAL TECHNOLOGY Bachelor of Chemical Engineering (B. Chem. Engg.) Syllabus (2021 – 2022)

The revised syllabus comes into effect for first year Bachelor of Chemical Engineering students from the academic year, July 2021.

Preamble

The B. Chem. Engg. Course of ICT is highly sought after. The Department has been in existence from inception in 1934. The Syllabus is upgraded and revised from time to time to reflect the current needs and demands of society and technology. The last revision had come into effect from Academic year 2015. As per AICTE mandate, the revision was undertaken in December 2020 and this revised syllabus will come into effect from Academic year 2020-2021. The syllabus has been revised in the framework of Outcome based Education. For each course, course outcomes are defined. The course outcomes are related to program outcomes. The syllabus is consistent with the AICTE model curriculum in terms of weightages of different components: Basic Science, Other Engineering disciplines, Core Engineering, Humanities, Electives, Projects, etc.

A syllabus committee was formed within the Department. The committee sought feedback from the alumni, industrial experts, Academicians from other academic Institutes. This feedback was compiled. Discussions were held with other Departmental faculty from Physics, Chemistry, Mathematics, General Engineering, Management experts, etc. Taking into considerations the feedback and discussions the revision has been made. The revised syllabus proposes alternatives to some of the humanities courses which the students can be taken from MOOCs. A provision is also made for an "Open Elective", which the student can choose from MOOC. The "Open Elective" will be a course which student can take from reputed MOOCs and can be from any discipline, Engineering and Technology, Humanities, Arts, etc. It offers freedom to students to choose a subject of their liking. These changes have been proposed to make the syllabus according to the UGC, AICTE and NEP Guidelines, to give freedom to students, to make the learning more holistic and to encourage students to take subjects from Platforms like Swayam and NPTEL.

INSTITUTE OF CHEMICAL TECHNOLOGY Degree of Bachelor of Chemical Engineering (B. Chem. Engg.) Syllabus Syllabus Structure for B. Chemical Engineering Course

Semester – I									
No	Subjects	Credits	Hr	s/We	ek	Ma	rks for vario	us Exams	
			L	Т	Р	С. А.	M.S.	E. S.	Total
CHT 1131	Organic Chemistry-I	4	3	1	0	20	30	50	100
CHT 1211	Analytical Chemistry	3	2	1	0	10	15	25	50
MAT 1101	Applied Mathematics-I	4	3	1	0	20	30	50	100
PYT 1101	Applied Physics – I	4	3	1	0	20	30	50	100
GEP 1101	Engineering Graphics-I	4	2	0	6	50		50	100
PYP 1102	Physics Laboratory	2	0	0	4	25		25	50
CHP 1132	Organic Chemistry Laboratory	2	0	0	4	25		25	50
	TOTAL:	23	13	4	14				550
	SI	EMESTE	CR – II	[
No.	Subjects	Credits	Hr	s/wee	ek	Ma	rks for vario	us Exams	
			L	Т	Р	С. А.	M. S.	E. S.	Total
CHT 1231	Organic Chemistry-II	4	3	1	0	20	30	50	100
CHT 1341	Physical Chemistry	3	2	1	0	10	15	25	50
CET 1501	Material & Energy Balance Calculations	4	3	1	0	20	30	50	100
MAT 1102	Applied Mathematics-II	4	3	1	0	20	30	50	100
PYT 1103	Applied Physics – II	3	2	1	0	10	15	25	50
CHP 1342	P 1342 Physical & Analytical Chemistry Lab.		0	0	4	25		25	50
HUP 1101 Communication Skills		2	0	0	4	50			50
Total			13	5	8				500
	SE	EMESTE	R – II	I					
No.	Subjects	Credits	Hr	s /we	ek	Ma	rks for vario	us Exams	
			L	Т	Р	С. А.	M. S.	E. S.	Total
CET 1301	Chem. Eng. Thermodynamics-I	4	3	1	0	20	30	50	100
CET 1105	Momentum Transfer	4	3	1	0	20	30	50	100
GET 1102	Structural Mechanics	3	2	1	0	10	15	25	50
GET 1109	Electrical Engineering and Electronics	3	2	1	0	10	15	25	50
CET 1502	Industrial & Engineering Chemistry	4	3	1	0	20	30	50	100
GEP 1103	Structural Mechanics Lab.	2	0	0	4	25		25	50
GEP 1110	Electrical Engg and Electronics Laboratory	2	0	0	4	25		25	50
CEP 1715	Engineering Applications of Computers	2	0	0	4	25		25	50
	Total	24	13	5	12				550
	SI	EMESTE	R – IV	7					
No.	Subjects	Credits	Hr	s/wee	ek	Ma	rks for vario	us Exams	
			L	Т	Р	С. А.	M. S.	E. S.	Total
GET 1107	Energy Engineering	4	3	1	0	20	30	50	100
BST 1102	Introduction to Biological Sci.	4	3	1	0	20	30	50	100
CET 1401	Chemical Engineering Operations	4	2	2	0	20	30	50	100
CET 1302	Chem. Eng. Thermodynamics-II	4	3	1	0	20	30	50	100
GEP 1108	Engineering Graphics -II	2	0	0	4	25		25	50
BSP 1103	Biological Sciences Laboratory	2	0	0	4	25		25	50
CEP 1701	Chemical Engineering Laboratory-I	3	0	0	6	50		50	100
	Total	23	11	5	14				600

SEMESTER – V										
No.	Subjects	Credits	Hr	s /we	ek	Ma	rks for vario	us Exams	1	
			L	Т	Р	С. А.	M. S.	E. S.	Total	
CET 1716	Mathematical Methods in Chem. Engg.	4	3	1	0	20	30	50	100	
CET 1102	CET 1102 Heat Transfer		2	2	0	20	30	50	100	
CET 1201	Chemical Reaction Engineering	4	2	2	0	20	30	50	100	
CET 1402	Separation Processes	4	2	2	0	20	30	50	100	
CET 1202	Biochemical Engineering	3	2	1	0	10	15	25	50	
CEP 1704	Chemical Engineering Laboratory-II	3	0	0	6	50		50	100	
CEP 1702	Process Simulation Lab – I	2	0	0	4	25		25	50	
	Total	24	11	8	10				600	
	SI	EMESTE	R – V	Ι						
No.	Subjects	Credits	Hı	s/wee	ek	Ma	rks for vario	us Exams	1	
			L	Т	Р	С. А.	M. S.	E. S.	Total	
CET 1601	Material Science and Engineering	3	2	1	0	10	15	25	50	
CET 1203	Multiphase Reaction Engineering	3	2	1	0	10	15	25	50	
CET 1503	Process Safety and Environmental Engg	4	2	2	0	20	30	50	100	
CET 1703	Chemical Process Control	4	3	1	0	20	30	50	100	
	Institute Elective – I	3	2	1	0	10	15	25	50	
CEP 1706	Chem. Eng. Laboratory-III	3	0	0	6	50		50	100	
CEP 1705	Process Simulation Lab – II	2	0	0	4	25		25	50	
GEP	Equipment Design and Drawing	4	2	0	4	25		25	50	
1XXX										
	Tetal	26	12	(14				550	

After the end of the sixth semester examination and before the start of the seventh semester, every student will have to undergo an internship. The Internship would be of 6 credits.

The internship (preferably Industrial Internship) would be assigned to the student by the Departmental Internship Coordinator, with the approval of Head, Chemical Engineering Department.

The total duration of the internship would be for a period equivalent to 8 - 10 Calendar weeks. This period typically start from 1st May and end before 30th July every year. This means the end semester examination of T. Y. B. Chem. Engg. (Semester VI) should be completed by 25th April every year. The Semester VII (4th Year B. Chem. Engg.) should commence w.e.f. 1st Aug every year. The internship may be completed in one or more organizations as described below. The internship could be of the following forms:

(i) industrial internship in a company (within India or Abroad) involved in R&D / design / manufacturing (QA/QC/Plant Engineering/Stores and Purchase) / marketing / finance / consultancy / Technical services / Engineering / Projects, etc.

(ii) research internship in reputed Institutes (within India or Abroad) like, ICT, IITs, NITs, IISC, NCL, IICT etc.

At the end of the internship, each student will submit a written report based on the work carried out during the Internship. The report will be countersigned by the Supervisor from Industry / Institute as the case may be.

Performance of the student will be assessed based on the written report and a presentation to a committee consisting of two faculty members from the Chemical Engineering Department.

Students will be assigned a grade based on the written report and a presentation; evaluated by a committee of faculty members.

	SE	MESTE	R – VI	I						
No.	Subjects	Credits	Hı	s/wee	ek	Ma	rks for vario	us Exams		
			L	Т	Р	С. А.	M. S.	E. S.	Total	
CET 1504	Chemical Project Engg. & Economics	3	2	1	0	10	15	25	50	
CET 1505	Process Development and Engineering	4	3	1	0	20	30	50	100	
HUT 1102	Perspectives of Society, Sci. & Tech.*	3	2	1	0	10	15	25	50	
	Institute Elective – II	3	2	1	0	10	15	25	50	
CEP 1717	CEP 1717 Optimization of Chem. Engg. Systems		2	0	4	25		25	50	
CEP 1708	Project 1: Seminar	2	0	0	4	50			50	
CEP 1709	709 Project 2: Home Paper – I		0	0	4	50			50	
CEP 1710	CEP 1710 Internship								50	
	Total	27	11	4	12				450	
	SE	MESTER	R – VI	II	•		•			
No.	Subjects	Credits	Hr	s /we	ek	Ma	rks for vario	us Exams	ums	
			L	Т	Р	С. А.	M. S.	E. S.	Total	
HUT 1114	Principles of Management - I*	3	2	1	0	10	15	25	50	
HUT 1115	Principles of Management - II*	3	2	1	0	10	15	25	50	
CET 1515	Innovations in Chemical Engineering and	3	2	1	0	10	15	25	50	
	Technology									
MAT 1106	Design & Analysis of Experiments	4	2	2	0	10	15	25	50	
	Engineering Sciences / Basic Sciences	3	2	1	0	10	15	25	50	
	Elective (GET/CHT/PYT/MAT)									
	Open Elective from MOOC – I**	3	2	1	0	10	15	25	50	
	Institute Elective – III	3	2	1	0	10	15	25	50	
CEP 1711	Project 3: Home Paper – II	3	0	0	6	50		100	150	
	Total	25	14	8	6				500	

* This courses may be offered in the usual classroom mode or online mode as an NPTEL / Swayam course. The Equivalent NPTEL course will be identified by the Department every year.

** Students can choose a subject from reputed online platforms like NPTEL, Coursera, Edx, MIT OpenCourseWare, etc. The course can be from any discipline: Engineering and Technology, Humanities, Arts. The course would need to be pre-approved by the Department every year. The Department may also offer specialized courses taught by experts in an online mode.

Detailed Contents of Syllabus

	Semester -								
No	Subjects	Credits	Hr	s/Wee	ek	Marks for various Exams			
			L	Т	Р	C. A.	M.S.	E. S.	Total
CHT 1131	Organic Chemistry-I	4	3	1	0	20	30	50	100
CHT 1211	Analytical Chemistry	3	2	1	0	10	15	25	50
MAT 1101	Applied Mathematics-I	4	3	1	0	20	30	50	100
PYT 1101	Applied Physics – I	4	3	1	0	20	30	50	100
GEP 1101	Engineering Graphics-I	4	2	0	6	50		50	100
PYP 1102	Physics Laboratory	2	0	0	4	25		25	50
CHP 1132	Organic Chemistry Laboratory	2	0	0	4	25		25	50
	TOTAL:	23	13	4	14				550

	Course Code: CHT 1131	Course Title: Organic Chemistry 1	Cred	Credits = 4			
			L	Т	Р		
	Semester: I	Total contact hours: 60	3	1	0		
		List of Prerequisite Courses					
	HSC Chemistry						
		List of Courses where this course will be prerequisite					
	Organic Chemistry – II, Organ Balance Calculations, Ind. Eng	nic Chemistry Laboratory, Other Chemistry Courses, Material and Energy . Chem.,					
			L				
_	Descript	ion of relevance of this course in the B. Chem. Engg. Program	<u> </u>				
Tot	rain the students with respect to l	basics of mechanism of organic reactions, stereochemistry, and aliphatic chem	nıstry				
		Course Contents (Topics and subtopics)	Reqd	. hour	ſS		
1	Basic introduction to organic	c chemistry: Reactive intermediates – carbocations, carbanions,	04				
	carbon radicals, carbenes; their	generation.					
2	Structure activity relationship in organic molecules: Use of bond length and bond energies to explain the reactivity of functional groups. Acidity & basicity values for organic molecules such as alkynes, alcohols acids ketones amines						
3	Stereochemistry: Importance	of stereochemistry in molecules around us. Elements of symmetry,	10	10			
	stereochemistry of compounds containing one and two carbon atoms. Stereo descriptors - R, S, E, Z						
	Enantiomers and Diastereomers. Conformations of cyclic and acyclic system.						
4	Haloalkanes: General reaction	is. Mechanisms of nucleophilic substitutions reactions $(S_N 1 \& S_N 2)$ and	12	12			
	elimination reactions.						
5	Chemistry of carbonyl comp carbonyl compounds. Aldol a Robinson annulation, Stork ena	bounds : Concept of acidity in carbonyl compounds. Enolate chemistry of and related reactions with mechanisms-Aldol reaction, Michael addition, amine reaction.	12				
6	Aromatic compounds: Resona	ance stabilization energy, Huckel's rule, substituent effects. Common names	04				
	of aromatic compounds.						
7	Aromatic electrophilic subs compounds, resonating structur acylation, sulfonation of aroma	stitution: Activating and deactivating functional groups on aromatic res, reactions such as Halogenation, Nitration, Friedel Crafts alkylation and tic compounds	12				
		List of Text Books/ Reference Books					
1	Organic Chemistry, J. McMurr	y, Brooks/Cole	<u> </u>				
2	Organic Chemistry, T.W.G. So	lomons, C.B. Fryhle, John Wiley and Sons Inc	<u> </u>				
3	Organic Chemistry, L.G. Wade	Jr, Pearson Education	<u> </u>				
4	Stereo Chemistry of Carbon co	mpounds, E.L. Eliel, Mcgraw-Hill	<u> </u>				
5	Organic Chemistry, Paula Y. B	ruice, Pearson Education					
		Course Outcomes (students will be able to)					
1	Identify functionalities in organ	nic compounds					
2	Write simple mechanism						
3	Appreciate aliphatic chemistry						
4	Appreciate stereochemistry						

		Course Code: CHT 1211	Course Title: Analytical chemistry	Credits = 3		= 3	
				L	Т	Р	
		Semester: I	Total contact hours:45	2	1	0	
			List of Prerequisite Courses	1	1	1	
	HSC	Chemistry	1				
		Lis	t of Courses where this course will be prerequisite				
	Othe	r Chemistry Courses, Physica	l and Analytical Chemistry Laboratory				
		· · ·					
		Description	of relevance of this course in the B. Chem. Engg. Program				
The	cours	e introduces the students to l	key concepts of chemical analysis - sampling, selection of analytical	metho	od a	nd data	
anal	ysis. It vtical i	t presents basic techniques lik technique and apply it in accord	e spectroscopy and chromatography. The students should be able to select ance with its strengths and limitations	ect an	app	ropriate	
unui,	ytical	Certainque und uppry it in ueeo	surve Contents (Tonics and subtonics)	Rea	d. ho	mrs	
1	Intro	duction to chemical analysis	s. terminology (technique / method / procedure / protocol), broad	03		u is	
-	class	ification of analytical techniqu	es, good laboratory practices	0.5			
enaboritourion of undificed teeninques, good haboratory practices							
2	Sam	bling – basics and procedures,	preparation of laboratory samples	06			
	Crite	ria for selecting analytical met	hods – precision, sensitivity, selectivity, and detection limit,				
	Calib	ration and validation					
3	Data	analysis: errors - systematic a	nd random errors, statistical treatment of experimental results,	06			
	least	square method, correlation co	efficients				
4	Spectroscopic methods: general principles, UV-visible spectroscopy, fluorescence spectroscopy						
-				0.0			
5	Elect	rochemical methods: genera	l principles, potentiometry, coulometry, voltammetry	08			
6	Chro	matagnanhia mathaday gana	rol principles CC HDLC	00			
U	Cint	matographic methous. gene	tai principies, GC, Tir LC	08			
7	Ann	ied analysis: analytical proce	dures in environmental monitoring water soil and air quality BOD	05			
ŕ	and (COD determinations	dates in environmental monitoring, water, son and an quanty, DOD	05			
	und (
			List of Text Books/ Reference Books				
1	Mode	ern Analytical Chemistry by D	avid Harvey, McGraw-Hill, 1999.				
2	Quan	titative Analysis by R. A. Day	and A. L. Underwood, Prentice Hall of India, 2001.				
3	Instru	imental Methods of Analysis	by H. H. Willard, L. L. Merritt, J. A. Dean and F. A. Settle, Wadsworth				
	Publi	shing, USA					
4	Fund	amentals of Analytical Chem	istry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch,				
	Ceng	age Learning, 2014.					
5	Princ 2007	iples of Instrumental Analysis	by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning,				
			Course Outcomes (students will be able to)	1			
1	Desc	ribe the fundamental concepts	related to spectroscopic, electrochemical and chromatographic analysis				
2	Diffe	rentiate the analytical method	s based on advantages and limitations				
3	Selec	t an optimum technique and	measurement conditions for enabling the best selectivity and sensitivity				
	of me	easurement					
4	Anal	yze the data to identify any po	tential sources of errors and plausible ways to minimize the same				

	Course Code: MAT 1101	Course Title: Applied Mathematics I	Credits = 4			
			L	Т	Р	
	Semester: I	Total contact hours: 60	3	1	0	
		List of Prerequisite Courses				
	HSC Standard Mathematics					
	L	ist of Courses where this course will be prerequisite				
	This is a basic Mathematics cour	rse. This knowledge will be required in almost all subjects later on				
This	Descriptio	n of relevance of this course in the B. Chem. Engg. Program		ا معامم	1	
T mis	is a basic Mathematics course.	This knowledge will be required in almost all subjects fater on. This k		eage 1	s also	
ME	and for solving various mathem	ancal equations that need to be solved in several chemical engineering	, cour	rses st	ich as	
WILL		Course Contents (Tonics and subtonics)	Rea	d Ho	urs	
1	Review of Mean Value theore	ms. Higher order differentiation and Leibnitz Rule for the derivative.	8	u. 110	41.5	
-	Taylor's and Maclaurin's theor	ems and applications to error estimates, convexity of functions, Local	Ũ			
	Maxima/Minima					
2	Functions of two or more variab	les, Limit and continuity, Partial differentiation, Directional derivatives,	10			
	Total derivatives, Chain Rules o	f partial derivatives, Taylor's theorem for multivariable functions and its				
	application to error calculations,	Local and absolute Maxima/Minima				
3	Beta and Gamma functions, Dif	ferentiation under the integral sign, Multiple Integrals, Line and surface	12			
	integrals and applications to Gre	ens, Gauss-Divergence and Stokes theorem.				
4	Systems of linear equations,	matrices and Gauss elimination, Vectors in IRn, notion of linear	7			
	independence and dependence.	Vector subspaces of IRn, basis of a vector subspace., row space, null				
	space, and column space, rank o					
	Abstract vector spaces, linear t	ransformations, matrix of a linear transformation, change of basis and	basis and			
5	Inner product spaces orthonor	and its applications	0			
5	eigenvectors characteristic poly	nomials eigenvalues of special matrices (orthogonal unitary Hermitian	0			
	symmetric skew-symmetric no	(orthogonal projection and its application to least methods)				
	Diagonalization of matrices and	l its applications stochastic matrices. Matrix Factorization. Applications				
	such as SVD, PCA etc.	······································				
6	Review of first and second order	er ODEs (constant coefficient), Existence and Uniqueness theorems for	8			
	first order ODEs. Higher order	Linear ODE with constant and variable coefficient, Solutions of Initial				
	and Boundary value problems, S	olving initial value system of linear ordinary differential equations,				
7	Power series method of solving	g ODE's and special functions, Legendre Polynomials Bessel functions	7			
	and applications					
		List of Text Books/ Reference Books				
	G. Strang, Linear Algebra and it	s Applications (4th Edition), Thomson (2006).				
	Howard Anton, Elementary Line	ear Algebra, Wiley (2016)				
	Arnold J. Insel, Lawrence E. Spo	ence, and Stephen H. Friedberg, Linear Algebra, Pearson				
	E. Kreyszig, Advanced Engin	heering Mathematics (8th Edition), John Wiley (1999). (Officially				
	S B K Juangar B K Jain Adu	repead Engineering Mathematics Nerses				
	Marsden LE Tromba Anthony	Vanceu Engineering Mathematics Natosa.				
	Marsden, J.E., Homba, Anthony	Course Outcomes (students will be able to)				
1	Students should be able to und	erstand the notion of differentiability and be able to find maxima and				
-	minima of functions of one and	several variables.				
2	Students should be able to comp	ute surface and volume integrals.				
3	Students should be able to solv	e systems of linear equations and eigenvalue problems analytically and	1			
	numerically.					
4	Students should be able to apply	concepts of linear algebra in engineering problems.				
5	Students should be able to solve	simple first and second order ODE by Analytical methods				
6	Students should be able to solve	ordinary differential equations using power series method.				

	Course Code: PYT 1101	Course Title: Applied Physics I	Cre	4	
			L	Т	Р
	Semester: I	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	XIIth Standard Physics	-			
	L	ist of Courses where this course will be prerequisite			
	Applied Physics – II, Physics	Laboratory, Chemical Engineering Thermodynamics, Momentum and			
	Mass Transfer, Heat Transfer, N	laterial Science and Engineering, Structural Mechanics, etc.	<u> </u>		
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program	<u> </u>	1	• •
I his	is a basic physics course. This k	nowledge will be required in almost all subjects later on. This knowledge	e is a	also re	quired
lor u	inderstanding various chemical er	igneering concepts that will be introduced in courses such as momentum	trans	ster, re	action
engi	lieering, separation processes, me	Course Contents (Tenies and subtenies)	Dec	d Ua	
1	Solid State Develop	Lourse Coments (Topics and subtopics)	15	а. по	urs
1	Crystal structure of solids: unit	call space lattices and Bravais lattice. Miller indices, directions and	15		
	crystallographic planes Cubic	crystals: SSC BCC ECC Hexagonal crystals: HCP atomic radius			
	packing fraction Bragg's law	of x-ray diffraction determination of crystal structure using Bragg			
	spectrometer Semiconductor Pl	vsics: Formation of energy bands in solids, concept of Fermi level.			
	classification of solids: conduct	or, semiconductor and insulator, intrinsic and extrinsic semiconductors,			
	effect of doping, mobility of cha	rge carriers, conductivity, Hall effect.			
2	Fluid Mechanics		10		
	Basic concepts of density and p	pressure in a fluid, ideal and real fluids, Pascal's law, absolute pressure			
	and pressure gauges, basic conc	epts of surface tension and buoyancy, fluid flow, equation of continuity,			
	Bernoulli's equation, streamline	d and turbulent flow, concept of viscosity, Newton's law of viscosity.			
3	Optics and Fibre Optics Diffra	iction	15		
	Introduction to interference and	d example; concept of diffraction, Fraunhofer and Fresnel diffraction,			
	Fraunhofer diffraction at single	slit, double slit, and multiple slits; diffraction grating, characteristics of			
	diffraction grating and its applic	ations. Polarisation: Introduction, polarisation by reflection, polarisation			
	by double refraction, scattering	of light, circular and elliptical polarisation, optical activity. Fibre Optics:			
	Introduction, optical libre as a	allelectric wave guide: total internal reflection, numerical aperture and			
	of optical fibres	associated with optical notes, step and graded index notes, application			
4	Lasers		10		
-	Introduction to interaction of	radiation with matter, principles and working of laser; population	10		
	inversion, pumping, various	modes, threshold population inversion, types of laser: solid state.			
	semiconductor, gas; application	of lasers.			
5	Ultrasound		10		
	Mechanical, electromechanical	transducers; propagation of ultrasound, attenuation, velocity of			
	ultrasound and parameters affect	ting it, measurement of velocity, cavitation, applications of ultrasound.			
	1	List of Text Books/ Reference Books			
	Physics:Vols. I and II – D. Halli	day and R. Resnick, Wiley Eastern.	<u> </u>		
	Lectures on Physics: Vols. I, II a	and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa.	<u> </u>		
	Concepts of Modern Physics – A	A. Beiser, McGraw-Hill.			
	Introduction to Modern Optics –	G. R. Fowles, Dover Publications.			
	A Course of Experiments with L	ASEKS – K. S. Sironi, Wiley Eastern.	──		
	Optical Fibre Communication –	U. NEISEF, MICUTAW-HIII.	──		
	Ultrasonics: Mothods and Appl	J. F. D. Hawkes, 2110 cu, Fleiluce-fiall Illula.	──		
	Applied Sonochemistry T I	Aarons – J. DIIL, DUICI WOLII. Asson and I. P. Lorimer, Wiley VCH	┼───		
	Applied Solideneniisu y – 1. J. N	Course Outcomes (students will be able to)	<u> </u>		
1	Students will be able to state Br	aco's I aw			
2	Students will be able to apply Re	rnoulli equation in simple pipe flows	1		
3	Students will be introduced to the	e principles of lasers, types of lasers and applications.			
4	Students should be able to calcu	late resolving power of instruments.	1		
5	Students should be able to descr	ibe principles of optical fibre communication.			

	Course Code: GEP 1101	Course Title: Engineering Graphics-I	Credits = 4		4		
			L	Т	Р		
	Semester: I	Total contact hours: 90	2	0	6		
	•	List of Prerequisite Courses			_		
	Basic Geometry						
List of Courses where this course will be prerequisite							
	Engineering Graphics - II, Equ	ipment Design and Drawing-I, Equipment Design and Drawing-II, Home					
	Paper – II, Structural Mechanics,						
	Description	on of relevance of this course in the B. Chem. Engg. Program					
A st	udent of Chemical Engineering	is required to know the various processes and also the equipment used	to c	arry o	ut the		
proc	esses. Some of the elementary j	processes like filtration, size reduction, evaporation, condensation, crysta	llizat	ion etc	., are		
very	common to all the branches of to	echnology. These and many other processes require machines and equipm	ents.	One s	hould		
be fa	amiliar with the design, manufac	turing, working, maintenance of such machines and equipments. The sub	ject o	t "dra	wing"		
15 a 1	medium through which, one can	learn all such matter, because the "drawings" are used to represent objects	and p	process	ses on		
the p	baper. Inrough the drawings, a l	of of accurate information is conveyed which will not be practicable through	gn a s	poken	word		
	tor on in the professional career	age used by engineers and technologists. This course is required in many	y subj	jects a	s wen		
as la	bir in the professional career.	Course Contents (Topics and subtopics)	Rea	Read hours			
1	Orthographic projections	course contents (ropies and sustoples)	neq	<u>u: 1100</u>	15		
2	Sectional views						
3	Isometric projections						
4	Missing views (or interpretation	n of views.)					
5	Projection of solids						
6	Sections of solids						
7	Development of surface						
8	Interpenetration of solids						
		List of Text Books/ Reference Books					
	1.Engineering Drawing by N.D	Bhat					
	2. Engineering Drawing by N.H.	I.Dubey					
		Course Outcomes (students will be able to)					
1	Read Drawing						
2	Can understand different views						
L T P Semester: I Total contact hours: 60 0 0 4 List of Prerequisite Courses Applied Physics - 1		Course Code: PYP 1102	Course Title: Physics Laboratory	Crea	dits =	2	
---	---	---	---	--	--------	--------	--
Semester: I Total contact hours: 60 0				L	Т	Р	
List of Prerequisite Courses List of Courses where this course will be prerequisite This is a basic physics Laboratory course. This knowledge will be required in almost all subjects later on. Description of relevance of this course in the B. Chem. Engg. Program This is a basic physics course. Students will be able to learn various concepts by doing experiments on different topics. This knowledge will be required in almost all subjects later on. This knowledge is also required for understanding various chemical engineering concepts that will be introduced in courses such as momentum transfer, reaction engineering, separation processes, thermodynamics, heat transfer, etc. Read. Hours 1 Viscosity Read. Hours 2 Thermal conductivity 4 4 Utrasonic interferometer 5 5 Photoelectric effect 6 6 Hall effect 7 7 Newton's rings 8 8 Dispersive power of prism 1 9 Laser diffraction 1 10 Resolving power of grating 1 11 Resolving power of grating 1 12 List of Text Books/ Reference Books 1 10 Resolving power of grating 1		Semester: I	Total contact hours: 60	0	0	4	
List of Courses where this course will be prerequisite List of Courses where this course will be prerequisite This is a basic physics Laboratory course. This knowledge will be required in almost all subjects later on. Description of relevance of this course in the B. Chem. Eng. Program This is a basic physics course. Students will be able to learn various concepts by doing experiments on different topics. This knowledge will be required in almost all subjects later on. This knowledge is also required for understanding various chemical engineering concepts that will be introduced in courses such as momentum transfer, reaction engineering, separation processes, thermodynamics, heat transfer, etc. Course Contents (Topics and subtopics) Reqd. Hours 1 Viscosity Reqd. Hours 2 Thermal conductivity Photoelectric effect Photoelectric effect 3 Description of prism Dispersive power of prism Photogene prism 9 Laser diffraction IOI Resolving power of grating Physics: Vols. 1 and II – D. Halliday and R. Resnick, Wiley Eastern. Lectures on Physics: Vols. 1 and III – D. Feynman, R. B. Leighton and M. Sands, Narosa. Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Physics – R. S. Sirohi, Wiley Eastern. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Physica Fib		1	List of Prerequisite Courses				
List of Courses where this course will be prerequisite This is a basic physics Laboratory course. This knowledge will be required in almost all subjects later on. Image: Constant of Course Such as momentum transfer, reaction engineering, separation processes, thermodynamics, heat transfer, etc. Thermistor Regd. Hours 1 Viscosity Regd. Hours 3 Thermistor Image: Course Course Course Course Such as momentum transfer, reaction engineering, separation processes, thermodynamics, heat transfer, etc. Regd. Hours 1 Viscosity Regd. Hours 2 Thermistor Image: Course Cour		Applied Physics - I	<u>^</u>				
This is a basic physics Laboratory course. This knowledge will be required in almost all subjects later on.]	List of Courses where this course will be prerequisite				
on.		This is a basic physics Laborat	ory course. This knowledge will be required in almost all subjects later				
Description of relevance of this course in the B. Chem. Engg. Program This is a basic physics course. Students will be able to learn various concepts by doing experiments on different topics. This knowledge will be required in almost all subjects later on. This knowledge is also required for understanding various chemical engineering concepts that will be introduced in courses such as momentum transfer, reaction engineering, separation processes, thermodynamics, heat transfer, etc. Course Contents (Topics and subtopics) Reqd. Hours 1 Viscosity Reqd. Hours 2 Thermistor Reqd. Hours 3 Thermal conductivity Image: Course Contents (Topics and subtopics) Reqd. Hours 4 Ultrasonic interferometer Image: Course Contents (Topics and subtopics) Reqd. Hours 5 Photoelectric effect Image: Course Contents (Topics and subtopics) Reqd. Hours 6 Hall effect Image: Course Cours		on.					
Description of relevance of this course in the B. Chem. Engg. Program This is a basic physics course. Students will be able to learn various concepts by doing experiments on different topics. This knowledge will be required in almost all subjects later on. This knowledge is also required for understanding various chemical engineering concepts that will be introduced in courses such as momentum transfer, reaction engineering, separation processes, thermodynamics, heat transfer, etc. Course Contents (Topics and subtopics) Reqd. Hours 1 Viscosity Reqd. Hours 2 Thermistor Image: Second State							
This is a basic physics course. Students will be able to learn various concepts by doing experiments on different topics. This knowledge will be required in almost all subjects later on. This knowledge is also required for understanding various chemical engineering concepts that will be introduced in courses such as momentum transfer, reaction engineering, separation processes, thermodynamics, heat transfer, etc. Image: Course Contents (Topics and subtopics) Reqd. Hours 1 Viscosity Reqd. Hours 2 Thermistor Image: Course Contents (Topics and subtopics) Reqd. Hours 3 Thermistor Image: Course Contents (Topics and subtopics) Reqd. Hours 4 Ultrasonic interferometer Image: Course Cou		Descripti	on of relevance of this course in the B. Chem. Engg. Program				
knowledge will be required in almost all subjects later on. This knowledge is also required for understanding various chemical engineering concepts that will be introduced in courses such as momentum transfer, reaction engineering, separation processes, thermodynamics, heat transfer, etc. Course Contents (Topics and subtopics) Reqd. Hours 1 Viscosity Reqd. Hours 2 Thermistor Reqd. Hours 3 Thermal conductivity Image: Course Contents (Topics and subtopics) Reqd. Hours 4 Ultrasonic interferometer Image: Course Contents (Topics and subtopics) Image: Course	This	s is a basic physics course. Stud	ents will be able to learn various concepts by doing experiments on diffe	erent t	opics.	This	
engineering concepts that will be introduced in courses such as momentum transfer, reaction engineering, separation processes, thermodynamics, heat transfer, etc. Course Contents (Topics and subtopics) Reqd. Hours 2 Thermistor []] 3 Thermal conductivity []] 4 Ultrasonic interferometer []] 5 Photoelectric effect []] 6 Hall effect []] 7 Newton's rings []] 8 Dispersive power of prism []] 9 Laser diffraction []] 10 Resolving power of grating []] List of Text Books/ Reference Books 9 Laser diffraction []] 10 Resolving power of grating []] List of Text Books/ Reference Books Physics:Vols. I and II – P. Halliday and R. Resnick, Wiley Eastern. []] [] Concepts of Modern Physics – A. Beiser, McGraw-Hill. []] [] Introduction to Modern Optics – G. R. Fowles , Dover Publications. []] [] A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. []] <t< td=""><td colspan="7">knowledge will be required in almost all subjects later on. This knowledge is also required for understanding</td></t<>	knowledge will be required in almost all subjects later on. This knowledge is also required for understanding						
thermodynamics, heat transfer, etc. Course Contents (Topics and subtopics) Reqd. Hours Viscosity Keqd. Hours Reqd. Hours Redd. Hours Redd.	engi	neering concepts that will be int	roduced in courses such as momentum transfer, reaction engineering, sep-	aratio	n proc	esses,	
Course Contents (Topics and subtopics) Reqd. Hours 1 Viscosity	theri	modynamics, heat transfer, etc.					
1 Viscosity 2 Thermistor 3 Thermal conductivity 4 Ultrasonic interferometer 5 Photoelectric effect 6 Hall effect 7 Newton's rings 8 Dispersive power of prism 9 Laser diffraction 10 Resolving power of grating List of Text Books/ Reference Books Physics:Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optical Fibre Communication – G. Keiser, McGraw-Hill. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH.			Course Contents (Topics and subtopics)	Req	d. Ho	urs	
2 Thermistor 3 Thermal conductivity 4 Ultrasonic interferometer 5 Photoelectric effect 6 Hall effect 7 Newton's rings 8 Dispersive power of prism 9 Laser diffraction 10 Resolving power of grating List of Text Books/ Reference Books Physics: Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)	1	Viscosity		<u> </u>			
3 Thermal conductivity 4 Ultrasonic interferometer 5 Photoelectric effect 6 Hall effect 7 Newton's rings 8 Dispersive power of prism 9 Laser diffraction 10 Resolving power of grating List of Text Books/ Reference Books 9 Lectures on Physics: Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. 10 Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. 10 Concepts of Modern Physics – A. Beiser, McGraw-Hill. 11 Introduction to Modern Optics – G. R. Fowles , Dover Publications. 10 A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. 10 Optical Fibre Communication – G. Keiser, McGraw-Hill. 11 Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. 11 Ultrasonics: Methods and Applications – J. Blitz, Butterworth. 11 Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH.	2	Thermistor					
4 Ultrasonic interferometer 5 Photoelectric effect 6 Hall effect 7 Newton's rings 8 Dispersive power of prism 9 Laser diffraction 10 Resolving power of grating List of Text Books/ Reference Books 9 Physics:Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. 10 Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. 10 Concepts of Modern Physics – A. Beiser, McGraw-Hill. 11 Introduction to Modern Optics – G. R. Fowles , Dover Publications. 12 A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. 13 Optical Fibre Communication – G. Keiser, McGraw-Hill. 14 Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. 15 Ultrasonics: Methods and Applications – J. Blitz, Butterworth. 16 Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)	3	3 Thermal conductivity					
5 Photoelectric effect 6 Hall effect 7 Newton's rings 8 Dispersive power of prism 9 Laser diffraction 10 Resolving power of grating List of Text Books/ Reference Books Physics:Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)	4	Ultrasonic interferometer					
6 Hall effect 7 Newton's rings 8 Dispersive power of prism 9 Laser diffraction 10 Resolving power of grating List of Text Books/ Reference Books Physics: Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)	5	Photoelectric effect					
7 Newton's rings 8 Dispersive power of prism 9 Laser diffraction 10 Resolving power of grating List of Text Books/ Reference Books Physics: Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)	6	Hall effect					
8 Dispersive power of prism 9 Laser diffraction 10 Resolving power of grating 10 Resolving power of grating List of Text Books/ Reference Books Physics:Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. 10 Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. 10 Concepts of Modern Physics – A. Beiser, McGraw-Hill. 11 Introduction to Modern Optics – G. R. Fowles , Dover Publications. 12 A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. 13 Optical Fibre Communication – G. Keiser, McGraw-Hill. 14 Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. 15 Ultrasonics: Methods and Applications – J. Blitz, Butterworth. 16 Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)	7	Newton's rings					
9 Laser diffraction 10 Resolving power of grating 10 Resolving power of grating List of Text Books/ Reference Books Physics: Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)	8	Dispersive power of prism					
10 Resolving power of grating List of Text Books/ Reference Books Physics: Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)	9	Laser diffraction					
List of Text Books/ Reference Books Physics: Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern.	10	Resolving power of grating					
Physics:Vols. I and II – D. Halliday and R. Resnick, Wiley Eastern. Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)			List of Text Books/ Reference Books				
Lectures on Physics: Vols. I, II and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa. Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)		Physics:Vols. I and II – D. Hall	iday and R. Resnick, Wiley Eastern.	<u> </u>			
Concepts of Modern Physics – A. Beiser, McGraw-Hill. Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)		Lectures on Physics: Vols. I, II	and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa.	<u> </u>			
Introduction to Modern Optics – G. R. Fowles , Dover Publications. A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)		Concepts of Modern Physics –	A. Beiser, McGraw-Hill.	<u> </u>			
A Course of Experiments with LASERs – R. S. Sirohi, Wiley Eastern. Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)		Introduction to Modern Optics	- G. R. Fowles , Dover Publications.	<u> </u>			
Optical Fibre Communication – G. Keiser, McGraw-Hill. Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)		A Course of Experiments with	LASERs – R. S. Sirohi, Wiley Eastern.				
Optoelectronics – J. Wilson and J. F. B. Hawkes, 2nd ed, Prentice-Hall India. Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)		Optical Fibre Communication –	- G. Keiser, McGraw-Hill.				
Ultrasonics: Methods and Applications – J. Blitz, Butterworth. Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)		Optoelectronics – J. Wilson and	J. F. B. Hawkes, 2nd ed, Prentice-Hall India.				
Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH. Course Outcomes (students will be able to)		Ultrasonics: Methods and Appl	ications – J. Blitz, Butterworth.				
Course Outcomes (students will be able to)		Applied Sonochemistry – T. J. Mason and J. P. Lorimer, Wiley VCH.					
	1		Course Outcomes (students will be able to)	<u>т </u>			
I Students will be able to state various laws which they have studied through experiments 2 Students will be able to state various laws which they have studied through experiments	1	Students will be able to state va	rious laws which they have studied through experiments	+			
2 Student will be able to measure transport properties like viscosity, conductivity, etc.	2	Student will be able to measure	transport properties like viscosity, conductivity, etc.	<u> </u>			

	Course Code: CHP 1132	Course Title: Organic Chemistry Laboratory	Credits = 2				
			L	Т	Р		
	Semester: I	Total contact hours: 60	0	0	4		
	•	List of Prerequisite Courses	1	1	1		
	XIIth Standard Chemistry, Orga	nic Chemistry - I					
List of Courses where this course will be prerequisite							
	Organic Chemistry - II						
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program					
Stud meth	ents should be familiar with conds.	ommon organic compounds, should identify them and should know s	simple	sepa	ration		
	Course Contents (Topics and subtopics)						
		Course Contents (Topics and subtopics)	Req	d. hou	rs		
1	Identification of an organic cor (m.p and b.p) and derivatisation	Course Contents (Topics and subtopics) npound through elemental analysis, group detection, physical constants.	Req	d. hou	Irs		
1 2	Identification of an organic cor (m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distillat	Course Contents (Topics and subtopics) npound through elemental analysis, group detection, physical constants binary mixtures of the type: water soluble-water insoluble, both water ion, dissociation –extraction ,crystallization, etc	Req	d. hou	irs		
1 2	Identification of an organic cor (m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distillat	Course Contents (Topics and subtopics) npound through elemental analysis, group detection, physical constants binary mixtures of the type: water soluble-water insoluble, both water ion, dissociation –extraction ,crystallization, etc	Req	d. hou	Irs		
1 2	Identification of an organic cor (m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distillat	Course Contents (Topics and subtopics) npound through elemental analysis, group detection, physical constants binary mixtures of the type: water soluble-water insoluble, both water ion, dissociation –extraction ,crystallization, etc List of Text Books/ Reference Books	Req	d. hou	urs		
1 2	Identification of an organic cor (m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distillat Practical Organic Chemistry, by	Course Contents (Topics and subtopics) mpound through elemental analysis, group detection, physical constants binary mixtures of the type: water soluble-water insoluble, both water ion, dissociation –extraction ,crystallization, etc List of Text Books/ Reference Books T.L. Finar	Req	d. hou	urs		
2	Identification of an organic cor (m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distillat Practical Organic Chemistry, by	Course Contents (Topics and subtopics) npound through elemental analysis, group detection, physical constants binary mixtures of the type: water soluble-water insoluble, both water ion, dissociation –extraction ,crystallization, etc List of Text Books/ Reference Books I.L. Finar Course Outcomes (students will be able to)	Req	d. hou			
1	Identification of an organic cor (m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distillat Practical Organic Chemistry, by Students will be able to list steps	Course Contents (Topics and subtopics) npound through elemental analysis, group detection, physical constants binary mixtures of the type: water soluble-water insoluble, both water ion, dissociation –extraction ,crystallization, etc List of Text Books/ Reference Books I.L. Finar Course Outcomes (students will be able to) s for identifying simple organic compounds	Req	d. hou			
1 2 1 1 2	Identification of an organic cor (m.p and b.p) and derivatisation Separation and purification of soluble, liquid-liquid by distillat Practical Organic Chemistry, by Students will be able to list steps Students will be able to list som	Course Contents (Topics and subtopics) npound through elemental analysis, group detection, physical constants binary mixtures of the type: water soluble-water insoluble, both water ion, dissociation –extraction ,crystallization, etc List of Text Books/ Reference Books I.L. Finar Course Outcomes (students will be able to) s for identifying simple organic compounds e methods of separation of organic compounds	Req	d. hou			

	SEMESTER – II								
No.	Subjects	Credits	Hr	Hrs/week		Marks for various Exams			
			L	Т	Р	C. A.	M. S.	E. S.	Total
CHT 1231	Organic Chemistry-II	4	3	1	0	20	30	50	100
CHT 1341	Physical Chemistry	3	2	1	0	10	15	25	50
CET 1501	Material & Energy Balance Calculations	4	3	1	0	20	30	50	100
MAT 1102	Applied Mathematics-II	4	3	1	0	20	30	50	100
PYT 1103	Applied Physics – II	3	2	1	0	10	15	25	50
CHP 1342	Physical & Analytical Chemistry Lab.	2	0	0	4	25		25	50
HUP 1101	Communication Skills	2	0	0	4	50			50
	Total	22	13	5	8				500

	Course Code: CHT 1231	Course Title: Organic Chemistry-II	Credits = 4 L T 3 1 Reqd. hours Reqd. hours or 04 g 12 06 08 d 12 i 06 s 08 d 12 i 06	4			
				Т	Р		
	Semester: II	Total contact hours: 60	3	1	0		
	•	List of Prerequisite Courses					
	XIIth Standard Chemistry, Orga	nic Chemistry – I, Organic Chemistry Laboratory					
	L	ist of Courses where this course will be prerequisite					
	Other Chemistry Courses, Mater	rial and Energy Balance Calculations, Ind. Eng. Chem.,					
<u> </u>	Description of relevance of this course in the B. Chem. Engg. Program						
Stud	ents will get introduced to aroma	tic compounds, heterocyclic chemistry and natural products					
		Course Contents (Topics and subtopics)	Requ	l. hou	rs		
1	Aromatic compounds: Probler	ns associated with $S_{\ensuremath{N}\xspace}Ar$ reactions and how to overcome. Mechanism for	04				
	aromatic nucleophilic substitution	ons.					
2	2 Haloarenes: Metallation reaction and reactions of metallo derivatives. Synthesis of haloarenes using						
	S_N Ar e.g. Sandmeyer reaction for	or the synthesis of fluorobenzene on large scale. Substitution reactions of					
	haloarenes including Dow's pro	beess for phenol synthesis and effect of electron-withdrawing groups on					
2	the substitution Dependent Acidity of phonols, Supposed from Cumons by dronarovida, Constal reactions						
3	Phenols: Acidity of phenols. Synthesis from Cumene hydroperoxide. General reactions						
4	of arene diazonium salts. Dves	Chromonhore and auxochrome concent. Azo dves	08				
5	Heteroaromatic compounds:	Basic structures and common names, comparison of electronic and	12				
5	structural properties to benze	noid compounds Reactivity and synthetic routes Pyrrole Furan	12				
	Thiophene. Pyridine.	note compounds, reacting and synthetic routes Tyrrole, Faran,					
6	Spectroscopic techniques for	the identification of organic compounds: Infra-red spectroscopy,	12				
	Nuclear Magentic Resonance, M	lass spectrometry					
7	Chemistry of important natur	al products: Terpenes, steroids, carotenoids	06				
		List of Text Books/ Reference Books					
1	Organic Chemistry, J. McMurry	, Brooks/Cole					
2	Organic Chemistry, T.W.G. Sol	omons, C.B. Fryhle, John Wiley and Sons Inc.					
3	Organic Chemistry, L.G. Wade	Jr, Pearson Education					
4	Organic Chemistry, Paula Y. Br	uice, Pearson Education					
		Course Outcomes (students will be able to)	1				
1	Understand aromaticity and list	properties of aromatic compounds					
2	Write simple mechanisms of arc	matic reactions					
3	List some of the heterocyclic ch	emistry and chemistry of natural products					
4	4 List some properties of heterocyclic compounds and natural products						

	Course Code: CHT 1341	Physical chemistry	Cree	lits =	3		
			L	Т	Р		
	Semester: II	Total contact hours: 45	2	1	0		
		List of Prerequisite Courses	<u>I</u>	1			
	Xiith Standard Chemistry	-					
	L	ist of Courses where this course will be prerequisite					
	Chemical Reaction Engineering	, Chemical Engg Thermodynamics – I, Chemical Engg Thermodynamics					
	– II, Multiphase Reactor Engg.,	Env. Engg. and Proc. Safety,	 				
	Dosorintic	on of relevance of this course in the R. Cham. Eng. Program	<u> </u>				
Relevance of reaction rates and parameters affecting the same concept of interfaces and surfaces and the import							
svste	ems. These concepts are required	in many situations which are faced by Chemical Engineers I their profess	ional	caree	·		
5,500		Course Contents (Tenies and subtenies)	Dog	d hor	1100		
1	Chamical kinatics – Introducti	on concept of reaction rates and order experimental methods in kinetic	Neq	u. not	115		
1	studies differential and integral	methods to formulate rate equations of zero, first and second order	05				
2	Complex reactions - parallel. co	posecutive and reversible reactions, order and molecularity	03				
3	Kinetics and reaction mechani	ism- steady state and rate determining step	04				
_	Mechanism of thermal photoch	emical chain reactions, polymerization reactions					
4	Surface reactions - Adsorption	n, kinetics of surface reactions- Hishelwood and Rideal models of surface	02				
	reactions						
	Theories of reaction rates and temperature effects- collision theory and TST						
	Theory of unimolecular reaction	18					
5	Kinetics of reactions in solutio	ns- solvent effects	02				
6	Fast reactions – experimental to	echniques	02				
7	Surface and interfacial Chemi	stry – introduction, surface tension and surface	02				
0	free energy, methods of determi	ning surface and interfacial tensions	05				
8	Inermodynamics of surfaces -	- surface excess, Gibbs adsorption equation,	05				
	homogeneous nucleation	plets and toams, Kervin, foung Laplace and filomson equations,					
9	Liquid- liquid and solid liqu	uid interfaces – contact angle, wetting and spreading, adhesion and	04				
-	cohesion, contact angle measure	ements and hysterisis	Ŭ .				
10	Surfactants: Types, adsorpti-	on at surfaces and interfaces, surfactant aggregates, factors affecting	07				
	aggregation phenomena, applica	tions of surfactants and mixed surfactant systems					
11	Disperse systems - Emulsions	s microemulsions and foams Thermodynamics and stability, HLB	07				
	values, colloids - preparation	, stability, characterization, surface charges and electrical double layer					
	1	List of Text Books/ Reference Books					
1	Introduction to colloid and surfa	ce chemistry – D.J.shaw, Butterworth publications					
2	Surfaces interfaces and colloids	- Drew Myers- Wiley VCH	 				
3	Surfactants and interfacial phene	omena- Milton J Rosen – Wiley Interscience	┝───				
4	AOCS Press	inis principles and applications – M.J. Kosen and M Dahanayake,					
5	5 Foundations of Colloid science – Robert I Hunter – Oxford university Press						
-		Course Outcomes (students will be able to)	<u>. </u>				
1	Understand the importance of in	terfacial phenomena					
2	Importance and application of s	surface active agents					
3	Understand the stability and imp	portance of disperse systems					

	Course Code: CET 1501	Course Title: Material and Energy Balance Calculations	Credits = 4				
			L	Т	Р		
	Semester: II	Total contact hours: 60	3	1	0		
		List of Prerequisite Courses					
	XIIth Standard Mathematics, C	Chemistry, Physics, Applied Mathematics - I, Organic Chemistry - I,					
	Applied Physics – I, Analytical	Chemistry,					
	List of Courses where this course will be prerequisite						
	This is a basic Chemical Engine	ering Course. This knowledge will be required in ALL subjects later on.					
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program					
This	is a basic Chemical Engineering	g course. This knowledge will be required in almost all subjects later	on.	This s	ubject		
intro	duces the various concepts used	in Chemical Engineering to the students. The knowledge of this subject	is ree	quired	for in		
ALL	chemical engineering courses s	uch as momentum transfer, reaction engineering, separation processes,	thern	nodyna	imics,		
etc.	etc. It can be applied in various situations such as process selection, economics, sustainability, environmental in						
1	Course Contents (Topics and subtopics)						
1	Introduction to Chemical Engine	eering: Chemical Process Industries, Chemistry to Chemical Engineering,	4				
	Revision of Units and Dimensio	ns	6				
2	Mole concept, composition relat	ionship and Stoichiometry, Behaviour of gases and vapors	6				
3	Material balances for reacting	and non-reacting chemical and biochemical systems including recycle,	20				
-	bypass and purge	· · · · · · · · · · · · · · · · · · ·	10				
4	Introduction to psychrometry hu	midity and air-conditioning calculations.	10				
5	Introduction to Energy Balances	, Energy Balances in systems with and without reactions	10				
6	Unsteady State Material and End	ergy Balances	6				
/	Material and Energy Balances for	or multistage processes and complete plants	4				
		List of Text Books/ Reference Books					
	Chemical Process Principles, Ho	bugen U.A., Watson K. M.					
	Basic Principles and Calculation	s in Chemical Engineering, Himmelblau,					
	Stoichiometry, Bhatt B.I. and Vo	ora S.M.					
1	C ₁ 1 1 1 1 1 1 1 1 1 1	Course Outcomes (students will be able to)	1				
	Students will be able to convert	units of simple quantities from one set of units to another set of units					
2	Students will be able to calcu	nate quantities and /or compositions, energy usages, etc. in various					
	processes and process equipmen	t such as reactors, filters, dryers, etc.					

	Course Code: MAT 1102	Course Title: Applied Mathematics II	Cree	dits = 4	4	
			L	Т	Р	
	Semester: II	Total contact hours: 60	3	1	0	
		List of Prerequisite Courses				
	XIIth Standard Mathematics, Ap	oplied Mathematics - I				
	L	ist of Courses where this course will be prerequisite				
	This is a basic Mathematics cou	rse. This knowledge will be required in almost all subjects later on				
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program		<u> </u>		
This	is a basic Mathematics course.	This knowledge will be required in almost all subjects later on. This k	nowl	edge 1	s also	
ME	MEBC momentum transfer reaction engineering separation processes thermodynamics atc					
ME	MEDC, momentum transfer, reaction engineering, separation processes, thermodynamics, etc.					
1	Probability Theory and Samp	Lourse Contents (Topics and subtopics)	15	а. пос	115	
1	Probability Theory and Samp Review of probability Random	ung Distribution:	15			
	and probability density function	Some common univariate distributions: Binomial Poisson Geometric				
	and Uniform, exponential, No	rmal. Gamma, beta etc: Expectation and Moments (central and raw				
	moments): Generating function	is: moment generating function and characteristic function: Multiple				
	random variables and Joint	distribution; marginal distributions, independence; Covariance and				
	Correlation; method of least squ	ares and simple linear regression; nonlinear regression				
2	Partial Differential Equations, C	Classification of higher order PDEs, Solution of PDEs using separation of	10			
	variable techniques.					
3	Solutions of system of linear eq	uations (Gauss-elimination, LU-decomposition etc.), Numerical solution	5			
	set of linear algebraic equations	: Jacobi, Gauss Siedel, and under / over relaxation methods				
4	Numerical methods for solving	non-linear algebraic / transcendental etc.: Newton's method, Secant and	5			
	Regula Falsi					
5	5 Interpolation and extrapolation for equal and non-equal spaced data (Newtons Forward, Newtons					
-	backward and Lagrange), Nume	rical integration (trapezoidal rule, Simpson's Rule)	0			
6	Numerical methods for solutio	n of first and higher order ODEs (initial values and boundary value the de (DK Euler's combinity and involution and boundary value	8			
	(prodictor corrector methods a	to)				
7	(predictor – corrector methods; Foru	user difference. Reclaward difference, and Control differences application	10			
'	of finite difference methods	to ODE Boundary value problem and PDE (parabolic elliptic and	10			
	hyperbolic)	to obe boundary value problem and The (parabolic, empire and				
	hyperoone)	List of Text Books/ Reference Books				
	Sheldon Ross, A First Course in	Probability. Pearson Prentice Hall				
	W.W. Hines, D. C. Montgomery	7. D.M. Goldsman, Probability and Statistics in Engineering, John-Wiely.				
	Alexander M. Mood, Duane C.	Boes, and Franklin A. Graybill, Introduction to the Theory of Statistics,				
	McGraw Hill; 3rd edition (June	1, 1974).				
	An Introduction to Statistics wit	th Python with Applications in the Life Sciences by Thomas Haslwanter,				
	2016, Springer					
	Learning Statistics with R by Da	aniel Joseph Navarro, 2015				
L	E. Kreyszig, Advanced Enginee	ering Mathematics, 8 th Ed., John Wiley (1999).	\square			
	Advanced Engineering Mathema	atics, S. R. K. Iyengar, R. K. Jain, Narosa	<u> </u>			
	Sastry S. S., Introductory Metho	bds of Numerical Analysis, 5th Ed., PHI	<u> </u>			
	M. K. Jain, S R K Iyengar	and R K Jain, Numerical Methods: For Scientific and Engineering				
L	Computation, New Age Internat	tional Publication	<u> </u>			
	Kenneth J Beers Numerical Methods for Chemical Engineering Application Using MATLAB (2007),					
	Cambridge University Press Mark E. Davia, Numerical Matheda and Madalling for Chamical Environment Dever Deblic (2002)					
Mark E. Davis, Numerical Methods and Modelling for Chemical Engineers, Dover Publications (2003) Sandin Mazumder, Numerical Methods for Partial Differential Equations (2015), Electrical						
	Sandip Mazumder, Numerical Methods for Partial Differential Equations (2015), Elsevier					
1	Students should be able to apply	v probability distributions in modelling engineering problems				
2	Students should be able to fit lin	ear and nonlinear regression models to real data				
3	Students should be able to class	sify higher of partial differential equation and solve parabolic equation				
	using separation of variables.	and and solve paradole equation and solve parabolic equation				
4	Students should be able to solve	system of linear algebraic equations.				

5	Students should be able to do numerical integrations of functions.	
6	Students should be able to solve partial differential equations numerically.	

	Course Code: PYT 1103	Course Title: Applied Physics II	Cree	dits =	3	
			L	Т	Р	
	Semester: II	Total contact hours: 45	2	1	0	
	•	List of Prerequisite Courses				
	XIIth Standard Physics, Applied	d Physics – I, Physics Laboratory,				
	I	List of Courses where this course will be prerequisite				
	This is a basic physics course.	This knowledge will be required in almost all subjects later on				
	Description	on of relevance of this course in the B. Chem. Engg. Program				
This	is a basic physics course. This	knowledge will be required in almost all subjects later on. This knowledg	e is a	lso re	quired	
for u	inderstanding various chemical e	ngineering concepts that will be introduced in courses such as momentum	trans	fer, re	action	
engi	neering, separation processes, the	ermodynamics, heat transfer, etc.				
		Course Contents (Topics and subtopics)	Req	d. Ho	ars	
1	Quantum Mechanics		25			
	Introduction to quantum phy	sics, black body radiation, explanation using the photon concept,				
	photoelectric effect, Compton e	effect, de Broglie hypothesis, wave-particle duality, Born's interpretation				
	of the wave function, verification of matter waves, uncertainty principle, Schrödinger wave equation,					
	detailed derivation)	mes, particle in box, quantum narmonic oscinator, nyurogen atom (no				
2	Dielectric and Magnetic Prop	erties of Materials	20			
2	Introduction to the 'del' operation	tor and vector calculus revision of the laws of electrostatics electric	20			
	current and the continuity equat	ion revision of the laws of magnetism				
	Polarisation, permeability and	dielectric constant, polar and non-polar dielectrics, internal fields in a				
	solid, Clausius-Mossotti equation	on, applications of dielectrics.				
	Magnetisation, permeability an	nd susceptibility, classification of magnetic materials, ferromagnetism,				
	magnetic domains and hysteres	is, applications.				
		List of Text Books/ Reference Books				
	Physics:Vols. I and II – D. Hall	iday and R. Resnick, Wiley Eastern.				
	Lectures on Physics: Vols. I, II	and III – R. P. Feynman, R. B. Leighton and M. Sands, Narosa.				
	Concepts of Modern Physics -	A. Beiser, McGraw-Hill.				
	Solid State Physics – A. J. Dekl	ker, 1957, MacMillan India.				
	Perspectives of Modern Physics	s – A. Beiser, 1969, McGraw-Hill.				
	1	Course Outcomes (students will be able to)				
1	Students will be able to do simp	le quantum mechanics calculations	\vdash			
2	Students will be able to define	e various terms related to properties of materials such as, permeability,				
<u> </u>	polarization, etc.		┢───			
3	Students will be able to state so	ome of the basic laws related to quantum mechanics as well as magnetic				
	and dielectric properties of mate	erials	1			

	Course Code: CHP 1342	Course Title: Physical and Analytical Chemistry Laboratory	Cree	2		
			L	Т	Р	
	Semester: II	Total contact hours: 60	0	0	4	
		List of Prerequisite Courses		1		
	XIIth Standard Chemistry Cours	es, Physical Chemistry, Analytical Chemistry				
	L	ist of Courses where this course will be prerequisite				
	This is a basic physical and ana	lytical chemistry laboratory course. The knowledge gained here will be				
	required in many subsequent cou	irses				
	Description of relevance of this course in the B. Chem. Engg. Program					
Stude	ents will become familiar with l	aboratory experimental skills, plan and interpretation of experimental task	cs, uno	dersta	nd the	
relev	ance of principles of physical and	analytical chemistry in chemical processes	-			
	(Course Contents (Topics and subtopics)	Req	d. hou	irs	
	(8 to 10 ex	periments will be conducted from following list)				
	1. To determine the total hardn	ess of given water sample				
	2. To determine the dissociation	constants of a polybasic acid using pH meter				
	3. To determine pKa of the given	n weak acid by potentiometric titration				
	4. To determine the critical mi	celle concentration (CMC) of the given surfactant by surface tension				
	measurement using a stalagmom	eter				
	5. To determine the normality	and volume of weak acid and strong acid in the given mixture using				
	Conductometric titration	af hadrahasia af an astan astaharad ha an asid				
	6. To determine the fate constant	of hydrolysis of an ester catalyzed by an actu				
	7. To study the kinetics of the re	action between $K_2S_2O_8$ and KI and hence, determine rate of the reaction				
	0. To determine the equivalent of	w anductance of strong electrolyte at infinite dilution and verify Ostwald's				
	law of dilution for dissociation	onductance of strong electrolyte at minine unution and verify Ostward s				
	10 To determine the molecular	weight of the given polymer by viscosity measurements				
	11 To determine the vitamin C	concentration from the given tablet sample by titration				
	12. Demo of Gas chromatograph	v and FT-IR				
		List of Text Books/ Reference Books				
	Practical physical Chemistry - E	Viswanthan and P.S. Raghavan				
	Practical physical Chemistry- Al	exander Findlay				
		Course Outcomes (students will be able to)				
1	Identify reaction rate parameters					
2	List simple methods of chemical	analysis				
3	Determination of physic chemica	al parameters using simple laboratory tools				

	Course Code: HUP 1101	Course Title: Communication Skills	Crec	lits =	2
			L	Т	Р
	Semester: II	Total contact hours: 60	0	0	4
	•	List of Prerequisite Courses			
	XIIth Standard English				
		List of Courses where this course will be prerequisite			
	All				
	Descripti	on of relevance of this course in the B. Chem. Engg. Program			
This	is an important course for the effective	fective functioning of an Engineer. Communication skills are required in a	ll cou	rses	
Course Contents (Topics and subtopics)					
1	Development of communicatio	n skills in oral as well as writing.			
2	The writing skills should emph	asize technical report writing, scientific paper writing, letter drafting, etc.			
3	The oral communication skills	should emphasize presentation skills.			
4	Use of audio-visual facilities li	ke powerpoint, LCD. for making effective oral presentation.			
5	Group Discussions				
		List of Text Books/ Reference Books			
	Elements of style - Strunk and	white			
		Course Outcomes (students will be able to)			
1	Students should be able to w	rite grammar error free technical reports in MS Words or equivalent			
	software.				
2	Students should be able to mak	e power point slides in MS PowerPoint or equivalent software.			

	SEMESTER – III								
No.	Subjects	Credits	Hr	rs /week Marks for various Exam					
			L	Т	Р	C. A.	M. S.	E. S.	Total
CET 1301	Chem. Eng. Thermodynamics-I	4	3	1	0	20	30	50	100
CET 1105	Momentum Transfer	4	3	1	0	20	30	50	100
GET 1102	Structural Mechanics	3	2	1	0	10	15	25	50
GET 1109	Electrical Engineering and Electronics	3	2	1	0	10	15	25	50
CET 1502	Industrial & Engineering Chemistry	4	3	1	0	20	30	50	100
GEP 1103	Structural Mechanics Lab.	2	0	0	4	25		25	50
GEP 1110	Electrical Engg and Electronics Laboratory	2	0	0	4	25		25	50
CEP 1715	Engineering Applications of Computers	2	0	0	4	25		25	50
	Total	24	13	5	12				550

Semester: III Total contact hours: 60 I T P List of Prerequisite Courses XIIth Standard Physics and Chemistry, Applied Mathematics – I, Applied Mathematics – II, Physical Chemistry, List of Courses where this course will be prerequisite This is a basic Chemical Engineering Thermodynamics – II, Chemical Engineering Operations, Separation Processes, Home Paper – I and II, Seminar, etc. Description of relevance of this course in the B. Chem. Eng. Program Thermodynamics of processes and equipment. This course gives students the formalism and nsights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming dead mixing. Course Contents (Topics and subtopics) Reqd. hours 1 Course Contents (Topics and Subtopics) Reqd. hours 1 Course Contents (Topics and subtopics) Reqd. hours 1 Concept of Equilibrium: Entropy and Gibbs-Prec Energy 4 2 First Oref Phase Transition (Clausius Clapeyron Equation) <td (cl<="" colspet="" of="" phasi="" th="" transition=""><th></th><th>Course Code: CET 1301</th><th>Course Title: Chemical Engineering Thermodynamics-I</th><th colspan="2">Credits =</th><th>4</th></td>	<th></th> <th>Course Code: CET 1301</th> <th>Course Title: Chemical Engineering Thermodynamics-I</th> <th colspan="2">Credits =</th> <th>4</th>		Course Code: CET 1301	Course Title: Chemical Engineering Thermodynamics-I	Credits =		4	
Semester: III Total contact hours: 60 3 1 0 List of Prerequisite Courses XIIIth Standard Physics and Chemistry, Applied Mathematics – I, Applied Mathematics – II, Physical Chemistry, It is a basic Chemical Engineering course. It is required in all the Chemical Engineering Courses, such as, Chemical Engineering Thermodynamics – II, Chemical Engineering Operations, Separation Processes, Home Paper – I and II, Seminar, etc. Description of relevance of this course in the B. Chem. Eng. Program Thermodynamics sets hard limits on performance of processes and equipment. This course gives students the formalism and neights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming deal mixing. Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 P.V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 4 First Law of Thermodynamics (Open and Closed Systems) and Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 5 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and Concept of Exeres Properties 4				L	Т	Р		
List of Prerequisite Courses XIIth Standard Physics and Chemistry, Applied Mathematics – I, Applied Mathematics – II, Physical Chemistry, List of Courses where this course will be prerequisite This is a basic Chemical Engineering course. It is required in all the Chemical Engineering Courses, such as, Chemical Engineering Thermodynamics – II, Chemical Engineering Operations, Separation Processes, Home Paper – I and II, Seminar, etc. Description of relevance of this course in the B. Chem. Engg. Program Thermodynamics sets hard limits on performance of processes and equipment. This course gives students the formalism and insights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming ideal mixing. Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 Pirst Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Purial Molar Properties 2 2 10 2 2 4 10 2 2 <th></th> <th>Semester: III</th> <th>Total contact hours: 60</th> <th>3</th> <th>1</th> <th>0</th>		Semester: III	Total contact hours: 60	3	1	0		
XIIth Standard Physics and Chemistry, Applied Mathematics – I, Applied Mathematics – II, Physical Chemistry, List of Courses where this course will be prerequisite This is a basic Chemical Engineering Course. It is required in all the Chemical Engineering Courses, such as, Chemical Engineering Thermodynamics – II, Chemical Engineering Operations, Separation Processes, Home Paper – 1 and II, Seminar, etc. Description of relevance of this course in the B. Chem. Engg. Program Thermodynamics sets hard limits on performance of processes and equipment. This course gives students the formalism and insights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming ideal mixing. Course Contents (Topics and subtopics) Regd. hours I Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 First Order Phase Transition (Clausius Clapeyron Equation) 2 Maxwell's Relations 2 Properties of Real Fluids 4 Birtoduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and Concept of Activity <			List of Prerequisite Courses	_				
Chemistry. List of Courses where this course will be prerequisite This is a basic Chemical Engineering course. It is required in all the Chemical Engineering Courses, such as, Chemical Engineering Thermodynamics – II, Chemical Engineering Operations, Separation Processes, Home Paper – I and II, Seminar, etc. Description of relevance of this course in the B. Chem. Engg. Program Thermodynamics sets hard limits on performance of processes and equipment. This course gives students the formalism and insights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming deal mixing. Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 1 Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 2 First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Lead Mixtures and concept of Activity 2 10		XIIth Standard Physics and C	Chemistry, Applied Mathematics - I, Applied Mathematics - II, Physical	Ĺ				
List of Courses where this course will be prerequisite This is a basic Chemical Engineering Course. It is required in all the Chemical Engineering Courses, such as, Chemical Engineering Thermodynamics – II, Chemical Engineering Operations, Separation Processes, Home Paper – I and II, Seminar, etc. Description of relevance of this course in the B. Chem. Engg. Program Thermodynamics sets hard limits on performance of processes and equipment. This course gives students the formalism and insights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming deal mixing. Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 PV-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 First Cher Phase Transition (Clausius Clapeyron Equation) 2 Properties of Real Fluids 4 PV-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 Properties of Real Fluids 4 2 Properties of Real Fluids 4 4 Ptorotrial Molar Properties 2 2 Introduction to Therman Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 Isothermal and Adiabatic Flash Calculations 4		Chemistry,						
This is a basic Chemical Engineering Thermodynamics – II, Chemical Engineering Operations, Separation Processes, Home Paper – I and II, Seminar, etc. Description of relevance of this course in the B. Chem. Engg. Program Thermodynamics sets hard limits on performance of processes and equipment. This course gives students the formalism and insights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming ideal mixing. Course Contents (Topics and subtopics) Reqd. hours 1 Course Contents (Topics and subtopics) Reqd. hours 1 4 2 First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 Properties 2 First Crade Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 Properties of Real Fluids 4 1 Concept of Partid Moder Properties 2<			List of Courses where this course will be prerequisite					
such as, Chemical Engineering Thermodynamics – II, Chemical Engineering Operations, Separation Processes, Home Paper – I and II, Seminar, etc.		This is a basic Chemical Eng	gineering course. It is required in all the Chemical Engineering Courses,					
Processes, Home Paper – 1 and II, Seminar, etc. Description of relevance of this course in the B. Chem. Engg. Program Thermodynamics sets hard limits on performance of processes and equipment. This course gives students the formalism and insights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming ideal mixing. Course Contents (Topics and subtopics) Reqd. hours 4 Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 5 First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 2 10 Concept of Bartial Molar Properties 2 4 11 Equilibrium in Mixtures and Tx-y and P-x-y diagrams for ideal mixtures 4 4 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for		such as, Chemical Engineeri	ng Thermodynamics – II, Chemical Engineering Operations, Separation	L				
Description of relevance of this course in the B. Chem. Engg. Program Thermodynamics sets hard limits on performance of processes and equipment. This course gives students the formalism and insights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming ideal mixing. Course Contents (Topics and subtopics) Reqd. hours Course Contents (Topics and subtopics) Reqd. hours 1 Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 2 First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 3 Residual Properties. Concept of fugacity and fugacity coefficient. 4 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 2 10 Concept of Partial Molar Properties 4		Processes, Home Paper – I and	d II, Seminar, etc.					
Description of relevance of inits course in the B. Cheft. Engg. Program Description of relevance of processes and equipment. This course gives students the formalism and insights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming ideal mixing. Course Contents (Topics and subtopics) Reqd. hours Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 Porter Equilibrium: Entropy and Gibbs-Free Energy 4 Residual Properties. Concept of fugacity and fugacity coefficient. 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 First Order Phase Transition (Clausius Clapeyron Equation) 2 Maxwell's Relations 2 Properties of Real Fluids 2 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Fla								
Internet/nodynamics dets hard minits on performance of processes and equipment. This course gives students the formatistin and insights necessary to do a preliminary thermodynamic analysis of a process for the purpose of establishing feasibility assuming ideal mixing. Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 Residual Properties. Concept of fugacity and fugacity coefficient. 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 First Order Phase Transition (Clausius Clapeyron Equation) 2 Maxwell's Relations 2 Properties of Real Fluids 4 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 Porties of Real Fluids 2 Intermodynamics of Ideal Mixtures and concept of Activity 2 I Concept of Partial Molar Properties 2 I Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 I Sothermal and Adiabatic Flash Calculations 4 I bibbs Duhem Equation and Thermodynamic Consistency 6 I Gibbs Duhem Equation and Thermodynamics: Smith, van Ness, Abbott 4 List of Text Books/ Reference Books 4 <	The	Descript	tion of relevance of this course in the B. Chem. Engg. Program	ha fa	maalia	mand		
Instruction of the purpose of establishing reaction of the purpose of the	inci	shte needesserv to do a proliminu	on performance of processes and equipment. This course gives students to	ne io	ity occ	in and		
Course Contents (Topics and subtopics) Reqd. hours Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 Residual Properties. Concept of fugacity and fugacity coefficient. 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 <td>idea</td> <td>i mixing</td> <td>ary mermodynamic analysis of a process for the purpose of establishing re</td> <td>asidin</td> <td>ity ass</td> <td>unning</td>	idea	i mixing	ary mermodynamic analysis of a process for the purpose of establishing re	asidin	ity ass	unning		
Course Contents (Topics and subtopics) Regd. hours 1 Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 2 First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 3 Residual Properties. Concept of fugacity and fugacity coefficient. 4 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 2 10 Concept of Partial Molar Properties 2 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6	luca	ii mixing.						
Concept of Equilibrium: Entropy and Gibbs-Free Energy 4 2 First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 2 Residual Properties. Concept of fugacity and fugacity coefficient. 4 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4			Course Contents (Topics and subtopics)	Reg	ld. hoi	ırs		
2 First Law of Thermodynamics (Open and Closed Systems) and Equations of Change (dU, dH, dA, dG) 4 3 Residual Properties. Concept of fugacity and fugacity coefficient. 4 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics (on Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 16 Introduction to Chemical Engineering Thermodynamics: S. I. S	1	Concept of Equilibrium: Entro	ppy and Gibbs-Free Energy	4				
6 Residual Properties. Concept of tugacity and Tugacity coefficient. 4 4 P-V-T Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 16 Equilibriu n Chemical Engineering Thermodynamics: Smith, van Ness, Abbott 1 <td>2</td> <td>First Law of Thermodynamics</td> <td>(Open and Closed Systems) and Equations of Change (dU, dH, dA, dG)</td> <td colspan="3">4</td>	2	First Law of Thermodynamics	(Open and Closed Systems) and Equations of Change (dU, dH, dA, dG)	4				
4 P-V-1 Correlations, Virial Equation of State, Two and Three Parameter Cubic Equations of State 6 5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 List of Text Books/ Reference Books Introduction to Chemical Engineering Thermodynamics: S. I. Sandler Phase Equilibria in Chemical Engineering: Walas Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz Reference Books: Properties of Gases an	3	Residual Properties. Concept	of fugacity and fugacity coefficient.	4				
5 First Order Phase Transition (Clausius Clapeyron Equation) 2 6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 17 Phase Equilibria in Chemical Engineering Thermodynamics: S. I. Sandler 4 18 Introduction to Chemical Engineering: Walas 4 19 Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz 4 10 Course O	4	P-V-T Correlations, Virial Equ	uation of State, Two and Three Parameter Cubic Equations of State	6				
6 Maxwell's Relations 2 7 Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 17 List of Text Books/ Reference Books 1 18 Introduction to Chemical Engineering Thermodynamics: S. I. Sandler 1 19 Phase Equilibria in Chemical Engineering: Walas 1 10 Chemical, Biochemical and Engineering: Walas 1 10 Reference Books: 1 1 10 Properties of Gases and Liquids: Reid, Prausnitz, Pauling 1	5	First Order Phase Transition (Clausius Clapeyron Equation)	2				
/ Properties of Real Fluids 4 8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 17 List of Text Books/ Reference Books 1 18 Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott 1 19 Chemical, Biochemical and Engineering: Walas 1 10 Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz 1 10 Properties of Gases and Liquids: Reid, Prausnitz, Pauling 1 Course Outcomes (students will be able to) Course Outcomes (students	6	Maxwell's Relations		2				
8 Introduction to Thermal Exergy and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic) 6 9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 List of Text Books/ Reference Books Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott 1 Chemical, Biochemical and Engineering: Walas 1 1 Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz 1 1 Reference Books: 1 1 1 Properties of Gases and Liquids: Reid, Prausnitz, Pauling 1 1 <td (students="" colspan="2" course="" outcomes="" td="" w<=""><td>7</td><td>Properties of Real Fluids</td><td></td><td>4</td><td></td><td></td></td>	<td>7</td> <td>Properties of Real Fluids</td> <td></td> <td>4</td> <td></td> <td></td>		7	Properties of Real Fluids		4		
9 Thermodynamics of Ideal Mixtures and concept of Activity 2 10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 List of Text Books/ Reference Books Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott Chemical, Biochemical and Engineering Thermodynamics: S. I. Sandler Phase Equilibria in Chemical Engineering: Walas Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz 4 Reference Books: Properties of Gases and Liquids: Reid, Prausnitz, Pauling 7 7 Course Outcomes (students will be able to) 1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured	8	Introduction to Thermal Exerg	y and Expansions (Isentropic (Joule-Thomson Cooling) and Isenthalpic)	6				
10 Concept of Partial Molar Properties 2 11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 17 List of Text Books/ Reference Books 1 18 Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott 1 Chemical, Biochemical and Engineering Thermodynamics: S. I. Sandler 1 Phase Equilibria in Chemical Engineering: Walas 1 Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz 1 Reference Books: 1 Properties of Gases and Liquids: Reid, Prausnitz, Pauling 1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured 1	9	Thermodynamics of Ideal Mix	atures and concept of Activity	2				
11 Equilibrium in Mixtures (and the Raoult's Law Simplification) 2 12 Calculation of Bubble and Dew Points and T-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 List of Text Books/ Reference Books Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott 6 Chemical, Biochemical and Engineering: Thermodynamics: S. I. Sandler 9 Phase Equilibria in Chemical Engineering: Walas 9 Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz 10 Reference Books: 10 Properties of Gases and Liquids: Reid, Prausnitz, Pauling 10 Course Outcomes (students will be able to) 14 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured	10	Concept of Partial Molar Prop		2				
12 Calculation of Bubble and Dew Points and 1-x-y and P-x-y diagrams for ideal mixtures 4 13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 List of Text Books/ Reference Books Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott 6 Chemical, Biochemical and Engineering: Walas 9 Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz 6 Reference Books: 10 Properties of Gases and Liquids: Reid, Prausnitz, Pauling 10 Course Outcomes (students will be able to)	11	Equilibrium in Mixtures (and	the Raoult's Law Simplification)	2				
13 Isothermal and Adiabatic Flash Calculations 4 14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 Ist of Text Books/ Reference Books Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott Chemical, Biochemical and Engineering Thermodynamics: S. I. Sandler Phase Equilibria in Chemical Engineering: Walas Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz Reference Books: Properties of Gases and Liquids: Reid, Prausnitz, Pauling Course Outcomes (students will be able to) Course Outcomes (students will be able to)	12	Calculation of Bubble and De	w Points and T-x-y and P-x-y diagrams for ideal mixtures	4				
14 Gibbs Duhem Equation and Thermodynamic Consistency 6 15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 List of Text Books/ Reference Books Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott Chemical, Biochemical and Engineering Thermodynamics: S. I. Sandler Phase Equilibria in Chemical Engineering: Walas Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz Reference Books: Properties of Gases and Liquids: Reid, Prausnitz, Pauling Course Outcomes (students will be able to) L Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured	13	Isothermal and Adiabatic Flas	h Calculations	4				
15 Non-Ideal Mixtures and Concept of Excess Properties 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 List of Text Books/ Reference Books Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott Chemical, Biochemical and Engineering Thermodynamics: S. I. Sandler 9 Phase Equilibria in Chemical Engineering: Walas 6 Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz 6 Reference Books: 6 Properties of Gases and Liquids: Reid, Prausnitz, Pauling 6 Course Outcomes (students will be able to) 1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured	14	Gibbs Duhem Equation and T	hermodynamic Consistency	6				
16 Equilibrium Measurement and Consistency of Experimental Data 4 16 Equilibrium Measurement and Consistency of Experimental Data 4 16 List of Text Books/ Reference Books 1 List of Text Books/ Reference Books 16 Equilibrium Measurement and Consistency of Experimental Data 4 List of Text Books/ Reference Books 1 Introduction to Chemical Engineering Thermodynamics: S. I. Sandler 1 Phase Equilibria in Chemical Engineering: Walas 1 1 Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz 1 1 Reference Books: 1 1 1 Properties of Gases and Liquids: Reid, Prausnitz, Pauling 1 1 Course Outcomes (students will be able to) 1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured	15	Non-Ideal Mixtures and Conce	ept of Excess Properties	4				
List of Text Books/ Reference Books Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott Chemical, Biochemical and Engineering Thermodynamics: S. I. Sandler Phase Equilibria in Chemical Engineering: Walas Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz Reference Books: Properties of Gases and Liquids: Reid, Prausnitz, Pauling Course Outcomes (students will be able to) 1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured	16	Equilibrium Measurement and	Consistency of Experimental Data	4				
List of Text Books/ Reference Books Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott Chemical, Biochemical and Engineering Thermodynamics: S. I. Sandler Phase Equilibria in Chemical Engineering: Walas Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz Reference Books: Properties of Gases and Liquids: Reid, Prausnitz, Pauling Course Outcomes (students will be able to) 1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured			List of Taxt Books/ Deference Books					
Introduction to Chemical Engineering Thermodynamics: Sinth, van Ness, Abbout Chemical, Biochemical and Engineering Thermodynamics: S. I. Sandler Phase Equilibria in Chemical Engineering: Walas Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz Reference Books: Properties of Gases and Liquids: Reid, Prausnitz, Pauling Course Outcomes (students will be able to) 1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured		Introduction to Chemical Engi	ineering Thermodynamics: Smith van Ness Abbott	1				
Phase Equilibria in Chemical Engineering: Walas Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz Reference Books: Properties of Gases and Liquids: Reid, Prausnitz, Pauling Course Outcomes (students will be able to) 1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured		Chemical Biochemical and Fi	ngineering Thermodynamics: S. I. Sandler					
Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz Reference Books: Properties of Gases and Liquids: Reid, Prausnitz, Pauling Course Outcomes (students will be able to) 1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured		Phase Equilibria in Chemical	Engineering Malas	-				
Reference Books: Properties of Gases and Liquids: Reid, Prausnitz, Pauling Course Outcomes (students will be able to) 1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured		Molecular Thermodynamics of	f Fluid Phase Fouilibria: Prausnitz	-				
Properties of Gases and Liquids: Reid, Prausnitz, Pauling Course Outcomes (students will be able to) Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured		Reference Books:						
Course Outcomes (students will be able to) Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured		Properties of Gases and Liquid	ds: Reid Prausnitz Pauling					
1 Calculate enthalpies, entropies and free energies of real gases from (a) equations of state (b) measured		Troperdes of Subes and Enqui	Course Outcomes (students will be able to)					
	1	Calculate enthalpies. entropie	s and free energies of real gases from (a) equations of state (b) measured					
quantities		quantities						

2	Calculate saturation pressure and latent heats of vapourization from cubic equations of state.	
3	Calculate bubble and dew points of ideal mixtures and construct T-x-y and P-x-y diagrams	
4	Be able to correlate experimental VLE data of pure component and ideal mixtures with suitable equations.	
5.	Do an adiabatic and isothermal flash calculation	
6.	Do a preliminary exergy analysis of non-reacting systems of ideal mixtures.	

	Course Code: CET 1105	Course Title: Momentum Transfer	Credits = 4		4
			L	Т	Р
	Semester: III	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	XIIth Standard Physics and Ma	thematics, Applied Physics – I and II, Applied Mathematics – I and II			
]	List of Courses where this course will be prerequisite			
	This is a basic course require	red in many subjects such as: Heat Transfer, Chemical Engineering			
	Operations, Separation Proces	ses, Chemical Reaction Engineering, Multiphase Reactor Engineering,			
	Env. Eng. And Process Safety,	Seminar, Home Paper I and II, Energy Engineering, etc.			
	Descripti	on of relevance of this course in the B. Chem. Engg. Program			
This	s basic course introduces concep	ots of momentum transfer to students. Various concepts such as press	sure,	mome	ntum,
ener	gy are introduced. Laws related	to conservation of momentum, energy are taught. Applications of thes	e law	s to v	arious
engi	ineering situations and process eq	uipment is explained with the help of several problems	-		
		Course Contents (Topics and subtopics)	Req	d. Ho	urs
1	Fluid Statics and applications to	engineering importance.	4		
2	Bernoulli's Equation and engine	eering applications, Pressure drop in pipes and Fittings, Piping systems	8		
3	Fluid moving machinery such a	s pumps, blowers, compressors, vacuum systems, etc.	8		
4	Particle Dynamics, Boundary	ayer separation: skin and form drag, Flow through Fixed and Fluidised	d Fluidised 6		
-	Beds,				
2	Equations of Continuity and M	otion (Cartesian, cylindrical, and spherical coordinates) in laminar flows			
	and its applications for the c	calculation of velocity profiles, snear stresses, power, etc. in various			
6	Boundary Lover Flows: Blasius	aquations and solution. Von Karman integral aquations and solutions	8		
7	Introduction to turbulance: Tur	equations and solution, von-Karman integral equations and solutions,	0		
0	Similarities in Momentum Hee	t and Mass Transfor	0		
0	Similarities in Momentum, Hea	L and Wass Transfer	0		
	Transport Phanomena Bird P H	S Stewart W E Lightfoot E N			
	Fluid Mechanics, Kundu Pijush	K			
	Fluid Mechanics, Kullud I Ijush	Λ.			
	Unit Operations of Chemical Fi	ngineering McCabe Smith			
	Chint Operations of Chemical En	Course Outcomes (students will be able to)			
1	Calculate velocity profiles for	es pressure drops for simple 1 –D laminar flow situations			
2	Calculate pressure drop in pipe	lines and equipment for different situations such as single and two phase			
2	flow, fixed and fluidized beds	mes and equipment for enforcent situations such as single and two phase			
3	Calculate forces on particles an	d terminal velocities of particles			
4	Design pumps and piping system	ms for simple situations	1		
5	Apply Momentum, Heat and m	ass transfer concepts to simple situations	İ		

	Course Code: GET 1102	Course Title: Structural Mechanics	Credits = 3		3
			L	Т	Р
	Semester: III	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			
	XIIth Standard Physics and Mat	hematics, Applied Mathematics-I and II, Applied Physics-I			
	L	ist of Courses where this course will be prerequisite			
	Equipment Design and Drawing	I and II, Home Paper, Chemical Project Engineering and Economics			
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program			
This	subject will help students to un	derstand use of basics of Applied Mechanics and Strength of Materials	. In	engine	ering
equi	pments which different types of	forces are to be considered and how to quantify them. What are differ	ent c	onditio	ons of
equi	librium and how to apply them ar	alyse the problems. Importance of centre of gravity and moment of Inert	ia in 1	Engine	ering
Desi	gn. Study of different types of	stresses and strains occurring in various components of the structure.	Adv	antage	s and
disad	lvantages of various geometric se	ections available for engineering design. This is the foundation course f	orag	good L	esign
Engi	neer.		n		
1		Course Contents (Topics and subtopics)	Req	d. hou	rs
	Concepts of forces, their types Design Different types supports	and free body diagram	4		
2	Equilibrium of rigid bodies -	Conditions of equilibrium Determinant and indeterminate structures	6		
2	Equilibrium of heams trusses ar	d frames problems on analysis of beams and truss	0		
3	Concept of moment of Inertia	(Second moment of area) its use Parallel axis theorem Problems of	5		
5	finding centroid and moment of	Inertia of single figures, composite figures. Perpendicular axis theorem.	5		
	Polar M.I., Radius of gyration.				
4	Shear Force and Bending Mor	nent - Basic concept, S.F. and B.M. diagram for cantilever, simply	7		
	supported beams (with or without	at overhang). Problems with concentrated and U.D. loads.			
5	Stresses and Strains - Tensile	and compressive stresses, strains, modulus of elasticity, modulus of	5		
	rigidity, bulk modulus. Relatio	n between elastic constants. Lateral strain, Poisson's ratio, volumetric			
	strain. Thermal stresses and s	trains. Problems based on stresses and strains. Stresses and Strains			
	Relationship and Strain Deforma	ation relationship.			
6	Theory of Bending - Assumption	ons in derivation of basic equation, Basic equation, section modulus,	4		
_	bending stress distribution. Adva	antages of various geometric sections from bending consideration.	_		
7	Problems on shear stress - Cond	cept, Derivation of basic formula. Shear stress distribution for standard	5		
	shapes. Problems of Shear stre	ss distribution. Conditions under which shear stress is the governing			
0	criteria of design.	Desis several Class and Deflection of contileron and simply supressed	5		
8	Slope and Deflection of beams -	Basic concept, Slope and Deflection of cantilever and simply supported	5		
0	Introduction to computer aided	analysis and design B arrosantation of strasses and strains on a subical	4		
9	element 1-D 2-D and 3-D ana	lysis and its importance. Basics of formulation of any computer aided	4		
	analysis program Preprocessing	and nost processing of computer aided analysis data and information			
		List of Text Books/ Reference Books			
-	Engineering Mechanics Vol I S	tatics by B. N. Thadani. Publisher Wenall Book Corporation			
	Introduction to Mechanics of So	lids by Egor Popoy. Prentice Hall of India Pyt. Ltd			
	Mechanics of Materials by Ferdi	nand Beer and E. Russel Johnston, Tata McGraw Hill			
	Fundamentals of applied Mecha	nics by Dadhe, Jamdar and Walavalkar, Sarita Prakashan Pune			
	Engineering Mechanics by S. Ti	moshenko and D. H. Young, McGraw Hill Publications			
	Strength of Materials by Ferdina	nd Singer and Andrew Pytel, Harper Colins Publishers	l		
	· · · · · · · · · · · · · · · · · · ·	Course Outcomes (students will be able to)	•		
1	Understand the use of basic cond	cepts of Resolution and composition of forces.			
2	Analysis of the beams, truss or a	ny engineering component by applying conditions of equilibrium.			
3	List advantages and disadvantag	es of various geometric sections used in engineering design.			
4	Understand the different stresses	and strains occurring in components of structure			
5	Calculate the deformations such	as axial, normal deflections under different loading conditions	Γ		

	Course Code: GET 1109	Course Title: Electrical Engineering and Electronics	Title: Electrical Engineering and Electronics Credits = 3		its = 3
	Semester: III	Total contact hours: 45	2	1	0
			-	-	Ů
		List of Prerequisite Courses			
	XIIth Standard Physics and	1 Mathematics courses, Applied Physics - II			
		List of Courses where this course will be prerequisite			
	Chemical Process Control,	Energy Engineering,			
	Desc	ription of relevance of this course in the B. Chem. Engg. Program			
Stud	ents will get an insight to the	he importance of Electrical Energy in Chemical Plants . The students will under	rsta	and	the basics
of el	ectricity, selection of differ	ent types of drives for a given application process. They will get basic knowled	dge	as	regards to
Pow	er supplies, instrumentation	amplifiers and thyristor application in industries.			
		Course Contents (Topics and subtopics)	Re	eqd	. hours
1	Fundamentals of DC Circ	cuits	5		
	Voltage and Current Source	ces, Basic Laws, Network Theorems, Superposition Theorem and Thevenin's			
	Theorem,				
2	AC Fundamentals: A.C.	through resistance, inductance and capacitance, simple RL, RC and RLC	4		
	circuits. Power, power fact	or			
3	Three Phase Systems: The	ree phase system of emfs and currents, Star and Delta connections, Three	4		
	phase power				
4	Single phase transformer	s: Principle of working, Efficiency, regulation.	5		
5	Electrical drives: Basic co	oncepts of different types of Electrical motors as drives, Their suitability for	4		
	various applications.				
6	Regulated power supplies , Diodes as rectifiers, Half wave and Full wave rectifier, Filters and 6				
_	Regulators				
7	Bipolar junction transis	stors: Different configurations, Characteristics, Concept of basic amplifier	6		
0	circuits, Amplifier gain, Ir	ansistor as switch	6		
8	Introduction to data a	equisition and signal conditioning, Basic concept and Block diagram,	0		
	Prossure level flow sensors a	ind transducers, Sensors used in chemical industry such as reinperature,			
	electrical signal signal con	$D_{\rm A}$ concept of Sinart Sensors, Concept of conversion of physical quantity to difference in Δ/D and D/A converters.			
0	Introduction to instrume	ntation amplifiers and their applications Operational Amplifier Notation	5		
7	Pin diagram Differential	and common mode gain CMRR Applications as Non-inverting inverting	5		
	summing differential amp	lifiers integrator differentiator comparator and filter circuits			
	summig, unterential amp	List of Text Books/ Reference Books			
1	Electrical Engineering Fun	damentals by Vincent Deltoro			
2	Electronic devices and circ	uits by Boylstead. Nashelsky			
3	Electrical Machines by Na	grath. Kothari			
4	Electrical Machines by P.S.	Bhimbra			
5	Electrical Technology by F	3.L.Theraja, A.K.Theraja vol LILIV			
6	Thyristors and their application	ations by M.Ramamurthy			
7	Power Electronics by P S	Bhimbra			
-	Course Outcomes (students will be able to)				
1	Understand the basic conc	epts of D.C., single phase and three phase AC supply and circuits Solve basic			
	electrical circuit problems				
2	Understand the basic conce	epts of transformers and motors used as various industrial drives.	<u> </u>		
3	Understand the basic co	oncepts of electronic devices and their applications in power supplies,			
	amplification and instrume	ntation			
4	Understand the basic conce	epts of Data acquisition, signal conditioning			

	Course Code: CET 1502	Course Title: Industrial & Engineering Chemistry	Cre	dits =	4
	Semester: III	Contact hours: 60	3	1	0
	L	ist of Prerequisite Courses			
1	XIIth Standard Chemistry and Physics, O	Drganic Chemistry I & II. Material & Energy Balance			
	Calculations, Physical Chemistry				
	List of Course	s where this course will be prerequisite	<u> </u>		
	Chemical Reaction Engineering, Multipl	hase Reactor Engineering, Process Development and			
	Engineering, Env. Engg. and Proc. Safety, H	ome Paper I and II, Seminar, etc.			
	Description of relevand	e of this course in the B. Chem. Engg. Program			
Stud	ents will be able to understand sources and	d processes of manufacture of various chemicals such as	petr	roleum	and
petro	bleum products, petrochemicals, biochemicals	, industrial chemicals, clean utilization of coal and advances	in fu	els.	
	Course Cont	ents (Topics and subtopics)	Req	(d. hoi	irs
1	Overview of Indian chemical industry, raw n	naterial and energy sources, role of catalysis, inorganic		5	
	products, organic intermediates and final pro	ducts			
2	Petroleum refining and cracking operations			5	
3	Industrial processes for ammonia, syngas and	d hydrogen, methanol, chemicals from oxo-synthesis		4	
4	Organic chemicals based on methanol and et	hanol (e.g., formaldehyde, acetaldehyde, acetic acid)		4	
5	Petrochemicals: e.g., ethylene oxide, α-olefi	ns, vinyl acetate, phenol, aniline, LAB, phthalic anhydride,		10	
	РТА				
6	Polymers (e.g., polyethylene / polypropylene	2)		2	
7	Manufacturing of inorganic acids (sulfuric an	nd nitric acid)		4	
8	Chlor-alkali industry (chlorine, caustic soda,	soda ash)		6	
9	Fertilizers (urea and phosphates)		2		
10	Industrial processes using bio-catalysts		2		
11	Production of industrial gases			2	
12	Classification, sampling, analysis, and select	ion of coal		3	
13	Carbonization			2	
14	Hydrogenation			2	
15	Complete gasification of coal			3	
16	Fuel oil specifications	-		1	
17	Combustion of solid, liquid, and gaseous fue	ls		3	
	Listo	f Tort Books/ Deference Deaks			
1	Encyclopedia of Chemical Technology Kirk	-Othmer			
2	Ulmann's Encyclopedia of Industrial Chemis	strv			
3	Industrial Organic Chemistry Weissermel &	Arne			
4	Chemical Process Industries, Shreve B. Aust	in			
5	Chemical Process Technology, Mouliin, M.	and van Dippen			
6	Drvden's Outlines of Chemical Technology				
7	Elements of Fuels, Furnaces and Refractorie	s, O.P. Gupta			
8	Fuels handbook, Johnson				
	Course Ou	tcomes (students will be able to)	•		
1	Draw process flow diagrams/process block	diagrams for the manufacture of various chemicals from			
	process description				
2	List out various alternatives for carrying ou	t a particular process and provide recommendations for the			
	best choice				
3	List coal utilization technologies and advanta	ages of clean coal technology			
4	List Principles of combustion systems for so	lid, liquid and gaseous fuel			

	Course Code: GEP 1103	Course Title: Structural Mechanics Laboratory	aboratory Credits = (2
			L	Т	Р
	Semester: III	Total contact hours:60	0	0	4
	·	List of Prerequisite Courses			
	XIIth Standard Physics, Mathem	natics, Applied Mathematics I and II, Structural Mechanics			
	Li	ist of Courses where this course will be prerequisite			
	Equipment design and Drawing	I and II, Home Paper I and II			
	Description	n of relevance of this course in the B. Chem. Engg. Program			
This	subject will help students to un	derstand use of basics of Applied Mechanics and Strength of Materials	s. In	engin	eering
equi	pments which different types of	forces are to be considered and how to quantify them. What are differ	ent co	onditio	ons of
equi	librium and how to apply then	n analyse the problems. Importance of centre of gravity and mom	ent o	f Iner	tia in
Engi	neering Design. Study of diff	erent types of stresses and strains occurring in various components	of th	e stru	cture.
Adv	antages and disadvantages of vari	ous geometric sections available for engineering design. This is the four	idatio	n cou	se for
a go	od Design Engineer.		-		
	C	Course Contents (Topics and subtopics)	Req	d. hou	Irs
	Suitable number of experiments	from the above list will be performed			
	To determine Law of Machine f	or (Screw Jack / Single Purchase Crab, Double Purchase Crab,			
	Differential wheel and axle).				
	To verify forces in single roof tr	uss element.			
	To verify bending moment at va	rious sections for Cantilever beam, Simply supported beam.			
	To verify reactions at the support	ts for simply supported and beam with overnang.			
	To verify basic Laws of concurr	ent co-planer forces.			
	To study the deflected shape of I	nink and B.M. in equivalent simply supported beam.			
	To study the Universal testing m	narysis of forces.			
	To study the torsion test and im	lacime and tests.			
	Non-destructive testing: Smith H	Janmer test. Ultrasonic pulse velocity test			
	To study the carbonation of con	rete			
	To study corrosion of re-inforce	ment			
	To study properties of cement of	omposites using various admixtures and additives			
	To study water and chloride pen	etration in cement composites			
	[List of Text Books/ Reference Books			
	Engineering Mechanics Vol I S	tatics by B. N. Thadani. Publisher Wenall Book Corporation			
	Introduction to Mechanics of So	lids by Egor Popoy, Prentice Hall of India Pyt, Ltd			
Mechanics of Materials by Ferdinand Beer and E. Russel Johnston, Tata McGraw Hill					
	Fundamentals of applied Mecha	nics by Dadhe, Jamdar and Walavalkar, Sarita Prakashan Pune			
	Engineering Mechanics by S. Ti	moshenko and D. H. Young, McGraw Hill Publications			
	Strength of Materials by Ferdina	and Singer and Andrew Pytel, Harper Colins Publishers			
	1	Course Outcomes (students will be able to)	1		
	Further understanding of the cor	acepts in the Theory course of Structural Mechanics			

	Course Code: GEP 1110	e Code: GEP 1110 Course Title: Electrical Engg and Electronics Laboratory Credi		dits =	2		
			L	Т	Р		
	Semester: III	Total contact hours: 60	0	0	4		
	1	List of Prerequisite Courses					
	XIIth Standard Mathematics and	Physics courses, Applied Physics I, Electrical Engg and Elctronics					
	Li	st of Courses where this course will be prerequisite					
	Chemical Process Control						
Description of relevance of this course in the B. Chem. Engg. Program							
Stud	ents will get an insight to the imp	ortance of Electrical Energy in Chemical Plants . The students will und	erstan	d the	oasics		
of el	ectricity, selection of different ty	pes of drives for a given application process. They will get basic knowle	edge a	is rega	rds to		
Pow	er supplies, instrumentation ampl	ifiers and thyristor application in industries.					
Course Contents (Topics and subtopics)							
	Suitable no. of experiments relat	ed the following concepts will be conducted:					
	Electrical Engineering:						
	Verification of Network Theorem	ms					
	Study of RLC circuits						
	Load test on transformer						
	Load test on induction motor						
	Study of 3 phase circuits						
	Electronics:						
	Study of half wave, full wave re	ctifier circuits					
	Study of input and output charac	teristics of a transistor.					
	Study of operational amplifier c	ircuits					
	Study of sensors and transducers						
		List of Text Books/ Reference Books					
	Electrical Engineering Fundame	ntals by Vincent Deltoro					
	Electronic devices and circuits b	y Boylstead, Nashelsky					
	Electrical Machines by Nagrath,	Kothari					
	Electrical Machines by P.S. Bhin	mbra					
	Electrical Technology by B.L.T	neraja, A.K.Theraja vol I,II,IV					
	Thyristors and their applications	by M.Ramamurthy					
	Power Electronics by P.S. Bhim	bra					
Course Outcomes (students will be able to)							
1	Understand the basic concepts o	f D.C., single phase and three phase AC supply and circuits Solve basic					
	electrical circuit problems						
2	Understand the basic concepts o	f transformers and motors used as various industrial drives.					
3	Understand the basic concept	s of electronic devices and their applications in power supplies,					
	amplification and instrumentation	n					
4	Understand the basic concepts o	f Data acquisition, signal conditioning					

	Course Code: CEP 1715	Course Title: Engineering Applications of Computers	Credits =		2	
	MAT		L	Т	Р	
	Semester: III	Total contact hours: 60			4	
	I	List of Prerequisite Courses				
1	XIIth Standard Mathematics and	d Physics Courses, Applied Mathematics – I and II, Material & Energy				
	Balance Calculations					
	L	ist of Courses where this course will be prerequisite	-			
1	Process Simulation Lab – I and	II, Home Paper I and II				
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program				
As a	in engineer, students have to prep	are technical reports and give presentations in their professional career a	ind so	ftware	tools tools	
such	as word processing, spreadshee	t calculations, powerpoint presentations and programming languages su	ich as	C/C-	-+ etc	
help	to achieve these objectives.					
Desi	ign and optimization various cher	nical engineering operations require tedious calculations and writing a c	ompu	ter pro	ogram	
to so	blve these problems help to under	stand the concepts learned in theory class better. Such calculations are c	ione c	on rep	etitive	
Dasis	basis in industry and generalized computer programs are useful.					
1	Course Contents (Topics and subtopics)					
2	Word processing: Fonts, colors	header footers page numbers alignment page layouts tables creating	4			
2	technical reports references tra	ck changes	4			
3	Spreadsheet calculations: Use	of cells formulas table calculations graphs matrix operations goal	12			
5	seek, solver, curve fitting, regre	ssion	12			
4	Power-point presentations: slide	design, layout, animations, presentation project	6			
5	C/C++ programming: basics, ar	rays, loops, if-else, switch case, functions, pointers, classes	14			
6	solving single non-linear equat	ion (Equation of state such as Van der Waal, Peng Robinson, RKS,	12			
	friction factor equation, Ergun e	quation, Estimation of Drag Coefficient etc)				
7	Solving set of linear equations (material balance of distillation column, multiple extraction unit etc)	8			
	· · · ·	List of Text Books/ Reference Books				
1	Kanetkar Y. "Let us C", Fifth E	dition				
2	Microsoft Office help					
		Course Outcomes (students will be able to)				
1	Operate various operating system	ms such as (windows, linux)				
2	Prepare a technical report					
3	Prepare a technical / professiona	l presentation				
4	Spreadsheet calculations for che	mical engineering problems				
5	Develop programming logic and	l code it in software				

	SEMESTER – IV								
No.	Subjects	Credits	Hr	·s/wee	ek	Ma	rks for vario	us Exams	
			L	Т	Р	С. А.	M. S.	E. S.	Total
GET 1107	Energy Engineering	4	3	1	0	20	30	50	100
BST 1102	Introduction to Biological Sciences	4	3	1	0	20	30	50	100
CET 1401	Chemical Engineering Operations	4	2	2	0	20	30	50	100
CET 1302	Chem. Eng. Thermodynamics-II	4	3	1	0	20	30	50	100
GEP 1108	Engineering Graphics -II	2	0	0	4	25		25	50
BSP 1103	Biological Sciences Laboratory	2	0	0	4	25		25	50
CEP 1701	Chemical Engineering Laboratory-I	3	0	0	6	50		50	100
	Total	24	13	6	10				600

	Course Code: GET 1107	Course Title: Energy Engineering	Credits =		4
			L	Т	Р
	Semester: IV	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Chemical Engineering Thermod	ynamics-I, Material and Energy Balance Calculations, Applied Physics			
	T and II, Applied Mathematics –	1 and 11 list of Courses where this course will be prerequisite	<u> </u>		
	Process Day and Enga Home	Dapar Land II. Env. Eng. And Prog. Safaty. Cham. Proj. Eng. and Eco.	1		
	Process Dev. and Engg., Home	n of relevance of this course in the B Chem Enga Program			
Stud	ents will be able to understand	various equipments like steam turbine gas turbine pumps compre	ssore	and t	ower
trans	smission system	various equipments like steam turbine, gas turbine, pumps, compre	55015	and F	JOwer
ti uni		ourse Contents (Topics and subtopics)	Read	1 hou	rs
1	Properties of steam T-S Diagra	am Calculation of entrony enthalpy specific volume of steam steam	<u>1</u>	1. nou	15
1.	table. Dryness fraction.	and, electrication of enclopy, enclarpy, specific volume of steam, steam			
2.	Introduction to Steam Power P	lant, Rankine cycle, Reheat cycle, Regenerative cycle, Back Pressure	6		
	Turbine,		-		
3.	Steam Turbine, Classification,	Calculation of Power Developed by Steam Turbine, Compounding of	6		
	Steam Turbine				
4.	Boilers, Classification, Study of	various Boilers such as Babcock & Wilcox Boiler, Cochran Boiler, La-	6		
	Mount Boiler, Benson Boiler, Boiler Mountings and Accessories, Boiler Performance. Measurement of				
	Steam Quality				
5.	Steam Nozzles, Different types	of Steam Nozzles, Variation of area, velocity and specific volume	2		
6.	Elements of Steam condenser, v	arious types of steam condenser, Condenser Efficiency	4		
7.	Compressors, Classification of	Compressors, Reciprocating Compressors, Single stage compressor and	3		
	multistage compressor, P-V diag	gram, Application of Compressors			
8.	Rotary Compressors, Fan, Blow	ver & Compressors, Centrifugal and Axial compressors, Calculation of	4		
	work done by Centrifugal Blowe	er,			
9.	Pumps, Classification of Pumps	, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps,	3		
10	Maintenance of Pumps				
10	Refrigeration : COP of refrige	rator and heat pumps , classification of refrigerants , Nomenclature ,	6		
	properties desired by refrigerat	its . Vapour compression refrigeration cycle . Methods of increasing			
11	COP of VCRS. Vapour absorpt	ion reirigeration systems.			
11	increasing thermal officiency on	d performance of internal combustion angines	4		
12	Gas turbines : Constant pressure	and constant volume gas turbines open and closed cycle gas turbines	+		
12	Methods of increasing thermal e	fficiency and specific work output of gas turbines.	4		
13	Renewable energy · Role and	importance of non conventional and alternate energy sources such as	4		
10	solar, wind, ocean bio-mass ar	id geothermal.			
14	Transmission of power : Intro	duction to various drives such as belt .rope .chain and gear drives .			
	Introduction to mechanical elem	ents such as keys, couplings and bearings in power transmission.	4		
		List of Text Books/ Reference Books			
	1. Thermodynamics by P.	K. Nag			
	2. Power plant by Morse				

	3. Heat Engines by P.L. Balani
	4. Hydraulic Machines by Jagdish Lal
	5. Renewable Energy resources by Tiwari and ghosal ,Narosa publication .
	6. Non conventional energy sources, Khanna publications
	7. Refrigeration and air conditioning by C.P. Arora
	8. Theory of Machines by Rattan .S.S
	9. Gas turbine theory by HiH Saravanamutoo.
	Course Outcomes (students will be able to)
1	Discuss the steam formation process and its properties. (K2)
2	Describe the working of steam boilers, mountings and accessories. (K2)
3	Explain the working principles of power developing systems such as steam turbines, gas turbines and
	internal combustion engines. (K2)
4	Describe the working principle of vapour compression and vapour absorption refrigeration systems.
	(K2)
5	Discuss different types of power transmission systems and their typical applications. (K2)
6	Explain the working principles of power absorbing devices such as pumps and compressors. (K2)
7	Explain need and importance of various renewable energy sources. (K2)
8	Employ this knowledge for energy saving in various devices. (K3)

	Course Code: BST 1102	Course Title: Introduction of Biological Sciences	Credits = 4		4
			L	Т	Р
	Semester: IV	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Xth Standard Biology course, 1	Physical Chemistry			
]	List of Courses where this course will be prerequisite			
	Biochemical Engineering, En	v. Eng and Proc Safety, Home Paper I and II	L		
			<u> </u>		
	Descripti	on of relevance of this course in the B. Chem. Engg. Program			
The	course offers fundamental princ	iples of biochemistry, genetics, molecular biology, and cell biology. Biol	ogical	funct	ion at
the r	nolecular level is particularly e	mphasized and covers the structure and regulation of genes, as well as,	the st	tructu	e and
synti	nesis of proteins, now these mol	ecules are integrated into cells, and now these cells are integrated into mul	ticein	llar sy	stems
and of The	organisms.	contribution to understand abamical reactions present in living organics	ma A	oo11	ic the
amel	lost solf preserving and solf ron	roducing unit. Many complex chamical reactions and complex transport p	IIS. A		is the
siliai	lest self-preserving and self-rep	roducing unit. Many complex chemical reactions and complex transport p	Tocess	ses oc	cui. A
	ooks like a chemical plant.	Course Contents (Tonics and subtonics)	Read	l hou	rc
1	Introduction to cells: Eukarvot	es and prokaryotes. Microhial cell	12	1. IIOu	15
1	Physical chemical and evolution	ionary aspect of life	12		
	Cell architecture and organelle	s			
	Cell cytoskeleton and its role	-			
	Asexual and sexual modes of r	eproduction: Binary fission, budding, fragmentation, formation of spores,			
	bacterial conjugation, mitosis,	and meiosis			
2	Chemical Components of the c	ell	12		
	Chemical bonds and groups, ch	nemical properties of water, weak noncovalent bonds			
	Carbohydrates: Function, Mo	pnosaccharides and Disaccharides, Polysaccharides; Glycoconjugates:			
	Proteoglycans, Glycoproteins,	and Glycolipids; Working with Carbohydrates			
	Proteins: Function, Peptides a	and Proteins, Structure of amino acids; Working with Proteins, Three-			
	Dimensional Structure of Prote				
	Nucleic acids: Function, Struct	ure, chemistry, DNA, RNA and Chromosomes			
	Lipids: Function, Storage Lip	as, Structural Lipids in Membranes, Lipids as Signais, Cofactors, and			
3	General Microbiology: Type	s and forms of microhas Different phases of growth Quantitative	0		
5	measurement of growth synch	proposes growth and continuous culture primary & secondary metabolite	0		
	production pure culture select	ive methods maintenance and preservation Transport and motility Cell			
	communication. Intracellular c	ompartments			
4	Energetics and Metabolism: E	nzymes and their controls: Free energy and biological reactions. Redox	12		
	potentials, Metabolic pathways	s: Introduction, Glycolysis and citric acid cycle; flux analysis			
	Energy Generation in Mitocho	ndria and Chloroplasts			
5	Genetics: DNA replication, re-	epair, and recombination; From DNA to Protein: How Cells Read the	12		
	Genome, Gene expression and	regulation: Induction and repression; Lac operon Model	L		
6	Introduction to biotechnology	, need for biotechnology, current applications of biotechnology (Food,	4		
	fuel, medical and environment	al)	L		
_		List of Text Books/ Reference Books			
1.	Microbiology, M.J. Pelczar, EC	CS Chang & N. Kriej			
2.	Prescott's Microbiology, Joann	e Willey, Linda Sherwood, Christopher J. Woolverton			
	ISBN-10 : 1259281590	· · · · · · · · · · · · · · · · · · ·			
3.	Harpers Illustrated Biochemist	ry 30th Edition (Harper's Illustrated Biochemistry); by Victor W.			
	Rodwell (Author), David Bene	der (Author), Kathleen M. Botham (Author), Peter J.			
	Kennelly (Author), P. Anthony	weil (Author)			
4	Lehninger Dringinlag of Disch	amietry			
7.	David L. Nelson Albert L. Lel	minger, Michael M. Cox			
	ISBN 071677108X, 97807167	71081			
	, , , , , , , , , , , , , , , , ,	Course Outcomes (students will be able to)	<u></u>		
1	Identify the general structure	and function of carbohydrates, lipids, proteins, enzymes, and nucleic			

	acids.	
2	Outline the general processes used by the cell to generate cellular energy from sugar and to generate the	
	energy and reducing agent needed for the citric acid cycle.	
3	Describe how DNA was shown to be the genetic material and how DNA is copied.	
4	Describe the structure and regulation of genes, and the structure and synthesis of proteins.	
5	Predict the results of genetic crosses involving two or more traits when the genes involved are linked or	
	unlinked	
6	Describe how cell divides and mutation takes place	
7	Describe different microorganism and their reproduction cycles	

	Course Code: CET 1401	Course Title: Chemical Engineering Operations	Credits =				
			L	Т	Р		
	Semester: IV	Total contact hours:60	2	2	0		
		List of Prerequisite Courses	1				
	Material & Energy B	alance Calculations, Physical Cheiistry, Organic Chemistry-I and II, Chem.					
	Eng. Thermodynamic	cs-I, Momentum and Mass Transfer					
	· · ·	List of Courses where this course will be prerequisite					
	This is a basic Chem Engg. course. It is required in almost all the courses, such as, Separation						
	Processes, Chemical	Engineering Laboratory I, II and III, Process Simulation Lab - I and II,					
	Home Paper I and II,	etc.					
	Descrip	ption of relevance of this course in the B. Chem. Engg. Program					
This	is a basic Chem Engg. course	e. The principles learnt in this course are required in almost all the courses an	nd thro	oughou	it the		
profe	essional career of Chemical E	ngineer	D I	1			
1	Introduction to Unit Operat	Course Contents (Topics and subtopics)	Requ	. hou	ſS		
1	Concepts of Convective and	diffusive transport		4			
2	Distillation of binary mixtur	uniusive italispoit		12			
2	column and multistage col	umn reflux reflux ratio need for reflux McCabe-Thiele Lewis-Sorel		12			
	methods of estimation of u	number of equilibrium stages Operating and feed lines minimum and					
	optimum reflux ratio. Trav	and column efficiency. Packed column distillation: rate based methods:					
	HETP. HTU. Ponchon Savar	rit method. Introduction to batch distillation and steam distillation. Methods					
	for multicomponent separation	ons: Fenske-Underwood-Gilliland Method					
3	Absorption and Stripping	of dilute mixtures: Fundamentals of absorption, equilibrium curves,		12			
	Operating lines from mate	rial balances, Number of equilibrium stages, Kremser Equation, Stage					
	efficiency and column perf	ormance, Absorption columns, Rate based methods for packed columns					
	(HTU, NTU), Design consid	erations: loading and flooding zones, pressure drop and column diameter					
4	Liquid Filtration: Filtration	theory: constant pressure, constant rate, and variable pressure-variable rate		10			
	filtration, Incompressible an	d compressible cake filtration, Continuous filtration, filter aids, Filtration					
	equipment, Selection, Sizing	and Scale-up					
5	Sedimentation, Classification	n and Centrifugal Separations: Design and scale up equations, Performance		8			
	evaluation, Sedimentation e	quipment, classifiers, centrifugal equipment, Sieving operations, types of					
6	sieving (dry, wet, vibro), ma	gnetic separators, and froth flotation, Selection, sizing and scale-up		10			
6	Drying of solids: Mechani	sm of drying, drying rate curves, Estimation of drying time, Drying		10			
	Equipment, operation, Proce	ess design of dryers, material and energy balances in direct dryers, Drying					
7	Disproducts	Energy requirements for size reduction and cash up considerations					
/	Characteria and considerations	Crushing and grinding aggingment; impact and coller mills fluid approx		4			
	mills wet/dry media mills S	election of equipment					
	mins, webury media mins, s	List of Text Books/ Reference Books					
1	Richardson I.F. Coulson	IM Harker IH Backhurst IR 2002 Chemical engineering: Particle					
1	technology and separation p	cocesses. Butterworth-Heinemann, Woburn, MA.					
2	Seader, J.D., Henley, E.J., 20	005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J.					
3	Svarovsky, L., 2000. Solid-I	iquid Separation. Butterworth-Heinemann, Woburn, MA.					
4	McCabe, W., Smith, J., Har	riott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. McGraw-					
	Hill Science/Engineering/Ma	ath, Boston.					
5	Green, D., Perry, R., 2007. I	Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill					
	Professional, Edinburgh.						
6	Dutta, B.K., 2007. Principle	s of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd,					
	New Delhi.						
		Course Outcomes (students will be able to)	-				
1	Know the significance and u	isage of different particulate characterization parameters, and equipment to					
L	estimate them						
2	Describe Size reduction energy	rgy requirements, estimate performance of equipment, selection and sizing					
2	or equipment	and an end on an end of the state of the sta					
13	Analyze intration data and	select systems based on requirements, estimate intration area for given	1				

	requirements, understand filter aids and their usage	
4	Draw T-y-x diagrams, and y-x diagrams, operating lines, feed line, bubble point, dew point	
	calculations, ternary phase diagrams, partition coefficient	
5	Describe two common modes of drying, industrial drying equipment	
6	Calculate mass transfer coefficient in various equipment, Calculate height and diameter required,	
	minimum solvent required in absorption, calculate height and diameter required, minimum reflux	
	required in distillation	

	Course Code: CET 1302	Course Title: Chemical Engineering Thermodynamics II	Crec	lits =	4			
			L	Т	Р			
	Semester: IV	Total contact hours:60	3	1	0			
	List of Prerequisite Courses							
	Applied Mathematics- I and II. Physical Chemistry, Chemical Engineering Thermodynamics-I							
		st of Courses where this course will be prerequisite						
	Separation Processes, Chemical	Reaction Engineering, Multiphase Reactor Engineering, Env. Engg.						
	and Proc Safety, Proc. Developm	nent and Engineering, Home Paper I and II						
	Description	n of relevance of this course in the B. Chem. Engg. Program						
This	course builds on the preceding	course by developing the concept of non-ideal mixing and provides	studer	nts wit	th the			
form	alism and insights necessary to ta	ackle real industrial problems like liquid-liquid phase splitting, azeotrop	y, nor	1-zero	heats			
of m	ixing, sparingly soluble gases a	and solids, electrolytes etc. Student who have taken this course may	y be (expect	ed to			
intel	ligently analyze practically the fu	ll spectrum of industrial chemical processes.						
	C	course Contents (Topics and subtopics)	Req	d. hou	rs			
1	General Equations of Equilibrium	rium: Equality of Chemical Potentials and Fugacity and Activity	2					
	Coefficients							
2	Models of the Liquid Phase: Ac	tivity Coefficient Models (Redlich-Kister, Wilson et al, UNIQUAC and	8					
	NRTL)							
3	Calculation of Excess Properties	·	4					
4	Raoult's Law and Modified Rad	oult's Law. Calculation of Bubble Point, Dew Point, T-x-y and P-x-y	8					
	diagrams							
5	Azeotropy		4					
6	Phase Stability and Liquid-Liquid	id Phase Splitting	8					
7	Solubility of Gases in Liquids (Unsymmetric Reference states, Henry's Law and the concept of infinite							
	dilution activity coefficient).							
8	Solubility of Solids in Liquids		2					
9	Debye Huckel Theory and Saltir	ng out of Non-Electrolytes	6					
10	Chemical Equilibrium in Ideal M	fixtures	4					
11	Chemical Equilibrium in Non-Ic	leal Reacting Mixtures	2					
12	Chemical Equilibrium in Hetero	genous Reacting Mixtures	2					
13	Chemical Equilibrium in Multi-	Reaction Systems	4					
11	Estimation of Activity Coefficie	nts by Group Contribution Methods : UNIFAC Model	4					
		List of Text Books/ Reference Books						
	Introduction to Chemical Engine	ering Thermodynamics: Smith, van Ness, Abbott						
	Chemical, Biochemical and Eng	ineering Thermodynamics: S. I. Sandler						
	Phase Equilibria in Chemical En	gineering: Walas						
	Molecular Thermodynamics of I	Fluid Phase Equilibria: Prausnitz						
		Course Outcomes (students will be able to)						
1	Use activity coefficient models t	o calculate excess properties of liquids						
2	Use modified Raoult's law to ca	lculate VLE of non-ideal mixtures						
3	Calculate chemical equilibrium	n non-ideal mixtures						
4	Calcuate solubility of gases in li	quids including aqueous solutions with electrolyes.						
5	Quantitatively describe salting o	ut effect						
6	Estimate mixture properties from	n group contribution methods						
			1					

	Course Code: GEP 1108	Course Title: Engineering Graphics II	Cre	dits =	2
			L	Т	Р
	Semester: IV	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Engineering Graphics – I				
	L	ist of Courses where this course will be prerequisite			
	Equipment Design and Drawing	g I and II			
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program			
A st	udent of Chemical Engineering	is required to know the various processes and also the equipment used	to c	arry o	ut the
proc	esses. Some of the elementary p	processes like filtration, size reduction, evaporation, condensation, cryst	allizat	ion et	c., are
very	common to all the branches of	technology. These and many other processes require machines and	equip	ments.	One
shou	Id be familiar with the design, i	manufacturing, working, maintenance of such machines and equipment	s. In	e subj	ect of
dra	wing is a medium through which	in, one can learn all such matter, because the "drawings" are used to replace drawings a lot of accurate information is conveyed which will not be made	resent	objec	ts and
proc	esses on the paper. Through the	urawings, a lot of accurate information is conveyed which will not be pr	actica	able th	rougn
a spo	Kell word of a written text. Dra	Course Contents (Tonies and subtonies)	Dog	d hai	120
1	Introduction to assembly and de	tail drawings	4hrs	/ weel	<u>115</u>
2	Hexagonal Headed Bolt & Nut	assembly	THIS	/ Weel	
3.	Assembly of Plummer Block				
4.	Assembly of Footstep Bearing				
5.	Assembly of Stuffing Box				
6.	Preparing Detail Drawing from	Assembly of Stuffing Box			
7.	Assembly of Expansion Pipe Jo	int			
8.	Assembly of Non-Return Valve	,			
9.	Assembly of Feed Check Valve				
10.	Introduction to Solid Works				
11.	Preparing part drawing, assemb	ly drawing of Plummer Block, Non-Return Valve etc. using Solid Work			
		List of Text Books/ Reference Books			
	1.Machine Drawing by N.D.Br	nat			
	2. Machine Drawing by Gill				
1		Course Outcomes (students will be able to)			
1			1		
1	Show assembly drawing and De	etail Drawing of simple equipment			

	Course Code: BSP 1103	Course Title: Biological Sciences Laboratory	Credits = 2 L T		2
					Р
	Semester: IV	Total contact hours: 30	0	0	4
	1	List of Prerequisite Courses	1		
1	Xth Standard Biology course, Pl	hysical Chemistry			
	L	ist of Courses where this course will be prerequisite			
	Biochemical Engineering, Env.	Eng and Proc Safety, Home Paper I and II			
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program			
In th	his course, students will develop	basic understanding of biological systems, their monitoring and quantifi	catior	1. The	focus
is to	teach basic skills in handling mi	croorganisms and different qualitative and quantitative analysis techniq	ues. A	Additic	onally,
anal	yzing effect of environmental pa	rameters that may have an influence on the growth of the microbe ha	is bee	n add	ressed
thro	ugh basic experiments.				
	(Course Contents (Topics and subtopics)	Req	d. hou	irs
1	Microbial Isolation and quantita	tive measurements		6	
	Microscopy				
	Sample preparation				
	Dilution & Plating/spectropl	notometric			
	Colony counting (demo of a	utomated colony counter)			
_	Growth kinetics				
2	Quantitative Analysis			6	
	Carbonydrates Protoins				
	 Flotenis Lipids 				
	 DNA/Nucleic acid (Demo) 				
	CHNS (Demo)				
3	Enzymology			6	
	Isolation and assay of enzyme fi	rom natural source			
	Primary screening assay for extr	acellular enzymes			
4	Environmental stress studies			6	
	• Aerobic/ Anaerobic stress (Fluorescence microscopy)			
5	Algai glowin			6	
5	Assays. VIEB12 and Antibiotic I	List of Taxt Books/ Reference Books		0	
1	Microbiology M L Palczar EC	S Chang & N. Kriej			
1	ISBN 13.078 0 07 462302 6	5 Chang & W. Khej			
2	Principles and Techniques of Bi	ochemistry and Molecular Biology			
~	Keith Wilson John Walker [•] Cat	nbridge University Press (2010) ISBN: 0521516358 9780521516358			
	rierar († 1961), volin († anter, Car	Course Outcomes (students will be able to)	I		
1	Develop basic understanding of	microbes and their monitoring and quantification			
2	Perform the quantitative analysi	s of biomolecules			
3	Understand the Enzyme Kinetic	s			
4.	Understand the responses of bio	logical systems to environment factors	1		

	Course Code: CEP 1701	Course Title: Chemical Engineering Laboratory-I	Cre	dits =	3
			L	Т	Р
	Semester: IV	Total contact hours: 90	0	0	6
	-	List of Prerequisite Courses			
1	Momentum and Transfer, Chem II	ical Engineering Operations, Chemical Engineering Operations – I and			
	Li	st of Courses where this course will be prerequisite			
	Chemical Engineering Laborato	ry II and III, and other Chemical Engineering Courses,			
	Description	n of relevance of this course in the B. Chem. Engg. Program			
Chei cour theor	nical Engineering lab provides st ses. It also exposes them to pract ry and practice. This particular la	udents the first hand experience of verifying various theoretical concept ical versions of typical chemical engineering equipments and servers as b focuses on fluid dynamics, distillation, filtration, drying and sedimentar	ts lean a bric tion.	rnt in 1 dge be	theory tween
	Course Contents (Topics and subtopics)				
1	9-13 Experiments on fluid dynamic	nics	24		
2	5-7 Experiments on distillation		16		
3	1-2 Experiments on sedimentation	Dn	4		
4	2-3 Experiments on filtration		6		
5	1-2 Experiments on drying		4		
6	2-3 Experiments on Thermodyna	amics	6		
	<u> </u>	List of Text Books/ Reference Books			
1	McCabe W.L., Smith J.C., and H	Harriott P. Unit Operations in Chemical Engineering, 2014			
2	Bird R.B., Stewart W.E., and Li	ghtfoot, E.N. Transport Phenomena, 2007			
3	Coulson J.M., Richardson J.F.	, and Sinnott, R.K. Coulson & Richardson's Chemical Engineering:			
	Chemical engineering design, 19	996.			
4	Green D. and Perry R. Perry's C.	hemical Engineers' Handbook, Eighth Edition, 2007.			
	r	Course Outcomes (students will be able to)	r		
1	Learn how to experimentally ver	rify various theoretical principles			
2	Visualize practical implementation	on of chemical engineering equipments			
3	Develop experimental skills				

	S	EMESTE	ER – V	7					
No. Subjects Credits Hrs /week				Marks for various Exams					
			L	Т	Р	C.A.	M. S.	E. S.	Total
CET 1716	Mathematical Methods in Chem. Engg.	4	3	1	0	20	30	50	100
CET 1102	Heat Transfer	4	2	2	0	20	30	50	100
CET 1201	Chemical Reaction Engineering	4	2	2	0	20	30	50	100
CET 1402	Separation Processes	4	2	2	0	20	30	50	100
CET 1202	Biochemical Engineering	3	2	1	0	10	15	25	50
CEP 1704	Chemical Engineering Laboratory-II	3	0	0	6	50		50	100
CEP 1702	Process Simulation Lab – I	2	0	0	4	25		25	50
	Total	24	11	8	10				600

	Course Code: CEP 1716	Course Title: Mathematical Methods in Chem. Engg.	Credits = 4		4
			L	Т	Р
	Semester: V	Total contact hours: 60	3	1	0
List of Prerequisite Courses					
1	Applied Mathematics – I and II Thermodynamics I and II	, Momentum and Mass Transfer, Chem. Eng. Operations, Chem Engg			
	Li	st of Courses where this course will be prerequisite	<u> </u>		
1	Transport Phenomena (CET 110				
2	Heat transfer, Chemical Reaction	n Engineering, Chemical Process Control, Optimization of Chemical			
	Engineering Systems, Home Pa	per I and II, Seminar, etc.			
	Description	of relevance of this course in the B. Chem. Engg. Program			
In th	nis course advanced mathematica	al tools are covered which will help students to solve complex probl	ems i	n Che	mical
Engi	neering. This course will serve a	as a bridge between the applied mathematics courses and their applica	tion t	o Che	mical
Engi	neering problems. Specifically,	the techniques learnt in this course will help problem formulation	and	soluti	on in
Cher	mical Reaction Engineering, Cher	nical Process Control, Heat Transfer and Transport Phenomena.			
1	Course Contents (Topics and subtopics)			Reqd. hours	
1	Vector algebra: scalar & vector	product (application to fluid flow problems)	12		
2	PDEs: Types, solution (penetra	tion theory, 2D conduction, counter-current heat exchanger, reaction-	8		
2	diffusion, dispersion model, etc.) ion constitute)	0		
3	Fourier series, transforms (dillu	ston equations)	8 0		
4	Laplace, z transform (process co	antion applications)	0		
5	Diffurnation analysis (consitivity)	analysis, scaling of equations)	0		
7	Billication analysis (sensitivity	analysis)	0		
/	returbation analysis (for bound	List of Taxt Books/ Reference Books	0		
1	Kreyszig E Advanced Enginee	ring Mathematics			
2	Pushpayanam S Mathematical	Methods in Chemical Engineering			
3	Kundu, P. and Cohen, I.M. Fluid	1 Mechanics.			
4	Jenson, V.G. and Jeffreys, G.V.	Mathematical Methods in Chemical Engineering			
	, , , , , , , , , , , , , , , , , , ,	Course Outcomes (students will be able to)	L		
1	Formulate a Chemical Engineer	ng problem into a mathematical problem			
2	Solve (analytically or numerica Applications	illy) ODE and PDE equations encountered in Chemical Engineering			
3	Assess stability of Chemical Eng	gineering systems			

	Course Code: CET 1102	Course Title: Heat Transfer	Credits = 4				
			L	Т	Р		
	Semester: V	Total contact hours: 60	2	2	0		
		List of Prerequisite Courses		1	_		
	Momentum and Mass transfe	r, Applied Mathematics I and II, Material and Energy Balance					
	Calculations						
	List of Courses where this course will be prerequisite						
	Chemical Reaction engineering	ng, Multiphase Reactor Engineering, Process Development and					
	Engineering, Home Paper I and	II, Env. Engg. and Process Safety, etc.					
	Description	of relevance of this course in the B. Chem. Engg. Program		6.1			
This	is a basic course that deals with	heat transfer, heat exchangers and their design. Heat transfer forms	one o	of the	basic		
pilla	rs of Chemical Engineering Educ	ation and is required in all future activities.	-				
1	C C	ourse Contents (Topics and subtopics)	Requ	l. hou	rs		
1	Revision of Basics of Heat tr	ansfer: Steady state and unsteady state conduction, Fourier's law,	4				
	Concepts of resistance to heat	transfer and the heat transfer coefficient. Heat transfer in Cartesian,					
	cylindrical and spherical coordin	late systems, insulation, critical radius.	4				
2	Convective heat transfer in fai	has transfer	4				
2	analogy between momentum and	in near transfer.	2				
3	Heat transfer in laminar and turk	1011.	6				
4	counter current and cross flows	mean temperature difference. NTU appilon method for exchanger	0				
	evaluation Heat transfer outsid	, mean temperature difference, NTO – epsilon method for exchanger					
	banks of tubes or cylinders pack	ted beds and fluidised beds					
5	Shell and tube heat exchange	rs: Basic construction and features TEMA exchanger types their	12				
-	nomenclature, choice of exchan	ger type, correction to mean temperature difference due to cross flow.	12				
	multipass exchangers. Design r	nethods for shell and tube heat exchangers such as Kern Method, Bell					
	– Delaware method						
6	Finned tube exchangers, air-coo	led cross flow exchangers and their process design aspects	3				
7	Compact Exchangers: Plate, Pla	te fin, Spiral, etc.: Construction, features, advantages, limitations and	3				
	their process design aspects						
8	Condensation of vapours: the	oretical prediction of heat transfer coefficients, practical aspects,	10				
	horizontal versus vertical conc	lensation outside tubes, condensation inside tubes, Process Design					
	aspects of total condensers,	condensers with de-superheating and subcooling, condensers of					
	multicomponent mixture, conde	nsation of vapours in presence of non-condensables.					
9	Heat transfer to boiling liquids:	Process design aspects of evaporators, natural and forced circulation	10				
	reboilers						
10	Heat transfer in agitated vessels	s: coils, jackets, limpet coils, calculation of heat transfer coefficients,	4				
11	heating and cooling times, appli	cations to batch reactors and batch processes	2				
11	Basics of Radiative heat transfer	and application to Furnace Design	2				
	Process Heat Transfer Kerry D.	List of Text Books/ Reference Books					
	Host Evolution Relief, Kellin D.C.	das A.E. Mayingan E					
	Process Heat Transfor C. Howit	gios A.D., mayinger r					
	Flocess heat Halisler, G. Hewit	Course Outcomes (students will be able to)					
1	Calculate temperature profiles in	a slab at steady state					
2	Calculate heat transfer coefficie	nt share at streaty state					
2	tube heat exchangers plate heat	exchangers, condensation, evaporation agitated tanks					
3	Calculate heat duty/outlet tempe	ratures/pressure drops/area required for various equipment like double					
	pipe heat exchangers, shell	and tube heat exchangers, plate heat exchangers, condensation					
	evaporation, agitated tanks.						
4	Identify and select type of shell	and tube exchanger based on TEMA classification.					

	Course Code: CET 1201	Course Title: Chemical Reaction Engineering	Cred	its =	4			
			L	Т	Р			
	Semester: V	Total contact hours: 60	2	2	0			
	List of Prerequisite Courses							
	Physical Chemistry, Material &	Energy Balance Calculations, Applied Mathematics I and II,						
	Momentum and Mass Transfer,	Chem Engg Thermodynamics I and II						
List of Courses where this course will be prerequisite								
Biochemical Engineering, Environmental Engineering and Process Safety, Proc. Dev and Engg.,								
Multiphase Reactor Engineering, Home Paper I and II								
	Description	n of relevance of this course in the B. Chem. Engg. Program						
Cher	mical Reaction Engineering is co	ncerned with the utilisation of chemical reactions on a commercial scal	e. Thi	is cou	rse is			
very	relevant but not limited to the for	llowing industries: Inorganic chemicals, organic chemicals, petroleum &	& petro	ochem	icals,			
Pulp	& paper, Pigments & paints, rul	bber, plastics, synthetic fibres, Foods, Dyes and intermediates, Oils, ol	eocher	nicals	, and			
surfa	actants, Minerals, cleansing agen	ts, Polymers and textiles, Biochemicals and biotechnology, pharmaceu	ıticals	and d	rugs,			
Mici	roelectronics, energy from conver	ntional and non-conventional resources, Metals						
	C	ourse Contents (Topics and subtopics)	Reqd	l. hou	rs			
1	Batch reactor (BR), continuous	s stirred tank reactor (CSTR), plug flow reactor (PFR), packed-bed		2				
	reactor (PBR)							
2	Design equations for BR, CST	R, PFR, PBR, and applications of design equations to various series-		6				
	and parallel- combinations of flo	ow reactors						
3	Rate laws and stoichiometry			4				
4	Isothermal reactor design applie	d to BR, CSTR, PFR, PBR		6				
5	Analysis of rate data: differentia	l method, integral method		4				
6	Multiple reactions			4				
7	Reaction mechanisms, pathways	s, bioreactions		6				
8	Catalysis and catalytic reactors	s, catalyst deactivation, external diffusion effects on heterogeneous		8				
	reactions, diffusion and reaction	in solid catalysts;	<u> </u>					
9	Introduction to non-isothermal r	eactor design		6				
10	Residence time distribution in re	eactors; models for non-ideal reactors		8				
11	Mass transfer with chemical re	action in fluid-fluid and fluid-fluid-solid systems; Model contactors,		6				
	pilot plants, and collection of sca	ale-up data						
_		List of Text Books / Reference Books						
1	Elements of Chemical Reaction	Engineering – H. Scott FOGLER						
2	Chemical Reaction Engineering	- Octave LEVENSPIEL	<u> </u>					
3	The Engineering of Chemical Ro	eactions – Lanny D. SCHMIDT	<u> </u>					
4	An introduction to Chemical En	gineering Kinetics and Reactor Design – Charles HILL	<u> </u>					
5	Heterogeneous Reactions, Vol. J	and II – L. K. Doraiswamy, M. M. Sharma						
	[Course Outcomes (students will be able to)						
1	design chemical reactors optima	Ily, using minimum amount of data	<u> </u>					
2	design experiments in a judiciou	is way to get the required data, if not available	<u> </u>					
3	fix some problems related to ope	erability and productivity	<u> </u>					
4	maintain and operate a process i	n a sate manner	<u> </u>					
5	increase capacity and/or selection	ivity and/or safety by improving/changing the reactor type/sequence						
1	and/or operating conditions							

	Course Code: CET 1402	Course Title: Separation Processes	Cred	Credits = 4		
			L	Т	Р	
	Semester: V	Total contact hours:60	2	2	0	
	1	List of Prerequisite Courses	1	1	1	
	Material & Energy Balance Calculations, Chemical Engineering Operations – I, Chem. Eng.					
	Thermodynamics-I and	d II, Momentum Transfer, Applied Mathematics I and II				
		List of Courses where this course will be prerequisite				
	Chemical Engineering	Laboratory, Process Simulation Lab - I and II, Home Paper I and II,				
	Proc Dev and Engg.,					
	Descript	ion of relevance of this course in the B. Chem. Engg. Program				
This	is a course further built up	on and in continuation with Chem. Engg. operations. It forms the b	asis o	c Che	mical	
Engi	neering Principles and hence i	t is required in almost all the courses and throughout the professional car	eer of	a Che	mical	
Engi	neer.					
		Course Contents (Topics and subtopics)	Reqd	l. hou	rs	
1	Extraction and Leaching of	ternary systems: Ternary diagrams, Hunter-Nash graphical method and		15		
	Maloney-Schubert graphical	l equilibrium-stage method, Solvent Selection, Operating point, number				
	of stages, maximum solvent	to feed ratios, minimum reflux, minimum number of stages, Introduction				
	to reactive extraction, aqueo	bus two phase extraction, extraction of biomolecules, supercritical fluid				
	extraction, Solid-liquid extra	raction: Solid - liquid equilibria, efficiency, performance evaluation,				
-	Equipment for extraction, lea	aching and their sizing, Design considerations		10		
2	Adsorption and Ion exch	hange: Liquid Adsorption, Ion-Exchange Equilibria, Equilibria in		12		
	Chromatography, Breakthrou Model Separation Efficien	ugn Curves, Kinetic and transport considerations, Convection-Dispersion				
	Coefficients Equipment for	r sorntion operations Scale Up and Process Alternatives Adsorntive				
	Membranes simulated-movi	ng-bed operation modes of operation				
3	Crystallization: Theory of so	slubility and crystallization phase diagram (temp/solubility relationship)		12		
5	Supersaturation Nucleation	Crystal Growth Population balance analysis method of moments for		12		
	rate expressions for, volu	me, area and length growth. CSD distribution. MSMPR operation.				
	evaporative and cooling (rat	te expressions), most dominant size, ideal classified bed, Precipitation,				
	Melt crystallization, Process	design of crystallizers and their operation				
4	Humidification and Cooling	Towers: Method of changing humidity and equipment, Cooling tower		9		
	process design, counter-curr	rent, concurrent and cross current, mass and heat balances in bulk and				
	interfaces, Estimation of air of	quality, performance evaluation of cooling towers.				
5	Membrane Separations: Typ	es of separations, reverse osmosis, ultrafiltration, gas separation, vapour		12		
	permeation and pervaporati	on, dialysis, electrodialysis, nanofiltration, Transport Through Porous				
	Membranes, Resistance Mo	dels, Liquid Diffusion Through Pores, Gas Diffusion Through Porous				
	Membranes, Transport Throu	ugh Nonporous Membranes, Solution-Diffusion for Liquid Mixtures, Gas				
	Mixtures, Concentration Pol	larization and Fouling, Membrane modules, arrangement of modules in				
	cascades, performance criter	ia and design considerations				
		List of Toxt Books/ Deference Books				
1	Richardson I.F. Coulson I	M Harker I H Backhurst I P 2002 Chamical angineering: Particle				
1	technology and separation p	marker, J.H., Dackhurst, J.K., 2002. Chemical engineering. Faither				
2	Seader ID Henley F I 20	005 Separation Process Principles 2 ed Wiley Hoboken N I				
3	McCabe W Smith I Har	iott P 2004 Unit Operations of Chemical Engineering 7 ed McGraw-				
5	Hill Science/Engineering/M	ath Boston				
4	Green, D., Perry, R., 2007.	Perry's Chemical Engineers' Handbook. Eighth Edition. 8 ed. McGraw-				
	Hill Professional. Edinburgh					
5	Dutta, B.K., 2007. Principle	es of Mass Transfer and Separation Process. Prentice-Hall of India Pvt.				
	Ltd, New Delhi.	1				
		Course Outcomes (students will be able to)				
1	List situations where liquid-	-liquid extraction might be preferred to distillation, Make a preliminary			_	
	selection of a solvent using g	group-interaction rules, Size simple extraction equipment			<u>.</u>	
2	Differentiate between chemi	isorption and physical adsorption, List steps involved in adsorption of a				
	solute, and which steps may	control the rate of adsorption, Explain the concept of breakthrough in				
1	fixed-bed adsorption		1			

3	Explain how crystals grow, Explain the importance of supersaturation in crystallization. Describe		
	effects of mixing on supersaturation, mass transfer, growth, and scale-up of crystallization		
4	Explain membrane processes in terms of the membrane, feed, sweep, retentate, permeate, and solute-		
	membrane interactions. Distinguish among microfiltration, ultrafiltration, nanofiltration, virus		
	filtration, sterile filtration, filter-aid filtration, and reverse osmosis in terms of average pore size.		
	Explain common idealized flow patterns in membrane modules.		

	Course Code: CET 1202	Course Title: Biochemical Engineering	Credits = 3			
			L	Т	Р	
	Semester: V	Total contact hours: 45	2	1	0	
	List of Prerequisite Courses					
	Chemical Reaction Engineering, Introduction to Biological Sciences and Bioengineering, Physical					
	Chemistry, Material and Energy	Balance Calculations, Chem Engg Thermodynamics I and II, Chem				
	Engg Operations					
	Li	st of Courses where this course will be prerequisite				
	Multiphase Reactor Engineering	, Env. Engg and Proc Safety, Proc Dev and Engg., Home Paper I and				
	11 Description	of relevance of this course in the R. Chem. Eng. Program				
This	course integrates Biological scie	a or relevance of this course in the D. Chem. Engg. 110gram				
1 1113	course integrates Diological sete	ices and chemical engineering and a requisite for Diobased industry				
	С	ourse Contents (Topics and subtopics)	Reqd. hours			
1	Introduction to Biotechnology: I	Role of chemical engineers in biotechnology	2			
2	Basic of Genetic Engineering an	d Tissue Culture : Recombinant DNA technology	2			
3	Structure function relations of en	nzymes; Classification,	2			
4	Mechanism of Enzyme action, Enzyme kinetics, inhibition and regulation			2		
5	Enzyme purification and characterization, Coenzymes, cofactors			2		
6	Enzyme reactors, thermostabilization, immobilization of enzymes			2		
7	Enzymes as industrial catalysts- Examples			2		
8	Bioprocess Development		3			
9	Plant and animal cell cultures for the production of biochemicals, Immobilized cells.					
11	Kinetics of microbial growth, models and simulations, Batch and continuous culture, Mixed microbia					
	culture,					
12	Biochemical process development and bioreactors using biological catalysts					
13	Integration of downstream processing with bioprocessing		4			
14	Transport phenomena in bioreactions and bioreactors		4			
15	Fundamentals of fermentation-	ndamentals of fermentation-submerged fermentation, Fermenter design and basic biochemical				
	engineering aspects of fermentation					
16	Reactor design for biochemical	reactions and scale up, Process Design for bioproducts, Bioreactor	4			
	design, Scale up of bioreactions/	reactors,				
		List of Text Books/ Reference Books				
	Biochemical Engineering Fundamentals, Bailey and Olis, Wiley					
	Biotransformations and Bioproc	esses, Doble, Anilkumar and Gaikar, Marcel Dekker				
<u> </u>		Course Outcomes (students will be able to)	1			
1	calculate microbial/enzymatic ki	netics parameters				
2	Design enzyme reactors and sca	e up termenters				
3	calculate biomass production/substrate requirements					
4	decide process parameters					
5	estimate energy equipments/ox	estimate energy equipments/oxygen requirements				
6	estimate bio-reactor size/time fo	r a given microbial/enzymatic process.				

	Course Code: CEP 1704	Course Title: Chemical Engineering Laboratory-II	Cred	Credits = 3		
			L	Т	Р	
	Semester: V	Total contact hours: 90	0	0	6	
	•	List of Prerequisite Courses				
1	Material and Energy Balance Calculations, Momentum and Mass Transfer, Chemical Engineering					
	Thermodynamics - I and II, Chem Engg Operations, Chemical Reaction Engineering, Separation					
	Processes					
	Lis	st of Courses where this course will be prerequisite				
Students will be able to understand pricinples in a better way so it is required in all the courses						
	Description	of relevance of this course in the B. Chem. Engg. Program				
Cher	Chemical Engineering lab provides students the first hand experience of verifying various theoretical concepts learnt in theory					
cour	ses. It also exposes them to practi	cal versions of typical chemical engineering equipments and servers as	a brid	lge be	tween	
theo	ry and practice. This particular la	b focuses on heat and mass transfer principles, chemical engineering	therm	odyna	imics,	
adso	rption, extraction and crystallizat	on.				
	Course Contents (Topics and subtopics)			Reqd. hours		
1	8-10 Experiments on heat transfer			20		
2	5-7 Experiments on mass transfer		16			
3	3-5 Experiments on chemical engineering thermodynamics		10			
4	2-3 Experiments on adsorption		6			
5	1-2 Experiments on extraction		4			
6	1-2 Experiments on crystallization	Dn	4			
		List of Text Books/ Reference Books				
1	McCabe W.L., Smith J.C., and H	Iarriott P. Unit Operations in Chemical Engineering, 2014				
2	Kern D.Q. Process heat reansfer	, 1950				
3	Treybal R.E. Mass-transfer Oper	ations. 1980				
4	Green D. and Perry R. Perry's C	nemical Engineers' Handbook, Eighth Edition, 2007.				
Course Outcomes (students will be able to)						
1	Learn how to experimentally ver	ify various theoretical principles				
2	Visualize practical implementati	on of chemical engineering equipments				
3	Develop experimental skills					
	Course Code: CEP 1702	Course Title: Process Simulation Lab - I	Credits = 2		2	
-------	---------------------------------------	---	-------------	--------	--------	
			L	Т	Р	
	Semester: V	Total contact hours: 60	0	0	4	
		List of Prerequisite Courses	1			
1	Applied Mathematics - I and	II, Material & Energy Balance Calculations, Chem. Eng.				
	Thermodynamics-I and II, Mor	nentum and Mass Transfer, Chemical Engineering Operations				
	Engineering Applications of Comp	puters, etc.				
	List	of Courses where this course will be prerequisite				
1	Process Simulation Lab – II, Hor	e paper I and II, etc.				
	Description of	f relevance of this course in the B. Chem. Engg. Program				
The	course will help to write programs	for chemical engineering problems in various basic as well as advand	ced pi	rogran	ıming	
softv	ware such as C/C++, SciLAB, Pytl	non etc. Students will solve problems using various numerical meth	ods f	or che	mical	
engi	neering subject which they have lea	rnt so far. The course is designed in such a way that students will get	an op	portui	nty to	
revis	se chemical engineering basic along	with developing software skills.				
	Соц	rse Contents (Topics and subtopics)	Req	d. hou	irs	
1	C programming/Visual Basic Rev	isions: Boundary layer on flat plate, Solution of ODE, interpolation,	9			
	Batch distillation design problem					
2	Introduction to Python and SCILA	B programming	6			
3	Material and energy balance (a) re	ecycle problems (b) humidity calculations (cooling tower design) (c)	6			
	adiabatic flame temperature (nume	rical integration)				
4	Thermodynamics: (a) Vapor press	ure estimation from equation of state b) VLE data correlation using	6			
	activity coefficient models (c) Hig	th Pressure VLE, gas solubility using EOS				
5	Fluid flow: (a) solution to laminar	flow problems (numerical) (b) piping system calculations	6			
6	Unit operations: (a) Absorption co	lumn design (b) Extractor design	6			
7	Reaction engineering: Concentrat	ion profiles of series/parallel reactions, PFR design, estimation of	6			
	rate constants for catalytic reaction	18				
		List of Text Books/ Reference Books	-			
1	Jelen, B., VBA and Macros: Micr	osoft Excel 2010				
2	www.scilab.in (Free Books for Ch	emical Engineering)				
1	(Course Outcomes (students will be able to)				
1	Use advanced programming softw	are with built in functions				
2	write own functions/macros					
3	Solve chemical engineering proble	ems using computers				

SEMESTER – VI										
No.	Subjects	Credits	Hrs/week			Marks for various Exams				
			L	Т	Р	C. A.	M. S.	E. S.	Total	
CET 1601	Material Science and Engineering	3	2	1	0	10	15	25	50	
CET 1203	Multiphase Reaction Engineering	3	2	1	0	10	15	25	50	
CET 1503	Process Safety & Environmental Engg.	4	2	2	0	20	30	50	100	
CET 1703	Chemical Process Control	4	3	1	0	20	30	50	100	
	Institute Elective – I	3	2	1	0	10	15	25	50	
CEP 1706	Chem. Eng. Laboratory-III	3	0	0	6	50		50	100	
CEP 1705	Process Simulation Lab – II	2	0	0	4	25		25	50	
GEP 1111	Equipment Design and Drawing-I	4	2	0	4	25		25	50	
	Total	24	13	6	14				550	

	Course Code: CET 1601	Course Title: Material Science and Engineering	Credits =		3
			L	Т	Р
	Semester: VI	Total contact hours: 45	2	1	0
	List of Prerequisite Courses				
	Structural Mechanics, Applied F	Physics I and II,			
	L	ist of Courses where this course will be prerequisite	1		
	Equipment design and drawing	I and II, Home Paper I and II, Process Development and Engg. Chem			
	Proj Engg. and Eco				
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program			
Selec	Selection of MOC for a given application, maintenance and corrective measures for various engineering materia				
		Course Contents (Topics and subtopics)	Reqd	l. hou	rs
1	Engineering Materials: Classific	cation, study of ferrous and non	3		
-	ferrous materials	a har ann a' fachan dala ann l'an d'ann	-		
2	Phase diagrams of steel, brass at	nd cupronickel and the applications	2		
2	of phase diagrams	a substantia ta magnagania laval	5		
3	Effect of structure of properties.		3		
4	Modification and control of mat	enal properties	4		
5	Correction Engineering, Electro	hadenais, Composite materials and Smart materials	4		
0	Correction Engineering: Electroc	is a factor of the second	10		
	preventive coatings Corrosion h	nehavior of important alloys such as			
	stainless steels brass etc	chavior of important anoys such as			
7	Theory of failure: Crystal defect	s plastic deformation Types of	10		
,	mechanical failure, fracture, fat	igue and creen	10		
8	Criteria for selection of material	s in chemical process industry	4		
		List of Text Books/ Reference Books			
1	The Essence of Materials for En	gineers, Robert W. Messler, Jr.			
2	Materials Science and Engineeri	ing, Raghavan V.			
3	Materials Science and Engineeri	ing, Van Vlack L.H.			
4	Engineering Materials and Appl	ications, Flin R.A., Trojan P.K.			
		Course Outcomes (students will be able to)			
1	Students will be able to draw sir	nple Phase Diagram			
2	Describe causes of mechanical f	ailure			
3	List types of corrosion and descr	ribe method to control them			

	Course Code: CET 1203	Course Title: Multiphase Reaction Engineering	Credit		= 3	
			L		Р	
	Semester: VI	Total contact hours: 45	2	1	0	
List of Prerequisite Courses						
	Chemical Reaction Engineering	, Momentum and Mass Transfer (CET 1101: Semester III), Heat				
	Transfer, Chemical Reaction En	gineering, Chemical Engineering Operations Separation Processes,				
	Chem Engg Thermodynamics I	and II				
	L	ist of Courses where this course will be prerequisite				
	Home Paper I and II, Proc Dev a	and Engg.,				
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program				
Mult	tiphase Reaction Engineering is c	concerned with the utilisation of chemical reactions on a commercial scal	e. Th	s cou	rse is	
very	relevant but not limited to the fo	ollowing industries: Inorganic chemicals, organic chemicals, petroleum 8	k petro	chem	icals,	
Pulp	& paper, Pigments & paints, ru	ibber, plastics, synthetic fibres, Foods, Dyes and intermediates, Oils, of	eochei	nicals	, and	
surfa	actants, Minerals, cleansing ager	its, Polymers and textiles, Biochemicals and biotechnology, pharmaceu	ticals	and d	rugs,	
MICI	coelectronics, energy from conver	Course Contents (Terries and subtories)	David	ham		
1	Classification of multiphase read	tors, qualitative description, examples of industrial importance	Requ	<u>ווויי.</u> ר	rs	
1	Hydrodynamics, scale up, proce	tors, quantative description, examples of industrial importance		2		
	reactors, case studies and proble	ms write				
	- Stirred tank reactors	1115, w.1.t.		10		
	- Bubble columns, packed bu	hble columns sectionalised hubble columns	8			
	- Internal loop and external lo	oon air-lift reactors iet loon reactors		4		
	- Fluid-fluid reactors such as	spray columns packed columns plate columns static mixers rotating		6		
	disc contactors	, spray columns, packed columns, plate columns, static miners, loading		0		
	- Fixed bed reactors, trickle b	ed reactors.		7		
	- Solid-liquid and gas-solid fl	uidised bed reactors, solid-gas transport reactors		8		
		List of Text Books / Reference Books				
1	Heterogeneous Reactions, Vol. I	and II – L. K. Doraiswamy, M. M. Sharma				
2	Fluid Mixing and Gas Dispersio	n in Stirred Reactors – G. B. Tatterson				
3	Bubble Column Reactors - W. I	D. Deckwer				
4	Fluidisation – D. Kunni and O. I	Levenspiel				
5	Gas Liquid Reactions – P. V. Da	anckwerts				
6	Fluidisation – J. F. Davidson and	d D. Harrison				
7	Random Packings and Packed T	ower Design – R. F. Strigel				
L		Course Outcomes (students will be able to)	1			
1	calculate operating regime for a	given reaction.				
2	calculate intrinsic kinetics from	the data on model contactors.				
3	calculate conversion / selectivity	y / size / temperature / pressure / power required for conducting a given				
<u> </u>	multiphase reaction equipment.					
1	1		1			

	Course Code: CET 1503	Course Title: Process Safety and Environmental	Cr	edits =	- 4
		Engineering	L	Т	Р
	Semester: VI	Total contact hours: 60	2	2	0
		List of Prerequisite Courses			
	Material & Energy Balance Calculation	ons, Chemical Reaction Engineering, Chemical Engineering			
	Operations, Momentum and Mass Transf	er, Biochemical Engg., Chem Engg Thermodynamics I and II			
	List of Cou	rses where this course will be prerequisite			
	Home Paper I and II, Chem Proc Dev and	l Engg.,			
	Description of releva	ance of this course in the B. Chem. Engg. Program			
The cou	arse 'Environmental Engineering and Pro	cess Safety' is highly relevant in all fields of activities, and pr	cocess	indust	ry in
particul	ar. A chemical engineer working in any f	unction of process industry should have working knowledge of	all the	e preva	uiling
safety, e	environment, and health standards, and ma	y be involved in / responsible for any or all of the following:		-	•
- site	process safety, environmental affairs				
- ass	isting the Health Safety Environment (HSI	E) team			
- em	ployee safety observations and pre-job risk	assessments			
- imp	blementation of HSE policies and guidelin	es to help ensure that all employees, contractors, and visitors en	joy hi	gh leve	els of
safe	ety, health and environmental protection; t	his reduces company's liability exposure.			
- imp	provement of process safety performance	e and reduction of risk by facilitating Process Hazard Analys	ses an	d Lay	er of
Pro	tection Analyses				
- inci	ident investigations for process safety and	environmental incidents			
- rec	ognising information that would be pertire	nent to process safety documentation and follow through with	site p	ersonn	el to
ens	ure information is well documented				
- dev	eloping and updating site Policies and Pro	cedures related to process safety and environmental.		_	
- cap	ital and other project teams to identify an	nd resolve regulatory issues, analyse process and property haza	rds, ai	nd esta	blish
pro	tective measures to mitigate risks to a toler	rable level.			
- assi	isting the plant with government interfaces	and inspections.	c		
- trai	ning using internal and external resourc	es; provides guidance to site management for implementation	1 of p	rogran	is or
con	trols to comply with environmental require	ements.		- 4 -	
- ma	naging site environmental programs includ	ing but not nimited to waste management, spin prevention & res	ponse,	etc.	iona
- pre	paration and submission of reports to app	support agencies to assure compliance with rederal, state and	local	regulai	ions.
obt	sponds to corporate requests in a timery in	unier.	tablick	ad for	now
- 000	iects. Ensure that the operating units can n	ants that provide operational nexionity within the schedule es	taonsi	ieu ioi	new
- pro	viding environmental guidance: develop p	rocedures and training and HSE support as needed			
- pro	ticipate in site objectives in the areas of co	munity relations			
The abo	we clearly highlights the necessity and s	ignificance of the course. This course will certainly add value	• to or	ır cher	nical
enginee	ring graduates	Enheunce of the course. This course will containly add value	. 10 01		meur
enginee	Course C	ontents (Topics and subtopics)	Rec	nd. hor	ars
1	Introduction to all prevailing internation	onal standards of Health Safety and Environment (HSE).		141 1100	
-	Environmental laws and regulations: Star	dards (air quality, noise, water). ISO 14000+		4	
2	Environmental impact assessment. Life c	vcle assessment (LCA)		4	
3	Pollution prevention in chemical manufac	cturing. effluent valorisation		2	
4	Air pollution: Air pollutants: sources	(specific pollutants), effects, and dispersion modelling, air		_	
	pollution, air quality, pollutants minimisa	tion and control, fugitive emissions (source and control). Noise		6	
	pollution			U	
5	Wastewater treatment: Groundwater	and surface water pollution, removal of specific water			
C	contaminants: Solid waste: Hazardous wa	iste		6	
6	Inherent safety: Major disasters (e.g. Flix	borough, UK: Bhopal, India: Seveso, Italy: Pasadena, Texas:			
-	Texas City, Texas; Jacksonville, Florida;	Port Wentworth, Georgia)		8	
7	Toxicology; Industrial hygiene	, , , , , , , , , , , , , , , , , , , ,		2	
8	Source models: Toxic release and dispers	ion models		6	
9	Fires and explosions; Concepts to preven	t fires and explosions		4	
10	Chemical reactivity	*		2	
11	Reliefs and reliefs sizing: Hazard identifi	cation; Risk assessment		6	
12	Safety procedures and designs	····· , ·····		4	
13	Some case histories			6	
				5	

List of Text Books / Reference Books				
1	Chemical Process Safety: Fundamentals with Applications – Daniel A. CROWL and Joseph F. LOUVAR			
2	Guidelines for Process Safety Management, Environment, Safety, Health, and Quality – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)			
3	Environmental Engineers' Handbook – Irene LIU (Editor)			
4	Chemical Process Safety Learning from Case Histories – Roy E. SANDERS			
5	Guidelines for Process Safety Documentation – Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)			
6	Environmental and Health and Safety Management: A Guide to Compliance – Nicholas P. CHEREMISINOFF, Madelyn L. GRAFFA			
7	Environmental Pollution Control Engineering – C. S. Rao			
8	Environmental Engineering – H. S. Peavy			
	Course Outcomes (students will be able to)			
1	calculate BOD / COD for a given composition of effluent stream, Estimation of bio Kinetics			
2	calculate adiabatic lapse rate and determine conditions for suitability of atmospheric dispersion, effective stack height, chimney design			
3	calculate concentrative of pollutant at any point in the neighbourhood of emission given atmospheric conditions like wind, dispersion, environmental factors etc.			
4	calculate size/time/power required for primary clarifier, secondary treatment, tertiary treatment, sizing of different types of Biological treatments etc.			
5	identify hazards in a given process and assess the same and provide solutions for operating safely.			
6	specify safety requirements for storage and handling of a given chemical.			

	Course Code: CET 1703	Course Title: Chemical Process Control	Cre	Credits = 4		
			L	Т	Р	
	Semester: VI	Total contact hours: 60	3	1	0	
List of Prerequisite Courses						
	Material and Energy Balance	Calculations, Applied Mathematics I and II, Mathematical Methods in				
	Chem Engg., Momentum and	Mass Transfer, Chemical Reaction Engineering, Heat Transfer, Chem				
	Engg Operations, Separation Pro	Dcesses,				
	L	ist of Courses where this course will be prerequisite				
	Chemical Engineering Laborato	ry, Procsess Sim Lab, Home Paper I and II, Proc Dev and Engg.				
	Descriptio	on of relevance of this course in the B. Chem. Engg. Program				
Proc	ess control plays a very critical	role in the context of actual operation of a chemical plant. Most of the	he co	ore che	mical	
engi	neering courses focus on the stead	dy state operation. In the real life environment, process is continuously sub	ojecte	ed to v	arious	
distu	urbances which deviates the opera	tion from the designed steady state. This course specifically prepares stud	ents	to asse	ss the	
impa	act of such disturbances and equip	them with the tools available with the chemical engineer to tackle these s	ituati	ions.		
		Course Contents (Topics and subtopics)	Req	d. hou	rs	
1	Introduction to process control:	Motivation, importance, components of control system, control relevant	3			
	process modeling					
2	Dynamics of first, second and	higher order systems: Examples systems, characterizing parameters,	12			
	features, etc.					
3	Feedback control: Motivation, elements of feedback control, servo problem, regulatory problem, effect					
_	of proportional, integral and derivative action, responses of P, PI and PID controllers					
4	Controller selection and design	n: Controller selection guidelines, controller design criteria, common	6			
5	control loops (level, pressure, fl	bw, temperature), reactor control, distillation control				
Э	Controller tuning: Open loop tu	ning, closed loop tuning, direct synthesis, commercial controller tuning	6			
6	Stability analysis: Laplace doma	in analysis fraguency domain analysis	6			
7	Multivariable and advanced co	ntrol: Cascade control dynamic matrix control internal model control	12			
'	basics of ratio control, split ran	ge control, override control, adaptive control, inferential control, model	12			
	predictive control, geometric co	ntrol				
8	Digital control: Discrete time sy	stems, basics of z-transforms, stability analysis	3			
9	Electronics for control systems:	Distributed control system, Programmable Logic Controllers, SCADA,	3			
	HMI					
10	Instrumentation: Basic measur	ement devices and working principles for level, flow, pressure and	3			
	temperature, types of control val	ves, etc.				
		List of Text Books/ Reference Books	,			
1	Stephanopoulos, G.Chemical Pr	ocess Control: An Introduction to Theory and Practice.				
2	Bequette, B.W.Process Control:	Modeling, Design, and Simulation.				
3	Seborg, D.E. and Mellichamp, L	J.A. and Edgar, T.F. and Doyle, F.J.Process Dynamics and Control.				
4	Johnson, C.D. Process Control In	Istrumentation Technology.	L			
1	Understand the importance of p	course Outcomes (students will be able to)	1			
2	Design a control strategy for key	unit operations (reactor, distillation column, etc.)				
3	Tune a controller to reject distur	hances or manage operating point transitions				
4	Understand working principles	of basic instruments available for flow pressure level and temperature				
·	measurement	or case instruments avaluate for now, pressure, iever and temperature				
5	Describe modern industrial cont	rol system architecture				

	Course Code: CEP 1706	Course Title: Chemical Engineering Laboratory-III	Cre	dits =	3
			L	Т	Р
	Semester: VI	Total contact hours: 90	0	0	6
	•	List of Prerequisite Courses			
	Material and Energy Balance C	Calculations, Momentum and Mass Transfer, Heat Transfer, Chemical			
	Reaction Engineering, Chemical	Engg Operations, Separation Processes, Chem Engg Lab I and II			
	L	ist of Courses where this course will be prerequisite			
	Home Paper I and II, Chem Proc	e Dec and Engg.,			
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program			
Cher	mical Engineering lab provides s	tudents the first hand experience of verifying various theoretical concept	s lear	nt in t	heory
cour	ses. It also exposes them to pract	tical versions of typical chemical engineering equipments and servers as	a bric	lge be	tween
theo	ry and practice. This particular	lab focuses on chemical reaction engineering, multiphase reaction eng	ineer	ing, p	rocess
dyna	amics and control.				
		Course Contents (Topics and subtopics)	Regd. hours		irs
1	5-7 Experiments on Chemical R	eaction Engineering	16		
2	2-4 Experiments on Bubble colu	mn	6		
3	3-5 Experiments on MACs		10		
4	2-3 Experiments on fluidized be	ds	6		
5	5-7 Experiments on process dyn	amics	16		
6	2-4 Experiments on process con	trol	6		
7					
		List of Text Books/ Reference Books			
1	Fogler H.S. Essentials of Chemi	cal Reaction Engineering, 2010			
2	Doraiswami L.K. and Sharma M	I.M. Heterogeneous reactions, volume I and II.			
3	Stephanopoulos, G.Chemical Pr	ocess Control: An Introduction to Theory and Practice.			
4	Green D. and Perry R. Perry's C	hemical Engineers' Handbook, Eighth Edition, 2007.			
		Course Outcomes (students will be able to)			
1	Learn how to experimentally ver	rify various theoretical principles			
2	Visualize practical implementation	on of chemical engineering equipments			
3	Develop experimental skills				

	Course Code: CEP 1705	Course Title: Process Simulation Lab - II	Credits = 2		2		
			L	Т	Р		
	Semester: VI	Total contact hours: 60	0	0	4		
	List of Prerequisite Courses						
	Applied Mathematics – I and II	, Material & Energy Balance Calculations, Chem. Eng. Thermodynamics-					
	I and II, Momentum and Mass	Transfer, Chemical Engineering Operations, Engineering Applications of					
	Computers, Process Simulation	Lab - I (CEP1702), Chemical Reaction Engineering (CET 1201)					
]	List of Courses where this course will be prerequisite					
	Project II - Home paper I and I	Ι					
	Descripti	on of relevance of this course in the B. Chem. Engg. Program					
In th	nis course, students will devel	op a computer software for design and optimization of various chem	nical	engin	eering		
equi	pments. This course will help st	udents to complete home paper which is Techno-economic feasibility and	alysis	of che	emical		
man	ufacturing facility. The course	content is similar to the activities carried out by any organization work	king (on "de	etailed		
engineering packages" In this course student will learn the widely used chemical engineering software such as A							
		Course Contents (Topics and subtopics)	Req	d. hou	ırs		
1	T (1 ())		0				

	Course Contents (Topics and subtopics)	Reqd. hours
1	Introduction to process simulation software (Prediction of multicomponent VLE using Aspen, column	9
	design, rating, reactor balances)	
2	Heat transfer: triple effect evaporator, STHE design	6
3	Separation processes: Design of crystallizers, Distillation, Chromatography, spray dryers etc	9
4	Design of multiphase reactors: stirred vessels, Bubble columns	6
5	ASPEN simulation: azeotropic distillation, reactive distillation, column sizing	9
6	Process control: P, PI, PID controller simulations, DCS Control system	6

	List of Text Books/ Reference Books				
1	Coker, Ludwig's Applied Process Design for Chemical and Petrochemical Plants				
2	2 Perry's Chemical Engineering Handbook				
3	Albright's Chemical Engineering Handbook				
4	ASPEN manual				
	Course Outcomes (students will be able to)				
1	Design any equipment once the guidelines are available				
2	Optimize the process conditions				
3	Techno-economic feasibility analysis of chemical manufacturing facility				

	Course Code: GEP 1111	Course Title: Equipment Design & Drawing	Credits = 4		1
			L	Т	Р
	Semester:VI	Total contact hours: 90	2	0	4
		List of Prerequisite Courses		1	
	Structural Mechanics, Materials	Science and Engineering, Engineering Graphics I and IIm			
	L	ist of Courses where this course will be prerequisite			
	Home Paper I and II, Equipment	nt Design & Drawing II, Chemical Project Engineering and Economics,			
	Process Dev and Engineering				
	Descriptio	n of relevance of this course in the B. Chem. Engg. Program			
Kno	wledge of chemicals and chemic	al producing equipments and plants are essential for professional Chen	nical e	nginee	er and
Tech	nologist. This subject will help s	tudents to understand use of basics of applied science in the form of m	lechan	ics, str	ength
of m	aterials, selection of materials an	d suitable manufacturing techniques and the details of operating condit	ions o	f equip	oment
and	its design procedure. This will	help Chemical engineer to understand process equipments and their de	esign (concep	ot and
secti	on of proper equipments for the	designed functions of the plats. It will help them to understand various	design	codes	used
for f	abrication of these equipments	and the various types of destructive and non destructive tests perform	ed on	equip	ments
befor	re and after assembly of equipme	nt defining its capacity, reliability, and its life.			
	(Course Contents (Topics and subtopics)	Reqd	l. hour	S
1	Basic design concepts, use of sta	indards and design stresses and factor of safety, selection of materials,		8	
	working conditions, corrosion and	nd its effects on equipments. Standard design codes			
2	Design of pressure vessels: stres	ses acting on pressure vessels, operating conditions, selection of		8	
	materials, pressure vessel codes,	design stress and design criteria's, Design of Shell, Head, Nozzle,			
	Flanged joints for heads and noz	zles			
3	Design of Storage vessels: Stora	ge of various types of fluids and liquids in tanks, Loss mechanism of		8	
	storage of volatile and non-volat	ile liquids and gases, Types of storage vessels, Vessels for storing of			
	gases, method of storage of gase	s, Design of rectangular and cylindrical tank with components such as			
	shell, bottom plate, self-support	ng roof design, types of roofs,			
4	Testing of process equipment, v	arious		8	
5	Mechanical Design of Reaction	Vessels.	8 hou	urs(Th	eory)
	a) Design of shells subjec	ted to internal and external pressures.		12	
	b) Types of Jackets /Coils	used for heating and cooling in reaction vessels and their design.	hours	(Pract	ticals)
	c) Type of agitators and the	neir design.			
	Design of agitator system compo	onents such as shafts, stuffing box etc.			
7	Mechanical Design of Heat Exc	nangers	8 hou	irs (th	eory)
	a) Components of shell and tul	be type heat exchangers.			
	b) Design of various component	its of heat exchangers such as Fixed tube sheet type, U tube, Floating	1	2 hour	S
	head etc.		(pi	ractica	ls)
0	Various codes for heat exchange	rs.	(1	(.1	、 、
8	Mechanical design of distillation	i columns	6 hou	urs (the	eory)
	a) various components of colu	mns such as trays, packings, downcomers, bubble cap etc	1	2 noui	S
	b) Design of shell for various s	tress conditions.	(pi	ractica	15)
	Tray supports and their design	List of Tort Deales/ Deference Deales			
	Process equipment Design By V	V Mahajani S B Umarij	1		
	Equipment Design by Dawanda	V Manajani, S. D. Omarji			
	Process equipment Design by V	2010 G			
	Wolding Technology by O P KI	oung Walding Tachnolov by Little			
	weiding reenhology by O.F. K	Course Outcomes (students will be able to)	<u> </u>		
1	Understand the use of basic con-	vents of science and engineering	1		
2	Select of material of construction	n and fabrication techniques			
2	Use of design concept for design	n and radioauton techniques.	├		
1	Use standard aggingments and	ang process equipment considering its maximum operating conditions.			
4	components	se racior or safety while designing non standard equipments and their			
5	Use of sefety norms in febrication	on of aquinments the understand importance of testing of aquinments	<u> </u>		
5	Use of safety norms in faoricatio	or equipments the understand importance of testing of equipments.	<u> </u>		

SEMESTER – VII (will be of 10 weeks duration)											
No.	Subjects	Credits Hrs/week			Marks for various Exams						
			L	Т	Р	С. А.	M. S.	E. S.	Total		
CET 1504	Chemical Project Engg. & Economics	3	3	1	0	10	15	25	50		
CET 1505	Process Development and Engineering	4	4	2	0	20	30	50	100		
HUT 1102	Perspectives of Society, Sci. & Tech.*	3	3	1	0	10	15	25	50		
	Institute Elective – II	3	3	2	0	10	15	25	50		
CEP 1717	Optimization of Chem. Engg. Systems	2	2	0	4	25		25	50		
CEP 1708	Project 1: Seminar	2	0	0	4	50			50		
CEP 1709	Project 2: Home Paper – I	2	0	0	4	50			50		
CEP 1710	Internship	6							50		
	Total	25	15	6	12				450		

* This courses may be offered in the usual classroom mode or online mode as an NPTEL / Swayam course. The Equivalent NPTEL course will be identified by the Department every year.

	Course Code: CET 1504	Course Title: Chemical Project Engg and Economics	Credits		3	
			L	Т	Р	
	Semester: VII	Total contact hours: 45	2	1	0	
		List of Prerequisite Courses				
	Material and Energy Balance Ca	lculations, Equip Des and Dwg I, Energy Engineering, Ind Eng Chem.				
	Li	st of Courses where this course will be prerequisite				
	Home Paper I and II					
	Description	of relevance of this course in the B. Chem. Engg. Program				
This	course is required for the future	professional career				
	C	ourse Contents (Topics and subtopics)	Read	t. hou	irs	
1	Introduction to greenfield proje	cts and global nature of projects: Impact of currency fluctuations on	6		10	
-	Project justification and cash f	lows and Concepts of "Quality by Design" including typical design	Ĩ			
	deliverables and understanding	constructability, operability and maintainability during all stages of				
	project execution. Meaning of P	roject Engineering, various stages of project implementation				
2	Relationship between price of	a product and project cost and cost of production, EVA analysis.	8			
	Elements of cost of production	n, monitoring of the same in a plant, Meaning of Administrative				
	expenses, sales expenses etc. In	troduction to various components of project cost and their estimation.				
	Introduction to concept of Inflation, location index and their use in estimating plant and machinery					
	cost. Various cost indices, Rela	tionship between cost and capacity.				
4	Project financing: debt: Equity ratio, Promoters' contribution, Shareholders' contribution, source of					
	finance, time value of money	. Concept of interest, time value of money, selection of various				
	alternative equipment or system	based on this concept. Indian norms, EMI calculations. Depreciation				
	concept, Indian norms and the	ir utility in estimate of working results of project. Working capital				
~	concept and its relevance to proj		7			
2	Estimate of working results of	proposed project. Capacity utilization, Gross profit, operating profit,	/			
	profit before tax, Corporate tax,	dividend, Net cash accruais. Project evaluation: Cumulative cash flow				
	analysis bleak-Even analysis,	incremental analysis, various ratios analysis, Discounted cash now				
6	Process Selection Site Selection	Feasibility Report	4			
7	Project: Conception to Commis	sioning: milestones. Project execution as conglomeration of technical	6			
'	and non technical activities, con	tractual details. Contract: Meaning, contents, Types of contract, Lump-	0			
	sum Turnkey (LSTK). Eng. Pro	curement and Construction (EPC). Eng. Procurement and Construction				
	Management (EPCM). Mergers	and Acquisitions				
8	Reading of Balance Sheets and	evaluation of Techno-commercial Project Reports.	3			
9	PERT, CPM, bar charts and net	work diagrams	4			
		List of Text Books/ Reference Books			·	
	Chemical Project Economics, M	ahajani V. V. and Mokashi S M.				
	Plant Design and Economics for	Chemical Engineers, Peters M.S., Timmerhaus K.D.				
	Process Plant and Equipment Co	ost Estimation, Kharbanda O.P.				
			1			

	Course Outcomes (students will be able to)				
1	Calculate working capital requirement for a given project				
2	Calculate cost of equipment used in a plant total project cost				
3	Calculate cash flow from a given project				
4	Select a site for the project from given alternatives				
5	List out various milestones related to project concept to commissioning				

	Course Code: CET 1505	Course Title: Process Development and Engineering	Credits = 4		4		
			L	Т	Р		
	Semester: VII	Total contact hours: 60	3	1	0		
	List of Prerequisite Courses						
	All chemical Engineering subject	cts, Material Science and Engineering, Env Engg and Proc Safety					
-	Li	st of Courses where this course will be prerequisite					
	Home Paper I and II						
	Description	n of relevance of this course in the B. Chem. Engg. Program					
This proc	course integrates all the chemical esses and evaluating alternatives	al engineering and allied subjects for appropriate design of process pla	ints, in	select	ion of		
	0	Course Contents (Topics and subtopics)	Req	d. hor	ırs		
1	Development of a preliminary F	Process System: Modular approach	2				
2	Multiple process synthesis, sele	ction of process, basic economic evaluation	2				
3	Sequencing of operations and in	tegration in processes	2				
4	Batch vs continuous vs semi-ba	tch processes- Scale up	3				
5	Process Engineering aspects of	low and medium volume chemicals including process development.	3				
6	Concept of dedicated and multiproduct plant facilities, pilot plant, mini plants						
7	Development and evaluation of	alternative flow sheets	3				
8	Scale up aspects; identification of controlling steps of process,						
9	Green Engineering principles		6				
10	Utilisation of energy; cost of uti	lities, heat exchange networks	3				
11	Process intensification		3				
12	Preparation of Conceptual proce	ess and instrumentation diagrams	3				
13	Preparation of process specifica	tions for typical equipment.	3				
14	Safety and Risk of chemical pro	cesses	3				
15	Learn from mistakes		3				
		List of Text Books/ Reference Books					
	Industrial Chemical Process De	sign, D. L. Erwine					
	Laboratory Chemical Process D	evelopment, Anderson N.	_				
	Organic Unit Processes, Groggi	ns					
	Chemical Process Engineering:	Design and Economics, Silla H.	_				
	Handbook of Chemical Process	Development, Chandalia S. B.					
-	Conceptual Chemical Plant Des	ign, Douglas J. M.	_				
		Course Outcourse (students will be able to)					
1	to colored a structure for a surround	Course Outcomes (students will be able to)					
2	Determine strategy for correction	nom a norticular process					
2	Propage specifications for a part	ioular aquinment					
1	Calculate utility requirements						

	Course Code: HUT 1102	Course Title: Perspectives of Society Science and Technology	Credits = 3		3
			L	Т	Р
	Semester: VII	Total contact hours: 45	2 1		0
-		List of Prerequisite Courses			
	All the Science and Engineering Courses so far				
	Li	st of Courses where this course will be prerequisite			
	Home Paper I and II				
	Description	of relevance of this course in the B. Chem. Engg. Program			
This	course is relevant for future prof	essional career of a Chemical Engineer.			
	C	ourse Contents (Topics and subtopics)	Req	d. hou	rs
1	History of Science and Technological	bgy and its relevance in the respective era	4		
2	Recent developments in technol	ogy (chemical, biotechnology energy, telecommunications, etc.) and	4		
	their influence on society				
3	Economics and Sustainable Dev	Economics and Sustainable Development 4			
4	Value system and Ethics in the profession of Technology, Science and Engineering.				
5	Problems before the World and India. Various approaches in solving them.				
6	Integrating Issue: Society and Science				
7	Industrial disasters and their effe	ect on science and technology and society	3		
8	Environmental degradation, glo	bal warming and their effect on science and technology and society	3		
9	IPR issues and their relevance to	science and technology and society	3		
10	Some aspects of future of Societ	y, Technology, Science and Engineering.	3		
11	Interdependence of Theology an	d Science	3		
12	Impact of climate change on the	nexus of water, energy and water	2		
13	Technology and World Peace R	ole of Innovation and R&D	3		
14	Industry-Academia Interaction t	o Enhance Standard of Living	3		
		List of Text Books/ Reference Books			
1	Science, Technology and Societ	y: An Encyclopedia by Sal Restivo, Oxford University Press 2005			
2	Science, Technology and Soci Croissant, Sal P. Restivo	ety: A Sociological Appraoach by Wenda K. Bauchspies, Jennifer			
3	Vision of STS: Counterpoints	n Science Technology and Society Studies by Stephan H. Cutcliffe,			
	Carl Mitcham, Sunny Press 201	2			
		Course Outcomes (students will be able to)			
1	List some historical scientific de	velopments			
2	State importance and implication	ns of patents and some of the relevant laws			

	Course Code: CEP 1717	Course Title: Optimization of Chemical Engineering Systems	Credits = 2			
			L	Т	Р	
	Semester: VII	Total contact hours: 90	2 0			
-		List of Prerequisite Courses				
1	Applied Mathematics – I and II,	All the Chemical Engieering Courses				
	Li	st of Courses where this course will be prerequisite				
1	Home Paper I and II					
	Description	n of relevance of this course in the B. Chem. Engg. Program				
In th	is course, various optimization e	ncountered in Chemical Engineering are covered. Many Chemical Engi	neerir	ıg prot	olems	
enco	ounter trade-offs between two or	more parameters and thus formulation and solution of an optimization	ı prob	lem he	elps a	
Chei	mical Engineer to obtain the best	solution.				
	Course Contents (Topics and subtopics)					
1	Equation scaling, normalization, convergence					
2	Integer programming (simple scheduling)					
3	Linear programming (simple pro	oduction planning, fuel blending)	6			
4	Quadratic programming (data fit	tting, optimal control)	6			
5	Nonlinear programming (Reflu	x ratio optimization, consecutive reaction, reactor-separator recycle	10			
	systems)					
6	Mixed integer linear programmi	ng (flowsheet optimization, supply chain optimization)	10			
7	Multi-objective optimization (de	esign and operation of chemical processes)	8			
	1	List of Text Books/ Reference Books				
1	Floudas, C.A. Nonlinear and mi	xed-integer optimization: Fundamentals and applications				
2	Vanderbei, R.J. Linear program	ming: Foundations and extensions	\vdash			
3	Collette, Y. and Siarry, P. Multi	-objective optimization				
L		Course Outcomes (students will be able to)				
1	Formulate a Chemical Engineer	ing problem into an optimization problem	<u> </u>			
2	Solve (analytically or numeric	cally) optimization problems encountered in Chemical Engineering				
	Applications					

	Course Code: CEP 1708	Course Title: Project 1: Seminar	Cred	lits =	2		
			L T				
	Semester: VII	Total contact hours: 60	0	0	4		
	List of Prerequisite Courses						
	All Courses						
	Li	st of Courses where this course will be prerequisite					
	Home paper I and II						
	Description	1 of relevance of this course in the B. Chem. Engg. Program					
This princ envir	course enables students to gath ciples, present a written and or ronment later on in their career.	er scientific information on a particular topic, analyze the information ral summary on that topic. This enables the students to function	n fron in a p	n Scie profess	ntific		
	0	ourse Contents (Topics and subtopics)	Requ	l. hou	rs		
1	Students will be required to pro- allied subjects and submit in th and will be evaluated based on t (i) Introduction: 2 pages maxim (ii) Exhaustive review of literatu (iii) Critical analysis of the liter 50% weightage. The critical ana are the papers technically correct is not, specify what you think it the literature appropriate? Are the any loopholes in the observation quantitative comparison of obse Each student will also be requi 40% for the presentation and 60 students every year by the coord	pare a critical review of selected topics in Chemical Engineering and e form of a standard typed report. Typically, the report should contain he following points: um, rre (including figures): $10 - 12$ pages: 50% weightage ature and comments on the analysis (including figures): $10 - 12$ pages: lysis of literature should include the following points: ct?; are assumptions reasonable; is the reasoning logical? If you think it is incorrect and suggest the correct approach. Are the methods used in here any internal contradictions or computational errors and are there is? If so, please explain. Critical analysis of papers should also contain rvations, results and conclusion amongst the various papers. red to make an oral presentation of the review. Weight age would be 0% for the report. Additional details and requirements are given to the linator of this activity.					
		List of Text Books/ Reference Books					
1	Collect literature on a given top	Course Outcomes (students will be able to)	1				
2	Classify the collected literature	into various categories	<u> </u>				
3	Summarize and write a few para	graph on each paper					
4	Compare the information conter	t given in different papers					
5	Analyze a particular paper base	d on principle of Chemical Engineering					
6	Write a report based on his / her	work					
	*		1				

	Course Code: CEP 1709	Course Title: Project 2: Home Paper – I	Cred	its = 🛛	2	
			L	Т	P	
	Semester: VII	Total contact hours: 60	0	0	4	
	List of Prerequisite Courses					
	All					
	Lis	st of Courses where this course will be prerequisite				
	Home Paper II					
	Description	of relevance of this course in the B. Chem. Engg. Program				
This	course enables students to integ	rate all the subjects that they have learnt and design plants / processe	s fron	h Chei	nical	
Engi	neering Principles.		-			
	C	ourse Contents (Topics and subtopics)	Reqd	. hou	ſS	
1	Every student will be required	to solve a problem on design, which will set by one or more of the				
	teachers in the institution. The d	esign will have to be submitted in the form of a standard typed report.				
	Every student will be orally example	mined. The student will be assessed based on the progress made during				
	the semester. There would be tw	o submissions: (i) Process selection and PFD, (ii) Material and Energy				
	Balance. The submissions will b	be presented to a panel of faculty members / examiners There will be a				
	weightage of 60% for the submi	ssions and 40% for the presentation.				
	Additional details may be given	to the students from time to time by the coordinator.				
		List of Text Books/ Reference Books				
		Course Outcomes (students will be able to)	r			
1	Identify market requirement rela	ted to a particular chemical				
2	Draw a process block diagram fr	om a given process description.				
3	Select a site for the project					
4	Develop a PFD based on block of	liagram				
5	Do material and energy for all th	ne equipment in PFD.				

SEMESTER – VIII											
No.	Subjects	Credits	Credits Hrs /week			Marks for various Exams					
			L	Т	Р	C. A.	M. S.	E. S.	Total		
HUT 1114	Principles of Management – I*	3	2	1	0	10	15	25	50		
HUT 1115	Principles of Management – II*	3	2	1	0	10	15	25	50		
CET 1515	Innovations in Chemical Engineering and	3	2	1	0	10	15	25	50		
	Technology										
MAT 1106	Design & Analysis of Experiments	4	2	2	0	10	15	25	50		
	Elective (Outside Chem.Engg.Dept.	3	2	1	0	10	15	25	50		
	GET/CHT/PYT/MAT)										
	Open Elective from MOOC-I**	3	2	1	0	10	15	25	50		
	Institute Elective – III	3	2	1	0	10	15	25	50		
GEP 1112	Equipment Design and Drawing -II	2	2	0	4	25		25	50		
CEP 1711	Project 3: Home Paper – II	3	0	0	6	50		100	150		
	Total	20	12	5	10				450		

* This courses may be offered in the usual classroom mode or online mode as an NPTEL / Swayam course. The Equivalent NPTEL course will be identified by the Department every year.

** Students can choose a subject from reputed online platforms like NPTEL, Coursera, Edx, MIT OpenCourseWare, etc. The course can be from any discipline: Engineering and Technology, Humanities, Arts. The course would need to be pre-approved by the Department every year. The Department may also offer specialized courses taught by experts in an online mode.

	Course Code: HUT 1114	Course Title: Principles of Management - I	Credits = 3		
			L	Т	Р
	Semester: VIII	Total contact hours: 45	2	1	0
		List of Prerequisite Courses	I		
	List	of Courses where this course will be prerequisite			
	Description of	f relevance of this course in the B. Chem. Engg. Program	1		
This o	course is essential for effective function	oning of students in their professional career			
	C	ourse Contents (Topics and subtopics)	Requ	1. hours	
1	Introduction and overview		01		
2	Management Theories		04		
	Taylor, Fayol, Weber, Hawthorne				
	Basic types of sturtcures				
	Span of control, Delegation, Auth	ority, Responsibility			
3	Recruitment		03		
	Philosophies				
	Different methods of attracting ca	andidates			
4	Selection		02		
	Application blanks				
	Interviews				
	Talent Management				
	Induction				
5	Performance Management		03		
	Goal Setting Process				
	Appraisal Interview				
	Appraisal Interview				
6	Training & Development		03		
0	Identifying Training Needs		05		
	Training Methods (On the Job &	Off the Job)			
	Evaluation of Training				
7	Change Management		03		
	Types of Change				
	Theories of Change				

	Hurdles to Change	
	Olmosk Strategies of Change	
8	Knowledge Management	03
	Importance, Benefits	
	Frame work	
	Innovation	
9	Motivation Theories	04
	Need Drive Goal Cycle	
	Classification of Motives	
	Theories (Maslow, Herzberg, ERG, Vroom, Equity, 4 Drive Model)	
10	Leadership Theories	03
	Blake Mouton Model	
	Hersey Blanchard Model	
	Michigan Model	
11	Organizational Culture	03
	Types	
	Understanding & Influencing	
12	Conflict Management	03
13	Power & Politics	03
14	Personality	03
15	Perception	02
16	HR Laws	02
	List of Text Books/ Reference Books	1
	Talent management	
	Innovation and Entrepreneurship, Peter Drucker	
	Essentials of Organizational Behavior, S. Robbins	
	Organizational Behaviour, Luthans F	
	Industrial Management, Spriegel U.S.	
	Select Harvard Business Review Articles & Cases	
	Course Outcomes (students will be able to)	
1	Students should be able to explain the fundamental concepts of Human Resources Management	
2	Will enable students to understand self and others and thus adapt to Organizational Environment	
3	Will enable students to understand various Management theories and the Organizational Setup	
4	Students should be able to analyze practical situations and be able to provide applicable solutions.	

	Course Code: HUT 1115 Course Title: Principles of Management - II		Credit	s = 3	
			L	Т	Р
	Semester: VIII	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			
		-			
		List of Courses where this course will be prerequisite			
	Descripti	on of relevance of this course in the B. Chem. Engg. Program			
This	course is essential for effective fu	inctioning of students in their professional career			
		Course Contents (Topics and subtopics)	Reqd.	hours	
1	Organizational Structures	nal Life Cycle	03		
	Organic & Mechanistic Structur	es			
	Markatin - Markatin		02		
2	Introduction		03		
	Porter's Value Chain				
	Porter's Five Forces Model				
	Porter's Generic Strategies				
3	Four Ps of Marketing		07		
	Product				
	Place Drice				
	Promotion				
4	Production Operations Manag	ement:	08		
	Production Management				
	Modern Approach, Manufacturin	ng systems, Interface Management. Manufacturing / Operations Strategy			
	 Principles & concept 				
	Operations as competitive weapo	on Investment strategy, Capacity strategy, Quality strategy, Technology			
	strategy, Customer focus strateg	y, Facility location strategy, Product flexibility strategy, Short delivery			
	process strategy, Quick time deli	very strategy.			
	Concepts of Productivity, Measu	rement & Improvement			
	Lean Manufacturing, Value Eng	gineering,			
	Business Process Re-engineering	y. M) Dringinlag & concents Systems Drogosos & tools in WCM			
	Kanban	LM) - Finicipies & concepts, Systems, Flocesses & tools in wCM,			
	IIT Waste identification & elimi	nation			
	Poka Yoke system				
	EHSS management in WCM,	HR Dimensions in WCM, WCM in reference to Indian industry and			
	Indian	•			
	scenario, Maintenance practices				
5	Financial Management:		10		
	Investment decisions,				
	Linking investment to Product L	ife Cycle			
	Investment risk analysis and risk	control / mitigation			
	Relance sheet evaluation Fund	Glagram			
	control by variable analysis	Thow analysis, financial fatios & their evaluation / significance, Cost			
	Comparable Company evaluation	1. Budgeting and budgetary control.			
6	Quality Management:		05		
	Quality – concept / meaning,				
	Modern approach to Quality Man	nagement, QA versus			
	QC, Acceptance sampling and st	atistical quality control,			
	Deming's 14 points of QM,	TQM Principles & implementation, ISO 9000-2000, ISO 14000			
	(Environment) & ISO 50000 (En	ergy) quality standards.			
7	Maintenance Management:		05		
	Causes, costs, life profiles, Clas	silications, Organization, Equipment & plant reliability and availability,	I		
	wanagement of shutdowns & tur	natounus.			
1 1					

8	Materials Management:	04		
	Definition, objectives, organization, stages, factors responsible, value analysis			
	Management of project materials and maintenance materials			
	Purchasing and vendor development, Spares			
	strategy			
	Ware-housing, store-keeping and inventory control.			
	List of Text Books/ Reference Books			
	Production & Operations Management – An Applied Modern Approach, J. S. Martinich			
	Industrial Management – I, Jhamb L. C. and Jhamb S.			
	Industrial Management, Spriegel U.S.			
	Operations Management for Competitive Advantage, Richard B. Chase, F. Robert Jacobs, Nicholas			
	Acquilano			
	World Class Manufacturing - A strategic Perspective, B.S. Sahay, K.B.C. Saxena, A Kumar			
	Management Finance, Varanasay Murthy			
	Financial Management, R. M. Srivastava			
	Quality, John M. Nicholas			
	Quality Planning and Analysis, Juran and Gryna			
	Marketing Management, Philip Kotler			
	Select Harvard Business Review Articles & Cases			
	Course Outcomes (students will be able to)			
1	Students should be able to explain the fundamental concepts of Marketing Management& the various			
	aspects therein			
2	Will enable students to understand Fundamental Concepts of Finance and analyse the balance sheet			
3	Will enable students to understand current productivity techniques which could be combined with			
	Engineering knowledge to be applied in the Industry			
4	Students should be able to analyze practical situations and be able to provide applicable solutions.			

	Course Code: CET 1515	Course Title: Innovations in Chemical Engineering and Technology	Cree	lits =	3			
			L	Т	Р			
	Semester:	Total contact hours: 30 Lecture hours + 15 Tutorials	2	1	0			
		List of Prerequisite Courses						
	Organic Chemistry, Applied Physics, Reaction Engineering, Multiphase reactors, Industrial Engineering							
	& Chemistry, Environmental	Engineering, Separation Processes, Chemical Engineering Operations,						
	Process Engineering							
	<u> </u>	List of Courses where this course will be prerequisite						
	This is an important course hig	hlighting the innovations in Chemical Technology and should serve as a						
	specialized course for final year	graduating students.						
		Description of relevance of this course						
Inno	ovations play a crucial role while	e moving up the learning curve of technology attractiveness. Some inno	vatio	ns are	game			
char etc. com idea	nging and revolutionary, e.g., Ha and have been awarded Nobel pr prise a part of the course m s/serendipity, approach to problem	ber process, nuclear fission, transistor effect, Ziegler-Natta catalysis, in rizes. The original Nobel lectures (5-6) delivered by the people behind the naterial to understand their motivation, prevailing circumstances, the m solving, personality traits, and conducive factors that led to success.	vitro i e inno e coi	fertiliz vatior nceptio	zation, is will on of			
Whi origi there will that that devo	While many innovations require deep fundamental knowledge and correlation of complex observations, there are many originate from "street smart" thinking, observation of natural phenomena, shifting of knowledge across boundaries, etc. There are innovations that emanate from integration of known observations to derive synergy. About 15-20 such case studies will be covered in the course and original patents will serve as course material. It will be the intention to convey to the stude that such inventions are within their reach if they can articulate genuine needs and think unconventionally. It will be emphasized that focus on sustainable development will provide impetus to future innovations in chemical technology. A few lectures will devoted to Indian innovations, including important innovations from ICT.							
			The third part of the course will deal with protection of intellectual property, pros and cons of patenting, drafting of a patent application – patent claims in particular – responding to examination reports. Case studies of important patent disputes will also					
The appl be c	third part of the course will dea lication – patent claims in particu overed.	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent	afting dispu	of a tes wi	patent ll also			
The appl be c	third part of the course will dea ication – patent claims in particu overed.	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics)	afting dispu Req Hou	of a tes wi	patent ll also ecture			
The appl be controls 1	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc.,	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic	afting dispu Req Hou	of a tes wi d. Le rs 6	patent ll also ecture			
The appl be contraction 1	third part of the course will deal ication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures re circumstances, the conception of conducive factors that led to suc	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess.	afting dispu Req Hou	of a tes wi d. Le rs 6	patent ll also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suc Overview of Case studies base methodology introduced by S discussed	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ soviet inventor and science-fiction author Genrich Altshuller will be	afting dispu Req Hou	of a tes wi d. Le rs 6 9	patent ll also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suce Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP pripatent claims in particular – and	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ soviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – I responding to examination reports.	afting dispu Req Hou	of a tes wi d. Le rs 6 9 9	patent ll also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suce Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP pripatent claims in particular – and Group Assignments, short revie	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ soviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – l responding to examination reports. w projects related to the above topics will be given in the tutorial hours	afting dispu Hou	of a tes wi d. Le rs 6 9 9 6 15	patent ll also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suce Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP pr patent claims in particular – and Group Assignments, short revie	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ soviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – <u>d responding to examination reports.</u> w projects related to the above topics will be given in the tutorial hours List of Text Books/ References	afting dispu Req Hou	of a tes wi d. Le rs 6 9 9 6 15	patent ll also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suce Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP patent claims in particular – and Group Assignments, short revie	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ loviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – l responding to examination reports. w projects related to the above topics will be given in the tutorial hours List of Text Books/ References p, by Peter Drucker	afting dispu Req Hou	of a tes wi d. Le rs 6 9 9 9 6 15	patent Il also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suce Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP pr patent claims in particular – and Group Assignments, short revie	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ loviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – d responding to examination reports. w projects related to the above topics will be given in the tutorial hours List of Text Books/ References p, by Peter Drucker	afting dispu Hou	of a tes wi d. Le rs 6 9 9 9 6 15	patent ll also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suc Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP pr patent claims in particular – and Group Assignments, short revie	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ coviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – d responding to examination reports. w projects related to the above topics will be given in the tutorial hours List of Text Books/ References p, by Peter Drucker	afting dispu Hou	of a tes wi d. Le rs 6 9 9 9 6 15	patent ll also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suce Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP pripatent claims in particular – and Group Assignments, short revier Innovation and Entrepreneurshi Original patents Nobel lectures Case studies (Losartan Case studies the conception of the case studies)	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ toviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – d responding to examination reports. w projects related to the above topics will be given in the tutorial hours List of Text Books/ References p, by Peter Drucker	afting dispu Hou	of a tes wi	patent ll also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suce Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP pripatent claims in particular – and Group Assignments, short reviet Innovation and Entrepreneurshi Original patents Nobel lectures Case studies (Losartan Case studies for the studies)	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ toviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – d responding to examination reports. w projects related to the above topics will be given in the tutorial hours List of Text Books/ References p, by Peter Drucker	afting dispu Hou	of a tes wi d. Le rs 6 9 9 9 6 15	patent ll also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suce Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP pripatent claims in particular – and Group Assignments, short revie Innovation and Entrepreneurshi Original patents Nobel lectures Case studies (Losartan Case studies to weight)	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ loviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – d responding to examination reports. w projects related to the above topics will be given in the tutorial hours List of Text Books/ References p, by Peter Drucker dy, etc.) Course Outcomes (students will be able to) work on the most worthy problems and think innovatively	afting dispu Hou	of a tes wi d. Le rs 6 9 9 9 6 15	patent Il also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suce Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP prpatent claims in particular – and Group Assignments, short revie Innovation and Entrepreneurshi Original patents Nobel lectures Case studies (Losartan Case stu Students should be inspired to v Inculcate the personality traits fi	l with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ loviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – l responding to examination reports. w projects related to the above topics will be given in the tutorial hours List of Text Books/ References p, by Peter Drucker dy, etc.) Course Outcomes (students will be able to) work on the most worthy problems and think innovatively hat will foster innovation	afting dispu Hou	of a tes wi d. Le rs 6 9 9 9 6 15	patent Il also ecture			
The appl be c	third part of the course will dealication – patent claims in particulovered. Basic of Innovations with case effect, Ziegler-Natta catalysis, i cell, optical fibre, etc., Overview of Noble Lectures recircumstances, the conception of conducive factors that led to suce Overview of Case studies base methodology introduced by S discussed Overview of Patents and IP pripatent claims in particular – and Group Assignments, short revie Innovation and Entrepreneurshi Original patents Nobel lectures Case studies (Losartan Case studies the priority of the patent case studies) Students should be inspired to v Inculcate the personality traits the Recognise that there is more to basical acarduation	al with protection of intellectual property, pros and cons of patenting, dr lar – responding to examination reports. Case studies of important patent Course Contents (Topics and subtopics) studies such as e.g., Haber process, β blockers, nuclear fission, transistor n vitro fertilization, asymmetric synthesis, olefin metathesis, photovoltaic lated to innovation to understand Noble laureates' motivation, prevailing of ideas/serendipity, approach to problem solving, personality traits, and ccess. d on patents highlighting the different concepts in innovation and TRIZ doviet inventor and science-fiction author Genrich Altshuller will be rotection pros and cons of patenting, drafting of a patent application – d responding to examination reports. w projects related to the above topics will be given in the tutorial hours List of Text Books/ References p, by Peter Drucker dy, etc.) Course Outcomes (students will be able to) work on the most worthy problems and think innovatively hat will foster innovation	afting dispu Hou	of a tes wi	patent Il also ecture			

	Course Code: MAT 1106	Course Title: Design and Analysis of Experiments	Cre	dits	=4
			L	Т	Р
	Semester: VIII	Total contact hours: 60	2	2	0
		List of Prerequisite Courses			
	Applied Mathematics I				
	List of C	ourses where this course will be prerequisite			
	This course is required for graduating	engineers to function effectively in Industry, Academia and other			
	professional spheres. This course is in S	emester VIII			
	Descriptions of real		L		
Mad	Description of rel	evance of this course in the B. Chem. Engg. Program			va11
NIOC	ported by 'statistics' Chamical anginaeri	activities need decisions taken with a scientific figur and sho	otude	Je w	ven-
supp will	serve industry R&D organisations or ac	ademic research should have a reasonably good background of statist	stude	decis	sion
mak	ing This also involves extraction of m	eaningful data from well-designed minimal number of experiments	at the	e lov	west
poss	ible material costs. This course will also	help the students in all domains of their life by imparting them a visio	on for	r crit	tical
appr	aisal and analysis of data.				
	Course	e Contents (Topics and subtopics)	F	legd	
			h	ours	S
1	Fundamental principles of classical desig	gn of experiments		2	
	Strategy of Experimentation, Typical a	pplications of Experimental design, Basic Principles, Guidelines for			
	Designing Experiments.				
2	Review of Probability and basic statistic	al inference:		4	
	Concepts of random variable, probabil	ity, density function cumulative distribution function. Sample and			
	population, Measure of Central tenden	cy; Mean median and mode, Measures of Variability, Concept of			
	confidence level. Statistical Distribution	s: Normal, Log Normal & Weibull distributions, Hypothesis testing.			
3	Experiments with a Single Factor: The A	analysis of Variance		8	
	Fixed effect model and Random effect	model, Model adequacy checking, Contrasts, Orthogonal contrasts,			
	Regression Models and ANOVA, violat	ton of Normality Assumption: Kruskal-wallis test.			
4	Factorial designs:	designs, Baranced incomplete Block Designs			
4	Definition Estimating model parameters	Fitting response curves and surfaces		4	
5	The 2^{k} Eactorial Design Blocking and (Confounding in the 2k Eactorial Design: Eocus of 2^2 and 2^3 designs		8	
5	Blocking and Confounding in the 2^k Fac	torial Design		0	
6	Plackett Burman methods Central Com	posite Design (CCD)		4	
7	Descriptive Statistics. Probability Distril	pution and testing of Hypothesis using R		6	
8	Regression techniques, diagnostic check	s. ANOVA using R and implementation of contrasts.		6	
9	Construction of Balanced Incomplete Bl	ock Designs and data analysis using R		6	
10	Analysis of factorial designs using R, un	derstanding output and interpretation.		6	-
11	Factorial designs, Data analysis and inte	rpretation.		6	
	I	ist of Text Books / Reference Books	<u></u>		
1	Douglas C. Montgomery, Design and Au	alysis of Experiments, 8 th Edition, John Wiley & Sons, Inc. 2013			
2	Box, G. E., Hunter, W.G., Hunter, J.S., I	Hunter, W.G., Statistics for Experimenters: Design, Innovation, and			
	Discovery, 2nd Edition, Wiley, 2005.				
3	John Lawson, Design and Analysis of E	xperiments with R, CRC Press, 2015			
4	Dieter Rasch, Jürgen Pilz, Rob Verdoore	en, Albrecht GebhardtOptimal Experimental Designs with R. CRC			
	Press, 2011.				
5	José Unpingco, Python for Probability, S	statistics, and Machine Learning, Springer, 2019			
6	Response Surface Methodology: Proce	ss and Product Optimization using Designed Experiments: R. H.			
_	Myers, D. C. Montgomery.				
7	Introduction to Statistical Quality Control	bl: D. C. Montgomery.			
8	Design of Experiments in Chemical Eng	ineering: Zivorad R. Lazić.	i		

	Course Outcomes (students will be able to)		
1	Students should be able to understand basic principles of design of experiments.		
2	Students should be able to perform statistical analysis of single experiments and do post hoc analysis.		
3	3 Students should be able to conduct experiment and analyse the data using statistical methods.		
4	Students should be able to choose an appropriate design given the research problem.		
5	Students should be able to perform statistical analysis of different designs using R and interpret the results.		

	Course Code: CEP 1711	Course Title: Project 3: Home Paper – II	Cred	its = 3	3
			L	Т	Р
	Semester: VIII	Total contact hours: 90	0	0	6
		List of Prerequisite Courses			
	All				
]	List of Courses where this course will be prerequisite			
	Descripti	on of relevance of this course in the B. Chem. Engg. Program			
This	course enables students to inte	grate all the subjects that they have learnt and design plants / processes	s from	Cher	nical
Engi	Engineering Principles.				
		Course Contents (Topics and subtopics)	Reqd	. hour	s
1	There would be two submission	s: (iii) Process Design, (iv) P&ID, Mechanical design, Costing, feasibility.	-		
	The submissions will be present	ed to a panel of faculty members / examiners. The submissions would be			
	given a weightage of 50 marks.	There will be a weightage of 60% for the submissions and 40% for the			
	presentation. Final report of the home paper would be given a weightage of 50 marks. There will be a viva-				
	voce after the submission of the report. The weightage for the viva-voce would be 50 marks. Additional				
details may be given to the students from time to time by the Coordinator					
		List of Text Books/ Reference Books			
	Course Outcomes (students will be able to)				
1	Students should be able to desig	n, calculate size/power/internals, etc required for all the process equipment			
	in the PFD together with necess	ary instrumentation, safety aspects.			
2	Students should be able to calcu	late costs of equipment			
3	Students should be able to perfo	rm a techno economic feasibility of the selected process.			

ELECTIVE SUBJECTS

The elective subjects may be added from time to time with prior approval from UGPC/Senate.

1. **PYT 1104E – Molecular Quantum Mechanics (Applied Physics Department)**

Revision of Basic Concepts

Schrodinger equation for the hydrogen atom, solution in terms of radial and angular wavefunctions, significance of quantum numbers, atomic spectra.

The quantum harmonic oscillator, eigenvalues and eigenfunctions (no detailed derivation), significance of 'zero-point' energy.

Origin of Molecular Spectra

Analysis of diatomic molecule as a rigid rotator, rotational and vibrational energy levels of a simple diatomic molecule.

Approximation methods in Quantum Mechanics

Brief introduction to perturbation theory with simple examples, variational theorem, analysis of helium atom as an example.

Molecular Quantum Mechanics

Molecular orbital and valence bond theories for diatomic molecules, Born-Oppenheimer approximation, LCAO method in H_2^+ ion and H_2 molecule, valence bond method

2. **PYT 1105E – Statistical Mechanics (Applied Physics Department)**

Basic Statistical Approach to a System

Applicability of the statistical approach to a system, equilibrium and fluctuations, irreversibility and approach to equilibrium, counting of system states – macrostates and microstates, equiprobability postulate, concept of statistical ensemble, number of accessible states of a system, phase space.

Ensemble approach to Thermodynamics of Physical Systems

Isolated system – microcanonical ensemble, system in contact with a heat reservoir, canonical ensemble, Maxwell-Boltzmann distribution as an example, mean values in a canonical ensemble, partition function for a canonical ensemble, relation to thermodynamics.

Generalised Interactions

Grand canonical ensemble, systems with variable number of particles, chemical potential, partition function for a grand canonical ensemble, relation to thermodynamic variables.

Applications to Multi-phase Systems

Stability conditions for a homogeneous system, equilibrium between phases, phase transformations, general relations for a system with several components, general conditions for chemical equilibrium, chemical equilibrium between ideal gases, the equilibrium constants in terms of partition functions.

3. CHT 1403E – Advanced Spectroscopy (Applied Chemistry Department)

UV-VIS spectroscopy - Woodward rules, aromatic and heterocyclic compounds

IR spectroscopy: FT technique, group frequencies, vibrational coupling. NIR spectroscopy. New applications **Raman spectroscopy:** Stokes, anti-Stokes and Releigh scattering, rotational and vibrational transitions. Raman vs IR.

NMR spectroscopy: Pulse technique, FID, and FT. Relaxation and saturation phenomena, quadrupole relaxation, isotopomers.

H1 NMR: Chemical shifts and factors affecting the same, spin-spin coupling of different systems, different spin systems, coupling constants.

Simplification of complex spectra: Double resonance and decoupling, lanthanide shift reagents, INDOR technique.

C13 NMR: Basics, doble resonance,

2D NMR: H1-H1- COSY, H1-C13 HETCOR- APT and DEPT, C13-C13 connecticity: INADEQUATE

F19 and P31 NMR

Through space interactions: NOE and NOESY

Solid state NMR and MAS.

Mass spectrometry: Basics, EI and CI techniques. Isotopic abundance, fragmentation, rearrengment of ions, Maclaferty rearrangement, retrodiels-alder reaction.

Hyphenated techniques: GC-MS, LC-MS, LC-MS-MS, GC-IR, GC-AIS, GC-NMR, LC-NMR

ESR spectroscopy: Theory, experimental technique, Hyperfine splitting

Mossbaur spectroscopy

4.

Structure elucidation using combined stereoscopic methods

Emission: Flame photometry, ICP, Ark-Spark spectra, Phosphorescence, XRF

CHT 1205E – Organometallic Chemsitry (Applied Chemistry Department)

Nature of C-M bond: Metal-carbon bond with main group and transition elements. Factors controlling metal-carbon bond formation. Methods of M-C bond formation. Nomenclature and heptacity. Electron counting and 16 and 18 electron rules - applications and exceptions. Stability. Stereochemical nonrigidity in organometallic compounds.

Structure and bonding of metal alkyls and aryls. Complexes with CO and related ligands, olefins, acetylenes and related unsaturated molecules. Organic transition metal complexes as protective and stabilizing groups for double bond, triple bond, propyl cation and short lives species. Complexes with cyclopentadiene and arenes and other CnHn sandwich and half-sandwich complexes. Hydride, dinitrogen and dihydrogen complexes

Bimetallic and cluster complexes: Structure and applications in catalysis

Basic organometallic reactions: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination, reductive elimination –mechanism and stereochemistry.

Nucleophilic regents with C-M bond: Li, Mg, Al, Ti and Ce alkyls; Organicuprates, organic zinc reagents

Alkyne complexes: Pauson Khand reaction. The use of stoichiometric transition metal complexes in the synthesis of complexes organic molecules - enantioselective synthesis via organometallic compounds.

Organo silicon compounds, boranes, carboranes and, metallocarboranes, organo platinum complexes, metallocenes

Importance of organometallic compounds in Biological systems

CHT 1206E – Green Chemistry & Catalysis (Applied Chemistry Department)

Concept of Green Chemistry: Twelve principles of green chemistry, E factor, Waste management

Types of catalysis: Homogeneous and Heterogeneous catalysis. Catalytic cycles

Organometallic compounds used as catalysts: Pd, Rh, and Ru in C-C bond formation. Catalytic properties of mononuclear compounds

Homogeneous catalysis: Hydrogenation, hydroformylation, hydrocyanation, Hydrosilylation, Wilkinson catalysts, Chiral ligands and chiral induction, Ziegler-Natta catalysts

Mercuration and oxymercuration

5.

Organopalladium catalysts: Suzuki coupling, Heck coupling and related cross coupling reactions.

Alkene oligomerization and metathesis.

Catalytic oxidations and reductions: Epoxidation, dihydroxylations.

including carbonylation, decarbonylation, olefin isomerization, arylation

Important catalytic reactions: Monsanto acetic acid process, Wacker process, Heck reaction.

6. **CHT 1303 – Theoretical and Computational Chemistry (Applied Chemistry Department)**

Basics: Wave character and wave functions, De Broglie equation, normalization and orthogonalization,

Quantum mechanical operators, Schrodinger equation, particle in an infinite square well potential, quantum mechanical harmonic oscillator, angular momentum operator and rigid rotor, Born Oppenheimer approximation, potential energy surfaces, self consistent field wave functions,

Computational methods: Molecular mechanics, MO theory, semi empirical and ab initio methods, SCF theory, Hartree Fock method, DFT.

7. MAT 1107E – Momentum, Heat and Mass Transfer (Applied Mathematics Department)

Derivation of equation of momentum, energy, mass transfer in curvilinear coordinate system, constitutive equation (Newtonian & Non Newtonian fluids), Flow in some simple cases - Flow between two concentric cylinders, flow between two concentric rotating cylinders, hydrodynamics of bearings lubrication, steady flow around a sphere (theory of very slow motion).

Singular perturbation theory, derivation of bounder layer equations (using singular perturbation theory), similar and non similar solutions for some forced, mixed and natural convection problems (using bounder layer theory). Flow stability, theory of ordinary diffusion in liquids, diffusion with homogenous chemical reaction, diffusion into a falling liquids films (forced convection mass transfer).

8. MAT 1108E – Turbulent Flow and CFD (Applied Mathematics Department)

Derivation of equations of momentum and energy for turbulent flows. Modelling of turbulent flows: kinetic energy, algebraic stress model, Low Reynolds number model, LES model etc.

Turbulent boundary layer flows and similar solutions

Grid generation

Use of Control volume method, Methods of lines, Finite difference, Finite element and various algorithms (SIMPLE, SIMPLER & SIMPLEC etc) to solve the momentum, energy and mass transfer equations for simulation of some practical problems (Simulation of stirred vessel, Natural convection flow inside a closed chamber etc)

9. GET 1303E – Advanced Strength of Materials (General Engineering Department)

Analysis of Trusses - Condition for perfect truss, redundancy, stable, unstable truss. Analysis of truss by method of joints, method of sections.

Torsion of a circular shaft - concept, basic derivation, shear stress distribution, simple problem.

Short and Long columns (Struts) - Basic concept, crippling load, end conditions. Euler's and Rankine's

approach (without derivations)

Thick and Thin cylinders - concept of radial, longitudinal stresses, behaviour of thin cylinders. Problems on thin cylindrical and spherical shells. Behaviour of thick cylinders (theory only).

Advance stresses and strains – Representation of stress and strain at a point, Stress stain relationship, plane stress and plane strain. Transformation of stresses and its importance, Principal stresses and strains, maximum shearing stress, Mohr's circle its use and construction.

Basics of Engineering Design - Steps in the engineering design, Importance of analysis, 1-D, 2-D and 3-D analysis and interpretation of results. Design philosophies, factor of safety, Force displacement relationship, Strain deformation relationship, Introduction to finite element packages. Computer aided analysis and design.

Composite Materials – Types of composite materials, fillers for composites, polymer composites, fibres and matrix for a composite material, Types of fibres, their properties, woven and non woven fibres, manufacturing of polymer composite materials. Mechanics of composite materials, Properties and testing of composite materials, Uses of composite materials.

Advance materials for industrial applications - Advances in materials, Materials used for coatings, anticorrosive coatings, special purpose floorings, water proofing compounds, Various polymers and epoxies used for industrial applications. Different types of performance enhancing and special purpose construction chemicals. Plasticizers and super-plasticizers, air entraining agents, accelerators and retarders, viscosity modifying agents, corrosion inhibitors.

10. HUT 1105E – Industrial Economics (Humanities)

Nature and Significance of Economics

Demand and supply / elasticity of demand and supply, price determination, demand forecasting

theory of firm : (A) financial aspects : cost analysis, revenue structure, conditions for profit maximisation, different market structures (B) technical aspects : factors of production, role of entrepreneur, laws of return, returns to scale.

Money market and capital market, evolution of money and banking, foreign exchange and currency devaluation.

Budget, taxation, public expenditure, borrowing and deficit financing

Development issues and economic planning in India, Role of public sector / liberalisation / privatisation / globalization

11. CET 1506E – Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department)

Special features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyers reaction, Darzens condensation, etc. Typical reaction schemes for the synthesis of medium and low volume chemicals, with an emphasis on the alternative flow sheets of the entire process.

12. **CET 1204E – Electrochemical Engineering (Chemical Engineering Department)**

Introduction to eletrochemical engineering. Theoretical aspects and special features of electrochemical process. Role of mass transfer in a variety of electrochemical processes. Some aspects of electrochemical reactor design. Scale-up and optimization of reactors.

13. **CET 1712E – Mathematical Methods in Chemical Engineering (Chemical Engineering Department)**

Classification of problems in Chemical Engineering. Typical problems from heat transfer, catalysis, mass transfer with chemical reaction, dynamics of process equipments, etc. Numerical evaluation of Laplace Transforms.

Separation of variables, Eigen values, Collocation Techniques.

14. **CET 1713E – Statistical Methods in Engineering (Chemical Engineering Department)**

Continuous and discrete probability distributions, normal, chi-square, gamma, Poisson distributions. Applications. t-Tests, F-Test, Homogeneity tests, Quality Control. Acceptance sampling Linear regression and lack of fit Contingency tables.

15. **CET 1103E – Heat Transfer Equipment Design (Chemical Engineering Department)**

Classification of Heat Transfer Equipment, direct, indirect, boiling, fired, Fluidised, geometry, construction.

Thermal design methods of heat exchangers : survey, capital NTU, LMTD concept, temperature approach, etc.

Shell and Tube heat exchangers : thermal, mechanical design, hydraulic design and equations, introduction to codes and standards

Extended surface heat exchanger design : plates, plate fins, effectiveness factor.

Heat transfer equipment with phase change, two phase flow maps, and design of equipments for heat transfer and pressure drop.

Fluidised bed and direct heat exchangers design methodology.

Synthesis of optimal heat exchanger networks.

Worked Examples

16.

CET 1205E – Mixing (Chemical Engineering Department)

Examples of industrial importance

Flow pattern, power consumption, classification of impellers, internals

Mechanism of mixing, Blending in viscous and turbulent system, Suspension of solid particles, Heat transfer, Gas-liquid dispersion, Liquid-liquid dispersions, Three phase dispersions, Solid-solid mixing, emulsions, pastes, Mass transfer at gas-liquid, liquid-liquid, solid-solid and solid-liquid interface

Process design and scale-up considerations case studies

17. **CET 1507E – Petroleum Reservoir Engineering (Chemical Engineering Department)**

Energy sources, world scenario, oil pricing, Genesis of petroleum and migration, Composition of petroleum and its classification, Petroleum reservoirs, Exploration and drilling technology, Well logging and well completion, Core analysis, Capillarity and wettability, Models of pore structure and multiphase flow, Well stimulation and production strategy, Well pressure behaviour, Gas reservoir engineering, Fluid displacement and frontal displacement; Buckley-Leverett theory, Material balance, Decline curve analysis, Well patterns and displacement efficiencies, Primary recovery, Gravity drainage, Waterflooding, Mechanisms of microscopic and macroscopic flow, Transportation of oil and gas, Production rate, reservoir life, Heavy oil and tar sand technologies, Residual oil determination, Computer modelling of reservoirs, Tertiary recovery methods

18. **CET 1508 – Enhanced Oil Recovery (Chemical Engineering Department)**

Residual oil and tracer studies, Defining enhanced oil recovery, Basic equations for fluid flow in porous media, Petrophysics and petrochemistry, Phase behaviour and fluid properties, Efficiency of waterflooding, Pore level mechanisms, Mobility control, capillary number, bond number correlations, Heterogeneity of pore structure and reservoirs, Thermal methods, Steam stimulation, steam flooding and hot water drive, Combustion- forward and reverse, Ancillaries in thermal methods, Miscible flooding, Surfactant flooding, Microemulsion flooding, Foam flooding, Polymer flooding, Micellar-polymer flooding, Alkaline flooding, Carbon dioxide flooding, Inert gas injection, Reactive gas injection, Microbial recovery

19. **CET 1104E – Flow Though Porous Media (Chemical Engineering Department)**

Relevance of pore structure in science and technology, Examples from oil reservoirs, catalysis, soil science, membranes, aquifers, foods, polymers, biology, etc., Pore structures and their determination, Capillarity and wettability, Models of pore structure, Wettability and flow histories, Single phase flow, Multiphase flow, Percolation processes and network models, Fractal models, Simulations of macroscopic properties, Pore level mechanisms of flow, Diffusion and dispersion in porous media, Membrane transport, Analysis of trickle and packed beds, Ultrafiltration, Models of catalyst poisoning and deactivation, Geostatistics

20. **CET 1509E – Refinery Science and Engineering (Chemical Engineering Department)** Terminology, Origin, Kerogen, Occurrence, Recovery, Classification, Composition, Evaluation, Fractionation, Identification, Asphaltic constituents, Refining chemistry, Refining distillation, Thermal cracking, Catalytic cracking, Hydroprocessing, Reforming, Treatment processes, Gas cleaning, Products, Petrochemicals

21. **CET 1206E – Fundamentals of Catalytic Science and Engineering (Chemical Engineering Department)** Relevance and examples, Atom economy and green chemistry concepts, Homogenous and heterogeneous catalysis, Fundamentals of homogeneous catalysis and mechanisms and kinetics, Fundamentals of adsorption, isotherms, energetics, structural and dynamic considerations, Mechanisms, models and kinetics of surface reactions, Fractal models, Determination of surface structure though modern methods, Significance of Pore structure and models, Solid and surface chemistry of catalysis, Quantum mechanical, molecular mechanical and hybrid models, Catalyst design through artificial intelligence and computer modelling, Poisoning, promotion, deactivation and selectivity, Catalytic process engineering, Measurement of catalytic rates and kinetic parameters, Types of reactors

22. CET 1207E – Homogeneous Catalysis (Chemical Engineering Department)

Examples, Single phase and multiphase catalytic reactions, Acid--base catalysis, Transition metal catalysis, Biocatalysis : Microbes and enzymes, Phase transfer catalysis, Micellar catalysis, Microemulsion catalysis, Electron transfer catalysis, Heteropoly acid catalysis, Homogeneous polymer catalysis, Heterogenisation of homogeneous catalysts, Catalysis by microwaves and ultrasound, Catalyst recovery and reuse

23. CET 1208E – Catalytic Green Science and Technology (Chemical Engineering Department)

Green synthesis and heterogeneous catalysis, Metal and supported metal catalysis, metal-support interaction, Metal oxides and determination of acidity and basicity, Nature and type of supports, Solid acid catalysis, Solid base catalysis, Catalyst design, preparation and activation, Clay and modified clays, Ion exchange resins, Zeolites and zeotypes, Heteropoly acids, Inorganic-organic catalysts, Immobilised enzymes, zeozymes, complexes, Electrochemical catalysis, Photocatalysis, Microwave catalysis, Ultrasound catalysis, Synergistic catalysis, Important examples from, Refinery industry -FCC, reforming, platforming, hydroforming, polymerisation, alkylation, isomerisation; hydrodesulfurisation, hydronitrogenation, Pharmaceutical and fine chemical industry, Dyestuff and intermediate industries, Perfume and flavour industry, Polymer industry, Textile industry, Paint industry, Edible oil industry, Food industry, Waste water treatment, Catalysis for auto-exhaust pollution abatement, DeNox, DeSOx technologies

24. CET 1602E – Colloid and Interfacial Science (Chemical Engineering Department)

Capillarity: Definition, Existence of surface tension/surface free energy, Laplace equation, Young Equation, Capillarity rise phenomena, Measurement of surface tension, Contact angle Wetting characteristics

Surface Thermodynamics : Surface thermodynamic properties, Kelvin Eqn. Gibbs eqn, Surface Excess, Monolayer phase

Adsorption: Localised vs Mobile adsorption, Adsorption isotherms \Box Langmuir, Freundlich, BET etc., - Potential theory, Adsorption from solution, Electrical Diffuse Double layer theory, Debye Huckel theory scaled particle theory, Stern layer, Surfactant adsorption

Micelles: Classes of surfactants, synthesis of surfactants, Micelle structures, Determination of HLB, Models for micelle formation, Swollen micelles, Hydrotropy

Solubilization in micelles :Location of solubilizate in micelles, Measurement of solubilization, Spectroscopic methods:NMR, Fluorescence, IR etc, Detergency, selective solubilization

Emulsions :Micro and macro emulsions, Stability of emulsions (Mechanical vs. thermodynamic), Bancroft rule, deemulsification, HLB for emulsion, multiple emulsions, applications

Foams: Gibbs triangle, Film elasticity, drainage of films, Foam, defoaming, applications of foams

25. **CET 1603E – Interfacial Science and Engineering (Chemical Engineering Department)**

Definitions: Chemical and physical properties of interfaces, Introduction to surface mechanisms and thermodynamics, capillarity, meniscus shapes, contact angle, surface tension and its measurement, Laplace Equation, Young's equation, Kelvin Equation, Gibbs equation, equilibrium criteria, dividing surface, monolayers and films, mobile and fixed interfaces Interfacial areas and degrees of wetting, aerosols, liquid-liquid and particulate dispersions, Bubbles, and drops aphrons.

Microphases: Definitions and dynamics, Micelle formation surfactants CMC, structures of micelles, swollen micelle and microemulsions models, phase diagrams, Macroemulsions, Mechanical vs thermodynamic stability, HLB, Bancroft rule and other systems, Foams Colloids, Film elasticity, drainage, association, Langmuir-Blodgets film production. Experimental techniques of measurement of relevant properties: surface tension, solubilization, thermodynamic properties, spectroscopic techniques

Rheological aspects of two phase (involving microphases) flow and transport, visco-elasticity of surfactant solutions.

Solubilization and catalysis by microphases: Models, theories and data, surface potential and equations of state, double layer theory, layer Debye Huckel theory, Thermodynamics of solubilization, Hydrotropy

Emulsification and Demulsification, foam breakage, theories of coalescence, and agglomeration, Brownian motion, shear and other models.

Applications: Adsorption, foam fractionation, froth floatation Enhanced oil recovery, Novel separation processes, Coagulation, Flocculation, Microelectronics, surface vapour deposition, other applications with techniques

Monte Carlo simulation for molecular dynamics of structures, graphics software for structural display., Diffusion on the surface and in microphases.

26. CET 1403E – Adsorptive Separations (Chemical Engineering Department)

Separation Processes: overview, alternative separation techniques, Mass separating agents

Adsorbents: Molecular sieves activate carbon, zeolites alumina, silica ion exchangers, Polymeric adsorbents Physical and Reactive adsorption: Selectivity engineering in catalysis, Gaseous and liquid adsorption, Thermodynamics of adsorption, Statistical thermodynamics of adsorption phenomena, Surface excess, theories of adsorption. Separations: Bulk separation, purifications, Concentration and recovery from dilute solutions: metals, organic chemicals, microelectronics

Design of adsorbers: Gaseous and liquid phase adsorption

Theoretical analysis of diffusion in relation to adsorption in micropores

Chromatographic separations: Bulk chemicals separations, Purification, refining operations, Biochemical applications

Novel separation techniques using adsorbents, Industrial examples

27.

CET 1209E – Advanced Biochemical Engineering (Chemical Engineering Department)

Biotechnology, Biochemistry and microbiology, Enzymatic reactions, cell culturing

Enzyme engineering, enzyme modifications, stability, reactivity and selectivity considerations

Genetics and Genetic engineering, DNA recombinant technology, Hybridoma technology, single cell proteins, gene manufacturing

Fermentation and design of fermenters with modified organisms

Bioprocess simulations, molecular modelling for protein synthesis and drug design, protein engineering

Applications in fermentation industry, pharmaceutical industry, medical field such as gene therapy, Biomedical engineering

Bioreactor design, Scale up of bioreactions/reactors, Downstream processing in biochemical industry Organic synthesis using enzymes

28. CET 1404E – Downstream Processing in Biochemical Industry (Chemical Engineering Department)

Separation processes in biochemical industry, Separation processes for bulk chemicals and proteins, special needs, Unit operations on biochemical industry, such as filtration, centrifugation, heat and mass transfer, Solvent extraction: liquid-liquid extractions, phase diagrams, thermodynamics of liquid-liquid extraction, physical vs reactive extraction, liquid ion exchangers, design of extractors, two phase flow in extractors, modelling and simulation of extractors, Aqueous two phase extraction, affinity partitioning, dye ligand partitioning, Reverse micellar extraction of proteins and enzymes, Adsorption: physical and chemical adsorption, theories of adsorption, ion exchange resins and polymeric adsorbents, adsorption of small molecular weight bioproducts such primary and secondary metabolic products of cells, Protein purifications, precipitation, affinity precipitation, adsorptive and chromatographic separations of proteins, design of adsorption columns, Methods of operation., Gel permeation chromatography, metal ligand chromatography, dye ligand chromatography, affinity chromatography, expanded bed chromatography,

Applications in biochemical industry.

29. CET 1405E – Advanced Separation Processes

Membrane Processes : Principles of various membrane processes like Reverse Osmosis, pervaporation, gas separation and electro-dialysis. Design equations and module design. Concentration polarization.

Adsorption and Ion Exchange Processes : Adsorption and ion exchange equilibria. Various isotherms. Contact filtration, design of fixed bed adsorber including breakthrough cuurve.

Chromatographic Separations : Principles of chromatographic separation, criteria for effective separation, supports and methodology and process design.

Separation of Racemic Mixtures : Principles of racemic modification and their application in separation of racemic mixtures with specific examples.

Dissocaition Extraction, Reactive Extraction

30. CET 1210E – Introduction to Polymer Engineering (Chemical Engineering Department)

Introduction to Polymers : Classification based on application and history, Natural and synthetic polymers and types e.g. fibres, rubbers, adhesives, resins, plastics, etc.

Classification based on properties/structures : Thermoplastic, thermosetting, crystalline, amorphous, molecular weights status, transitions, glass transition temperature

Polymer formation/modification : Functionality and reactions, chain, ionic, condensation, co-ordination, complex polymerisation, Kinetic schemes, Orders of reactions, Cross-linking, Co-polymerisation, Heat effects

Polymerisation Processes and methods of manufacture : Bulk, Solution, Suspension and emulsion polymerisation with examples, polystyrene, polyethylene/propylene, styrene-Butadiene, poly urethane, Epoxy, PET, Kinetics, reaction rates, diffusional limitations, Biodegradable polymers.

31. **CET 1604E – Polymer Processing (Chemical Engineering Department)**

Plastic Technology : Moulding, (injection, blow) extrusion, cold-not and vacuum forming multipolymer systems. Equipments design and operating conditions

Fibre Technology : Textile processing, fibre spinning and after treatment. Equipments design and operating conditions

Elastomer Technology : Vulcanisation, Reinforcement compounding

Equipments- design & operating conditions, environmental impact

Recycle of polymers : Reprocessing techniques and limitations

Selection of polymers : domestic & engineering usage

Rheological and mechanical measurements concept of solution viscosity

32. **CET 1211E – Polymer Reactor Engineering (Chemical Engineering Department)**

Kinetic modelling, concept of reactor design, optimisation and control of polymerisation process, isolation and separation of monomers/catalyst/by products etc for Bulk polymerisation, Solution polymerisation, Emulsion polymerisation, suspension polymerisation with case studies

Kinetic modelling of co-polymerisation processes.

33. CET 1605E – Advanced topics in Polymer Chemistry/Physics Characterisation/Analysis of Polymers (Chemical Engineering Department)

Structure/property relationship : Morphology & Cristallinity Mechanical and Chemical properties Structure/Rheology relationships

Rheology, elasticity, Viscoelasticity, yield and fracture chemical resistance Properties of commercial polymers. PE, PP, Acrylic, amides & peptides phenolic & Urethane resins Role of Additives : Type of additives and their role in altering the properties Polymer composites : Carbon filled, fibre filled etc. Reinforced polymers

Analysis of polymer solubility, thermodynamics and phase equilibrium of polymer solutions, End group analysis, Colligative property measurement, Light scattering, Solution viscosity and molecular size and wt distribution. Spectroscopic methods, microscopy, thermal analysis.

Selection of polymers, domestic and engineering usage.

34. CET 1510E – Fuels Engineering (Chemical Engineering Department)

Classification of fuels : G/L/S

Automotive Fuels Bharat Standards II III & IV

Gaseous Fuels:

Natural Gas: Processing for pipe line specs

CO₂/H₂S/COS Removal

Gas dehydration

Gas compression for pipe line transport

Coal bed methane, Bio Gas (methane)

CNG : As auto fuel, Compression, CNG stations

LNG : Liquefaction of NG JT effect, closed & open cycle , Storage of

LNG, Transportation of LNG, vessels / truck, terminal, Gasification

of LNG to NG for pipeline transport

Liquid Fuels:

- Refinery sources, Reforming for fuels
- LPG : Domestic and Auto LPG Storage and handling,
- Manufacture and Storage (Partly in I&EC) Petrol, Diesel, Aviation Turbine Fuel, HSD, LDO. Furnace oil, Fuel oil, LSHS.
- Biofuels : bioethanol, biodiesel

Solid Fuels : Characterization

- Coal
- Biomass
- Residue from Refinery
- Plastic waste
- Municipal domestic waste

Combustion of Fuels :

- Basic equation, air requirement norms for excess air.
- Heating value : GHV/LHV Calculations for mixture of components
- Wobbe number for Gaseous Fuels definition and significance.
- Burners : Gas/Liquid/Hydrogen
- Flue gas composition, Dew point calculations
- Treatment of flue gas to meet local standards, Carbon Credit

Gasification of i) Coal, Indian Coal

ii) Biomass

iii)Refinery Heavy Residue

Power generation, combined cycle, cogeneration

35. **CET 1511E – Plant Utilities (Chemical Engineering Department)**

Role of Process Utilities in process industries. Impact on Project economics

Water, its characteristics and its conditioning and treatment for process industries e.g. boiler feed water, cooling water. Recycling aspects of water from blow downs.

Application of steam systems in chemical process plants, design of efficient steam heating systems, condensate utilization, flash steam, steam traps.

Characteristics properties, classification, selection and industrial applications

Characteristics of air and air receivers, instrument air. Inert gas generation

Vacuum system engineering.

Electrical Power : HT/LT

Area classification, Motors/drives selection accordingly. Single line diagram. Emergency Drives Identification Emergency power. Inverters, DG sets. Etc.

Estimation of utilities

Utilities Audit

36. CET 1512E – Project Management: Case Study Approach (Chemical Engineering Department)

77 of 81

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution : conception to commissioning.

Project execution as conglomeration of technical and non technical activities.

Detailed Engineering activities.

Pre project execution main clearances and documents

Project team : Role of each member. Importance

Project site : Data required with significance.

Project contracts. Types and contents.

Project execution

Project cost control.

Bar charts and Network diagram.

Project commissioning: mechanical and process.

37. CET 1606E – Advanced Materials (Chemical Engineering Department)

Nanostructured Materials: Metal nano particles, their structure and properties

Carbon nano tubes: manufacture, properties and applications. Nano materials in catalysis.

Composite Materials: Polymer composites, metal-metal composites, polymer-metal

composites, metal- ceramic composites.

Superconducting Materials: Principles of superconductivity, properties, advantages

and limitations of superconductors. Applications

superconductors

Smart Materials: Shape memory alloys, Auxetic materials and Biomimmicking materials. Stimulii for sensors and actuators.

38. **CET 1513E – Process Systems Engineering (Chemical Engineering Department)**

Introduction to Systems Engineering: Systems and their origin, examples of problems in Systems Engineering **Foundations of Systems Engineering:** Scope and Formulation of Engineering Problems, Goals, Objectives, Specifications and Constraints, Types of Models; Hierarchical decomposition of systems, Types of Problems: Forward solution and inversion of models

Structural Analysis of Systems: Graphs and digraphs: Representation of systems, Partitioning and Precedence Ordering of systems, Structural analysis of modeling equations, Structural controllability and observability of systems, Applications to engineering problems

Steady State Analysis of Systems: Formulating steady-state models and simulations, Degrees of freedom and design specifications, The Sequential-Modular Strategy, The Equation-Oriented Strategy, Applications to engineering problems

Optimization of Systems: Theory and Algorithms: Basic concepts and definitions, Linear programming, Unconstrained nonlinear optimization, Nonlinear Programming, Combinatorial optimization, Applications to engineering problems

Simulation of Dynamic Systems: Basic concepts: Systems described by ODEs and DAEs, Formulating dynamic simulations; consistent initialization, Numerical integration of ODEs and DAEs, Modeling-simulation of hybrid Discrete/Continuous systems, Applications to engineering systems

Model-Based Process Control: The nature of feedback control, The concept of model-based control systems, Design and analysis of model-based control systems applications

39. CET 1106 – CFD applications in chemical processes (Chemical Engineering Department)

Derivation of equations of momentum and energy for turbulent flows.

Finite volume technique

One dimensional heat conduction and flow

Grid generation

Space and time discretization

Pressure velocity coupling (simple, simpler & SIMPLEC)

OpenFOAM software, simulation of pipe flow, backward step, flow past cylinder

Commercial software, simulation of pipe flow, backward step, flow past cylinder, stirred vessel, bubble column, cyclone separator, spray dryer etc.

Suggested Books:

Versteeg and malalasekera, "An introduction to computational fluid dynamics. The finite volume method", (2007)

Patankar S., "Numerical heat transfer and fluid flow", (1980)

40. CET 1407 – Process Design of Heat and Mass Transfer Equipment

(3 Credits: 2 Lectures + 1 Tutorial – 3 hours per week, 45 hrs total)

Advanced Process design aspects of various process equipments will be considered through several case studies;

and will cover: hydrodynamic characteristics, heat and mass transfer characteristics, selection criteria, etc. The topics will include some of the following equipment (but not limited to):

- (1) Equipment for heat transfer: plate heat exchangers, plate fin exchangers, finned tube exchangers, thermo-siphon reboilers, evaporators, condensers, etc.
- (2) Equipment for Unit operations: plate and packed columns, spray towers, etc.
- (3) Equipment for Multiphase reactions: Stirred tanks, gas inducing reactors, bubble columns / modified bubble columns, air-lift reactors, packed and plate columns, trickle bed reactors, ejectors, etc.

41. CET 1408 Advanced Membrane Separations

Introduction : classification and definitions

Membrane Processes and their applications: Microfiltration, Ultrafiltration and micelle-enhanced ultrafiltration, Nanofiltration, Reverse osmosis, Dialysis, piezodialysis, electrodialysis, Pervaporation and membrane distillation, Gas permeation,Liquid membranes, Ion exchange membranes

Transport mechanisms, and mathematical modelling

Membranes: Design of membranes, Characterization

Polarisation and fouling: Polarisation phenomena and fouling concentration polarization, Characteristic flux behaviour in pressure driven membrane operation, Membrane fouling, Methods to reduce fouling

- Process design: modules and configurations: Capillary, hollow fibre, tubular, Plate and frame, Spiral wound Membrane reactors and their applications in biotechnology
- Text books:

Mulder, M.H.V. Membrane Separations, Springer.

Philip, R., Wankat, C. Rate-Based Separations, Springer.

Reference books:

Nunes, S.P., Peinemann, K.V. Membrane Technology in the Chemical Industry, Wiley.

Rautanbach and R. Albrecht, Membrane Processes, Wiley.

Crespo, J.G., Bodekes, K.W. Membrane Processes in Separation and Purification, Kluwer Academic Publications.

Geankoplis, C.J. Transport Processes and Unit Operations, Prentice-Hall.

42. CET 1607 Biomaterials: Biodegradable Materials for Biomedical Applications

Introduction of Biomaterials

Biomaterials Surfaces: Structure and Properties, Surface Energy

Adsorption and Reconstruction at Surfaces,

Protein-Surface Interactions

Proteins: Structure, Properties, Functions, Protein Adsorption: Complex Phenomena, Measurement

Cell-Surface Interactions: Host Response to Biomaterials: Cell adhesion mechanism, coagulation cascade, immune response

Surface Characterization: AES, XPS, AFM, Contact Angle

Quantifying Cell Behavior: Cell Culture, Cellular Assays

Biosensors and Diagnostic devices

Drug Delivery: Controlled Release, Diffusion Controlled and Membrane based devices, Mechanical Pumps

Biomaterial for Organ Replacement

Mechanical Properties, Bone Substitutes

Introduction of Tissue Engineering: Cell, Scaffold design, Artificial liver, pancreas, cartilage

Regulatory overview

Text Books:

Ratner, Buddy D., et al. Biomaterials Science: An Introduction to Materials in Medicine. 2nd ed. Burlington, MA: Academic Press, 2004. ISBN: 9780125824637.

43. Elective: Machine Learning

Machine Learning	
Machine Learning Concepts: Mean Square Error (MSE), Training Error, Test Error, Bias-	8
variance trade-off, Measuring the quality of fit, Regression Diagnostics, Understanding the	
concept of model flexibility and prediction accuracy, Universal behaviour of Training and	
Test MSE. Case study of linear regression with K-nearest neighbour regression	
Model Selection and Regularization: Validation set approach, Leave-One-Out-Cross-	9
Validation, K-fold cross validation, Best subset selection, Forward Selection, Backward	
selection, Hybrid selection, shrinkage methods: Ridge regression, Lasso, Least angle	
regression.	
Decision Trees, Bagging and Boosting, Random Forests, Gradient Boosting, Artificial	12
Neural Network	

Classification problem: Logistic Regression, Support Vector Machines, Receiver operating characteristic (ROC) curves, Area under the curve (AUC) and other related accuracy	8
measures	
Multivariate methods: Principal Component Analysis, Factor Analysis, Principal component	8
regression, K-means clustering, Hierarchical Clustering, Multi-dimensional scaling	
Software used: R/Python/MATLAB	

Course Outcomes (CO)

- (1) Students should be able to understand advantages of machine learning algorithms.
- (2) Students should be able to apply machine learning techniques to solve regression problems involving real data.
- (3) Students should be able to apply machine learning techniques to solve classification problems involving real data.
- (4) Students should be able to apply dimension reduction methods to solve problems involving real data.
- (5) Student should be able to use software to build machine learning models and interpret the results.

References:

- 1. Andreas C. Müller and Sarah Guido, Introduction to Machine Learning with Python: David Barber A Guide for Data Scientists, (2016), O'Reilly Media.
- 2. Hands on Machine Learning with R by Bradley Boehmke and Brandon Greenwell, CRC Press, 2020.
- 3. Introduction to Statistical Learning with Application in R by James, G., Witten, D., Hastie, T. and Tibshirani, R, 2011.
- 4. All of Statistics: A concise course on Statistical Inference by Larry Wasserman, 2009.
- 5. The Elements of Statistical Learning by Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie (2001), Springer.
- 6. Ethem Alpaydin, Introduction to Machine Learning by (2004), The MIT Press, Cambridge.
- 7. Ian H. Witten, Eibe Frank, Mark A. Hall, Data Mining: Practical Machine Learning Tools and Techniques by (2011), Elsevier
- 8. Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series) by Kevin P. Murphy (2012)

44. Elective (Optimization Techniques) (3 credits)

Topics	
	hrs.
Review of local maximum/minimum	2
Method of Lagrange Multipliers and KKT methods	6
One dimensional Optimization Techniques: Fibonacci search method, Golden section method and	4
interpolation method.	
Direct Search unconstrained optimization: Powell's method, Nelder-Mead (simplex) method	6
Gradient Search Optimization Methods: Steepest Descent Method, Newton's Method, Conjugate gradient	
methods	
Linear Programming: Simplex Method, Revised Simplex Method and other Advanced Methods, Integer	12
Programming	
Modern Optimization Techniques; Genetic Algorithms, Simulated Annealing, Ant Colony Optimization	5

COURSE OUTCOMES (CO)

- (1) Students should be able to understand classical optimization techniques and their numerical implementation.
- (2) Students should be able to solve the engineering problems related to maxima and minima in the optimization framework.
- (3) Students should be able to apply different methods of linear programming to solve optimization problems.
- (4) Students should be able to apply modern optimization techniques to solve engineering problems.

Reference:

- 1. Engineering Optimization: theory and practices, S.S. Rao, New Age International Pvt. Ltd.
- 2. An Introduction to Optimization, Edvin K. P. Chong & Stanislab H. Zak, Wiley Publication
- 3. Optimization for Engineering Design, K. Deb, Prentice Hall, India